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We analyze a recent conjecture regarding the perturbative construction of non-linear deformations
of all classically duality invariant theories, including N = 8 supergravity. Starting with an initial
quartic deformation, we engineer a procedure that generates a particular non-linear deformation
(Born-Infeld) of the Maxwell theory. This procedure requires the introduction of an infinite number
of modifications to a constraint which eliminates degrees of freedom consistent with the duality
and field content of the system. We discuss the extension of this procedure to N = 1 and N = 2
supersymmetric theories, and comment on its potential to either construct new supergravity theories
with non-linear Born-Infeld type duality, or to constrain the finiteness of N = 8 supergravity.
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I. INTRODUCTION

From our first and most familiar gauge-theory, classical electromagnetism, to the theoretical triumph of maximally
supersymmetric supergravity in four-dimensions, N = 8 supergravity [1], we have at our disposal examples of theories
whose equations of motion respect a particularly constraining duality invariance: the rotation of the electric field (or
its analog) into the magnetic field. Their covariant actions, however, must transform non-trivially for the classical
duality symmetry of the equations of motion to be preserved [2–4]. Introducing deformations of the action must be
undertaken with a certain amount of care if one wishes to maintain this invariance. If one is able to consistently include
such deformations, exciting generalizations of known theories are possible. Additionally, one would have the ability to
introduce counterterms that might otherwise seem to conflict with the known symmetries of duality-invariant theories.
In this note we will discuss procedures which, starting from a classical action and quantum generated counterterms,
allow us to construct a covariant effective action whose equations of motion are invariant under the same duality
transformations as the classical action.

Linear duality has been an integral part of supergravity theories since their beginning [5, 6]. Non-linear duality
models, where the action depends on quartic and higher order powers of vector fields, are well known for gauge
theories: these models are generalized Born-Infeld theories discovered in refs. [7, 8], with a supersymmetric version
later constructed in [9]. Studied extensively in [2–4, 10–15], they have natural supersymmetric generalizations, as
reviewed in refs. [3, 4]. Some attempts to construct the supergravity analog of the Born-Infeld models of non-linear
duality have been made in N = 1 supergravity, see e.g. refs. [14, 15] but, as of yet, no models with non-linear duality
have ever been constructed for N ≥ 2 supergravity. The possibility that there may exist systematic procedures which
can generate them is indeed intriguing.

At present, the ultraviolet properties of N = 8 supergravity in D = 4 are believed to be related, at least in part, to
its duality property, i.e. the symmetry of its equations of motion and Bianchi identities under E7(7) transformations.
The UV properties of N = 8 supergravity in D = 4 have long been studied, starting with the construction of candidate
L-loop order counterterms for L ≥ 3 [16–18]. The three-loop UV divergence supported by the R4+(∂F )4+R2(∂F )2+...
candidate counterterm [16, 18] was shown by explicit computations [19] to be absent. One set of explanations for
this is based on E7(7) symmetry [20–22]. E7(7)-invariant non-BPS candidate on-shell counterterms with non-linear
supersymmetry appear starting at the 8-loop order [16, 17] and a 1/8 BPS E7(7) candidate counterterm is available
at the 7-loop order [23].

From a different perspective, it has been argued [24] that locality forbids all counterterms in the real light-cone
superspace; this provides an alternative explanation of the result of the three-loop computation and an argument in
favor of all loop finiteness of N = 8 supergravity. Through a pure spinor worldline formalism, manifest maximal
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supersymmetry gives another explanation of the three-loop UV finiteness, but suggests a 7-loop four-dimensional
divergence [25], similar to its string theory counterpart [26].

Recently an argument for the all-loop order UV finiteness of perturbative N = 8 supergravity, in explanation of
observed cancellations [19, 27, 28], was presented in ref. [29] based on the conservation of the Noether-Gaillard-Zumino
(NGZ) E7(7) duality current [2]. As we will review in later sections, conservation of the duality current requires the
action to transform in a specific way. The argument of ref. [29] is based on the observation that a deformation of the
classical N = 8 supergravity action by an E7(7)-invariant counterterm leads to an action with different transformation
properties and thus to a violation of the E7(7) NGZ current conservation.

It was suggested, however, by Bossard and Nicolai [30], based on previous work on dualities [31, 34], that there exist
procedures which always allow a duality-consistent perturbative non-linear deformation of general theories – including
N = 8 supergravity – which exhibit duality-invariant classical equations of motion. An elegant covariant procedure
is described that allows a nonlinear deformation of classical electromagnetism through a modification of the linear
vector field self-duality constraint. This constraint exists to eliminate degrees of freedom to comply with the field
content of the theory and to avoid a double counting of vector fields. We find that this procedure, at least unmodified,
does not reproduce another simple nonlinear deformation of classical electromagnetism: the Born-Infeld theory [7, 8].
By actively expanding the known Born-Infeld deformation, we are able to a posteriori derive a procedure that does
reproduce it. We formulate a procedure general enough to find such deformations. For U(1) theories the deformation
is external – i.e. it may be generated by interactions outside Maxwell’s theory. In interacting theories it is generated
by the interactions of the fields of the theory and may either be the result of finite or divergent counterterms. The
procedure we propose has the potential to exclude counterterms that are incompatible with various expectations of
the form of the final action.

Extensive analysis suggests that manifestly duality-invariant local actions are not available in the presence of Lorentz
invariance1. Manifestly duality-invariant actions with hidden Lorentz invariance were initially constructed for two-
dimensional scalar fields in [35, 36] based on ideas described in [37]2. The generalization of duality-symmetric actions
for vector fields in four dimensions (as well as m-forms in d-dimentions) was explicitly discussed in [39]. While Lorentz
invariance of the manifestly duality-invariant actions is hidden, it emerges on shell at the classical level and, assuming
absence of anomalies, will also be visible at the level of the quantum scattering matrix. Thus, in such a formulation,
the scattering matrix may be expected to be constrained by both manifest Lorentz and duality invariance.3 Analyzing
the duality invariance of the effective equations of motion of a covariant formulation of these theories, as we will do
in this paper, may be interpreted as an intermediate step towards an analysis of the scattering matrix.

Ref. [30] also proposes an explicit non-covariant construction of duality-invariant theories using the Henneaux-
Teitelboim formulation [34, 38]. In our paper, for the examples limited to the non-linear deformations of the Maxwell
theory, we will also discuss the Hamiltonian approach to the problem which has a simple relation to the covariant
solution.

We should spend a few words on terminology. Maxwell theories have no interaction, so the introduction of a non-
linear deformation is, of course, a choice. In supergravity theories, on the other hand, “experimentally” identified
counterterms (i.e. counterterms arising from explicit calculations) may force deformations upon us. We will use
the word counterterm to specifically mean changes to the action necessitated by explicit calculation (or conjectured
explicit calculation). In general the form of a given counterterm will not alone be sufficient to deform the action in
a way consistent with the duality. The procedures discussed in this paper will generate from these counterterms a
final deformed action compatible with duality symmetries. In Maxwell theories, the role of supergravity counterterms
is taken by initial deformation sources generated by external interactions. Analogously to supergravity theories, the
procedures discussed in later sections will take these initial sources and generate final deformed actions.

The paper is organized as follows. In section II we introduce the simplest examples of duality invariant theories,
Maxwell’s electromagnetism and two of its non-linear deformations. In section III , we introduce constraints designed
to help make duality symmetry manifest, and which allow a framework for introducing deformation. In section IV

1 However, Pasti-Soroki-Tonin actions [32] are available, which are Lorentz covariant and duality invariant due to a special choice of gauge
symmetries and a non-polynomial (e.g. inverse powers) dependence on auxiliary fields. In particular, there is an action of this kind with
manifest duality for maximally supersymmetric D=6 supergravity [33].

