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On Toroidal Horizons in Binary Black Hole Inspirals
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We examine the structure of the event horizon for numerical simulations of two black holes that
begin in a quasicircular orbit, inspiral, and finally merge. We find that the spatial cross section of the
merged event horizon has spherical topology (to the limit of our resolution), despite the expectation
that generic binary black hole mergers in the absence of symmetries should result in an event horizon
that briefly has a toroidal cross section. Using insight gained from our numerical simulations, we
investigate how the choice of time slicing affects both the spatial cross section of the event horizon
and the locus of points at which generators of the event horizon cross. To ensure the robustness of
our conclusions, our results are checked at multiple numerical resolutions. 3D visualization data for
these resolutions are available for public access online. We find that the structure of the horizon
generators in our simulations is consistent with expectations, and the lack of toroidal horizons in
our simulations is due to our choice of time slicing.

PACS numbers: 04.25.D-, 04.20.-q, 04.20.Gz, 04.25.dg

I. INTRODUCTION

It has long been known that a stationary black hole
must have spherical topology [1]. For a non-stationary
black hole, that is, one undergoing dynamical evolution,
the situation is more complicated: the intersection of
the event horizon and a given spatial hypersurface may
be toroidal instead of spherical [2]; In fact, Siino has
shown that event horizons may have topology of arbi-
trary genus [3, 4]. Event horizons with initially-toroidal
topologies have been observed in numerical simulations
of the collapse of rotating star clusters [5, 6].
A number of theorems restrict the conditions under

which horizons can have toroidal topology; for instance,
the torus must close up fast enough so that no light ray
from past null infinity can pass through the torus and
reach future null infinity [7, 8]. Additionally, it has been
conjectured that for all toroidal horizons, a new space-
time foliation can be chosen so that the intersection of
the horizon with each slice of the foliation has spherical
topology [8].
The recent ability of numerical relativity to simulate

the merger of two black holes (see refs. [9, 10] for recent
reviews) provides a laboratory for studying the structure
of event horizons that are far from stationary. Husa and
Winicour predicted [11] that a brief toroidal phase should
occur generically in binary black hole mergers, but until
recently most numerical investigations of event horizons
utilized some degree of symmetry. Diener [12] investi-
gated event horizons in non-symmetric black hole colli-
sions, including those of three black holes, but he did not
have sufficient numerical resolution to determine whether
a toroidal phase occurs in his simulations. More recently,
Ponce [13] et. al. examined the merger of ring of eight
black holes initially at rest and also found no evidence of
a toroidal event horizon.
In this paper, we investigate the event horizons from

two numerical simulations run with the SpEC [14] code by
building on the work presented in the thesis of Michael

Cohen [15]. The first simulation follows two black holes
of (initially) zero spin and equal mass from a quasicir-
cular orbit, through merger and ringdown [16, 17]. The
second simulation is similar, but fully generic: the mass
ratio is 2:1, and the initial spins of magnitude a/M ≃ 0.4
are not aligned with each other or with the initial orbital
plane [18]. Table I lists parameters of these two simu-
lations, and also parameters of two previous simulations
for which the detailed shape of the event horizon was
discussed in earlier works [19, 20].

For all of these simulations, we find the event horizon
by the method described in Ref. [19]: we choose a set of
outgoing null geodesics that lie on the apparent horizon
of the remnant black hole at the end of the simulation
when the spacetime is nearly stationary, and we integrate
these geodesics backwards in time. These geodesics expo-
nentially converge onto the event horizon, so we will refer
to them as generators of the horizon even though they are
only (very good) approximations to the true generators.

It is important to note that the event horizon is only
a subset of the surface generated by these generators.
Under subsequent evolution backwards in time, some of
the generators leave the horizon at points where they
meet other generators[21, 22]. These meeting points have
been studied extensively [6, 11, 23] and can be separated
into two types: caustics, at which neighboring genera-
tors focus and converge, and crossover points, at which
non-neighboring generators cross. Much of the work in
studying the structure of the event horizon in numerical
simulations involves identifying the crossover and caustic
points, so as to determine when the generators are on or
off the horizon. In this work we make an effort to clar-
ify the structure of event horizon caustics and crossovers
for the cases of spatial slices with and without a toroidal
event horizon surface.

Of course, any numerical study of event horizons is
limited by several different sources of numerical error.
Consequently, the identification of caustic and crossover
points must be carefully analyzed to ensure that one’s
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conclusions are not tainted by discretization errors. Dis-
cretization error could arise from, for example, both the
3+1 spacetime resolution of the underlying black hole
simulation, and/or the 2+1 spacetime resolution of the
event horizon hypersurface. Accordingly, one important
goal of this work is to investigate whether our conclusions
are robust when we change the (relatively high) spatial
and temporal resolution of our event horizons.
We note that it is not always easy to visualize

the event horizon’s topological structure from the two-
dimensional screenshots we can include in this work.
Therefore, we make our event horizon data for the
generic merger, Run 2 from Table I, available online for
the reader to explore at http://www.black-holes.org/
onToroidalHorizonsData.html. Included are detailed
instructions on how to visualize and compare the event
horizon data for different resolutions using freely avail-
able 3D visualization software [24]. Also included there
are saved state and camera view files allowing the reader
to jump to the views displayed in this work, providing
the ability for the reader to see the event horizons as
they are featured in this paper’s figures [25].
The organization of this paper is as follows: In Sec-

tion II we present modifications to our event-horizon
finder [19] that allow us to detect crossover points, i.e.
intersections of non-neighboring horizon generators. In
Section III we apply this method to find the event hori-
zon of two binary black hole simulations in which the
black holes merge after inspiraling from an initially qua-
sicircular orbit. We find that the merged horizon has
spherical topology to the limit of our numerical accu-
racy. In Section IV we review the structure of crossover
points and caustics in binary black hole collisions. We
show how toroidal horizon cross sections are possible in
black hole collisions without symmetry, and how the ex-
istence of toroidal cross sections depends on the choice
of time slicing. In Section V we identify the crossover
points and caustics of the horizon generators for our nu-
merical simulations, and show that they are consistent
with expectations for generic binary black hole mergers.
In particular, we infer that there should exist a different
slicing of our numerical spacetime such that a toroidal
horizon is present for a finite coordinate time. We sum-
marize our findings and conclude in Section VI.

