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Abstract

Recently, the topic of Casimir repulsion has received a great deal of attention, largely because

of the possibility of technological application. The general subject has a long history, going back

to the self-repulsion of a conducting spherical shell and the repulsion between a perfect electric

conductor and a perfect magnetic conductor. Recently it has been observed that repulsion can

be achieved between ordinary conducting bodies, provided sufficient anisotropy is present. For

example, an anisotropic polarizable atom can be repelled near an aperture in a conducting plate.

Here we provide new examples of this effect, including the repulsion on such an atom moving

on a trajectory nonintersecting a conducting cylinder; in contrast, such repulsion does not occur

outside a sphere. Classically, repulsion does occur between a conducting ellipsoid placed in a

uniform electric field and an electric dipole. The Casimir-Polder force between an anisotropic

atom and an anisotropic dielectric semispace does not exhibit repulsion. The general systematics

of repulsion are becoming clear.
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I. INTRODUCTION

Although known since the time of Lifshitz’s work on the subject [1], repulsive Casimir

forces have recently received serious scrutiny [2]. Experimental confirmation of the repulsion

that occurs when dielectric surfaces are separated by a liquid with an intermediate value

of the dielectric constant has appeared [3], although this seems devoid of much practical

application. The context of our work is the considerable interest in utilizing the quantum

vacuum force or the Casimir effect in nanotechnology employing mesoscopic objects [4].

The first repulsive Casimir stress in vacuum was found by Boyer [5], who discovered the

still surprising fact that the Casimir self-energy of a perfectly conducting spherical shell

is positive. (This has become somewhat less mysterious, since the phenomenon is part of

a general pattern [6–9].) Boyer later observed that a perfect electrical conductor and a

perfect magnetic conductor repel [10], but this also seems beyond reach, since the unusual

electrical properties must be exhibited over a wide frequency range. The analogous effect

for metamaterials also seem impracticable [11].

Thus it was a significant advance when Levin et al. showed examples of repulsion between

conducting objects, in particular between an elongated cylinder above a conducting plane

with a circular aperture [2]. (See also Ref. [12].) They computed the quantum vacuum forces

between conducting objects, by using impressive numerical finite-difference time-domain and

boundary-element methods.

We subsequently showed [13] that repulsive Casimir-Polder forces between anisotropic

atoms and a conducting half-plane, and even between such an atom and a conducting wedge

of rather large opening angle, could be achieved. Of course, we must be careful to explain

what we mean by repulsion: the total force on the atom is attractive, but the component of

the force perpendicular to the symmetry axis of the conductor changes sign when the atom

is sufficiently close to that axis. This is the only component that survives in the case of

an aperture in a plane, so our analytic calculation provided a counterpart to the numerical

work of Ref. [2].

In this paper we give some further examples. After demonstrating, in Sec. II, that

Casimir-Polder repulsion between two atoms requires that both be sufficiently anisotropic,

we show in Sec. III that the force between one such atom and a conducting cylinder is

repulsive for motion confined to a perpendicular line not intersecting with the cylinder,
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FIG. 1: Casimir-Polder interaction between two atoms of polarizability α1 and α2 separated by a

distance r. Atom 1 is predominantly polarizable in the z direction, while atom 2 is predominantly

polarizable in the x direction. The force on atom 1 in the z direction becomes repulsive sufficiently

close to the polarization axis of atom 2 provided both atoms are sufficiently anisotropic.

provided the line is sufficiently far from the cylinder. The analogous effect does not occur

for a spherical conductor (Sec. IV), as one might suspect since at large distances such a sphere

looks like an isotropic atom. The classical interaction between a dipole and a conducting

ellipsoid polarized by an external field is examined in Sec. V, which, as expected, yields

a repulsive region. In contrast, in Sec. VI, we examine the Casimir-Polder interaction of

an anisotropic atom with an anisotropic dielectric half-space, but this fails to reveal any

repulsive regime.

In this paper we set ~ = c = 1, and all results are expressed in Gaussian units except

that Heaviside-Lorentz units are used for Green’s dyadics.

II. CASIMIR-POLDER REPULSION BETWEEN ATOMS

The interaction between two polarizable atoms, described by general polarizabilities α1,2,

with the relative separation vector given by r is [14, 15]

UCP = − 1

4πr7

[

13

2
Trα1 ·α2 − 28Tr(α1 · r̂)(α2 · r̂) +

63

2
(r̂ ·α1 · r̂)(r̂ ·α2 · r̂)

]

. (2.1)

This formula is easily rederived by the multiple scattering technique as explained in Ref. [16].