2 The ideas of [37] have also been used in [38] for the construction of actions for self-dual form fields in 2mod 4 dimensions.
3 In the context of the N = 8 supergravity, certain aspects of the E7(7) duality may be probed at the level of the scattering matrix
through soft scalar limits [42].
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we introduce the necessary generalization to supergravity, and reproduce the procedure of ref. [30], for generating
non-linear deformations but in notation we will find it easier to generalize from. In section V we derive the procedure
required to introduce the Born-Infeld deformation. In section VI we discuss the applicability of these procedures in
a supersymmetric context. We conclude in section VII. In appendix A we discuss duality in supergravity and in
appendix B we present the Hamiltonian solutions of the duality invariant BN and BI models.

II. MAXWELL DUALITY-INVARIANT THEORIES

For an excellent review of duality rotations in non-linear electrodynamics, which in this section we follow closely,
please see ref. [4]. We begin by considering perhaps the most familiar duality-invariant theory, classical electromag-
netism in a vacuum. Maxwell’s equations are given

∂tB = −∇×E , ∇ ·B = 0 (2.1)

∂tD = ∇×H , ∇ ·D = 0

in addition to relations between the electric field E, the magnetic field H , the electric displacement D, and the
magnetic induction B. In a vacuum, D = E, and H = B. The Hamiltonian H = 1

2 (E
2 +B2) and the equations of

motion are invariant under rotations
(
E

B

)
7→

(
cosα
sinα

− sinα
cosα

)(
E

B

)
. Note that the Lagrangian, however, L = 1

2 (E
2 −B

2) is
not invariant, for small rotations α one finds that it transforms as

δL = −αEB . (2.2)

This suggests that non-linear deformations of L will require modifications which are also non-invariant. Indeed the
most straightforward non-linear modification is the introduction of a chargeless medium. In such a medium we will
now have non-linear relations:

D = D(E,B) H = H(E,B) . (2.3)

It is convenient to continue the discussion more covariantly through the introduction of four-component notation.
Quite generally, duality transformations may be realized in the path integral as a Legendre transform (see also,
e.g. [11]). Given some Lagrangian L(F ) depending only on the field strength of a vector field, one constructs

L̃(F,G) = L(F )− 1

2
ǫµνρσFµν∂ρÃσ , (2.4)

in which F is treated as a fundamental field. On the one hand, integrating out Ãσ one finds that F should obey
the Bianchi identity ǫµνρσ∂νFρσ = 0, i.e. that F may be expressed in terms of a vector potential in the usual way.

Plugging this into L̃(F,G) one finds that it reduces to the original Lagrangian L(F ). On the other hand, the classical

equations of motion for F require that Gµν = ∂µÃν − ∂νÃµ is related to F by

G̃µν = 2
∂L(F )

∂Fµν
, (2.5)

through

Gµν = −1

2
ǫµνρσG̃

ρσ , G̃µν =
1

2
ǫµνρσGρσ . (2.6)

The Lagrangian LD(G), dual to L(F ), is obtained by eliminating F between equations (2.5) and (2.4). Regardless
of the form of the original Lagrangian, the Bianchi identity and the equations of motion of the original Lagrangian,
expressed in terms of F and G, are

∂µF̃
µν = 0 , ∂µG̃

µν = 0 , (2.7)

and are formally mapped into linear combinations of themselves by a GL(2) transformation. Further requiring that
the transformed G may be obtained from the action evaluated on the transformed F though eq. (2.5) and that the
resulting action is a deformation of Maxwell’s theory L = − 1

4F
2 +O(F 4) restricts [4] the possible transformations to

δ

(
F
G

)
=

(
0 B

−B 0

)(
F
G

)
. (2.8)
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In other words, the duality transformation exchanges the Bianchi identity and the equations of motion of the original
Lagrangian. The original Lagrangian is self-dual if L and LD have the same functional form. It is easy to check that
Maxwell’s theory, with L(F ) = − 1

4F
2, is such a theory.

In the derivation above, the dual field strength is determined by eq. (2.5) and is not an independent field. Since
duality transformations (2.8) mix the field strength and its dual, it is convenient to interpret G as an independent
field and relate it to F by introducing constraint equations as we discuss in section III.

For theories with nv vector fields the strategy for constructing the dual Lagrangian is unchanged. The equations of
motion and the Bianchi identities remain of the form (2.7) but are invariant under a much larger set of transformations:

δ

(
F
G

)
=

(
A B
C D

)(
F
G

)
, (2.9)

AT = −D BT = B CT = C (2.10)

Here A,B,C,D are the infinitesimal parameters of the transformations, arbitrary real n× n matrices and the trans-
formations (2.9) generate the Sp(2nv,R) algebra. For more general theories, when scalar fields are present, we would
also include a δφ(A,B,C,D).

Consistency of the duality constraint can be expressed as requiring that the Lagrangian must transform under
duality in a particular way, defined by the Noether-Gaillard-Zumino (NGZ) identity [2]. The NGZ current conservation
requires universally4 that for any duality group embeddable into Sp(2nv,R)

δL =
1

4
(G̃BG+ F̃CF ) . (2.11)

This leads to the NGZ identity since the variation δL(F, φ) can be computed independently using the chain rule and
the information about δF and δφ.

For example, in the case of a U(1) duality (2.8),

A = D = 0, C = −B , (2.12)

we see that eq. (2.11) reduces to δL = 1
4 (G̃BG− F̃BF ). Taking into account that in the absence of scalars

δL(F ) =
∂L(F )

∂Fµν
δFµν =

1

2
G̃BG , (2.13)

the NGZ identity which follows from (2.11) requires that

1

2
G̃BG =

1

4
(G̃BG− F̃BF ) . (2.14)

In this case the NGZ identity simplifies to the following relation

FF̃ +GG̃ = 0 . (2.15)

The NGZ identity can alternatively be presented as the invariance under duality transformations (2.9), and δφ, of
the action constructed from the generalization of the Lagrangian (2.4) to the presence of scalars, L(F ) 7→ L(F, φ)
written in terms of the dual field strength L̃(F, φ) = L(F, φ)− 1

4FG̃. Annotating the transformed F, G̃ as F ′, G̃′, and
the transformed φ as a φ′, the invariance of this action implies that

∫
L̃(F, φ) = Sinv = S[F ′, φ′]− 1

4

∫
F ′G̃′ = S[F, φ]− 1

4

∫
FG̃ . (2.16)

4 Here we discuss theories with actions depending on the field strength F but not on its derivatives. When derivatives are present, an
analogous relation is given by a functional derivative over F of the action, see Appendix A.
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According to (2.9), (2.10)

δ(FG̃) = (AF +BG)G̃+ F (CF̃ +DG̃) = G̃BG+ F̃CF , (2.17)

implying that Sinv is invariant under the transformations (2.9), provided that (2.11) is satisfied.

We may also present the NGZ identity as follows

G̃− F
δG̃

δF
= 4

δSinv

δF
, (2.18)

which is just the derivative of the defining relation of Sinv with respect to F under the assumption that there is some
relation between F and G. We can call it a “reconstruction identity” since it follows from the form of the action

S =
1

4

∫
FG̃+ Sinv (2.19)

reconstructed using the duality symmetry. When the theory only has linear duality (e.g. only F 2 terms in the action)
δSinv/δF vanishes. So eqs. (2.19) and (2.18) tell us that any higher order dependence (F 4, F 6 etc.) must be part of
Sinv.

The NGZ identity, in conjunction with eq. (2.5) can be solved to find G(F ) and various Lagrangians providing
a duality symmetry between equations of motion and Bianchi identities. We will discuss two cases of non-linear
deformations of the Maxwell theory for models depending only on F ’s without derivatives.

A. Born-Infeld Lagrangian

The Born-Infeld Lagrangian, perhaps the most venerable non-linear deformation of Maxwell’s theory, is

LBI = g−2(1−
√
∆) = −1

4
F 2 +

1

32
g2

(
(F 2)2 + (FF̃ )2

)
+ · · · , (2.20)

where g is the coupling constant, and ∆ = 1+2g2(F 2/4)−g4(FF̃/4)2. Using eq. (2.5), we find the following expression
for G ,

Gµν = −ǫµνρσ
∂L(F )

∂Fρσ
(2.21)

=
1√
∆
(F̃µν + g2

1

4
(FF̃ )Fµν) . (2.22)

A little algebra shows that the NGZ identity eq. (2.15) is readily verified and that the dual Lagrangian constructed as
described above has the same functional form as LBI. It is worth noting that classical electromagnetism corresponds
to g2 → 0.