II. IDENTIFICATION OF CROSSOVER POINTS

A key challenge in computing an event horizon is to
accurately determine when each of the generators be-
ing tracked merges onto the horizon. The set of merger
points can be classified into two types: caustics, which
occur when neighboring generators focus and converge,
and crossovers, which occur when non-neighboring gener-
ators cross. The set of crossover points generically forms
a two-dimensional subset of the three-dimensional event
horizon hypersurface, (see Figure 3 right panel), and the
set of caustics generically forms the boundary of the set

Run MA/MB
~SA/M

2
A

~SB/M2
B Type Ref

1 1 0 0 orbit [16, 17]

2 2 −0.4(ẑ + ŷ)/
√
2 0.2(ẑ − x̂)/

√
2 orbit [18]

3 1 0 0 head-on [19]

4 1 0.5ẑ −0.5ẑ head-on [20]

TABLE I: Binary black hole simulations for which we have
investigated the topology of the event horizon. Listed are
mass ratios, initial spins, and whether the black holes are
colliding head-on or are initially in quasicircular orbit. The
first two simulations are discussed in the present paper, and
for these the ẑ direction is parallel to the initial orbital angular
momentum; the last two simulations are head-on collisions
along the x̂ direction, and are discussed in refs [19] and [20].

of crossovers [11, 23].

In previous applications of our event-horizon finder it
sufficed to search only for caustics and not for crossover
points. Ref. [19] treated only axisymmetric head-on
black hole collisions, for which all crossovers are also
caustics (cf. Run 3 of Table I). Interestingly, we found
that for spinning, head-on black hole collisions (cf. Run 4
of Table I) [20], despite the lack of pure axisymmetry, the
set of crossover points is also composed entirely of caus-
tics. However, for finding the event horizon of a binary
black hole system that inspirals and merges, we find it is
necessary to develop a technique for detecting crossover
points.

On any given spacelike slice, the set of generators forms
a smooth, closed two-dimensional surface that may self-
intersect (at crossover points and/or caustics). We detect
caustics by monitoring the local area element on this sur-
face [19]; the area element vanishes at caustics. In order
to detect crossover points, we model this surface as a set
of triangles, and we check whether each generator has
passed through each triangle between the current and
the previous time step.

To define these triangles, we note that the surface of
generators can be mapped to a two-sphere with standard
polar coordinates u ∈ [0, π], v ∈ [0, 2π) in such a way so
that each generator is tied to a specific value of u and v
for all time. The generators are placed on a grid in (u, v)
space, and the triangles are defined on this grid. Thus the
property “neighbor-ness” (i.e. knowing which geodesics
are to the left/right/above/below any given geodesic) is
maintained throughout the simulation. We choose the
grid points in (u, v) space to be the collocation points of a
pseudospectral expansion in spherical harmonics of order
L, and we use this L to describe the numerical resolution
of the event horizon finder. There are no geodesics at
the poles u = 0 and u = π, so for the purpose of defining
triangles we place artificial points there (the simulation
coordinates x, y, z of such a pole point are defined as the
mean of the x, y, z coordinates of the nearest neighbor-
ing geodesics). Thus each triangle near the pole is formed
from the artificial pole point plus two points that repre-
sent geodesics. The number of geodesics in a surface of
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FIG. 1: Crossover-detection algorithm illustrated by a
geodesic crossing a moving triangle. Points p0, q0, and r0
form the triangle at time t0, and points p1, q1, and r1 form
the triangle at time t1. Likewise points a0 and a1 represent
the geodesic at times t0 and t1.

resolution L is 2(L+ 1)2, and the number of triangles in
the surface is 4(L + 1)2. The algorithm compares every
triangle with every geodesic point, to determine whether
the geodesic has passed through that triangle between the
current and previous time step. Therefore, if the number
of geodesics on the horizon is N , the number of triangles
is 2N , and the computational cost of the algorithm scales
as O(N2) = O(L4).
Determining whether the point has passed through

the triangle proceeds as follows (see Figure 1 for a dia-
gram): Suppose that the positions of the three geodesics
that comprise the vertexes of the triangle at time t0 are
p0, q0, r0, and the position of the potentially intersecting
geodesic is a0. At time t1 , one time step later, these posi-
tions are p1, q1, r1 and a1. We assume that the geodesics
move linearly in space during the short interval between
time t0 and t1. Thus p(t) = p0 + t(p1 − p0) = p0 + tp̄,
and similarly for q, p and a. We now define the normal
of the triangle at time t0

n0 = (q0 − p0)× (r0 − p0), (1)

where we have assumed that the orientation of the tri-
angle points is anti-clockwise. As a function of time, the
normal is

n(t) = (q(t)− p(t))× (r(t) − p(t))

= (q0 − p0 + t(q̄ − p̄))× (r0 − p0 + t(r̄ − p̄))

