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We give a systematic treatment of a spin 1/2 particle in a combined electromagnetic field and a
weak gravitational field that is produced by a slowly moving matter source. This paper continues
previous work on a spin zero particle, but it is largely self-contained and may serve as an introduction
to spinors in a Riemann space. The analysis is based on the Dirac equation expressed in generally
covariant form and coupled minimally to the electromagnetic field. The restriction to a slowly moving
matter source, such as the earth, allows us to describe the gravitational field by a gravitoelectric
(Newtonian) potential and a gravitomagnetic (frame-dragging) vector potential, the existence of
which has recently been experimentally verified. Our main interest is the coupling of the orbital
and spin angular momenta of the particle to the gravitomagnetic field. Specifically we calculate the
gravitational g-factor to be g g = 1 ; this is to be compared with the electromagnetic g-factor of
ge = 2 for a Dirac electron. Lastly we discuss a number of possible experimental approaches to
observing gravitomagnetic effects in atomic and macroscopic systems.
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1. INTRODUCTION

Classical systems in external gravitational fields have
been studied for centuries, and recently the existence of
the gravitomagnetic (or frame-dragging) field caused by
the earth’s rotation has been observed in two indepen-
dent experiments. Observations of the LAGEOS satel-
lites gave a measurement of the gravitomagnetic interac-
tion via its effect on satellite orbits, accurate to about
10% [1]. The Gravity Probe B (GP-B) satellite verified
the prediction of general relativity for the gravitomag-
netic precession of a gyroscope in earth orbit (42 mas/yr)
to about 20% [2–5]. Both experiments required impres-
sive feats of data analysis and modeling of classical ef-
fects. Analysis of the LAGEOS data involved modeling
the earth’s Newtonian field to very high accuracy in or-
der to extract the gravitomagnetic effect [6, 7]. Analysis
of the GPB data required precise modeling of mechani-
cal and electrical properties of the gyros[5, 8]. It should
be emphasized that the LAGEOS gravitomagnetic effects
are due to Lorentz-like forces from the geodesic equa-
tion, whereas the GP-B gravitomagnetic effects are due
to Larmor-like torques from the spin precession equation,
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so the two experiments are independent and rather nicely
complementary.

While gravitomagnetic effects are generally quite small
in the solar system it is widely believed that they may
play a large role in jets from active galactic nuclei, so their
experimental verification is of more than theoretical in-
terest [9]. One can get a feel for the relative magnitude
of gravitomagnetic effects using dimensional arguments
to see why satellite and laboratory experiments are so
difficult, whereas for astrophysical sources such effects
may be large. Gravitational effects for a system of mass
M and size R generally involve a dimensionless factor of
GM/c2R (the metric distortion or the Newtonian poten-
tial divided by c2 ), which for the earth is of order 10−9.
For gravitomagnetic effects there is an additional factor
ve/c for the spin velocity of the earth source, which is of
order 10−6. Finally the gravitomagnetic force on a mov-
ing test body (similar to a Lorentz force) contains a fac-
tor vtb/c, which is of order 10−5 for an orbiting satellite.
Interestingly the gravitomagnetic precession of a gyro is
independent of the angular momentum of the rotor and
thus also independent of the velocity due to its spin, as
we will discuss in section 8. Thus for experiments “near
home” gravitomagnetic effects are generally very much
smaller than Newtonian effects. Contrariwise, for astro-
physical systems containing neutron stars or black holes
or active galactic nuclei all of the above numerical factors
can be of order unity!

At the other end of the interest spectrum extensive the-
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oretical work has been done on quantum fields in classical
background spaces, the most well known being related to
Hawking radiation from black holes [2, 10–12]. It is im-
portant to keep in mind that Hawking radiation has never
been verified observationally.

Interesting experimental work has also been done on
quantum systems in the earth’s gravitational field, such
as neutrons interacting with the earth’s Newtonian field
and atom interferometer experiments aimed at accurately
testing the equivalence principle and other subtle gen-
eral relativistic effects [13–15]. There has been some dis-
cussion of attempts to see gravitomagnetic effects with
these devices but such experiments would be quite diffi-
cult due to the small size of the effects and the similar-
ity to classical effects of rotation; this is to be expected
since gravitomagnetism manifests itself in a way that is
similar to rotation, hence the appellation “frame drag-
ging.” The phrase “frame dragging or “space dragging
has been criticized as being technically inaccurate; the
word gravitomagnetic is certainly more descriptive, al-
beit still awkward[16]. Laboratory detection of gravito-
magnetic effects on a quantum system would clearly be
of fundamental interest.

In this work we give a systematic treatment of a spin
1/2 particle in a combined electromagnetic field and weak
gravitational field; this continues the work of reference
[17]. We describe the particle with the generally covari-
ant Dirac equation in a Riemann space, minimally cou-
pled to the electromagnetic field in the standard gauge
invariant way [18, 19]. The weak gravitational field is
naturally treated according to linearized general relativ-
ity theory, and we also assume a slowly moving matter
source, such as the earth [20–22]. Within this approxi-
mation the gravitational field is described by a gravito-
electric (or Newtonian) potential and a gravitomagnetic
(or frame-dragging) vector potential, and the field equa-
tions are quite analogous to those of classical electromag-
netism. We thus refer to it as the gravitoelectromagnetic
(GEM) approximation. Our special emphasis throughout
this paper is on the gravitomagnetic interaction.

The paper is organized as follows. After brief review
comments on the GEM approximation (section 2) and the
Dirac equation in flat space (section 3) we give a detailed
discussion of generally covariant spinor theory and the
Dirac equation, using the standard approach based on
tetrads (sections 4 and 5)[19]. We then obtain the limit
of the Dirac Lagrangian and the Dirac equation for a
weak gravitational field and discuss its interpretation in
terms of an energy-momentum tensor (section 6).

Our discussion of generally covariant spinors and
the generally covariant Dirac equation is largely self-
contained, and may serve as an introduction to the sub-
ject for uninitiated readers. In section 6 we also observe
that the non-geometric or “flat space gravity” approach
of Feynman, Weinberg and others does not appear to be
completely equivalent to linearized general relativity the-
ory in its coupling to spin [23]. We have not found this
discussed elsewhere in the literature.

Using the weak gravitational field results we then ob-
tain the non-relativistic limit of the theory (section 7).
We do this by integrating the interaction Lagrangian to
obtain the interaction energy of the spinor particle with
the electromagnetic and the GEM fields, and from that
obtain the non-relativistic interaction energies. This al-
lows us to read off, in a simple and intuitive way, the
interaction terms that one could use in a non-relativistic
Hamiltonian treatment. In particular we obtain (section
8) the usual g-factor of the electron ge = 2 and the anal-
ogous result for the gravitomagnetic g-factor of a spinor,
which is g g = 1.