For relative compactness, and to compare this Lagrangian with the next deformed theory, we introduce the following
notation for the two possible Lorentz invariants,

t =
1

4
F 2 , z =

1

4
FF̃ . (2.23)

With these field variables, one can rewrite the Born-Infeld Lagrangian simply as

LBI = g−2(1−
√
1 + 2g2t− g4z2 ) , (2.24)

and expand as

LBI = −t+
1

2
g2

(
t2 + z2

)
− 1

2
g4t

(
t2 + z2

)
+

1

8
g6

(
t2 + z2

) (
5t2 + z2

)
− 1

8
g8t

(
t2 + z2

) (
7t2 + 3z2

)
+ · · · . (2.25)

We continue the discussion of the BI case soon, but first we will discuss a distinct non-linear deformation of
electromagnetism. While superficially complicated, this next deformation is, in fact, much easier to generate from
pure Maxwell electrodynamics. Indeed we will see a tradeoff between the relative simplicity of the deformed action in
the BI case and the complicated initial deformation source required to generate it and the relative simplicity of the
initial deformation source which results in the superficially complicated action we will now present.
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B. Bossard-Nicolai Model

With the same variables t and z, one can write the following NGZ-consistent Lagrangian

LBN = −t+
1

2
g2

(
t2 + z2

)
− 1

2
g4 t

(
t2 + z2

)
+

1

4
g6

(
t2 + z2

) (
3t2 + z2

)
− 1

8
g8 t

(
t2 + z2

) (
11t2 + 7z2

)

+
1

32
g10

(
t2 + z2

) (
91t4 + 86t2z2 + 11z4

)
− 1

8
g12 t

(
t2 + z2

) (
51t4 + 64t2z2 + 17z4

)

+
1

64
g14

(
t2 + z2

) (
969t6 + 1517t4z2 + 623t2z4 + 43z6

)
+ · · · . (2.26)

One simply keeps adding terms necessary so as to maintain the consistency eq. (2.15) order by order, specifically via
a procedure we will discuss in section III C. Unlike the Born-Infeld action, we do not know if this has a closed-form
expression. Note that this Lagrangian differs from LBI starting at O(g6).

It is not difficult to verify that eq. (2.15) is maintained order by order. Using, G̃ = 2 ∂L
∂F

= (∂tL)F + (∂zL)F̃ and

G = −(∂tL)F̃ + (∂zL)F , we can rewrite the NGZ identity as,

(
(∂tL)

2 − (∂zL)
2 − 1

)
z −

(
2 (∂zL)(∂tL)

)
t = 0 (2.27)

Although the explicit Lagrangian eq. (2.26) is not provided in ref. [30], it is indeed the non-linear deformation of
classical electrodynamics that is produced5 order by order as we will describe shortly.

III. TWISTED SELF-DUALITY CONSTRAINTS

While the duality constraints are readily checked in the two above examples, BI and BN, note that, by hand, we
forced a functional form of G in terms of F through eq. (2.5). The very act of doing so, prioritizing the primacy of
one over the other, makes the duality between F and G no longer manifest. We can avoid this by introducing what
has been called a “twisted self-duality” constraint – a constraint that guarantees that only one vector field from the
duality doublet will ever be independent, but without establishing priority for one over the other. This constraint
generalizes the equation (2.5), in that it can be considered more fundamental than the Lagrangian L which it, in fact,
determines. The symmetry between F and G will only be broken by the solution to this constraint.

A. Schrödinger’s BI Solution

In the Born-Infeld example, such a constraint was first found by Schrödinger in 1935 [8]. To describe Schrödinger’s
construction in the form given in [11] it is useful to consider the duality symmetry in a complex basis where

T = F − iG , T ∗ = F + iG , (3.1)

and the U(1) duality symmetry is

δ

(
F − iG
F + iG

)
=

(
iB 0
0 −iB

)(
F − iG
F + iG

)
. (3.2)

Schrödinger suggested the following exact duality covariant cubic self-duality constraint

Tµν(T T̃ )− T̃µνT
2 =

g2

8
T̃ ∗

µν(T T̃ )
2 . (3.3)

5 Strictly speaking ref. [30] presents this model with negative g2 so as to generate a positive Hamiltonian, as discussed in appendix B.
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It is straightforward to verify that, if this constraint is solved perturbatively, one finds the unique Born-Infeld solution
of the NGZ identity

T T̃ ∗ = FF̃ +GG̃ = 0 . (3.4)

And, even better, there is an action which is manifestly duality invariant [8, 11],

LSch(T ) = 4
T 2

(T T̃ )
, LSch = −L∗

Sch . (3.5)

This fascinating Lagrangian is a ratio of two duality invariants

T 2 = (F − iG)2 = F 2 − 2iFG−G2 , (3.6)

T T̃ = (F − iG)(F̃ − iG̃) (3.7)

= FF̃ − 2iF G̃−GG̃ .

The cubic constraint (3.3) is equivalent to the requirement that the derivative of the Schrödinger action LSch(T ) over

T defines the conjugate T̃ ∗:

T̃ ∗

µν ≡ g−2∂LSch

∂T µν
. (3.8)

It follows that

∂LSch

∂T µν
= 8

(
Tµν

1

(T T̃ )
− T̃µν

T 2

(T T̃ )2

)
= g2T̃ ∗

µν . (3.9)

Contraction with T µν demonstrates that (3.4) holds.

To make contact with the supergravity formalism and the discussion in Appendix A, we introduce self-dual notation,

T± = 1
2 (T ± iT̃ ) (3.10)

such that T+
µνT

−µν = 0 and

T ∗ = (T ∗)+ + (T ∗)− (T ∗)± = 1
2 (T

∗ ± iT̃ ∗) . (3.11)

Recalling that (T̃ )2 = −T 2, we have

T 2 − i(T T̃ ) = T (T − iT̃ ) = 2TT− = 2(T−)2 . (3.12)

We can now rewrite the cubic self-duality constraint eq. (3.8) as

T+
µν(T

−)2 +
g2

16
(T ∗)+µν(T T̃ )

2 = 0 , (3.13)

or

T+
µν(T

−)2 − g2

16
T ∗+
µν

(
(T+)2 − (T−)2

)2

= 0 , (3.14)

and the NGZ identity (2.15) is

T ∗+T+ − T ∗−T− = 0 . (3.15)

This formulation of the NGZ identity will be useful in later sections.

B. Maxwell Case

Note that in the Maxwell case with g = 0 there is a particularly simple duality covariant linear twisted self-duality
constraint G = F̃ and F = −G̃, which in self-dual notation is

T+ = F+ − iG+ = 0 (3.16)

and does indeed follow from the g2 → 0 limit of eq. (3.14). The conjugate of (3.16) is (T+)∗ = F− + iG− = 0. It
should be noted, however, that eq. (3.14) cannot be interpreted as a local perturbative deformation of (3.16).
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C. BN Case

In contrast, the model in eq. (2.26) which is consistent with NGZ identity satisfies a local deformation of (3.16), in
which the right-hand side is modified as

T+
µν =

g2

16
T ∗+
µν (T

−)2 . (3.17)

Using eqns. (2.5), (3.1), (3.10), and

G+ = 1
2 (G+ iG̃)

= 1
2 (F + iF̃ )(∂zL+ i∂tL)

= F+(∂zL+ i∂tL) , (3.18)

we can translate eq. (3.17) back into constraints on derivatives of the action,

0 = (1 + ∂tL − i ∂zL)−
g2

8
(t− iz)(1− ∂tL − i ∂zL)2(1− ∂tL+ i ∂zL) . (3.19)

Foreshadowing slightly – requiring analyticity of L for small values of F – one may introduce an ansatz in terms of
monomials in g2, t = F 2/4, and z = FF̃/4,

L =
(
g−2

∑

m=0,p=0

g2(p+2m)c(p,2m)t
pz2m

)
− c(0,0)g

−2 , (3.20)

and solve eq. (3.19) algebraically, order by order in g2, fixing the constant coefficients c(i,j). Doing so results in a
Lagrangian which satisfies the NGZ equation, and reproduces eq. (2.26).