This reduces, in the isotropic case, αi = αi1, to the usual Casimir-Polder (CP) energy,

UCP = − 23
4πr7

α1α2. Suppose the two atoms are only polarizable in perpendicular directions,

α1 = α1ẑẑ, α2 = α2x̂x̂. Choose atom 2 to be at the origin. The configuration is shown in

Fig. 1. Then, in terms of the polar angle cos θ = z/r, the z-component of the force on atom
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1 is

Fz = −63

8π

α1α2

x8
sin10 θ cos θ(9− 11 sin2 θ). (2.2)

In this paper, we are considering motion for fixed x = r sin θ, in the y = 0 plane. Evidently,

the force is attractive at large distances, vanishing as θ → 0, but it must change sign at small

values of z for fixed x, since the energy also vanishes as θ → π/2. The force component in

the z direction vanishes when sin θ = 3/
√
11 or θ = 1.130 or 25◦ from the x axis.1

No repulsion occurs if one of the atoms is isotropically polarizable. If both have cylindri-

cally symmetric anisotropies, but with respect to perpendicular axes,

α1 = (1− γ1)α1ẑẑ+ γ1α11, α2 = (1− γ2)α2x̂x̂+ γ2α21, (2.3)

it is easy to check that if both are sufficiently anisotropic repulsion will occur. For example,

if γ1 = γ2 repulsion in the z direction will take place close to the plane z = 0 if γ ≤ 0.26.

III. REPULSION OF AN ATOM BY A CONDUCTING CYLINDER

Now we turn to the Casimir-Polder (CP) interaction between a polarizable body (“atom”)

and a macroscopic body. That interaction is generally given by

ECP = −
∫ ∞

−∞

dζ trα · Γ(r, r), (3.1)

where r is the position of the atom and ζ is the imaginary frequency, in terms of the

polarizability of the atom α and the Green’s dyadic due to the macroscopic body, which for

a body characterized by a permittivity ε satisfies the differential equation

(

1

ω2
∇×∇×−1ε(r)

)

· Γ(r, r′) = 1δ(r− r′). (3.2)

In this paper, except for Sec. VI, we will consider perfect conducting boundaries S immersed

in vacuum, in which case we need to solve this equation with ε = 1 for Γ subject to the

boundary conditions n̂ × Γ(r, r′)

∣

∣

∣

∣

r∈S

= 0, where n̂ is the normal to the surface of the

1 After the first version of this paper was prepared, Ref. [17] appeared, which rederived these results, and

then went on to extend the calculation to Casimir-Polder repulsion by an anisotropic dilute dielectric

sheet with a circular aperture. The authors quite correctly point out that the statement in Ref. [13] that

no repulsion is possible in the weak-coupling regime is erroneous.
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FIG. 2: Interaction between an anisotropically polarizable atom and a conducting cylinder of radius

a. The force on the atom along a line which does not intersect the cylinder is considered. If the

atom is only polarizable in that direction, and the line lies sufficiently far from the cylinder, the

force component along the line changes sign near the point of closest approach.

conductor, which just states that the tangential components of the electric field must vanish

on the conductor.

Let us henceforth assume that the polarizability has negligible frequency dependence

(static approximation), and, in order to maximize the repulsive effect, the atom is only

polarizable in the z direction, the direction of the trajectory (assumed not to intersect the

cylinder), in which case the quantity we need to compute for a conducting cylinder of radius

a is given by [18]

∫ ∞

−∞

dζ

2π
Γzz(r, θ) =

∞
∑

m=−∞

∫ ∞

0

dκ

(2π)3
π

2a

1

Km(κa)K ′
m(κa)

{

m2

r2
K2

m(κr) + κ2K ′2
m(κr)

− cos 2θκa[Im(κa)Km(κa)]
′

(

−m
2

r2
K2

m(κr) + κ2K ′2
m(κr)

)}

.(3.3)

The geometry we are considering is illustrated in Fig. 2. It gives greater insight to give the

transverse electric (TE) and transverse magnetic (TM) contributions to the CP energy:

ETE
CP = −αzz

4π

∞
∑

m=−∞

∫ ∞

0

dκ κ
I ′m(κa)

K ′
m(κa)

[

cos2 θ

r2
m2K2

m(κr) + κ2 sin2 θK ′2
m(κr)

]

, (3.4a)

ETM
CP =

αzz

4π

∞
∑

m=−∞

∫ ∞

0

dκ κ
Im(κa)

Km(κa)

[

sin2 θ

r2
m2K2

m(κr) + κ2 cos2 θK ′2
m(κr)

]

. (3.4b)

The distance of the atom from the center of the cylinder is r = R/ sin θ, where R is the

distance of closest approach and θ is the polar angle, which ranges from 0 when the atom is

at infinity to π/2 when the atom is closest to the cylinder.