Section 8 also contains brief comments on the numeri-
cal value of some interesting and conceivably observable
quantities such as the precession of a spinning particle
in the earth’s gravitomagnetic field and its relation to
the precession of a macroscopic gyroscope; such preces-
sion appears to be universal for bodies with angular mo-
mentum. The phase shift in an atom interferometer is
also mentioned as an experiment that could, in principle,
show the existence of the gravitomagnetic field. Lastly in
section 8 we mention that the acceleration of a body in
a gravitational field depends on its angular momentum,
and estimate the small effect for atoms.

Finally it is worth noting what we do not do in this
paper. We study the effect of the gravitational field on
a quantum mechanical spinor but not the effect of the
spinor on the gravitational field or quantum gravity or
quantum spacetime [24]. Similarly we do not consider
torsion, in which the affine connections have an anti-
symmetric part and are not equal to the Christoffel sym-
bols. Some authors believe that inclusion of torsion is
necessary for a full description of spin in general relativity
[25]. However Kleinert maintains that torsion is an alter-
native way to express the effects of curvature, and the two
are related by a novel sort of gauge transformation[26].
In any case torsion has not proved necessary in our dis-
cussion.

2. THE GRAVITOELECTROMAGNETIC (GEM)
APPROXIMATION

In previous work we discussed linearized general rela-
tivity theory for slowly moving matter sources like the
earth[17, 21, 22]. Here we summarize the results very
briefly. The metric may be written as the Lorentz metric
plus a small perturbation,

gµν = ηµν + hµν . (2.1)

We use coordinate freedom to impose the Lorentz gauge
condition

(hµν −
1

2
ηµνh)|ν = 0, (2.2)

where the single slash denotes an ordinary derivative.
Then the field equations of general relativity tell us that
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the metric perturbation may be written as

hµν =

 2φ h1 h2 h3

h1 2φ 0 0
h2 0 2φ 0
h3 0 0 2φ

 , h00 = 2φ, h0k = hk, (2.3)

where φ is the Newtonian or gravitoelectric potential and

hk ↔ ~h is the gravitomagnetic potential. For slowly mov-
ing sources the field equations and the Lorentz condition
become

∇2φ = 4πGρ, ∇2hj = −16πGρvj ,

4φ̇−∇ · ~h = 0, ~̇h = 0, (2.4)

where ρ is the source mass-energy density and vj is its
velocity.

The physical fields, which exert forces on particles, are
the gravitoelectric (or Newtonian) field and the gravit-
omagnetic (or frame-dragging) field, which are defined
by

~g = −∇φ, ~Ω = ∇× ~h. (2.5)

We call this equation system the gravitoelectromagnetic
or GEM limit because of its close similarity to classical
electromagnetism.

It is worth noting why the gravitational field in the
GEM approximation is described by only the 4 met-
ric components, φ and hi, whereas gravity is gener-
ally described by 10 metric components. The energy-
momentum tensor of matter is ρuµuν , where uν is the
4-velocity, so it is apparent that the spatial components
are all of order v2. The field equations then imply that
the spatial off-diagonal components of hµν are also of or-
der v2 and can be ignored for low source velocities, and
also that the diagonal components are all equal to 2φ
[17].

3. FLAT SPACE DIRAC EQUATION AND THE
NON-RELATIVISTIC LIMIT

We now briefly review the Dirac equation in flat space
and recast it into a Schroedinger equation form (SEF),
which provides one convenient way to obtain the non-
relativistic limit [18].The SEF is exact and involves only
the upper two components of the spinor wave func-
tion relevant for positive energy solutions in the non-
relativistic limit. This will serve as a basis of comparison
for the alternative method we will use in section 7 for
gravitational interactions. In this section γµ denotes flat
space Dirac matrices [18, 27].

The Dirac Lagrangian and the equations that follow
from it are

L = aψ̄(iγµ ~∂µ −m)ψ + bψ̄(−iγµ
←−
∂ µ −m)ψ

−(a+ b)eAµψ̄γ
µψ, (3.1a)

(iγµ∂µ −m)ψ = eAµγ
µψ,

ψ̄(−iγµ
←−
∂ µ −m) = eAµψ̄γ

µ. (3.1b)

The spinor and its adjoint are considered independent in
(3.1). The constants a and b are arbitrary, so long as
a+ b 6= 0 . The γµ obey the flat space Dirac algebra,

{γµ, γα} = 2ηµνI. (3.1c)

The adjoint spinor may be related to the spinor by a
linear metric relation, ψ̄ = ψ†M where M is to be de-
termined; consistency of the equations (3.1b) is assured
if

M−1γµ†M = γµ, M−1 = M = γ0, ψ̄ = ψ†γ0. (3.2)

Eq. (3.2) is easy to verify for the choice of gamma ma-
trices given below in (3.4).

The Hamiltonian form of the Dirac equation is gotten
by multiplying (3.1) by γ0 to obtain

i∂tψ = βmψ + V + ~α · ~Πψ,
β ≡ γ0, α ≡ γ0γk, ~p ≡ −i∇. (3.3)

Pauli’s choice of gamma matrices is natural for the non-
relativistic limit,

γ0 =

(
I 0
0 I

)
, γi =

(
0 σi

−σi 0

)
, ~α =

(
0 ~σ
~σ 0

)
. (3.4)

Next we break the 4-component wave function ψ into
two 2-component Pauli spinors and factor out the time
dependence due to the rest mass by substituting

ψ = e−imt
(

Ψ
ϕ

)
, (3.5)

which leads to the coupled equations,

i∂tΨ = VΨ + (~σ · ~Π)ϕ,

i∂tφ+ 2mϕ− V ϕ = (~σ · ~Π)Ψ. (3.6)

We are interested in Ψ so we solve for ϕ symbolically,

i∂tΨ = VΨ + (~σ · ~Π)(2m− V + i∂t)
−1(~σ · ~Π)Ψ, (3.7a)

ϕ = (2m− V + i∂t)
−1(~σ · ~Π)Ψ. (3.7b)

The inverse operator (2m − V + i∂t)
−1 may be defined

by its expansion in the time derivative, as discussed in
Appendix A. The SEF (3.7a) is exact, although it is of
infinite order in the time derivative.

For the case of a free particle the operator factors on
the right side of (3.7a) commute and it becomes

i∂tΨ = (i∂t + 2m)−1~p2Ψ. (3.8)

However the operators will not in general commute unless
the field Aµ is constant.