Indeed, as we will see, the covariant procedure proposed in ref. [30] is to modify the linear twisted self-duality
constraint to a non-linear duality constraint by the introduction of a single deformation (or counterterm) as we just
did to go from eq. (3.16) to eq. (3.17). It so happens that in the cases studied in ref. [30], as with eq. (3.17), a single
such deformation was sufficient. We can see already, given the cubic nature of the BI constraint, that in general we
will require a procedure which introduces an infinite number of such deformations to the linear twisted self-duality
constraint. Indeed the non-covariant procedure of Floreanini, Jackiw, Henneaux and Teitelboim [37, 38], discussed in
ref. [30] has the potential to allow an infinite amount of information. Ref. [30] seemed to constrain its constants of
integration to explicitly reproduce the covariant procedure described above and more generally in section IVA. This
need not be so. The generalization of the covariant procedure discussed in section V can be arrived at non-covariantly
by allowing arbitrary constants of integration that satisfy the relevant NGZ relation. We have in fact verified that
the Born-Infeld Hamiltonian can be obtained in this approach, see Appendix B.

IV. BOSSARD-NICOLAI (BN) PROPOSAL

We start by explicitly providing an algorithm for the covariant procedure introduced in ref. [30]. We subsequently
review the provided supporting examples.

A. Covariant BN procedure

Bossard and Nicolai posit [30] the existence of procedures which would allow the deformation of all classically
duality invariant theories, including N = 8 supergravity. This proposal was worked out on three examples in ref. [30],
and here we reconstruct the covariant procedure in detail.

A convenient language for extended supergravities comes from the fact that any candidate counterterm would
depend on the graviphoton6. More specifically the counterterm would depend on the conjugate self-dual field strength

6 See eq. (A4) for definition of this particular combination of F and G and scalars for supergravities with scalars in the G/H coset space.
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T+AB and the anti-self-dual field strength T−

AB. In the G/H coset space, AB are the indices of the antisymmetric
representation of the group H . For example, for N = 8 supergravity these would be SU(8) indices (in the 28-
dimensional representation) and G/H is E7(7)/SU(8). For U(1) the deformation source depends on T ∗+ and T−. In
this procedure, as with the generalized procedure we present in section VB, we will include the H-symmetry indices.
The same procedures work for U(1) with the indices elided.

One starts with an initial action Sinit with a conserved duality current and a manifestly duality-invariant countert-
erm, or deformation, ∆S. It is assumed that ∆S can be expressed as a manifestly duality invariant function of F
and G or, equivalently, on T+AB and T−

AB. Classically T+
AB = 0 is the linearized twisted self-duality constraint, which

we will be deforming. The goal is to construct a Lagrangian Lfinal that incorporates the counterterm/deformation
yet still conserves the duality current. For the general case this means satisfying NGZ identity given in eqs. (A6)
and (A7), and the simpler (2.15) for U(1). Of course, one should also require that it possesses the field content and
other relevant symmetries of Sinit. The construction proceeds as follows:

1. Take the variation of the counterterm with respect to the field-strength, and express as a function of T−, and
T+ which we will call the initial deformation source I(1)

δ∆S

δT+AB
→ δI(1)(T−

AB, T
+AB)

δT+AB
(4.1)

2. Constrain the self-dual field strength to the variation of this initial source:

T+
AB =

δI(1)(T−

AB, T
+AB)

δT+AB
(4.2)

This is a modification of the linear twisted self-duality constraint T+AB=0. 7

3. Translate eq. (4.2) to a differential constraint on Sfinal, c.f. section III C for the U(1) case.

4. Introduce an ansatz for Lfinal in terms of the Lorentz invariants, c.f. eq. (3.20), again for the U(1) case. This
will be more complicated, of course, for the generic case.

5. Solve for the ansatz order by order in the coupling constant, at each step verifying the consistency of the relevant
NGZ relation, the presence of additional desired symmetries of the target Lagrangian and enlarging the ansatz
if one runs into an inconsistency.

In contrast to ref. [30] we do not call I(1) the “initial deformation.” As we will see in the generalized procedure in
order to even recover the Born-Infeld action we will need to include an infinite number of terms to modify the covariant
twisted self-duality constraint. One can integrate those infinite deformations to achieve a final IBI, but this will not
be the final deformation of the action LMax −LBI, rather it is simply the complete source of the deformations to the
linear twisted self-duality constraint required to generate the BI deformation of the action through the generalized
procedure. For consistency, then, we refer to I(1) as the initial deformation source.

B. Three BN examples

Two examples of the deformation of the linear twisted self-duality condition discussed in ref. [30] relate to Maxwell
electrodynamics and one to a toy model of N = 8 supergravity.

The first example, from sec. 2 of ref. [30], is a Maxwell deformation analogous to anN = 8 supergravity counterterm.
The deformation is quadratic in F , with derivatives of the Maxwell field, I(1) ∼ C2(dF )2. The dependence on
derivatives necessitates the following deformed twisted self-duality constraint [41]

δ

δF (y)

∫
d4x(G̃BG+ F̃BF ) = 0 . (4.3)

7 When I(1) has only terms quadratic in T (as in U(1) and the toy model N = 8 examples of sec. 2 in ref. [30]), the right-hand side of
eq. (4.2) remains linear in T so the deformation of the linear constraint remains linear.
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In this case G is linear in F and the action remains quadratic in F . The reconstruction is based on NGZ identity in
the form S = 1

4FG̃ which is valid only for the actions quadratic in F when Sinv = 0 in eqs. (2.16) and (2.18). As the
result of the deformation (4.2) the reconstructed action S(F ) has some non-polynomial non-local terms required to
complete the deformation in the action. This example, however, has linear duality since G remains a linear function
of F even with the deformation caused by I(1) ∼ C2(dF )2.

A closely related example in sec. 2 is a toy model of an N = 8 supergravity deformation caused by the part of
the three-loop counterterm which is quadratic in F and quadratic in Weyl curvatures. The quartic in F terms (∂F )4

present in the N = 8 three-loop counterterm, C4+(∂F )4+C2(∂F )2+ ..., are not taken into account in this example.

This example, therefore is also of the type given in eqs. (2.16) and (2.18) where S = 1
4

∫
FΛG̃Λ + Sinv and δSinv

δF
= 0.

In the toy model G̃ remains a linear function of F , in absence of contribution to the right-hand side of eq. (2.18) from
δSinv

δF
= 0, and therefore the linear duality of the classical action is preserved by deformation. Note that in the case

of linear duality the action is easily reconstructed, all dependence on vectors is in Svect =
1
4

∫
FΛG̃Λ and it satisfies

NGZ identity as explained in (2.17). Thus, this example also does not immediately shed light on cases of non-linear
duality when the vector dependent part of Sinv is present and contains (∂F )4 terms which require the presence of all
increasing powers of F .

In both examples of sec. 2 in ref. [30] a Lorentz covariant single term deformation of the undeformed constraint is
employed as shown in eq. (4.2).

The third example is the deformation we discussed as the BN model earlier in section III C. Without derivatives
in F , the manifestly U(1) invariant ‘initial’ deformation source, quartic in F , is used in the Lorentz covariant cubic
deformation of the linear constraint (4.2), and its equivalent Hamiltonian formulation. The proposed procedure is
equivalent to the one worked out earlier: introduce the initial source, and then solve the twisted self-duality constraint
for a Lagrangian order by order by introducing an ansatz polynomial in the available Lorentz invariants.