= (q0 − p0)× (r0 − p0) + t[(q̄ − p̄)× (r0 − p0) +

(q0 − p0)× (r̄ − p̄)] + t2(q̄ − p̄)× (r̄ − p̄). (2)

Since p0, q0, r0, p̄, q̄, r̄ are known quantities, we can write
Equation 2 as

n(t) = n0 + αt+ βt2. (3)

Now, any given plane P has the property that

∀i ∈ P, i · nP = D, (4)

where D is a constant, and nP is the normal of the plane.
Now, D(t) = p(t) ·n(t), a cubic equation, so our geodesic
a(t) and the triangle {p, q, r}(t) are coplanar at times t
that satisfy the equation

p(t) · n(t)− a(t) · n(t) = n(t) · (p(t)− a(t)) = 0. (5)

Equation 5 is a cubic with algebraic roots, which can
be solved for analytically. For every root found between
t0 < t ≤ t1, it is a simple matter to check whether a(troot)
is within the triangle {p, q, r}(troot), rather than merely
being co-planar.
There are a few special cases to be checked, such as

ensuring that the geodesic being tested for intersection
is not one of the geodesics that make up the triangle,
or cases for which the cubic equation is degenerate, but
the algorithm itself is quite robust and effective. Al-
though the algorithm is, as mentioned above, O(N2),
the expense of the algorithm is mitigated by two factors.
Firstly, since the algorithm involves analytically solving
an at most cubic equation, the run time of each individ-
ual instance is very small, on the order of microseconds.
Secondly, the looping condition is sufficiently simple that
it can be parallelized over multiple cores without any sig-
nificant CPU overhead. In practice, with typical resolu-
tions of between 30, 000 & 60, 000 geodesics, the run time
is not prohibitive.

III. EVENT HORIZONS FROM NUMERICAL

SIMULATIONS OF BINARY BLACK HOLE

MERGERS

Husa and Winicour [11] posit that mergers of binary
black holes in a non-axisymmetric configuration generi-
cally result in an intermediate toroidal state of the event
horizon. Previously (cf. Runs 3 and 4 of Table I) we
have found that merger occurs at a single point in not
only the axisymmetric head-on merger [19], but also the
head-on spinning merger [20] (where axisymmetry is bro-
ken). Therefore, we were strongly motivated to deter-
mine the topological behavior of the event horizon for
mergers of black holes that inspirals from an initially
quasicircular orbit, where axisymmetry is broken in no
uncertain terms.
Figure 2 shows the event horizons from two numerical

simulations of binary black hole coalescence, at the time
of merger. In the top panel, the two black holes start in
a quasicircular orbit, and have equal masses and initially
zero spins; details of this simulation were published in
Ref. [16]. The bottom panel shows a fully generic situa-
tion: again the black holes start in a quasicircular orbit,
but the mass ratio is 2:1, and the initial spins have mag-
nitude a/M ≃ 0.4 and are not aligned with each other
or with the initial orbital plane. This simulation is “case
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FIG. 2: Color online. Slices through the event horizon at
the exact point of merger to within numerical accuracy. Up-

per panel: Equal-mass non-spinning 16-orbit inspiral, Run
1 of Table I, at t/M = 3902.897; the point of merger is
tmerger/M = 3902.897 ± 0.006. Here M is the sum of the
ADM masses. Lower panel: Generic merger, Run 2 of Ta-
ble I, at t/M = 117.145; the point of merger is tmerger/M =
117.145± 0.005. The error estimates come from the time res-
olution of our event horizon finder (i.e. our EH finder time
step is ∼ 0.005M); note that the merger occurs at the same
time (within this error bound) for both medium and high res-
olutions of the numerical relativity simulations. At earlier
times the two black hole horizons are disjoint. No toroids are
evident in the limit of our accuracy.

F” of Ref. [18]. For both of these simulations, we find
the generators of the event horizon using the “geodesic
method” of [19]. We integrate generators backwards in
time, and when we find that generators leave the event
horizon, either through caustics (as determined by the
vanishing of the local area element of the surface of gen-
erators [19]) or through crossover points (as determined
by the method described in Section II) we flag them as
having left the horizon. Figure 2 plots only those gener-
ators that are on the horizon at the time of merger. In
both the equal-mass and generic cases, our results show
that the event horizons merge at a point, with no in-
termediate toroidal phase to the limit of our numerical
accuracy.

IV. TOPOLOGICAL STRUCTURE OF THE

EVENT HORIZON FOR INSPIRALING AND

MERGING BLACK HOLES

In order to understand why no toroidal intermediate
stage is found in our simulations, we need to further un-
derstand the topological structure of the event horizon
null hypersurface in the case of a binary inspiral and
merger. In [11], Husa and Winicour consider two sets
of points. One set, labeled C, is the set of all caustic
points in the spacetime where neighboring event hori-
zon geodesics cross. The other set of points, X , is the
set of all crossover points in the spacetime, where non-
neighboring event horizon geodesics cross. They show
that the set of points X is an open 2-surface on the event
horizon null hypersurfaceN , and that this set is bounded
by the caustic set C. They further show that the behavior
of this 2-surface of caustic/crossover points is governed
by the topology of the merger. In an axisymmetric pro-
late merger (such as our headon case), the 2-surface is
reduced by the symmetry, resulting in the single bound-
ary line of caustic points we see as being the “inseam”
of the “pair of pants,” as shown in the left panel of Fig-
ure 3. In the non-axisymmetric case, the set of caustic
and crossover points is a 2-surface on the event horizon,
as shown in the case of a binary black hole inspiral in the
right panel of Figure 3 (where we show the merger in a
corotating frame).