At large distances, the CP force is dominated by the m = 0 term in the energy sum.

Figure 3 shows that for m = 0 the TM mode dominates except near the position of closest
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FIG. 3: m = 0 contributions to the Casimir-Polder energy between an anisotropic atom and

a conducting cylinder. The (generally) lowest curve (blue) is the TE contribution, the second

(magenta) is the TM contribution, and the top curve (yellow) is the total CP energy. In this case,

the distance of closest approach of the atom is taken to be 10 times the radius of the cylinder. The

energy E is plotted as a function of ψ = π/2− θ.

approach, where only the TE mode is nonzero. This indicates that there is a region of

repulsion near θ = π/2, since the total energy has a minimum for small ψ = π/2− θ. This

effect is partially washed out by including higher m modes, as seen in Fig. 4, which shows

the effect of including the first 5 m values. But the repulsion goes away if the line of motion

passes too close to the cylinder. Numerically, we have found that to have repulsion close to

the plane of closest approach requires that a/R < 0.15.
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FIG. 4: The CP energy between an anisotropic atom and a conducting cylinder. Plotted is the

total CP energy, the upper curve for the distance of closest approach R being 5 times the cylinder

radius a, the lower curve for the distance of closest approach 10 times the radius. The curves move

up slightly as more m terms are included, but have completely converged by the time m = 3 is

included. Repulsion is clearly observed when R/a = 10, but not for R/a = 5.

IV. CP INTERACTION BETWEEN ATOM AND CONDUCTING SPHERE

It is straightforward to derive the TE and TM contributions for the interaction between

a completely anisotropic atom and a conducting sphere as

ETM =
αzz

2πR4
cos4 θ

∞
∑

l=1

(2l + 1)

∫ ∞

0

dx gl(x), (4.1a)

ETE =
αzz

4πR4
cos6 θ

∞
∑

l=1

(2l + 1)

∫ ∞

0

dx fl(x), (4.1b)
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where

gl(x) = x
s′l(xa cos θ/R)

e′l(xa cos θ/R)

[

1

2
cos2 θe′2l (x) +

l(l + 1) sin2 θe2l (x)

x2

]

, (4.2a)

fl(x) = x
sl(xa cos θ/R)

el(xa cos θ/R)
e2l (x), (4.2b)

where the modified Riccati-Bessel functions are

sl(x) =

√

πx

2
Il+1/2(x), el(x) =

√

2x

π
Kl+1/2(x). (4.3)

We expect in the case of a sphere not to see Casimir repulsion at large distances. The

reason is that far from the sphere it appears to be an isotropic atom, which, as we have

seen above will not give a repulsive force on another completely anisotropic atom. Indeed,

far from the sphere we can replace the Bessel functions of argument xa/r by their leading

small argument approximations and we easily find

ETM ∼ αzza
3

4πr7
(13 + 7 sin2 θ), a/r → 0. (4.4a)

The TE mode contributes

ETE ∼ αzza
3

4πr7
7

4
cos2 θ, a/r → 0. (4.4b)

We see here the expected isotropic electric polarizability of a conducting sphere αsp,E = 1a3.

We note that the TM result (4.4a) coincides with the result obtained from Eq. (2.1). The

TE contribution is, in fact, the coupling between the electric polarizability of the atom and

the magnetic polarizability of the sphere αsp,M = −a3

2
1 [19].