Any procedure must require that the deformed action, reconstructed using the deformed twisted self-duality con-
straint (4.2), satisfies the relevant NGZ constraints (2.15). All examples considered in [30] have the nice property that
the only input into the right-hand side of (4.2) is a term I(1) quadratic or quartic in field strengths, and they indeed
satisfy the relevant NGZ constraints: (4.3) in the case with derivatives and (2.15) in models without derivatives on
F . No allowance is made, however, for cases when the solution of eq. (4.2) is inconsistent with direct higher-loop
calculations, as neither of the examples indicated the need for such a possibility.

We will see that the Born-Infeld model requires the presence of an infinite set of deformations of the linear constraint
(3.16). Instead of eq. (4.2), we will find that a general procedure will impose,

T+
AB =

δI(1)

δT+AB
+ ...+

δI(n)

δT+AB
+ ... =

δI(T−

AB, T
+AB, g)

δT+AB
, (4.4)

where the various terms need not be related to the initial I(1). In the following section we present a procedure that
successfully reproduces the Born-Infield deformation.

V. GENERALIZED COVARIANT PROCEDURE

First we present the procedure that we use to recover the Born-Infeld deformation in the BN framework, and see
that it does, indeed, require an infinite number of modifications to the linear twisted self-duality constraint. Learning
from this example we modify the procedure of section IVA so as to handle the more general case.

A. Finding the Born-Infeld Deformation

We can begin by introducing an ansatz for the deformation source I(T−, T ∗+, g) in terms of a series expansion, i.e.

T+
µν =

g2

16
T ∗+

µν(T
−)2

[
1 +

∑

n=0

dn

(
1
4 g

4(T ∗+)2(T−)2
)n ]

, (5.1)

where dn are the real parameters to be constrained so as to reproduce the Born-Infeld deformation. Since we are
looking to reproduce the BI Lagrangian, and we know it ahead of time, we may simply set L to eq. (2.20). It is not
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difficult to check (by multiplying with T+ and subtracting from the result the product between T− and the conjugate
of (5.1)) that there exist solutions obeying the NGZ identity (3.15).

As in section III C, we can translate eq. (5.1) into constraints on derivatives of the BI action using G+ = F+(∂zL+
i∂tL),

0 = (1 + ∂tL − i ∂zL) +
g2

8
(t− iz)(1− ∂tL− i ∂zL)2(1− ∂tL+ i ∂zL)

[
1+

∑

n=0

dn

(
g4(t− iz)(1− ∂tL− i ∂zL)2(t+ iz)(1− ∂tL+ i ∂zL)2

)n ]
. (5.2)

We expand in a series of the coupling constant and solve for dn order by order. We indeed find an infinite series
which we can express as a generalized hypergeometric function so the BI twisted self-duality constraint can be given,

T+
µν = 1

16 g
2 T+

µν (T
−)2 3F2

(
1
2 ,

3
4 ,

5
4 ;

4
3 ,

5
3 ;− 1

27 g
4 (T+)2 (T−)2

)
. (5.3)

Writing eq. (5.3) as

T+
µν =

δI(T−, T̄+, g)

δT̄+
µν

(5.4)

we find that the required deformation source takes the following form

I(T−, T
+
, g) =

6

g2

(
1− 3F2(− 1

2 ,− 1
4 ,

1
4 ;

1
3 ,

2
3 ;− 1

27 g
4 (T+)2 (T−)2)

)
(5.5)

The procedure then for deforming to BI is to modify eq. (3.16) to eq. (5.3) and then to introduce an ansatz for the
Lagrangian to be solved for order by order. The resulting Lagrangian should be analytic for small values of the field
strength.

We have therefore constructed (5.5) a deformation source I(T−, T̄+, g) which, like Schrödinger’s action LSch(T ) =

4 T 2

(T T̃ )
via eq. (3.8), yields a twisted self-duality constraint whose solution is the Born-Infeld action. The differences

between the two expressions are striking; moreover, while both are duality invariant, their natural variables and,
consequently, the resulting deformed twisted self-duality constraints, (3.9) and (5.3), are different. This opens the
possibility that there may exist other deformations, different from them, which nevertheless generate the same duality-
invariant action. It would be interesting to explore this possibility as well as the relation between these actions.

B. Generalized Covariant Procedure

Thus, to reproduce a sufficiently general action with a conserved duality current, we must allow the counterterm
to be a general function of the coupling constant and duality invariants which is analytic for small values of fields.
As before, we present this discussion in terms of graviphoton field strengths (see appendix A), but the U(1) examples
follow by simply dropping the indices.

We start with a duality conserving initial action Sinit, and a duality-invariant counterterm, or deformation, ∆S.
We assume, as BN, that ∆S can be expressed as a function the conjugate self-dual field-strength T+AB. We wish to
arrive at a Lagrangian Lfinal that incorporates the counterterm yet still conserves the duality current. We proceed as
follows:

1. Take the variation of the counterterm with respect to the field-strength, and express as a function of T−, and
T+,

δ∆S

δT+AB
→ δI(T−

AB , T
+AB, g)

δT+AB
(5.6)
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2. Introduce an ansatz for the deformation source I(T−

AB, T
+AB, g). In general, this may be taken to depend on

all possible duality invariants8.

3. Constrain the self-dual field strength to this variation:

T+
AB =

δI(T−

AB, T
+AB, g)

δT+AB
(5.7)

4. Translate eq. (5.7) to a differential constraint on Lfinal, c.f. section VA for the U(1) case. The differential
constraint in general is more complicated, see (A6), (A7).

5. Introduce an ansatz for Lfinal which is analytic around the origin in terms of the Lorentz invariants. For the
case of U(1), again, this was not so difficult (eq. (3.20)), but in general this is unknown and can depend on
other fields (e.g. scalars) in non-trivial ways.

6. Solve for both the I ansatz parameters, as well as the Lagrangian ansatz parameters, order by order in the
coupling constant, enforcing the consistency of the relevant NGZ consistency equation (in U(1) case any of the
eqs. (2.15), (3.15) or (2.27)), and additional desired symmetries of the target Lagrangian, enlarging the ansatz
if one runs into inconsistency.

The procedure given in section IVA is recovered by restricting to the lowest order term in the small g expansion of
I. We also see that, at least for deformations of Maxwell’s theory, there are an infinite number of classical solutions
recoverable by this procedure, consistent with the findings of ref. [10, 11] where it was shown that the NGZ identity
(2.15) has infinitely many solutions.

There exists the possibility that the counterterms generated by iterating on some first counterterm I(1) differ at
some loop level from counterterms discovered by explicit calculation. Unlike the original procedure, if the differ-

ence is a duality invariant, our strategy can accommodate it by a suitable modification of δI(T−

AB, T
+AB

, g). In
the supersymmetric context discussed in the next section this allows for complete supersymmetric invariants to be
independently included starting at some loop order higher than the one at which the first counterterm appears.

It is important to note that in the U(1) case without derivatives and scalars, a hermitian deformation and manifestly
U(1) invariant deformation I(T−, T ∗+, g) guarantees that the NGZ equation is satisfied. Indeed, using (5.7) it is easy
to see that

T ∗+ δI(T−, T ∗+, g)

δT ∗+
− T−

δI(T−, T ∗+, g)

δT−
= T ∗+T+ − T ∗−T− = 0 . (5.8)

This was manifestly the case for the deformation ansatz for any real choice of dn in eq. (5.1). This is in contrast to
the NGZ equations relevant for supergravity as we will discuss in appendix A.

VI. NONLINEAR U(1) DUALITY AND SUPERSYMMETRY

The NGZ condition for U(1) duality invariance (2.15) has infinitely many solutions which are analytic for sufficiently
small field strength [10, 11]. As we saw in earlier sections, the BN deformed self-duality constraint selects one such
solution. In the case of Maxwell’s theory deformed by a quartic interaction the resulting action, while self-dual, differs
from the Born-Infeld action starting from the sixth order terms. By allowing higher order deformations it is possible to
accommodate the Born-Infeld action in the deformed self-duality framework. This generalization of the BN proposal,
while necessary to include known examples of nonlinear duality in this framework, also leads to an apparent loss of
predictive power by allowing us to freely deform the action order by order in perturbation theory. Assuming that we
did not know of the Born-Infeld action, we would like to find a physical principle that singles it out of this infinite

8 In the case of the non-linear U(1) duality we assumed that I is an analytic function of g4(T+)2(T−)2. There is, however, in more
general theories no reason to forbid higher-order counterterms. In other words, if we have to worry about adding counterterms, we
might as well worry about adding all counterterms allowed by the known symmetries. E.g. for N = 8 supergravity we should at least
include in the ansatz all E7(7) invariants.
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family of duality-invariant actions. More generally, we would like to find a principle that selects physically-relevant
actions.