The question of whether toroidal horizons can be found
in the intermediate stages of binary black hole merger can
be answered by considering the various ways in which
these “pair of pants” diagrams can be sliced. The fact
that the set caustic/crossover points C ∪X is a spacelike
2-surface on a non-axisymmetric event horizon hypersur-
face (and, for an axisymmetric case, the line of points C
is a spacelike line) provides some freedom in the allowed
spacelike slicings of this surface.

Let us first consider whether a nontrivial topology
might be obtained in the axisymmetric case. In order
to do so, we need to consider how such a slice may be
constructed. Clearly, if we were to construct “horizontal”
spatial slices of the null hypersurface in the left panel of
Figure 3, we would produce a slicing in which the merger
occurred at a point. However, we can attempt to con-
struct slices in which the lapse is somewhat retarded near
the “crotch.” In Figure 4 we examine a 2-dimensional
slice in {t, y} through the center of the hypersurface. It
is clear that if we choose a central point for the slice be-
fore the merger of the black holes, we cannot extend a
spacelike slice from this central point in either the x or y
directions in such a way as to encounter the black holes.
Only in the z direction can we encounter the black holes.

This changes however, when we consider the non-
axisymmetric case. In this case, the x and y directions
are different, as shown in the right panel of Figure 3. In
Figure 5 we show a {t, y} 2-slice of the event horizon.
The event horizon, N , is spacelike both at C, and along
the line X . Thus, given a point P below the “crotch” of
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FIG. 3: Diagrams of the event horizon null hypersurface, N , in axisymmetric and non-axisymmetric mergers. The merger is
along the z-axis. In both panels, the regions C ∪ X are spacelike. Left panel: In the axisymmetric case, the caustic/crossover
set is reduced to a single line of caustic points, the “inseam” of the “pair of pants,” labeled C. The x direction is suppressed
but, since the x and y directions are identical for axisymmetry, the diagram would be unchanged if we were to suppress y in
favor of x. Right panel: In the non-axisymmetric case, such as an inspiral (where we have “unwound” the legs of the “pair of
pants” by going to a corotating frame), the set of crossover points X is two-dimensional, bounded on both sides by “inseams”
C. Unlike the axisymmetric case, here the x and y directions are not identical. Since the caustic/crossover set of points is a
2-surface, the diagram we would obtain by suppressing y in favor of x would look identical to the left panel, except that the
single “inseam” would be composed of crossover points.
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FIG. 4: A 2-dimensional slice through the event horizon null hypersurface, N , in an axisymmetric merger. The horizontal
direction in the right panel could be either x or y. We attempt to construct a slice S1 in x (or y) from point P that intersects
the black hole. This slice is clearly not spacelike. Since N is spacelike only at C, only a slice such as S0 that does not intersect
the black hole can be both spacelike and pass through P .

the event horizon, we can construct three distinct slices,
each with different behavior. Slice S0 does not encounter
the event horizon at all in the y direction. Slice S1 en-
counters the event horizon four times: twice in the null
region, and twice in the spacelike region. Finally, slice S2

encounters the event horizon four times in the spacelike
region. Note that in the x direction, the slice through the

event horizon is identical to slice S0 of Figure 4 (except
that the “inseam” is part of the crossover set X instead
of the caustic set C). Therefore, if we slice our spacetime
using slices S1 or S2, our slice encounters the event hori-
zon four times in the z and y directions, and not at all
in the x direction. This is precisely a toroidal interme-
diate stage. Such slices can be seen in three dimensions
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FIG. 5: A 2-dimensional slice through the event horizon null hypersurface, N , in a non-axisymmetric merger. Unlike the
previous figure, the horizontal direction in the right panel is not interchangeable between x and y. We construct three slices
S0,S1,S2 from the starting point P . These slices intersect the event horizon in different ways. Since C ∪ X is spacelike, all
these slices are spacelike. Although exaggerated for effect, the tangent to X in the t-y plane becomes null at C (see [6]).

{t, y, z} in Figure 6.

We now consider what the event horizon looks like in
three spatial dimensions {x, y, z} on each of the slices S0,
S1, or S2 of Figures 5 and 6. The top panel of Figure 7
shows the intersection of the event horizon with the slice
S0. Compare with Figure 6, which shows the same slice
in the dimensions {t, y, z}. The slice S0 does not en-
counter the event horizon in the x − y plane; this plane
lies between the two black holes. On each black hole, the
slice S0 encounters the two-dimensional crossover set X
along a one-dimensional curve, and this curve is bounded
by two caustic points from the set C.

In contrast, the intersection of the event horizon with
the slice S1 is shown in the middle panel of Figure 7.
Compare with Figure 6, which shows the same slice in
the dimensions {t, y, z}. This is a toroidal cross section
of the horizon. Slice S1 intersects the event horizon four
times along the y axis: the outer two points are in the
null region of the horizon N and the inner two are in the
spacelike crossover set X . Note that the inner edge of the
torus is made up entirely of crossover points from the set
X and does not include caustic points nor points in the
set N . The existence of an isolated set of crossovers that
cannot be connected to caustics is a key signature of a
toroidal horizon.

The bottom panel of Figure 7 shows the intersection
of the event horizon with the slice S2, which is shown
in the {t, y} directions in Figure 5. This slice also pro-
duces a torus. Slice S2 intersects the event horizon four
times along the y axis, and each of these intersections is
a crossover point in X . As was the case for slice S1, the
inner edge of the torus for slice S2 also consists entirely
of crossover points. The outer edge of the event hori-
zon intersects the two-dimensional crossover set X along
two one-dimensional curves, and each of these curves is

bounded by caustic points on each end.