To see this, we first remind the reader of the CP interaction between isotropic atoms

possessing both electric and magnetic polarizabilities [20],

UCP = − 23

4πr7
(αE

1 α
E
2 + αM

1 α
M
2 ) +

7

4πr7
(αE

1 α
M
2 + αM

1 α
E
2 ). (4.5)

When the atoms are not isotropic it is easy to deduce the generalization of this, using the

methods described in Ref. [16], starting from the multiple-scattering coupling term between

electric and magnetic dyadics,

Eem = − i

2
Tr ln

(

1 +Φ0T
E
1 ·Φ0T

M
2

)

≈ − i

2
TrΦ0 ·VE

1 Φ
e
0 ·VM

2 , (4.6)
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where the last form reflects weak coupling, and we are considering the interaction between

one object having purely electric susceptibility and a second object having purely magnetic

susceptibility, so

VE
1 = 4παE

1 δ(r− r1), VM
2 = 4παM

2 δ(r− r2). (4.7)

This formula is expressed in terms of the magnetic Green’s dyadic,

Φ0 = − ζ2

4πR3
R× (|ζ |R+ 1)e−|ζ|R. (4.8)

Then, an immediate calculation yields the electric-magnetic CP interaction

UCP,EM =
7

8πR7
tr(R̂×α

E)(R̂×α
M), (4.9)

which indeed for isotropic polarizabilities gives the second term in Eq. (4.5). The result

(4.4b) is now an immediate consequence for a conducting sphere interacting with an atom

only polarizable in the z direction.

Evidently, no repulsion can occur in this CP limit where the conducting sphere is regarded

as an anisotropically polarizable atom. In fact, numerical evaluation shows no repulsion

occurs at any separation distance between the sphere and the atom.

V. ELECTROSTATIC FORCE BETWEEN A CONDUCTING ELLIPSOID AND

A DIPOLE

In this section we return, for heuristic reasons, to the electrostatic situation of the inter-

action between a fixed dipole and a conducting body. Such have been given considerable

attention lately [2, 13, 21]. Here we consider the interaction between a perfectly conducting

ellipsoid polarized by a constant electric field and a fixed dipole. The polarization of the

ellipsoid by the dipole is neglected at this stage. This is a much simpler calculation than

the more interesting one of the interaction between a dipole and a ellipsoid, but we justify

the inclusion of the details of the simpler calculation here because it allows us to approach

the complexity of the full calculation. Elsewhere, we will present that calculation and the

corresponding quantum Casimir-Polder calculation, building on the work of Ref. [22].
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A. Ellipsoidal coordinates

Consider first a conducting uncharged solid ellipsoid with semiaxes a > b > c, centered

at the origin x = y = z = 0. The semiaxis c lies along the z axis. The electrostatic

potential φ in the external region can be described in terms of ellipsoidal coordinates ξ, η, ζ ,

corresponding to solutions for u of the cubic equation

x2

a2 + u
+

y2

b2 + u
+

z2

c2 + u
= 1. (5.1)

The coordinate intervals are in general

∞ > ξ ≥ −c2, −c2 ≥ η ≥ −b2, −b2 ≥ ζ ≥ −a2. (5.2)

We will henceforth assume axial symmetry around the z axis. In that case, b → a, ζ →
−a2, and the ellipsoidal coordinates ξ, η, ζ reduce to oblate spheroidal coordinates ξ and η

restricted to the intervals

∞ > ξ ≥ −c2, −c2 ≥ η ≥ −a2. (5.3)

If ρ =
√

x2 + y2 denotes the horizontal radius in the plane z = constant, the cubic equation

(5.1) reduces to the quadratic equation

u2 − (ρ2 − a2 − c2 + z2)u− (ρ2 − a2)c2 − z2a2 = 0 (5.4)

for u = (ξ, η). The solution for u = ξ corresponds to the positive square root:

ξ =
1

2
(ρ2 − a2 − c2 + z2) +

1

2

√

(ρ2 − a2 + c2)2 + z2(2ρ2 + 2a2 − 2c2 + z2). (5.5)

At the surface of the ellipsoid, ξ = 0, whereas in the external region, ξ > 0. Note that in

the xy plane (z = 0) the expression for ξ simplifies to ξ = ρ2−a2, when ρ > a. The solution

for u = η corresponds to the same expression (5.5) but with the negative square root.