Since Maxwell theory can be supersymmetrized up to maximal supersymmetry, it is natural to require that this
feature survives the nonlinear extension. A similar requirement arises naturally if one considers applying the twisted
self-duality ideas to (maximal) supergravity. We will therefore explore the conditions under which twisted self-duality
is compatible with minimal and extended supersymmetry. In this discussion of supersymmetry and self-duality we
follow mostly the work by Kuzenko and Theisen [3] and Ketov [45].

A. N = 1 supersymmetric nonlinear electrodynamics

Models with nonlinear U(1) duality and N = 1 supersymmetry are constructible in superspace, see [9] and [3, 4].
The action is constructed from the standard (anti)chiral field-strength superfields

Wα = −1

4
D2Dα V , W α̇ = −1

4
D2Dα̇ V , (6.1)

defined in terms of a real unconstrained prepotential V . The Bianchi identities

DαWα = Dα̇W
α̇ (6.2)

are automatically satisfied. Similarly to the bosonic case, the dual (anti)chiral field strengths, M α̇ and Mα, are defined
from the action S[W,W ] as follows

iMα [W ] ≡ 2
δ

δWα
S[W,W ] , −iM α̇ [W ] ≡ 2

δ

δW α̇

S[W,W ] . (6.3)

The equations of motion for the vector multiplet may be expressed in terms of M and M as

DαMα = Dα̇M
α̇ . (6.4)

The superysmmetric generalization of the NGZ relation requires that

Im

∫
d4xd2θ

(
WαWα + MαMα

)
= 0 . (6.5)

One may understand the structure of this relation by recalling that the bosonic NGZ relation is quadratic in field
strengths in addition to being invariant under the infinitesimal duality rotation

δF = λG , δG = −λF . (6.6)

The Bianchi identities (6.2) and the equations of motion (6.4) are therefore invariant under a similar transformation
acting on W and M . Moreover, the supersymmetric NGZ identity eq. (6.5) is also invariant under this transformation.
It is worth noting that this equation reduces to the bosonic NGZ relation eq. (2.15) upon setting the fermion and
auxiliary fields to zero.

The N = 1 Maxwell theory is a solution of eq. (6.5). To construct interacting theories which solve the supersym-
metric NGZ relation one may start, following ref. [3], with a general action

S =
1

4

∫
d6zW 2 +

1

4

∫
d6z̄ W̄ 2 +

1

4

∫
d8zW 2 W 2 Λ

(1
8
D2 W 2 ,

1

8
D̄2 W 2

)
(6.7)

parametrized by the real analytic function of one complex variable Λ(u, ū). Constructing the dual super-field strengths
(6.3) it is not difficult to find that the NGZ constraint requires that Λ be a solution of

Im
{
∂u(uΛ)− ū (∂u(uΛ))

2
}
= 0 . (6.8)

This partial differential equation has infinitely many solutions, parametrized e.g. by the coefficients of the terms
(uū)n with n ≥ 2 in the expansion around u = 0 (as well as the coefficient of uū2). This freedom is sufficient to
accommodate all the solutions of the bosonic deformed self-duality constraints discussed in earlier sections.
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Indeed, taking the integral over the fermionic superspace coordinates, and setting the gauginos and auxiliary fields9

to zero, we find

L = −1

2
(u+ ū) + uūΛ(u, ū) , u ≡ 1

8
D2W 2

∣∣
θ=0,D=0,ψ=0

=
1

4
F 2 +

i

4
FF̃ ≡ ω . (6.9)

It is not difficult to see that it is possible to choose functions Λ such that this Lagrangian reproduces the two solutions
discussed explicitly in section II. The choice of Λ for the Born-Infeld Lagrangian, section IIA, is well-known [3]

LBI =
1

g2

{
1−

√
− det(ηab + gFab)

}
=

1

g2

[
1−

√
1 + g2(ω + ω̄) +

1

4
g4(ω − ω̄)2

]
,

ΛBI =
g2

1 + 1
2g

2(ω + ω̄) +
√
1 + g2(ω + ω̄) + 1

4g
4(ω − ω̄)2

. (6.10)

The Lagrangian obtained with the BN deformation, section II B, may be expressed in terms of ω as

L = −1

2
(ω + ω̄) +

g2

2
ωω̄ − g4

4
ωω̄(ω + ω̄) +

g6

8
ωω̄((ω + ω̄)2 + 2ωω̄) (6.11)

− g8

16
ωω̄(ω + ω̄)

(
(ω + ω̄)2 + 7ωω̄

)
+

g10

32
ωω̄

(
(ω + ω̄)4 + 16ωω̄(ω + ω̄)2 + 11(ωω̄)2

)
+ . . .

implying that Λ(ω, ω̄) is

Λ =
1

2
− g4

4
(ω + ω̄) +

g6

8
((ω + ω̄)2 + 2ωω̄) (6.12)

− g8

16
(ω + ω̄)

(
(ω + ω̄)2 + 7ωω̄

)
+

g10

32

(
(ω + ω̄)4 + 16(ω + ω̄)2 + 11(ωω̄)2

)
+ . . .

More generally, both the general deformation considered in eq. (5.1) and the function Λ have one free coefficient for
every fourth power of the field strength suggesting that there should exist a one to one map between the two functions.
Thus, N = 1 supersymmetry does not seem to rule out any of the solutions with positive energy constructed using
either section IVA or more generally section VB: for every such model one may easily find Λ (at least perturbatively)
and thus construct an action in N = 1 superspace whose bosonic component reproduces the initial bosonic action.
This result is not completely surprising; it was shown in [3] that all solutions of the bosonic NGZ equation have
an N = 1 supersymmetric completion. Since all relevant solutions of the deformed self-duality constraint (5.7) are
solutions of the NGZ relation, the same conclusion must apply to them as well.

B. N = 2 supersymmetric non-linear U(1) duality models

While all actions constructed in earlier sections have an N = 1 supersymmetric extension, most of them do not
have a known extended supersymmetric counterpart. It may be also useful to recall here the results of [43, 44], namely
that the Born-Infeld action is unique in that it has 4 linearly realized and 4 nonlinearly realized supercharges.

The N = 2 global superspace is parametrized by ZA = (xa, θαi , θ̄
i
α̇), with i = 1, 2 being the SU(2) R-symmetry

index. Actions describing the dynamics of N = 2 vector multiplets are written in terms of the (anti) chiral superfield
strengths W and W which satisfy the Bianchi identities 10

D
ij W = D

ij W . (6.13)

They determine the superfield strength in terms of an unconstrained prepotential Vij .

W = D
4
D
ij Vij , W = D

4
D
ij
Vij , (6.14)

9 This is consistent, as the auxiliary fields alway appear squared after all supersymmetric covariant derivatives are evaluated in eq. (6.7).
10 The derivatives Dij and D ij are defined as Dij = DiαD

j
α and D ij = D i

α̇Djα̇.
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where D
4
is a chiral projector: D

i

αD
4
U = 0 for any superfield U .