It is important to note another distinction between the
behavior of slices S1 and S2 in Figures 5 and 7. When
a slice intersects the event horizon at a point that is a
member of C ∪X , that point is the point where two gen-
erators of the event horizon pass through each other as
they merge onto the event horizon. Consequently, that
point is not a smooth part of the event horizon. If in-
stead the slice intersects the event horizon at a point not
in C ∪ X , that point is a smooth part of the event hori-
zon. Therefore, S1 corresponds to a toroidal intermediate
stage where the torus has a non-smooth (i.e. sharp) in-
ner edge and a smooth outer edge, and S2 corresponds
to a stage where both the outside and the inside of the
torus are sharp-edged. There also exists the possibility
of a slice that looks like S1 in the positive y direction and
looks like S2 in the negative y direction or vice versa; on
such a slice the outer edge of the torus will be sharp on
one side and smooth on the other.

V. TOPOLOGICAL STRUCTURE OF

SIMULATED EVENT HORIZONS

Having shown how an appropriate choice of slicing
yield spatial slices in which the event horizon is toroidal,
we now hope to convince the reader that, up to the limit
of our numerical resolution, we see no signs of a toroidal
event horizon in the slicing of our simulations. In greater
generality, we would like to answer the following question:
What is the structure of caustic and crossover points for
the simulations we have performed, and how do those
results relate to the structure discussed in the previous
section?

We can use Figure 6 to predict the structure of caustic
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FIG. 6: A 3-dimensional representation of slices S0 and S1

from Figure 5. Here we see the continuation of each slice in
the z direction. The event horizon is toroidal on slice S1; the
center of the torus is P . The toroidal region is the part of S1

that has dipped through the crossover region X .

and crossover points for an early slice through the event
horizon of a non-axisymmetric merger. Unlike the ax-
isymmetric case, where all geodesics merge onto the event
horizon at a point, an early slice of the non-axisymmetric
merger, say slice S0 in Figure 6, should show each black
hole with a linear cusp on its surface, through which
geodesics merge onto the horizon. The cusp should be
composed of crossover points, except that the boundaries
of the cusp should be caustic points. At a later time, the
two black holes will merge, and whether or not a torus
is formed depends on how the slice intersects the set of
caustics and crossovers, as seen in Figure 7.

To clarify let us first state a precise condition for the
presence or absence of a toroidal event horizon: A slice
without a toroidal event horizon has the following prop-
erty: For every crossover point on the horizon, there ex-
ists a path from that crossover point to a caustic point,
such that the path passes through only crossover points
(cf. Figure 7). For a slice with a toroidal event horizon,
there exist crossover points on the horizon that are dis-
connected from all caustics, in the sense that no path can
be drawn along crossovers that reaches a caustic. For ex-
ample, in slices S1 and S2 of Figure 7, the crossover points
on the inner edge of the torus are disconnected from all
caustics.

A slicing of spacetime where the event horizon is never
toroidal will appear like slice S0 at early times. Ap-
proaching merger, the two disjoint crossover sets will ex-
tend into “duck bill” shapes and then meet at a point,
forming an “X” shape at the exact point of merger. Af-
ter merger, the crossover set will then disconnect and will
look like the outer edges of the horizon of slice S2 (with
no torus in the middle). At even later times, each dis-

S0

S1

S2

Y

Z

FIG. 7: Color online. Cartoon illustrations of spatial slices
S0, S1, and S2 of Figures 5 and 6. Null generators currently on
the horizon are in red; linear sets of crossovers merging onto
the horizon are indicated by black lines, and the location of
caustic points are denoted by blue Xs.

joint crossover set on the outer edge of the horizon will
shrink to a single caustic point and then disappear.

A slicing of spacetime in which the event horizon is
toroidal will also look like slice S0 at early times. But
at times approaching merger, the disjoint crossover sets
will meet at two (or more) points instead of one. If these
meeting points are the caustics, then just after merger
these caustics will disappear, leaving a ring of crossovers,
and the horizon will look like slice S1 of Figure 7. If in-
stead these meeting points are crossover points, then the
crossover set will form a double “X” shape at merger,
and after merger, the crossovers in the middle will form
a ring, and the horizon will look like slice S2 of Figure 7.
In this latter case, each disjoint crossover set on the outer
edge of the horizon will eventually shrink to a single caus-
tic point and then disappear. Furthermore, the central
ring of crossovers will eventually shrink to a single point
and disappear. If the disappearance of the crossovers on
the horizon edge occurs before the disappearance of the
central ring of crossovers, then for some time the horizon
will look like slice S1 of Figure 7.

Comparing these predictions with the results of a sim-
ulation of finite numerical resolution requires care, since
single points (such as the point of merger or the single
caustic points that bound the crossover sets) cannot be
found with infinite precision. We will discuss these limi-
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FIG. 8: Color online. A snapshot of the geodesics be-
ing followed by the event horizon finder at time t/M =
tmerger/M − 0.067, for the equal-mass inspiral. The small
dots are geodesics currently on the event horizon. The larger
points, either crosses or circles, represent geodesics in the pro-
cess of merging onto the event horizon. Crosses represent
points merging through caustic points, while circles represent
points merging through crossovers. In this slice, the cusp on
the black hole is linear, and composed of crossover points with
caustics at the end points.

tations in the concluding paragraphs of this section. Let
us now analyze the two numerical simulations studied
here in detail.