In a low velocity system the time variations of Ψ and
V are associated with non-relativistic energies, much less
than the rest energym, so we approximate the SEF (3.7a)
by

i∂tΨ = VΨ +
(~σ · ~Π)2

2m
Ψ. (3.9)
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This is the spin 1/2 Schroedinger equation, often called
the Pauli equation. It shows clearly how the spin and
orbital angular momentum interact with the magnetic
field. Pauli spin matrix algebra leads to an illuminating
form for (3.9): to lowest order in e,

i∂tΨ = VΨ +
~Π2

2m
Ψ− e ~B · ~σ

2m
Ψ

= VΨ +
~p2

2m
Ψ− e ~A · ~p

m
Ψ− e ~B · ~σ

2m
Ψ, (3.10)

where we have used the Lorentz gauge in which ∇ · ~A =
−Ȧ0 and assumed A0 has negligible time dependence.

The g-factor of a particle or system is defined in terms

of its magnetic moment ~µ and angular momentum ~J by

~µ = ge(e/2m) ~J ; thus, from (3.10), the fact that the

energy is −~µ · ~B, and the electron spin is ~S = σ/2 it is
evident that the electron g-factor is ge = 2.

The relative coupling of the spin and orbital magnetic
moments is made most clear if we consider a magnetic
field that is approximately constant over the size of the

system, in which case we can choose ~A = ( ~B × ~r)/2 and
find from (3.10)

i∂tΨ = VΨ +
~p2

2m
Ψ− e ~B

2m
(2~S + ~L)Ψ,

~S = ~σ/2, ~L = ~r × ~p. (3.11)

That is ge = 2 for the electron spin and ge = 1 for the or-
bital angular momentum. This is, of course, approximate
since QED gives corrections to the g-factor; to 1-loop ap-
proximation the result is the famous anomalous moment
(ge − 2)/2 = α/2π [18, 27].

The SEF (3.7a) may be expanded to higher order to
study e.g. hyperfine structure in the hydrogen atom [28].
An important problem is that the wave function Ψ is the
upper half of the Dirac wave function, so the quantity
to be normalized is |Ψ|2 + |ϕ|2 rather than |ψs|2 for a
Schroedinger or Pauli wave function. To conserve prob-
ability one must renormalize the wave function as dis-
cussed in detail in ref. [28]. It is for this reason that we
will adopt an alternative and conceptually simpler ap-
proach to the non-relativistic limit in section 7.

4. GENERALLY COVARIANT SPINOR
THEORY

The gravitational interaction of a spinor may be ob-
tained most easily by making the Dirac Lagrangian (3.1a)
and Dirac equation (3.1b) generally covariant. We adopt
the standard approach of using a tetrad of basis vectors
in order to relate the generally covariant theory to the
special relativistic theory in Lorentz coordinates [15, 19].
This is a natural approach since Dirac spinors transform
by the lowest dimensional representation S of the Lorentz
group; that is ψ′ = Sψ .

Two properties of the Dirac Lagrangian and Dirac
equation must be modified to obtain a generally covariant
theory: the Dirac algebra in (3.2) must be made covari-
ant and the derivative of the spinor in (3.1) must be made
into a covariant derivative.

The Dirac algebra (3.1c) is easily made covariant by re-
placing the Lorentz metric ηµν by the Riemannian metric
gµν ,

{γµ, γν} = 2gµνI. (4.1)

A set of γµ matrices that satisfy (4.1) is constructed by
using a set of constant γ̂b that satisfies the special rela-
tivistic relation (3.2) and a tetrad field eµb normalized by
the usual tetrad relations

eµb e
ν
agµν = ηab, gαβ = eαc e

β
dη

cd. (4.2)

Here the Greek indices label components of the tetrad
vectors and Latin indices label the vectors. In terms of
a convenient set of constant Dirac matrices γ̂b, such as
those in (3.4), we define the γµ by

γµ = eµb γ̂
b. (4.3)

It then follows from (3.1c) and (4.2) that the γµ satisfy

{γµ, γν} = eµb e
ν
a{γ̂b, γ̂a} = eµb e

ν
a2ηabI = 2gµνI. (4.4)

The covariant derivative of a spinor is defined so as to
transform as a vector under general coordinate transfor-
mations and as a spinor under Lorentz transformation of
the tetrad basis. As with the covariant derivative of a
vector we define a rule for transplanting a spinor from x
to a nearby point x+ dx ,

ψ∗(x+ dx) = ψ(x)− Γµψ(x)dxµ. (4.5)

The matrices Γa are variously called spin connections,
affine spin connections, or Fock-Ivanenko coefficients.
The covariant derivative is then defined in terms of the
difference between the value of the spinor and the value
it would have if transplanted to the nearby point. That
is

ψ(x)||νdx
ν = [ψ(x) + ψ(x)|νdx

ν ]− [ψ(x)− Γν(x)ψ(x)dxν ]

= [ψ(x)|ν + Γν(x)ψ(x)]dxν ,

ψ||ν = ψ|ν + Γνψ = (∂ν + Γν)ψ ≡ Dνψ. (4.6)

Here the double slash denotes a covariant derivative.
Since the spinor covariant derivative must transform as a
vector under coordinate transformations and as a spinor
under Lorentz transformations of the tetrad basis, we
have

ψ′||µ =
∂xν

∂x′µ
Sψ||ν , (4.7)

It follows from (4.6) and (4.7) that the spin connections
must transform according to

Γ′ν =
∂xν

∂x′µ
[SΓνS

−1 − S|νS−1]. (4.8)
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The transformation (4.8) is formally similar to that of
the Christoffel symbols, the affine connections used for
vector covariant derivatives.

The covariant derivative of an adjoint spinor follows
easily from that of a spinor in (4.6); we ask that the
inner product ψ̄χ of a spinor χ and an adjoint spinor ψ̄
be a scalar and thus have a covariant derivative (ψ̄χ)||µ
equal to the ordinary derivative (ψ̄χ)|µ, and we also ask
that the product rule hold for both the ordinary and the
covariant derivatives. The result is

ψ̄||µ = ψ̄|µ − ψ̄Γµ. (4.9)

The same idea leads to the covariant derivative of a
gamma matrix; we ask that the expression (ψ̄γµχ)||α be
a second rank tensor and that it obey the product rule
of differentiation, and find from (4.6) and (4.9)

γµ||ω = γµ|ω +

{
µ
ωσ

}
γσ + [Γω, γ

µ]. (4.10)

This expression plays an important role in obtaining the
spin connections in the next section.