As in the case of N = 1 supersymmetric models one may define, following [3], dual (anti) chiral superfields M and
M as

iM ≡ 4
δ

δW S [W ,W ] , −iM ≡ 4
δ

δW S[W ,W ] (6.15)

in terms of which the equations of motion are

D
ij M = D

ij M . (6.16)

To construct the N = 2 analog of the NGZ relation we note that, similarly to the N = 1 setup, the Bianchi
identities (6.13) and the equations of motion (6.16) have the same functional form and are mapped into each other
by the infinitesimal U(1) duality transformations

δW = λM , δM = −λW . (6.17)

Considering the fact that the N = 2 NGZ identity should reduce to the equation (6.5) upon ignoring the fields in
the N = 1 chiral multiplet, we are left with [3]

∫
d8Z

(
W2 +M2

)
=

∫
d8Z̄

(
W2

+M2
)

(6.18)

as the only possible N = 2 extension of (6.5). Solutions of this equation have not been easy to find. The free N = 2
supersymmetric Maxwell action

Sfree =
1

8

∫
d8Z W2 +

1

8

∫
d8Z W2

(6.19)

satisfies this constraint. The one other known action obeying the constraint (6.18) was discovered by Ketov in [45].
It is

S =
1

4

∫
d8Z X +

1

4

∫
d8Z X , (6.20)

where the chiral superfield X is a functional of W and W and is a solution of the constraint

X = X D
4X +

1

2
W2 . (6.21)

Upon solving the constraint (6.21), the action becomes [3, 14, 45, 46]

SN=2 = Sfree +

∫
d4x d8θ W2 W2 Y (D4W2, D̄4W2

) +O(∂µW) (6.22)

where Y is a Born-Infeld-type functional which in the N = 0 limit reduces to ΛBI(ω, ω̄) in eq. (6.10).

The system (6.20), (6.21) was introduced in [45] as the N = 2 generalization of the Born-Infeld action. In N = 1
language, the N = 2 vector multiplet splits into a vector and a chiral N = 1 multiplets. By truncating away the
chiral multiplet the equations above correctly reproduce the system (6.7), (6.8) and (6.10).

The extra terms with derivatives ∂µW appear to be required for N > 1 actions. Moreover, the only solu-
tions presented explicitly in the literature which have manifest N = 2 supersymmetry and are compatible with
the duality condition also have the structure of the BI action but exhibit additional terms containing space-time
derivatives11. They also share the property that they are associated with the D3-brane actions LD3−brane =

11 This state of affairs appears to be different from the statement [30] that the extension of the BN construction to a supersymmetric
setup does not encounter any difficulties. It is not clear to us whether this statement refers to minimal or extended supersymmetry. In
our discussion there is a fundamental difference between minimal and extended supersymmetry, the former accommodating indeed any
solution of the deformed self-duality equation.
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1−
√
− det

(
ηab + Fab + ∂aϕ̄∂bϕ

)
. It was shown in [3] that an N = 2 self-dual action is given by

SBI = Sfree + Sint (6.23)

Sint =
1

8

∫
d4xd8θW2 W2

{
1 +

1

2

(
D

4W2 + D
4W2

)
(6.24)

+
1

4

(
(D4W2)2 + (D

4W2
)2
)
+

3

4
(D4W2)(D

4W2
)

}

+
1

24

∫
d12Z

{
1

3
W3

�W3
+

1

2
(W3

�W3
)D

4W2
+

1

2
(W3

�W3)D4W2 +
1

48
W4

�
2W4

}

+ O(W10) .

The unique term with no fermionic or space-time derivatives, W2 W2
, yields the known F 4 term of the Born-Infeld

action. The six-order terms, apart from W3
�W3

terms with space-time derivatives, also correspond to the BI model.
This action was confirmed in [14, 46].

At the current level of understanding of N = 2 supersymmetric duality symmetric theories it is not clear yet
what role will be played by the BN proposal to deform the twisted self-duality equation. The terms with space-time
derivatives of the superfields are not likely to be generated by the initial deformation of self-duality equation, unless
one allows for deformations which contain derivatives of the field strength12.

VII. DISCUSSION

The question whether duality symmetries of equations of motion survive quantization and constrain the effective
action of the theory is very interesting and with far reaching implications both for gravitational and non-gravitational
theories. A direct construction based on the classical Lagrangian and some number of (perhaps quantum generated)
local counterterms would extend the tally of duality invariant theories and could shed light on the quantum properties
of the theory. For supergravity theories in general and for N = 8 supergravity in particular it may constrain the
existence of higher-loop counterterms not immediately amenable to explicit calculations. In cases in which only the
classical equations of motion are invariant under duality transformations (while the action is not), the construction
is complicated by the fact that simply adding to the action a duality invariant counterterm leads [29] to duality-non-
invariant deformed equations of motion and a non-conserved NGZ duality current.

In ref. [30] a procedure, which we have broken into five-steps in section IVA, was suggested such that an action
exhibiting a conserved NGZ duality current is constructed if the procedure can be carried out. This directly follows
if the first counterterm/deformation is manifestly duality invariant. The deformations discussed in ref. [30] are
assumed to depend on fields transforming linearly under duality transformations; in supergravity theories they are
the vector fields. The action constructed following the BN procedure has infinitely many terms which, in the presence
of derivatives acting on the field strengths, may also be nonlocal though local order by order in a weak coupling
expansion.

To understand and test this proposal we studied in detail a simple example – that of nonlinear electrodynamics.
We found that, while an action can always be constructed, this action typically does not have desirable properties
unless one assumes the existence of higher-order deformations of a specific form. In particular, using known results
of supersymmetric nonlinear actions for abelian vector multiplets, we find that the Bossard-Nicolai action generated
by the first I(1) ∼ F 4 deformation of the linear twisted self-duality constraint, may not have a supersymmetric
generalization beyond N = 1 supersymmetry. To recover the known N = 2 actions of the BI type, the deformation
of the linear twisted self-duality constraint must be modified to include all order terms I(n) ∼ F 4n. The generalized
construction, extending that of BN, is detailed in section VB. Moreover, for N > 1 the action must depend of space-
time derivatives of the superfields and, correspondingly on space-time derivatives of Fµν . Therefore it is not clear

12 With such a deformation it possible that the resulting action is nonlocal (though perturbatively local), as demonstrated in [30] for the
case of and C2(dF )2 deformation of maximal supergravity.
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what kind of deformed linear twisted duality constraint will provide the action consistent with N > 1 supersymmetry
and duality.

In the extended supersymmetric case of nonlinear electrodynamics the higher-order counterterms/deformations may
be found by simply requiring that the resulting duality-invariant action has more that 8 supercharges. We believe
that a similar requirement will generally restrict the large class of actions allowed by our construction.

It is possible that, in general, the required higher-order counterterms may be found by simply requiring that, order
by order in perturbation theory, the action generated by our procedure can be supersymmetrized. It is unclear,
however, whether this requirement is sufficient to generate a correct or unique action. In an interacting theory, the
terms found in such a manner may very well be incompatible with those generated by standard perturbation theory.
It is possible that terms that are separately invariant under supersymmetry transformations may need to be added.

As we have seen, the perturbative deformation of the linear twisted self-duality constraint suggested in ref. [30]
requires in addition the presence of infinitely many terms to recover the Born-Infeld action. The non-universality (i.e.
the fact that they are not uniquely determined by the first deformation/counterterm and the duality constraint) of the
higher order terms is somewhat troublesome. It does not indicate that the BN procedure leads to an unconditional
success for all non-linear duality theories. We have also discussed an alternative twisted self-duality constraint
– initially suggested by Schrödinger – which leads to the Born-Infeld action while not requiring order by order
corrections. The fundamental difference between this approach and the perturbative one is that the Schrödinger
constraint is completely cubic; attempting to reconstruct the perturbative deformation of the linear self-duality
constraint necessarily leads to terms with non-analytic dependence on T−, as follows from (3.14). The existence
of two twisted self-duality relations that yield the Born-Infeld action suggests it may be a general feature of this
construction of duality-invariant actions.