A. Equal-mass non-spinning merger

In Figures 8–10,1 we examine our simulation of the
coalescence of two equal-mass non-spinning black holes.
This simulation clearly displays the characteristics of a
non-axisymmetric merger: the black holes do indeed have
linear cusps on their surfaces, and we find caustic points
occuring at the edges of the cusps.
Figure 8 shows generators before the point of merger.

At this time, our slicing is consistent with slices paral-
lel to S0 in Figure 5. These slices correspond to late
enough times that they have encountered the horizon’s
linear cusps but early enough times that they have not
yet encountered points C in Figure 5. The event hori-
zon slices show a “bridge” extending partway between
the black holes, with cusps along each side. Each cusp
is a line of crossover points on one of the black holes,
anchored at each end by a caustic point.
At the precise point of merger (Figure 9) our slicing

remains consistent with slices parallel to S0 in Figure 5.
In this figure, slices parallel to S0 encounter the crossover

1 The axes in all snapshots are not the same as the axes denoted

in Figures 3–7. They correspond to the coordinate axes of the

binary black hole merger simulations and illustrate the relative

camera angle between snapshots.

FIG. 9: Color online. A snapshot of the geodesics being fol-
lowed by the event horizon finder at time t/M = tmerger/M ,
the exact point of merger (to within numerical error) in the
equal-mass inspiral simulation. Labels are the same as in Fig-
ure 8. Although finding the exact point of merger is difficult
given limited numerical time accuracy, we can extrapolate the
“X” shape of the cusps to see that the merger point is clearly
a crossover point.

region at slightly earlier times than they encounter the
caustic lines. Therefore, at merger, the slice will inter-
sect the horizon at one point (a crossover point) in the
y direction, and this point is where the linear cusps on
the individual black holes meet. Consequently, the slice
at the point of merger is expected to have a rough “X”
shape of crossover points, meeting at the merger point,
and anchored at the edges of the black hole cusps by
caustic points. In Figure 9, we see that this is indeed the
case. Note that if our slicing were similar to slice S1 in
Figure 5 rather than slice S0, the linear cusps of the indi-
vidual black holes would meet at two points rather than
one, and these two points would be the caustic points
at the boundary of the cusps. Similarly, if our slicing
were similar to slice S2 in Figure 5, the cusps on the in-
dividual black holes would again meet at two points, and
these would be crossover points. According to Figure 5,
presumably there should exist slicings in which the two
black holes would first touch at multiple points and form
horizons of arbitrary genus.

After merger, the “X” shape of the merger has discon-
nected, resulting in two line segments of crossover points
still bounded by caustics. This is clearly visible in Fig-
ure 10.

Note that in Figures 8–10, we sometimes find multi-
ple caustic points at the edge of the crossover set, rather
than a single caustic point; this appears to be an effect of
the finite tolerance of the algorithm that we use to iden-
tify caustic points. Similarly, we sometimes find caustic
points that are slightly outside the crossover set, as in
Figure 10. This too appears to be a finite-resolution ef-
fect. For the generic run below, we will present horizon
figures computed with different number of geodesics in
order to better understand this effect.
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FIG. 10: Color online. A snapshot of the geodesics be-
ing followed by the event horizon finder at time t/M =
tmerger/M + 0.039, shortly after merger, for the equal-mass
inspiral. Labels are the same as in Figure 8. The “bridge”
between the two black holes has two lines of merger points
running on either side of it, with the majority being crossover
points anchored by caustics at either end.

B. 2:1 mass ratio with ‘randomly’ oriented spins

Here we examine in detail the topological structure of
a generic binary black hole merger, Run 2 of Table I.
As noted earlier, this simulation corresponds to “case F”
of Ref. [18]. We use the term ‘generic’ to highlight the
fact that this simulation lacks degeneracies in the param-
eter space of possible binary black hole mergers. While
the equal-mass non-spinning simulation is symmetric in
the masses and spin parameters of the black hole, and
therefore has a few spatial symmetries, this generic sim-
ulation possesses no such symmetries. Even though the
Kerr parameter a/M of both holes is the same, their spin
angular momenta differ by a factor of 4 due to their mass
difference.
The lack of symmetries for the generic binary black

hole configuration make it more difficult to detect or ex-
clude the presence of a torus. To see this, consider one of
the symmetries of the equal-mass merger: a rotation by
π about the direction of the orbital angular momentum.
Because of this symmetry, the horizon finder needs to use
only half the number of geodesics that would be required
for a generic run: for every geodesic that is integrated
backwards in time, another geodesic (with a position ro-
tated by π along the direction of the orbital angular mo-
mentum) is effectively obtained ‘for free’. Conversely, for
a run without symmetries, it is necessary to use far more
geodesics in the event horizon finder.
We will now examine the event horizon of the ‘generic’

merger at several spacetime locations that are important
to the topological structure of the event horizon. Again,
contrast this to the equal-mass merger, where there is
only one spacetime region of interest to the topology of
the horizon: the region and location where the common
event horizon is first formed, and the associated cusp on

the individual horizons.
For each of these spacetime locations we have investi-

gated the consistency of the observed topological struc-
ture for several different numerical resolutions; specifi-
cally, we have run our event horizon finder using different
spatial and temporal resolutions for the 2 + 1 event hori-
zon hypersurface, as well as on two of the different reso-
lutions used to evolve the 3 + 1 generic binary black hole
merger simulation. We find no qualitative differences be-
tween the resolutions. In particular, though there appear
to be features where a crossover point exists beyond the
boundary or ‘anchor’ of a caustic, these features are not
convergent with resolution. That is, upon going from
a lower to higher resolution, it is possible to find an
‘anchoring’ caustic point for the apparently anomalous
crossover. See Figure 12 for a clear demonstration of this
phenomenon.
In the following sections, we examine the effect of two