5. COVARIANT DIRAC LAGRANGIAN AND
DIRAC EQUATION

In this section we give a covariant Lagrangian and ob-
tain the covariant Dirac equation. We also get a relation
between the spinor and its adjoint and evaluate the spin
connections.

The choice of a covariant Dirac Lagrangian L, and its
associated density L, is rather obvious from the flat space
Lagrangian in (3.1),

L = aψ̄(iγµψ||µ −mψ) + b(−iψ̄||µγµ − ψ̄m)ψ,

L =
√
gL. (5.1)

Coupling to the electromagnetic field will be included
later. The γµ denotes the covariant Dirac matrices (4.3)
throughout this section. The Dirac equations for the
spinor and the adjoint spinor follow directly as the Euler-
Lagrange equations of the Lagrangian density L with ψ
and ψ̄ treated as independent variables,

(a+ b)(iγµψ||µ −mψ) + ibγµ||µψ = 0 (5.2a)

(a+ b)(ψ̄||µiγ
µ +mψ̄) + iaψ̄γµ||µ = 0. (5.2b)

The spin connections, unspecified up to this point, may
be chosen so that the divergence of γα vanishes, γµ||µ = 0.

The covariant Dirac equation is then the obvious gener-
alization of the flat space equation (3.1). The spin con-
nections will be obtained below. Also for symmetry and
later convenience we choose henceforth a = b = 1/2.

Next, as in flat space in section 3, we ask that there be
a relation between the adjoint and the spinor, ψ̄ = ψ†M ,

such that (5.2a) and (5.2b) are consistent. Manipulating
(5.2a) we get for the adjoint,

−iψ̄|µγ̃µ − iψ̄M−1
|µMγ̃µ − iψ̄Γ̃µγ̃

µ − ψ̄m = 0,

γ̃µ ≡M−1γµ
†
M, Γ̃µ ≡M−1Γ †µM. (5.3)

We then compare (5.3) with (5.2b), written as

−iψ̄|µγµ + iψ̄Γµγ
µ − ψ̄m = 0, (5.4)

and see that M must satisfy the following two equations

γµ = γ̃µ = M−1γµ†M, (5.5a)

−Γµ = Γ̃µ = M−1Γ †
µ M +M−1

|µM. (5.5b)

Eq. (5.5a) may be written in terms of flat space γ̂b as

eµb γ̂
b = eµbM

−1γ̂b
†
M. (5.6)

Thus it is obvious that we should ask γ̂b = M−1γ̂b
†
M , as

in flat space (3.2), so we choose M−1 = M = γ̂0. Then
the derivative of M is zero, and it is easy to verify that
the choice M−1 = M = γ̂0 also satisfies (5.5b).

Our remaining task is to obtain spin connections Γα.
To do this we make the natural demand that γµ have a
null covariant derivative, so from (4.10)

γµ||α = γµ|α +

{
µ
αβ

}
γβ + [Γα, γ

µ] = 0. (5.7)

This guarantees that the divergence vanishes, γµ||µ = 0,

as we have already mentioned. However it is a stronger
demand analogous to the demand that the metric have
a null covariant derivative, which forces the affine con-
nections to be Christoffel symbols. Note also that Γα is
obviously arbitrary up to a multiple of the identity, which
we will suppress henceforth.

To solve (5.7) we express γµ in terms of flat space gam-
mas γ̂b as in (4.3) and rewrite (5.7) as

eµb||αγ̂
b + [Γα, γ̂

b]eµb = 0. (5.8)

Multiplying this by the inverse tetrad matrix we get

[Γα, γ̂
c] = −ecµe

µ
b||αγ̂

b. (5.9)

We next note the well-known commutation relation
on the sigma matrices, which are defined as σ̂ab ≡
(i/2)[γ̂a, γ̂b],

[σ̂ab, γ̂c] = 2i(γ̂aηbc − γ̂bηac). (5.10)

From (5.10) it is evident that we should seek a solution
that is proportional to σ̂ab times a product of the tetrad
and its derivatives. It is easy to verify that the choice

Γα =
i

4
ebµe

µ
a||ασ̂

ab, (5.11)
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satisfies (5.9) and thus serves as the spin connection.
We thus have obtained a generally covariant theory in

which the Lagrangian, the Dirac equations, the relation
of the spinor to its adjoint, and the spin connections are
generally covariant and consistent.

Finally we include coupling to the electromagnetic field
via minimal coupling, that is by substituting iDµ →
iDµ− eAµ; this gives the complete covariant Lagrangian

L =
1

2
ψ̄(iγµψ||µ −mψ) +

1

2
(−iψ̄||µγµ − ψ̄m)ψ

−eAµψ̄γµψ. (5.12)

We will study the weak gravitational field limit of this in
the next section.

6. LINEARIZED THEORY FOR WEAK
GRAVITY

In this section we use the results of section 5 for covari-
ant spinor theory to work out the weak field linearized
theory. This is done by setting up an appropriate tetrad
and using it to expand the Lagrangian (5.12) to low-
est order in the metric perturbation. The result is that
there are three interaction terms in the Lagrangian, the
first associated with the spin coefficients and the second
with the alteration in the γµ caused by gravity. Remark-
ably the first vanishes in the linearized theory, while the
second corresponds to an interaction via the energy mo-
mentum tensor, as intuition should suggest. The third
term is a cross term between the weak gravity and elec-
tromagnetic fields.

In a space with a nearly Lorentz metric (2.1) it is natu-
ral to choose a tetrad that lies nearly along the coordinate
axes,

eµa = δµa + wµa , ebν = δbν − wbν , (6.1)

where wµa is a small quantity to be determined. From
the fundamental tetrad relation (4.2) it follows that we
should choose wµν = −(1/2)hµν and thus have a tetrad
and γµ matrices given by

eµa = δµa − (1/2)hµa ,

γµ = [δµa − (1/2)hµa ]γ̂a = γ̂µ − (1/2)hµa γ̂
a. (6.2)

Since Greek tensor indices and Latin tetrad indices are
intimately mixed in the linearized theory we will not dis-
tinguish between them in this section.

To evaluate the spin connections (5.11) with the tetrad
(6.2) we need the Christoffel symbols and the covariant
derivatives of the tetrad to first order in hµν ,{

ν
µω

}
= (1/2)(h ν

ω |µ + h ν
µ |ω − h

|ν
µω ),

eνa||µ = (1/2)(h ν
µ |a − h

|ν
µa ). (6.3)

From (5.11), (6.2) and (6.3) we obtain the spin connec-
tions,

Γµ =
i

4
ebνe

ν
a||µσ̂

ab ∼=
i

4
hµb|aσ̂

ab. (6.4)

Thus the Dirac Lagrangian (5.12) becomes,

L =
1

2
ψ̄(iγµψ|µ −mψ) +

1

2
(−iψ̄|µγµ − ψ̄m)ψ − eAµψ̄γµψ

+
i

2
ψ̄{γ̂,Γµ}ψ −

i

4
hµα[ψ̄γ̂αψ|µ − ψ̄|µγ̂αψ]

+
1

2
hµαAµψ̄γ̂

αψ, (6.5)

with Γµ given in (6.4). The first line is the Dirac La-
grangian in flat space (3.1a), and the other three terms
are gravitational interactions that we now address.