Part of the motivation behind understanding the construction of actions exhibiting non-linear duality symmetries
is provided by applications to supergravity theories. In maximal four-dimensional supergravity it was shown from
several standpoints [16, 17], [22]-[26], that the first E7(7) duality-invariant potential counterterm may occur at 7 or
8 loops. Supersymmetry considerations as well as the structure of scattering amplitudes of N = 8 supergravity
imply that this counterterm necessarily contains terms quartic in vector fields. Assuming that the E7(7) duality

symmetry should survive quantization, one is therefore to attempt to construct non-linear duality models13 with
maximal supersymmetry and with scalar field dependence which twists nontrivially the classical duality constraint.
Such models have never been constructed before. Our generalization of the BN proposal, which accounts for known
models of non-linear duality, offers a wide pool of bosonic models among which there may exist one which admits a
maximally supersymmetric completion. The nontrivial way in which a supersymmetric Born-Infeld action emerged
from such an analysis makes it difficult to conclude, however, that such a model must exist and what is its precise
structure and relation to the first counterterm. Further detailed analysis is necessary to unravel this issue; along the
way to maximal supersymmetry and supergravity we may find novel models of nonlinear duality which are interesting
in their own right.

Note added. When this paper was finalized we were informed by G. Bossard and H. Nicolai that they have also
worked out the Born-Infeld theory in the (Floreanini-Jackiw)-Henneaux-Teitelboim formulation.
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Appendix A: Generalization to supergravity

1. Duality and Supergravity

The action of the n vector fields of an N > 2 extended supergravity theory is

Lvectors = iNΛΣF
−ΛF−Σ + h.c. , (A1)

where NΛΣ(φ) is a scalar field dependent symmetric matrix. The scalar fields φ parametrize a coset G/H with the
theory-specific duality group G and its subgroup H isomorphic to the R-symmetry group. For N = 8 supergravity
G = E7(7) and H = SU(8). The self-duality constraint derived from (2.5) is twisted by this matrix and may be
written either as a G covariant constraint

G+
Λ = NΛΣF

+Λ , G−

Λ = NΛΣF
−Λ , (A2)

or as an H covariant one

T+
AB = 0 , (A3)

where

T± ≡ hΛABF
±Λ − fΛ

ABG
p
Λm (A4)

and where the kinetic term matrix NΛΣ(φ) is constructed out of the scalar field-dependent sections of an Sp(2nv,R)
bundle over the G/H coset space hΛAB and fΛ

AB; they transform in an antisymmetric representation ofH – see [2, 4, 40]
for details. The equations (A3) are the supergravity analog of eq. (3.16).

An infinitesimal Sp(2nv,R) transformation acting on a duality vector field doublet in a real representation exactly
as given in eq. (2.9). Here, as there, A,B,C,D are the infinitesimal parameters of the transformations, arbitrary real
nv × nv matrices satisfying (2.9). The vector kinetic matrix transforms projectively under Sp(2nv,R)

N ′ = (C +DN )(A +BN )−1 . (A5)

The case of the graviphoton in the absence of scalars and of additional vector fields, A = D = 0 and B = −C, the
U(1) ∼ SO(2), follows the Maxwell discussion of section II identically.

In N = 8 supergravity, for E7(7), the NGZ identity requires that the following functional differential equation be
satisfied

δ

δF (y)

(
δS − 1

4

∫
d4x(G̃BG+ F̃CF )

)
= 0 , (A6)

where δS is the variation of the action under E7(7)

δS =
δS

δF
δF +

δS

δφ
δφ , (A7)

and δF and δφ are the variations of vectors and scalars, respectively, under E7(7). Here the E7(7) symmetry transfor-
mations in the real basis for the doublet (F,G) are defined by an Sp(2n,R) embedding

(
A B
C D

)
=

(
ReΛ− ReΣ ImΛ + ImΣ
−ImΛ + ImΣ ReΛ + ReΣ

)
(A8)

Λ are parameters of SU(8) and Σ are the SU(8)-orthogonal parameters of E7(7) , which control the familiar infinites-
imal shift of scalars δφ = Σ + ....

2. Modification of procedures

The modification to the procedures of section IVA and section VB is actually quite minimal in terms of the
algorithms. What grows in complexity, which may be the reason there are no non-linear examples currently worked
out in supergravity, is the complexity of the NGZ identity that must be maintained. In the N = 8 supergravity case
it is actually eq. (A6) which must be satisfied order by order.
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Appendix B: Born-Infeld and Bossard-Nicolai Hamiltonians

In U(1) duality invariant models there is a simple relation between the Lagrangian and the Hamiltonian formu-
lations [10, 11]. The NGZ constraint discussed above can be expressed as a differential equation with solutions,
perturbative in g2, codified in an arbitrary function of one real variable.

The Lagrangian can be expressed in terms of t = 1
4F

2 and on z = 1
4FF̃ . We introduce the following (copious)

notation to touch the (equally copious) literature

x =
√
t2 + z2 , (B1)

y = − 1
2z

2 , (B2)

Y = x2 , (B3)

X = t . (B4)

We can write same Hamiltonian as two different functional forms H(X, y) = V (X,Y ). Similarly we can write the
same Lagrangian as two different functional forms L(t, z) = k(t, x).

The nice relation between U(1) duality-conserving Lagrangians and Hamiltonians is simply

L(t, z) = k(t, x) = −H(X, y) = −V (X,Y ) . (B5)

These represent general solutions of the differential equation,

(∂tk)
2 − (∂xk)

2 = 1 (B6)

which is simply another way of writing the NGZ constraint, (c.f. eq. (2.27)).

For example, for Maxwell and for Born-Infeld the respective functional forms are simply

LMax(t, z) = −t LBI(t, z) = −g−2
(√

1 + 2g2t− g4z2 − 1
)

(B7)

HMax(X, y) = X HBI(X, y) = g−2
(√

1 + 2g2X + 2g4y − 1
)

(B8)

VMax(X,Y ) = X VBI(X,Y ) = g−2
(√

1 + 2g2X + g4X2 − g4Y − 1
)

(B9)

For the BN model (see sections II B and III C), we have

LBN(t, z, g
2) = −t+

1

2
g2

(
t2 + z2

)
− 1

2
g4 t

(
t2 + z2

)
+

1

4
g6

(
t2 + z2

) (
3t2 + z2

)
− 1

8
g8 t

(
t2 + z2

) (
11t2 + 7z2

)

+
1

32
g10

(
t2 + z2

) (
91t4 + 86t2z2 + 11z4

)
− 1

8
g12 t

(
t2 + z2

) (
51t4 + 64t2z2 + 17z4

)

+
1

64
g14

(
t2 + z2

) (
969t6 + 1517t4z2 + 623t2z4 + 43z6

)
+ · · · . (B10)

It follows that

VBN(X,Y, g2) = X − 1

2
g2Y +

1

2
g4 X Y − 1

4
g6Y

(
2X2 + Y

)
+

1

8
g8X Y

(
4X2 + 7Y

)

− 1

32
g10Y

(
16X4 + 64X2Y + 11Y 2

)
+

1

8
g12 X Y

(
4X4 + 30X2Y + 17Y 2

)

− 1

64
g14Y

(
32X6 + 400X4Y + 494X2Y 2 + 43Y 3

)
+ · · · . (B11)

The sign of g2 can be adjusted in the non-covariant procedure through a suitable choice for the first integration
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constant. Notice that when we make a choice g2 = −1, which is the choice made in ref. [30], we find

VBN(X,Y, g2 = −1) = X +
1

2
Y +

1

2
X Y +

1

4
Y
(
2X2 + Y

)
+

1

8
X Y

(
4X2 + 7Y

)

+
1

32
Y
(
16X4 + 64X2Y + 11Y 2

)
+

1

8
X Y

(
4X4 + 30X2Y + 17Y 2

)

+
1

64
Y
(
32X6 + 400X4Y + 494X2Y 2 + 43Y 3

)
+ · · ·

= X +
1

2
Y (X +X2 +X3 + ...) +

1

4
Y 2 + ... . (B12)

The last line is in agreement with ref. [30]. It also explains the choice of g2 = −1, since it provides a positive definite
Hamiltonian at each order. Since the BN solution does not have a closed form expression14, the choice of g2 = −1 for
the positivity of H means that the quartic deformation of the action has a sign opposite to the BI model. Note that
the BI Hamiltonian is not positive definite at each order, only the closed form expression is positive.
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