different spatial resolutions of our EH finder using a fine
time resolution with a ∆t of 0.005M∗: one resolution
with 2(119 + 1)2 geodesics (L = 119), and a higher spa-
tial resolution using 2(191 + 1)2 geodesics (L = 191).
Here M∗ is nearly the total mass of the black holes on
our evolution grid, M ; M∗ = M/1.06157 where M is the
the sum of the Christodoulou masses of the black holes;
we use this notation here as all detailed event horizon cal-
culations are done before scaling with the Christodoulou
masses. Though we do not show them here, the results
from the event horizon finding using a different time step,
and from using a different background simulation resolu-
tion can be found online at http://www.black-holes.
org/onToroidalHorizonsData.html. Also included at
that location are detailed instructions on how to visual-
ize the data in the same way in which we present it in
this paper [25].

1. Pre-merger: t = 124.200M∗

First, we examine the structure of the cusps on each
black hole’s individual event horizons at a time before
merger2. Figure 11 displays a screenshot of this for two
spatial resolutions used, focusing on the cusp on the
larger black hole. Note that the resolution displayed
here is much higher than in the equal-mass non-spinning
case, and that we need to plot a much smaller region
than in Figures 8–10 in order to visualize the struc-
ture of the cusp. Unfortunately, the topological struc-
ture of the event horizon is not as clearly discernible as
in the equal-mass non-spinning case. A close examina-
tion of the data in 3D using the free visualization soft-
ware ParaView [24] reveals that there do not appear to
be any ‘isolated sets’ of crossovers, i.e. crossovers not

2 Where merger is defined by the earliest time for which there is a

common event horizon
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FIG. 11: Color online. Generators of the event horizon at
t = 124.200M∗ . Current generators are shown as red points,
and generators that are in the process of merging onto the
event horizon are shown either as blue crosses (caustics), or
larger black dots (crossovers). The left panel is computed
using an apparent horizon finder resolution of of L = 119, and
the right panel uses a resolution of L = 191. The lower panels
are successive enlargements of the upper panels, focusing on
the cusp near the larger black hole.

anchored by caustics. It is very difficult to make this
clear using static screenshots in a standard article, and
so we have made the visualization data available pub-
licly for inspection at http://www.black-holes.org/
onToroidalHorizonsData.html, and encourage the cu-
rious reader to view the cusp in 3D [25].

Figure 12 displays the cusp on the smaller black hole
at the same time. Here, one can clearly see an example
of the limits of our current method of discretization of
the event horizon surface: while we cannot see proper
‘anchoring’ caustics using a resolution of L = 119 (left),
we find the expected ‘anchoring’ caustics using higher
resolution (L = 191, right). To the limit of the 2 + 1
resolution of our event horizon surface, we find only one
connected set of crossovers on each black hole near their

FIG. 12: Color online. Same as the lower panels of Figure 11,
except focusing on cusp on the smaller black hole.

respective cusps.

2. Merger: t = 124.355M∗

Our second time of interest occurs at the merger of
the individual event horizons. Figure 13 illustrates the
merger by showing screenshots of the coalescing bridge at
three consecutive time steps. At merger, the black points
indicating crossovers appear to form a “fat X” with fi-
nite width at the center, however this is likely a limi-
tation of our finite temporal resolution; crossover points
can only be flagged as as such if they join the horizon
sometime between two time steps. In the limit of infi-
nite spatial and temporal resolution, we would expect the
same merger behavior as in the equal-mass non-spinning
merger; i.e., the crossovers will be topologically one di-
mensional and form an “X” shape at merger (albeit a
horizontally squished “X”). As in the equal-mass case,
the point of merger occurs at a crossover.

3. Post-merger: t = 124.400M∗

Finally, we focus at a time after merger: when the
final geodesics join horizon (or, in the backwards-in-
time language of event horizon finding, when the first
geodesics leave the horizon). Figure 14 shows the
common bridge between horizons, along with two linear
cusps anchored by caustics. The asymmetry of the
simulation is clear here: the cusp to the right of the
bridge is closing faster than the cusp on the left. The
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t=124.355M*

t=124.350M*

t=124.355M* t=124.360M*

FIG. 13: Color online. Same color coding and resolutions as in Figure 11, except shown at times very close to and surrounding
the merger. Merger is localized to between times t = 124.355M∗ and t = 124.360M∗ (bottom row). The left side of each frame
displays resolution L = 119, and the right side of each frame shows resolution L = 191.

cusp on the left is closing in the direction along the
bridge because caustics on either side are approaching
each other, and it is closing in the transverse direction
because the locus of crossovers is shrinking and moving
out from the center of the bridge. As we follow this
picture further in time, the cusp on the right displays
the same qualitative behavior.

C. Discussion on the numerical analysis of

topological features

Figures 11–14 illustrate why it is difficult to formulate
a precise numerical condition that tells us the scale to
which we can exclude the presence of a toroidal struc-
ture; in the generic case, it is difficult at times to say
that we have even identified all connected components of
the set of crossovers and caustics visually and qualita-
tively. In particular, though the distribution of geodesics
is well spaced on the spherical apparent horizon at late
times (which serves as the initial data for our event hori-
zon finder), this does not ensure a uniform distribution
of geodesics on the event horizon surface at earlier times.
Thus, as one can see in Figure 14, the crossover points are
not uniformly distributed along the line of the cusp. How
do we know these crossover points are of the same con-
nected component? Remember, if the crossover points in
this region are members of at least two distinct connected
components, and there are no “anchoring” caustic points
in their neighborhood, it would indicate the presence of a

toroidal event horizon! Runs at different resolutions indi-
cate that our visual and qualitative identification of the
crossover and caustic structure is consistent with a sin-
gle linear cusp, but the structure is still only resolved up
to the largest separation of crossover points in the cusp.
We note that the implementation of adaptive geodesic
placement in our event horizon finder is likely necessary
to resolve these sorts of issues. We therefore choose to
postpone the issue of a quantitative and precise bound
on the scale to which we can exclude a toroidal event
horizon to future work.