Surfaces of constant ξ and η are oblate spheroids and hyperboloids of revolution, the

surfaces intersecting orthogonally. On the symmetry axis ρ = 0 one has ξ = −c2 + z2, η =

−a2. The relations between ξ, η and z, ρ are

z = ±
√

(ξ + c2)(η + c2)

c2 − a2
, ρ =

√

(ξ + a2)(η + a2)

a2 − c2
. (5.6)

We will henceforth be concerned with the half-space z ≥ 0 only.
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B. Ellipsoid situated in a uniform electric field

Assume now that the ellipsoid is placed in a uniform electric field E0, directed along

the z axis. We take the electrostatic potential φ to be zero on the ellipsoid surface. With

quantities Rξ and Rη defined as

Rξ = (ξ + a2)
√

ξ + c2, Rη = (η + a2)
√

η + c2, (5.7)

the Laplace equation in the external region ξ ≥ 0 can be written as

∇2φ ≡ 4

ξ − η

[

Rξ

ξ + a2
∂

∂ξ

(

Rξ
∂φ

∂ξ

)

− Rη

η + a2
∂

∂η

(

Rη
∂φ

∂η

)]

= 0. (5.8)

The potential due solely to E0 is

φ0 = −E0z, (5.9)

and we write the full potential φ in the form

φ = φ0[1 + F (ξ)], (5.10)

so that φ0F denotes the modification due to the ellipsoid. The boundary condition at the

surface is F (0) = −1.

Inserting Eq. (5.10) into Eq. (5.8) we find the following equation for F ,

d2F

dξ2
+
dF

dξ

d

dξ
ln
[

Rξ(ξ + c2)
]

= 0. (5.11)

The solution can be written as

φ = φ0

[

1−
∫∞

ξ
ds

(s+c2)Rs

∫∞

0
ds

(s+c2)Rs

]

. (5.12)

We can also express the solution in terms of the incomplete beta function, defined as

Bx(α, β) =

∫ x

0

tα−1(1− t)β−1dt. (5.13)

Some manipulation yields

∫ ∞

ξ

ds

(s+ c2)Rs

=
1

(a2 − c2)3/2
B(a2−c2)/(ξ+a2)

(

3

2
,−1

2

)

, (5.14)

and so we can write the final answer for the potential as

φ = φ0

[

1− B(a2−c2)/(ξ+a2)

(

3
2
,−1

2

)

B1−c2/a2
(

3
2
,−1

2

)

]

. (5.15)
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For small values of x the following expansion may be useful,

Bx(α, β) =
xα

α
(1− x)β

[

1 +
∞
∑

n=0

B(α + 1, n+ 1)

B(α + β, n+ 1)
xn+1

]

, (5.16)

where B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the complete beta function. In our case, the limit

x≪ 1 corresponds to the minor semiaxis c being only slightly less than the major semiaxis

a.

In the following, we shall need the expression for the z component of the electric field,

Ez = −∂φ/∂z, at an arbitrary point (ρ, z) in the exterior region. It is here convenient first

to differentiate the relation (5.4) (u = ξ) with respect to z, keeping ρ constant, to obtain

(

∂ξ

∂z

)

ρ

=
2(ξ + a2)

ξ − η

√

(ξ + c2)(η + c2)

c2 − a2
. (5.17)

With x = (a2 − c2)/(ξ + a2) we have

∂Bx

(

3
2
,−1

2

)

∂z
=
∂ξ

∂z

∂x

∂ξ

∂Bx

(

3
2
,−1

2

)

∂x
= 2

(a2 − c2)

(ξ + c2)(ξ − η)
(−η − c2)1/2. (5.18)

Then, from Eq. (5.15),

Ez = E0

[

1− B(a2−c2)/(ξ+a2)

(

3
2
,−1

2

)

B1−c2/a2
(

3
2
,−1

2

) − 2(a2 − c2)1/2(ξ + c2)−1/2(η + c2)

B1−c2/a2
(

3
2
,−1

2

)

1

ξ − η

]

. (5.19)

For large values of z and arbitrary ρ the influence from the ellipsoid must evidently fade

away, Ez → E0.

In the xy plane where z = 0, ξ + a2 = ρ2, η + c2 = 0, we have

Ez(z = 0) = E0

[

1− B(a2−c2)/ρ2
(

3
2
,−1

2

)

B1−c2/a2
(

3
2
,−1

2

)

]

. (5.20)

When ρ = a (on the surface), Ez(z = 0) = 0 as it should.