The first interaction term in the second line of
(6.5), due to the spin connections, contains the anti-
commutator {γ̂µ,Γµ}. With the use of the symmetry
of hµν , the Dirac algebra (3.1c), and the operator iden-
tity [AB,C] = A{B,C} − {A,C}B it is straightforward
to verify the following two expressions,

hµb|aγ̂
µσ̂ab = i(hab|a − h|b)γ̂

b,

hµb|aσ̂
abγ̂µ = i(h|b − hab|a)γ̂b, (6.6)

and thereby see that

{γ̂µ,Γµ} =
i

4
hµb|a{γ̂µ, σ̂ab} = 0. (6.7)

Thus the interaction term containing the spin connec-
tions in (6.5) vanishes, which is a remarkable simplifi-
cation. It should be stressed that this is only true to
first order, and the spin connections will generally be of
interest in the nonlinear full theory.

There remains in the Lagrangian (6.5) only interac-
tions due to the modification of the γ̂µ by gravity in
(6.2); L may now be written as

L =
1

2
ψ̄(iγ̂µψ|µ −mψ) +

1

2
(−iψ̄|µγ̂µ − ψ̄m)ψ − eAµψ̄γ̂µψ

− 1

4
hµα[ψ̄γ̂α(iψ|µ − eAµψ)− (iψ̄|µ + eAµψ̄)γ̂αψ]. (6.8)

The quantity in brackets in (6.8) is twice the appro-
priately symmetrized energy-momentum tensor T aµ for
the Dirac field interacting with the electromagnetic field;
that is, the gravitational interaction Lagrangian may be
expressed as

LIG = −1

2
hµα[

1

2
ψ̄γ̂α(iψ|µ − eAµψ)− 1

2
(iψ̄|µ + eAµψ̄)γ̂αψ]

= −1

2
hµαT

µα. (6.9)

The energy momentum tensor is discussed further in Ap-
pendix B.
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The interaction (6.9) consists of the inner product of
the field hµν with the conserved energy-momentum ten-
sor Tµν ; this coupling is in close analogy with the elec-
tromagnetic coupling between the field Aµ and the con-
served current jµ = eψ̄γµψ in (6.8). Feynman has em-
phasized this analogy and developed a complete “flat
space” gravitational theory, with gravity treated as an
“ordinary” two index (spin 2) field and formulated by
analogy with electromagnetism, at least to lowest order
[23]. The geometric interpretation of gravity is thereby
suppressed or ignored. Weinberg has similarly stressed
that the geometric interpretation of gravity is not es-
sential [15, 23]. Schwinger also has used a similar and
probably equivalent non-geometric methodology called
source theory to obtain the standard results of general
relativity theory, including the precession of a gyroscope
due to the gravitomagnetic field [29]. However there is a
problem with relating the geometric and non-geometric
viewpoints, in that the Euler-Lagrange field equations are
based on the Lagrangian density L =

√
gL ∼= (1 + h/2)L

and not the Lagrangian L, so there is an additional in-
teraction term (h/2)L in the geometric theory that is not
present in the non-geometric theory; the equivalence of
the Feynman approach to the linearized geometric ap-
proach is thus spoiled whenever the additional term does
not vanish.

The difference between the Dirac equation per our
geometric development and that which one would ob-
tain from the non-geometric approach is easy to see.
The Dirac equation that follows from (6.8) with L ∼=
(1 + h/2)L is

γµ(iψ|µ − eAµ)−mψ

=
1

2
hµν γ̂

µ(iψ|ν − eAνψ) +
1

4
(hµν|µ − h|ν)iγ̂νψ. (6.10)

The last term on the right containing h|ν would not be
present in the non-geometric approach. This will be dis-
cussed further in section 7.

In summary of this section, the Lagrangian (6.8) con-
tains the interaction of the Dirac field with the electro-
magnetic field to all orders and the interaction with the
gravitational field only to lowest order; (6.10) is the cor-
responding Dirac equation. We will discuss the interac-
tion energies further in the following section in which we
consider the non-relativistic or low velocity limit of the
theory.

7. NON-RELATIVISTIC LIMIT

We wish to use the results of the previous sections to
obtain a non-relativistic limit of the theory and calcu-
late in a simple way some interesting properties of a spin
1/2 particle such as the electromagnetic g-factor and its
gravitomagnetic analogue. The most familiar approach
to this problem is to work with the upper two compo-
nents of the Dirac wave function as we did in section 3,
and take the non-relativistic limit [18, 28]. However the

alternative approach we use in this section is conceptu-
ally simpler and avoids the problems of renormalization
and Hermiticity that occur in the approach of sec. 3.
The basic idea is to integrate the interaction Lagrangian
over 3-space to get the interaction energy, then put the
energy expression with Dirac 4-spinors into a form using
Pauli 2-spinors, all in the low velocity limit [30].

In this section we will always work in nearly flat space
with Lorentz coordinates; the Dirac γµ will be those of
flat space and no hat will be used. Moreover for simplicity
we will work in the Lorentz gauge for both the electro-
magnetic and GEM fields, and take both the Coulomb
potential A0 and the Newtonian potential φ to have neg-

ligible time dependence; that is Ȧ0 = −∇ · ~A = 0 and

4φ̇ = ∇ · ~h = 0. This is appropriate for electromagnetic
interactions in atoms and GEM interactions on the earth.