C. Force on a dipole

Assume now that a dipole p = pzẑ is situated at rest in the position (ρ, z). The dipole

is taken to be polarized in the z direction only. The value of z (≥ 0) is arbitrary, whereas

the value of ρ is assumed constant. Thus, writing ρ = a + L, L is the constant horizontal

distance between the dipole and the edge of the ellipsoid. The force Fz on the dipole is

Fz = ∇z(p · E) = pz
∂Ez

∂z
. (5.21)
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Note that we are ignoring the polarization of the ellipsoid by the field of the dipole; the

ellipsoid acquires a dipole moment only because of the applied external field. We thus have

to differentiate the expression (5.19) with respect to z. Performing the calculation along the

same lines as above, we obtain

Fz =
6pzE0

B1−c2/a2
(

3
2
,−1

2

)

(a2 − c2)
√

−η − c2

(ξ + c2)(ξ − η)

×
[

1− (ξ + a2)(−η − c2)

(a2 − c2)(ξ − η)
+

2

3

(ξ + c2)(η + c2)(ξ + η + 2a2)

(a2 − c2)(ξ − η)2

]

. (5.22)

At z = 0, the force vanishes as it should, since η + c2 = 0 then.

Note that the force vanishes if c/a → 0, that is, for a disk, because the integral rep-

resenting the incomplete beta function diverges in the limit. (It is not to be interpreted

as its analytic continuation.) This is not surprising, for in the limit of a disk, the electric

field is just E0, the applied constant field. This is because inserting a perfectly conducting

sheet perpendicular to the field line has no effect on the boundary conditions. See also the

discussion in Chap. 4 of Ref. [23].

As a small check, we consider the limit of a sphere, c2 → a2. Then, according to Eq. (5.16),

we have

B1−c2/a2

(

3

2
,−1

2

)

→ 2

3
a−3(a2 − c2)3/2, (5.23)

and

ξ ≈ ρ2 + z2 − c2, η = −c2 − δ2z2

ρ2 + z2
, (5.24)

in terms of the ultimately vanishing quantity δ2 = a2 − c2. Then we immediately obtain

Fz = 3pzE0
a3z

(ρ2 + z2)7/2
(3ρ2 − 2z2). (5.25)

This result also follows immediately from the dipole-dipole interaction energy

U = − 1

r5
(3r · p1 r · p2 − r2p1 · p2), (5.26)

when we take

p1 = pzẑ, p2 = a3E0ẑ. (5.27)

The force on the sphere (5.25) is attractive at large distance, because the dipoles become

essentially coaxial then, and repulsive at small distance, because the case of parallel dipoles

in a plane is approached in that situation.
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The same features hold for a general ellipsoid. For short distances, z2 ≪ ρ2 − a2 + c2, we

have

ξ = ρ2 − a2 +O(z2), η = −c2 − z2(a2 − c2)

ρ2 − a2 + c2
+O(z4), (5.28)

and then the force is repulsive,

z → 0 : Fz =
6pzE0

B1−c2/a2(3/2,−1/2)

z(a2 − c2)3/2

(ρ2 − a2 + c2)5/2
, (5.29)

which reduces in the spherical case to

c→ a : Fz =
9pzE0a

3z

ρ5
, (5.30)

which agrees with Eq. (5.25). And in the large distance limit, where ξ ≈ z2, η ≈ −a2, the
force in general is attractive,

z → ∞ : Fz = − 4pzE0(a
2 − c2)3/2

B1−c2/a2(3/2,−1/2)

1

z4
, (5.31)

which again has the expected limit,

c→ a : Fz = −6pzE0a
3

z4
. (5.32)

VI. INTERACTION OF ANISOTROPIC ATOM WITH ANISOTROPIC DIELEC-

TRIC

In view of the considerations of Sec. II, we might hope that repulsion could be achieved if

an anisotropic atom were placed above an anisotropic dielectric medium. Consider such an

atom, with polarizability only in the z direction, α = αẑẑ, a distance a above a dielectric

with different permittivities in the z direction and the transverse directions,

ε = diag(ε⊥, ε⊥, ε‖). (6.1)

We will assume (see below) that ε⊥, ε‖ > 1. The Casimir-Polder interaction is

ECP = −α
∫ ∞

−∞

dζ
(

Γzz − Γ0
zz

)

(R,R), (6.2)

where the atom is located at R = (0, 0, a). Here we have subtracted the free-space contri-

bution. We can write the Green’s dyadic in terms of a transverse Fourier transform,

Γ(r, r′) =

∫

(dk⊥)

(2π)2
eik⊥·(r−r′)⊥γ(z, z′), (6.3)
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where (assuming that k⊥ lies in the +x direction)

γ(z, z′) =











1
ε⊥

∂
∂z

1
ε′⊥

∂
∂z′
gH 0 ik⊥

ε⊥ε′
‖

∂
∂z
gH

0 −ζ2gE 0

− ik⊥
ε′⊥ε‖

∂
∂z′
gH 0

k2⊥
ε‖ε

′
‖
gH











. (6.4)