To illustrate the method we first consider only the elec-
tromagnetic interaction in flat space; the results will be
the same as those in section 3, in particular ge = 2. The
interaction Lagrangian and the interaction energy are,
from (6.8),

LIEM = −eAµ(ψ̄γµψ) = −Aµjµ, (7.1a)

∆EEM = −
∫
LIEMd

3x. (7.1b)

(I denotes interaction and EM electromagnetic.) For
the Dirac ψ we use a convenient device, an expansion in
terms of free positive energy Dirac wave functions on the
mass shell. That is

ψ =
∑
s=1,2

∫
d3p

(2π)3
f(p, s)[eipαx

α

u(p, s)],

E2 = (p0)2 = ~p2 +m2. (7.2)

The positive energy wave functions do not form a com-
plete set, but the approximation (7.2) should be quite
good for distances much larger than the Compton wave-
length, ~/m; (7.2) is our fundamental assumption. A key
idea in the calculation is to express the Dirac 4-spinor
u(p, s) in terms of a Pauli 2-spinor χs [30],

e−ipαx
α

u(p, s) = e−ipαx
α

√
E +M

2m

(
I
~σ·~p
E+M

)
χs. (7.3)

Correspondingly we express the non-relativistic Pauli
wave function as

Ψ =
∑
s=1,2

∫
d3p

(2π)3
f(p, s)eipαx

α

χs. (7.4)

In terms of the above expressions (7.2) and (7.3) the in-
teraction energy (7.1b) is

∆EEM =
∑

s,s′=1,2

∫
d3p

(2π)3

d3p′

(2π)3
f∗(p′, s′)f(p, s)

[e

∫
d3xei(p

′
α−pα)xα

ū(p′, s′)γµu(p, s)Aµ]. (7.5)
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The bracket in (7.5) corresponds to scattering of a free
Dirac spinor by an external field, which is equivalent
to scattering by an infinitely heavy source particle. It
contains all the information about the spin interaction
and corresponds to the diagram in fig. 7.1: the parti-
cle leaves the wave function blob with 3-momentum ~p,
scatters from the external field via the QED vertex am-

plitude into momentum ~p′, and then reenters the wave
function blob. The electron remains on the mass shell,
corresponding to zero energy transfer, which is consistent
with a non-relativistic wave function. We denote the 4-
momentum transfer by qµ = p′µ − pµ, with q0 = 0 . The
magnitude of the allowed 3-momentum transfer ~q is lim-
ited by the width of the function f(p, s) in momentum
space.

€ 

f (p,s)

€ 

f ( ′ p , ′ s )

€ 

Aµ

FIG. 1: The electron in the wave function scatters from the
field and back into the wave function.

It is now straightforward to calculate the bracket in
(7.5). We split it into 2 parts, µ = 0 for the electric
interaction and µ = j for the magnetic interaction. For
the electric part we have

e

∫
d3xeiqαx

α

A0ū(p′, s′)γ0u(p, s)

=e

∫
d3xeiqαx

α

A0

(
E +m

2m

)
χ†s′

[
I,

~σ · ~p′

E +M

] [
I
~σ·~p
E+m

]
χs

=e

∫
d3xeiqαx

α

A0

χ†s′

[
E

m
+

~q · ~p
2m(E +m)

+
i~q × ~p · ~σ

2m(E +m)

]
χs. (7.6)

The first term in the bracket in (7.6) is the obvious charge
coupling to the Coulomb field. The second and third
terms may be simplified. First, because there is no energy

transferred ~p2 = ~p′
2
, from which it follows that ~p · ~q =

−~q2/2. Secondly the vector ~q multiplying the exponential
may be replaced by i∇ operating on the exponential,
after which integration by parts allows us to replace it

with −i∇ operating on the function A0; that is we may
replace ~qA0 → −i∇A0. Thus the second term vanishes
since ∇2A0 = 0 in a charge free region for the Lorentz
gauge. What remains is, to order 1/m2,

e

∫
d3xeiqαx

α

A0ū(p′, s′)γ0u(p, s)

=

∫
d3eiqαx

α

[
e(χ†s′χs)A0 +

e

4m2
∇A0 × ~p · (χ†s′~σχs)

]
. (7.7)

The second term in (7.7) is clearly a fine structure cor-
rection, which we mentioned in sec. 4 and which will not
concern us further [28].

The µ = j magnetic part of the interaction in (7.5) is
handled in exactly the same way as the electric part. We
have

e

∫
d3xeiqαx

α

Aj ū(p′, s′)γju(p, s)

= e

∫
d3xeiqαx

α

Aj

(
E +m

2m

)
χ†s′

[
I,

~σ · ~p′

E +m

] [
0 σj

σj 0

] [
I
~σ·~p
E+m

]
χs

=

∫
d3xeiqαx

α

Aj

( e

2m

)
χ†s′ [σ

j~σ · ~p+ ~σ · ~p′σj ]χs

= −
∫
d3xei~qαx

α
( e

2m

)
χ†s′ [2~p · ~A+ ~q · ~A+ i~q × ~A · ~σ]χs. (7.8)

We then replace ~q → −i∇ as discussed above and see
that the second term in the bracket vanishes in a gauge

with ∇ · ~A = 0, and we are left with

e

∫
d3xeiqαx

α

Aj ū(p′, s′)γju(p, s)

= −
∫
d3xeiqαx

α
( e

2m

)
χ†s′ [2~p · ~A+∇× ~A · ~σ]χs

= −
∫
d3xeiqαx

α

[ e
m
~p · ~A(χ†s′χs) +

e

2m
~B · (χ†s′~σχs)

]
. (7.9)

Finally we combine (7.7) and (7.9) and substitute into
(7.5) to obtain, to order 1/m,

∆EEM =
∑

s,s′=1,2

∫
d3p

(2π)3

d3p′

(2π)3
f∗(p′, s′)f(p, s)∫

d3xe−i(
~p′−~p)·~xχ†s′ [eA0 −

e

m
~p · ~A− e

2m
~B · ~σ]χs

=

∫
d3xΨ†[eA0 −

e

m
~p · ~A− e

2m
~B · ~σ]Ψ. (7.10)

This is the same result that we obtained in (3.10) of
section 3, so we have thus verified that our present ap-
proach reproduces the usual result for the electron g-
factor, ge = 2.
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We now work out the non-relativistic limit of the grav-
itational interaction in (6.8), following the same proce-
dure as for the electromagnetic interaction; we will not
include the product of the electromagnetic and gravita-
tional fields, that is the cross term in (6.8). The algebra
is a bit lengthier but equally straightforward. As with
the Lagrangian and energy for the electromagnetic case
in (7.1) we have for the gravitational case

LIG = −1

2
hµνT

µν , ∆EG = −
∫
LIGd

3x, (7.11)

where Tµν is given in (6.9), I denotes interaction and G
denotes gravity. It is convenient to write Tµν in close
analogy with the electromagnetic current, as

Tµα = ψ̄γα(
1

2
i
←→
∂ µ)ψ. (7.12)

Note the relation between the electromagnetic and the
gravitational interactions,

Aµ ↔ hµν/2, γµ ↔ γµ(
i

2

←→
∂ ν). (7.13)

Then ∆EG is, in analogy with (7.5),

∆EG =
∑

s,s′=1,2

∫
d3p

(2π)3

d3p′

(2π)3
f∗(p′, s′)f(p, s)(hµν/2)∫

d3xei(p
′
α−pα)xα

ū(p′, s′)γµ(pν +
qν

2
)u(p, s). (7.14)

As with the electromagnetism calculation we split the
gravitational interaction into two parts, the gravitoelec-
tric for h00 = hii = 2φ and the gravitomagnetic for
h0j = hj0 = hj . The gravitoelectric part of the bracket
in (7.14) involves the same spin products as encountered
with the electromagnetic calculation in (7.7) and (7.9),
and after some algebra we obtain, to order 1/m2,

[

∫
d3xei(p

′
α−pα)xα

ū(p′, s′){γ0E + (pj +
qj

2
)γj}u(p, s)φ]

=

∫
d3xei(p

′
α−pα)xα

χ†s′ [

(
E2

m
φ+

E

4m2
∇φ× ~p · ~σ

)
+

(
~p2

m
φ+

1

2m
∇φ× ~p · ~σ

)
]χs

=

∫
d3xei(p

′
α−pα)xα

m

χ†s′ [(1 +
2~p2

m2
)φ+

3

4m2
∇φ× ~p · ~σ]χs. (7.15)

A word is in order about the physical interpretation of the
gravitoelectric result (7.15). The termmφ is of course the
expected Newtonian energy; the factor (1 + 2~p2/m2) oc-
curs also in the analysis of a spin zero system in ref. [17],
and is approximately the Lorentz transformation factor
between the potential in the lab frame and the moving
frame of the particle; thus (1 + 2~p2/m2)φ is the Newto-
nian potential seen by the moving particle. The last term

in the bracket has the same form and is the gravitational
analog of the fine structure term in the electromagnetic
energy (7.7), except of course for the different coefficient.
We will not be concerned further with the higher order
terms in (7.15) and will henceforth keep only the lowest
order term φ in the bracket.

We turn finally to the gravitomagnetic part of the in-
teraction (7.14), which is our main interest in this work.
The gravitomagnetic part of the bracket, proportional to
hj , is

[

∫
d3xei(p

′
α−pα)xα

(hj/2)

ū(p′, s′){γ0(pj + qj/2) + Eγj}u(p, s)]

= [

∫
d3xei(p

′
α−pα)xα

u†(p′, s′){(pj + qj/2)(hj/2)

+ E(hj/2)αj}u(p, s)]. (7.16)

Note that the term ~q ·~h will vanish by gauge choice, just

as the ~q · ~A term vanished for the electromagnetic case.
Then, using the same manipulations as previously on the
spin products we reduce this to

[

∫
d3xei(p

′
α−pα)xα

ū(p′, s′){γ0(pj +
qj

2
) + Eγj}u(p, s)

hj

2
]

= [

∫
d3xei(p

′
α−pα)xα

χ†s′{~p · ~h+
1

4
∇× ~h · ~σ}χs], (7.17)

where we have neglected terms of higher order, that is
1/m2. Finally we combine (7.15) and (7.17) to obtain
the total energy

∆EG =
∑

s,s′=1,2

∫
d3p

(2π)3

d3p′

(2π)3
f∗(p′, s′)f(p, s)

[

∫
d3xei(p

′
α−pα)xα

χ†s′(mφ+ ~p · ~h+
1

4
∇× ~h · ~σ)χ]

=

∫
d3xΨ†(mφ+ ~p · ~h+

1

4
~Ω · ~σ)Ψ. (7.18)

(Recall that the gravitomagnetic field is ~Ω = ∇ × ~h.)
This is the main result of this section and is consistent
with the result of ref. [17] for a scalar particle.

Finally we note that since we have expanded the wave
function in terms of a free Dirac particle on the mass
shell (7.2) the free Dirac Lagrangian is zero and the extra
geometric interaction term (h/2)L discussed in section 6
vanishes.

8. GRAVITOMAGNETIC PHYSICAL EFFECTS

The result (7.18) is to be compared with the analogous
electromagnetic result (7.10). We see, of course, that
the Newtonian potential is the analog of the Coulomb
potential eA0 and the gravitomagnetic potential is the
analog of the vector potential according to

eA0 ↔ mφ, (−e/m) ~A↔ ~h. (8.1)
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We also see that the coupling of the spin to the gravit-

omagnetic field ~Ω is only half the analogous electromag-
netic coupling. To make this most obvious we consider

a gravitomagnetic field ~Ω that is approximately constant

over the system so that we may choose ~h = (~Ω × ~r)/2.
Then

∆EG =

∫
d3xΨ†(mφ+

1

2
~Ω× ~r · ~p+

1

4
~Ω · ~σ)Ψ

=

∫
d3xΨ†(mφ+

1

2
~Ω · ~r × ~p+

1

2
~Ω · ~σ

2
)Ψ

=

∫
d3xΨ†[mφ+

1

2
~Ω · (~L+ ~S)]Ψ (8.2)

Orbital and spin angular momenta couple in the same
way to the gravitomagnetic field, so the g-factor for grav-
itomagnetism is gg = 1 for both.

Hehl and Ni have studied a Dirac equation in an accel-
erated and rotating frame and find a similar coupling of
spin plus orbital angular momentum to the rotation rate
ω, with the equivalence ω ↔ Ω/2[31].

From the correspondence between the magnetic and
gravitomagnetic couplings it is clear that since a
magnetic moment due to orbital angular momentum,

(e/2m)~L, precesses at the Larmor frequency (eB/2m)
in a magnetic field B, the gravitomagnetic moment due
to both orbital and spin angular momenta will precess in
a gravitomagnetic field Ω with frequency Ω/2. Thus pre-
cession of a quantum system should be the same as that
observed in the classical gyroscopes of the GP-B satellite
experiment [5]. It thus seems very likely that the preces-
sion rate is universal for any angular momentum system,
whether the angular momentum is classical or quantum
mechanical, orbital or spin.

For the surface of the earth the magnitude of the grav-
itomagnetic field is quite small, as estimated in ref. [17]
The field and the associated quantum energy are of order

Ω ≈ 10−13rad/s, EΩ = ~Ω ≈ 10−28eV. (8.3)

Experimental detection of such small quantum gravito-
magnetic effects in an earth-based lab would obviously
be difficult. Such an experiment might be performed
with an atomic interferometer. The atomic beam could
be split into two components with angular momenta
differing by ∆J ≈ ~. Then, according to (8.2) the
two components would have energies differing by about
∆E ≈ Ω∆J ≈ Ω~ and thus suffer phase shifts differing
by about ∆ϕ ≈ ∆Et/~ ≈ Ωt, where t is the time of
flight. For a typical t = 1s this implies a phase shift of
order 10−13rad, which is orders of magnitude less than
presently detectable [32].