We have followed Ref. [24] and used the notation ε = ε(z), ε′ = ε(z′). Here we have omitted

δ-function terms that do not contribute in the point-splitting limit. The transverse electric

and transverse magnetic Green’s functions satisfy the differential equations
(

− ∂2

∂z2
+ k2⊥ − ω2ε⊥

)

gE(z, z′) = δ(z − z′), (6.5a)

(

− ∂

∂z

1

ε⊥

∂

∂z
+
k2⊥
ε‖

− ω2

)

gH(z, z′) = δ(z − z′). (6.5b)

It is rather straightforward to solve these equations and find the Casimir-Polder energy:

ECP =
α

4π2

∫ ∞

−∞

dζ

∫

(dk⊥)
k2⊥
2κ

κ̄− κ

κ̄+ κ
e−2κa, (6.6)

where κ2 = k2⊥ − ω2, κ̄ =
√

(k2⊥ − ω2ε‖)/ε⊥ε‖. Checks of this result are the following:

ε⊥ → ∞ : ECP → − α

8πa4
, (6.7)

one-third of the usual Casimir-Polder interaction of an isotropic atom with a perfect con-

ducting plate. This is what we would have for such an anisotropic atom above a isotropic

conducting plate, because taking ε⊥ → ∞ imposes the usual boundary condition that the

tangential components of E vanish on the surface. In the other limit, we have no such simple

correspondence,

ε‖ → ∞ : ECP → α

8πa4

(

1 +
3

2

√
ε⊥ − 3ε⊥ + 3

√
ε⊥(ε⊥ − 1) ln

√
ε⊥ + 1√
ε⊥

)

, (6.8)

where the quantity in parentheses varies between −1/2 for ε⊥ = 1 and −1 as ε⊥ → ∞.

We can check that in all cases, if we ignore dispersion, Eq. (6.6) yields an attractive result:

ECP scales like a−4 times a numerical integral which is always negative because κ̄2−κ2 < 0.

Repulsion does not occur in this case because there is no breaking of translational invariance

in the transverse direction.

In fact, the electromagnetic force density in an anisotropic nonmagnetic medium is (see

Ref. [25], Eq. (1.2a))

f = − 1

8π
EiEk∇εik. (6.9)
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Assume that the single air-medium interface is flat, lying in the xy plane. Then the only

nonvanishing component of the gradient∇εik is the vertical component ∂zεik. If the principal

coordinate axes for εij coincide with the x, y, z axes, then the surface force density
∫

fz dz

(which is subsequently to be integrated across the surface z = 0), is directed upwards,

because ε‖,⊥ > 1. The surface force acts in the direction of the optically thinner medium.

Now, momentum conservation of the total system asserts that the force on a dipole above

the surface acts in the downward direction. The dipole force has to be attractive.

That ε > 1 for an isotropic medium is a thermodynamical result. For an anisotropic

medium, oriented such that the coordinate axes fall together with the crystallographic axes,

one must analogously have ε‖,⊥ > 1. See, for instance, Sec. 14 in Ref. [26].

Note the contrast with the force on a dipole outside a dielectric wedge, studied in Ref. [13].

In the latter case, the normal surface force on the inclined (lower) surface necessarily has

a vertical (z) component that is downward directed. Momentum conservation for the total

system thus no longer forbids the force on the dipole to be repulsive.

VII. CONCLUSIONS

Earlier, we observed that Casimir-Polder repulsion along a direction perpendicular to the

symmetry axis of a semi-infinite planar conductor or a conducting wedge and an anisotrop-

ically polarizable atom could be achieved in the region close to the conductor [13]. Here we

have shown that anisotropically polarizable atoms can also repel in this sense, provided they

are sufficiently anisotropic, and have perpendicular principal axes. We further show that

such an atom may be repelled by a conducting cylinder, provided, at closest approach, it

is sufficiently far away from the cylinder, whereas no such phenomenon occurs for a sphere

and an anisotropic atom. We further discuss a new example of classical repulsion by con-

sidering a polarized ellipsoid interacting with a dipole. On the other hand, a system of an

anisotropically polarizable atom interacting via fluctuation forces with an anisotropic dielec-

tric half-space does not exhibit repulsion. Apparently, spatial anisotropy is also required for

repulsion between electric bodies.
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