In addition to the small size of gravitomagnetic effects
one might see in the laboratory there is a serious further
inherent difficulty in such experiments; a rotation of the
apparatus would in general have similar effects, as noted
above, and swamp the gravitomagnetic effects. Such ro-
tations would have to be controlled and compensated to

very high accuracy as mentioned in the introduction and
in references [17][31]

A different aspect of gravitomagnetism is the effect of
angular momentum on the free fall motion of a body.
It has long been recognized that, according to general
relativity, bodies with internal structure or angular mo-
mentum do not exactly follow geodesics, and thus are not
appropriate test bodies; detailed corrections to the mo-
tion have been calculated [20, 33]. The effect on motion
is easily seen in the present context from the coupling in
(8.2) between the angular momentum J = L+ S and Ω;
for both quantum and classical systems, ∆E = JkΩk/2.
If Ω is inhomogeneous this implies a force on the system
in exactly the same way that a magnetic moment feels
a force in an inhomogeneous magnetic field [34]. Thus,
for example, 2 atoms with opposite spin directions in the
earth’s field will undergo different accelerations. The dif-
ference is easy to estimate; the force is the gradient of
the energy,

Fj = (1/2)Ωk|jJk. (8.4)

Thus we may estimate roughly, using (8.3) and J ≈ ~,
that the acceleration difference for an atom of mass ma

is

∆g ∼= ~Ω/Rema
∼= 10−28m/s2, (8.5)

where Re is the radius of the earth. As with the other ef-
fects we have discussed this is smaller (by about 9 orders
of magnitude) than has been even optimistically consid-
ered for testing the equivalence principle (EP) in earth
orbit, which is about 10−20g. For macroscopic spinning
bodies the angular momentum effect on motion has been
also been discussed, notably by Mashhoon and Everitt,
and the result is generally larger but still beyond the
reach of presently contemplated EP tests[34].

9. SUMMARY AND CONCLUSIONS

We have developed the theory of a spin 1/2 Dirac par-
ticle in a Riemann space and its weak field limit in consid-
erable detail. In the low velocity limit for the particle the
energies due to the Newtonian or gravitoelectric field and
the frame-dragging or gravitomagnetic field take simple
and intuitive forms. The small gravitomagnetic effects
we have discussed would be quite difficult to detect, but
would be of fundamental importance.

The results of the LAGEOS and GP-B experiments
and the theoretical results of this paper and ref.[17] are
probably most important in establishing the validity and
consistency of general relativity and the gravitomagnetic
effects that it implies. Such effects are quite small
in earth-based labs and satellite systems, as is clear
from (8.3), but as noted in the introduction may play
a large role in astrophysical phenomena such as the
jets observed in active galactic nuclei, for which the
gravitomagnetic fields are much stronger [9].
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Appendix A. THE INVERSE DIFFERENTIAL
OPERATOR

We briefly study the type of differential operator that
appears in (3.7) by solving the differential equation

Af + ∂f = (A+ ∂)f = F,

f = f(x), F = F (x), (A.1)

where F (x) is a given function that may be expanded as a
power series in the region of interest and A is a constant.
The solution of the homogeneous equation is

fh = Ce−Ax (C = arbitrary constant). (A.2)

The general solution of (A.1) is fh plus any particular
solution fp; for the particular solution we solve (A.1)
symbolically as,

fp = (A+ ∂)−1F =
1

A

(
1− ∂F

A
+
∂2F

A2
...

)
. (A.3)

It is easily verified that operating with (A + ∂) on the
last parenthesis in (A.3) does indeed give F .

To further justify the above formal operations we may
solve (A.1) in a different way. An integrating factor is
easily seen to be eAx, so

∂(eAxf) = eAx(A+ ∂)f = eAxF. (A.4)

Integration then gives the general solution

f = e−Ax
x∫
e−Ax

′
F (x′)dx′ + Ce−Ax. (A.5)

Since (A.1) is linear and F is assumed to be expandable
in a power series we need only consider powers, F = xn.
Then we easily evaluate (A.5) using integration by parts,
to obtain

f =
1

A

(
xn

A
− nxn−1

A2
+
n(n− 1)xn−2

A3
...+ 1

)
+ Ce−Ax. (A.6)

This agrees with the solutions given in (A.2) and (A.3).

Appendix B. ENERGY MOMENTUM TENSOR
FOR THE DIRAC FIELD

We wish to obtain the energy momentum tensor for
a Dirac field in flat space, which occurs in (6.8) and
(6.9)[18]. We begin with the Lagrangian (3.1) for the
free Dirac field and work out the canonical energy mo-
mentum tensor according to the Noether theorem; it is,
up to a constant multiplier C,

Tµν = C[
∂L

∂ψ|µ
ψ|ν +

∂L

∂ψ̄|µ
ψ̄|ν − δµνL]

= C[aψ̄iγµψ|ν − bψ̄|νiγµψ]. (B.1)

where we have omitted the term proportional to L since
it is zero for a solution of the free Dirac equation. Using
the fact that the Dirac and the Klein-Gordon equations
are obeyed by ψ we calculate the two divergences of this
tensor to be

Tµν |µ = 0,

Tµν |ν = C(b− a)[m2(ψ̄iγµψ)− (ψ̄|νiγµψ|ν)]. (B.2)

If we choose b = a, as in the text, both divergences are
zero and the tensor has symmetry in ψ and ψ̄. Moreover
we may then consistently symmetrize Tµν and have

Tµν =
1

4
[ψ̄iγµψ|ν − ψ̄|νiγµψ

+ψ̄iγνψ|µ − ψ̄|µiγνψ]. (B.3)

This has now been normalized so that in the low velocity
limit

T 00 ≈ mψ̄ψ (B.4)

Finally, to include the electromagnetic field we use the
minimal substitution recipe i∂µ → i∂µ − eAµ to get

Tµν =
1

4
[ψ̄iγµψ|ν − ψ̄|νiγµψ + ψ̄iγνψ|µ − ψ̄|µiγνψ]

− 1

2
[eψ̄Aνγµψ + eψ̄Aµγνψ] (B.5)

To verify the result (B.5) we may calculate the divergence
of Tµν to find, after some algebra, that it gives the correct
Lorentz force,

Tµν|µ = −jαFµα = −(ψ̄γαψ)Fµα (B.6)

In the interaction Lagrangian (6.8) the energy momen-
tum tensor is contracted with the symmetric hµν so the
symmetrization in (B.5) is not relevant.
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