It is clear, however, from these results that our simula-
tion is consistent with the topological structure discussed
by Husa and Winicour in [11], and outlined in Section IV
above. Our slicing corresponds to slices parallel to S0

in Figures 4–6 through the structure of the event hori-
zon, but this does not preclude the possibility of other
spacelike slicings producing toroidal intermediate stages
during merger.

VI. CONCLUSION

In this work, we have taken the first steps in examin-
ing the topological structure of event horizons in generic
binary black hole merger simulations. We focus on deter-
mining the topology of the two dimensional event hori-
zon surface as it appears on spacelike slices of numeri-
cal relativity simulations. In particular, we concentrate
on the presence or absence of a toroidal event horizon,
as previous work [3, 4, 11] has suggested that the exis-
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FIG. 14: Color online. Same as Figure 11 but at time
t = 124.400M∗ . The crossover set on the left side of the
bridge connecting the holes extends past the extents of the
lower screenshot and is bounded by caustics that are out-
side the view of the frame. Also, on the right edge of the
bridge, note the extended line of caustics and the presence
of crossovers between the caustics. This appears to be the
effect of finite resolution in the event horizon finder, since the
appearance is different in the right and left panels. Such nu-
merical phenomena suggest the need for advanced techniques
such as adaptive refinement of geodesic placement if we wish
to completely resolve event horizon features at a reasonable
computational cost.

tence of a toroidal horizon should appear generically in
non-axisymmetric mergers of black holes. In order to
sharpen the discussion on toroidal horizons, we examine
the caustic and crossover structure of the event horizon
from a theoretical (Sec IV) and numerical (Sec V) point
of view. Following Husa and Winicour [11], we emphasize
the distinction between caustic points, where neighbor-
ing (infinitesimally separated) geodesics cross and join
the horizon, and crossover points, where geodesics sepa-
rated by a finite angle cross and join the horizon. Note
that the union of caustics and crossovers are the ‘crease

set’ discussed in the work of Siino [3, 4]. We now would
like to recount the main topics we have discussed:

1. First, in Sections I–III we have described improve-
ments in our event horizon finding code and sum-
marized the topological results for event horizons
found from SpEC binary black hole mergers. We
describe our algorithm (which scales like O(N2)
where N is the number of horizon generators) to
detect crossover points, and we find that the com-
putational cost is not prohibitive for finding the
event horizons of binary black hole mergers.

2. In Section IV, we reviewed the caustic and
crossover structure of the event horizons of bi-
nary black hole mergers for the axisymmetric and
generic cases. Concentrating on spatial slicings
that result in toroidal event horizons, we diagram
slices of the event horizon in multiple spatial and
temporal directions in order to elucidate the caus-
tic and crossover structure present in the cases of
toroidal and non-toroidal event horizons.

3. Subsequently, in our introduction to Section V, we
have discussed a necessary condition for a spatial
slice of the event horizon surface to be toroidal:
the existence of a maximally path-connected set of
crossover points that is disconnected from all caus-
tic points.

4. Finally, we presented a detailed analysis of the
event horizons found numerically from two inspi-
raling binary black hole simulations. We find in
all cases that the intersection of the event hori-
zon with any of our constant-time spatial hypersur-
faces is topologically spherical rather than toroidal.
Despite the lack of toroids, the structure of caus-
tics and crossovers in our simulations are consistent
with Husa & Winicour [11]. We paid particular
attention to analyzing the generic merger for con-
sistency when varying several different numerical
resolutions. Though only two resolutions are com-
pared in this paper, we have made public the visu-
alization data for all four resolutions of the generic
merger that we examined [25]. We encourage the
reader to view at least one of our data sets in 3D,
as this is perhaps the most powerful way to gain in-
sight into the behavior of the event horizons from
our simulations.

For the simulations presented here, it is difficult to
compute a precise upper limit on the size of any tori
that might exist in the exact solution but are too small
for us to detect in the simulations. The main reason
for this difficulty is that our ability to resolve features
of the event horizon depends not only on the numerical
resolution used to solve Einstein’s equations, but also on
the resolution of the algorithm used to find and classify
event horizon generators. The latter resolution domi-
nates in the examples presented here. This is because
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in our current method, the geodesics are located on a
fixed computational mesh that is chosen at the begin-
ning of the backwards-in-time geodesic integration (i.e.
at late times). We suggest that the best way to tackle
this issue would be to devise an event horizon finding
algorithm with iterative or adaptive geodesic resolution
and placement. Thus, one could build into the adaptive
method a target precision with which to resolve caus-
tic and crossover sets. Though challenging, such an ap-
proach would allow one to investigate the topological
structure of numerical event horizons to a much higher
precision, while also providing a solid quantitative mea-
sure of the precision to which features are resolved.
Before we conclude, we would like to discuss a few im-

portant open questions about how the slicing condition
used in our numerical simulations relates to the topolog-
ical structure of the observed spatial cross sections of the
event horizon: 1) Can an existing simulation be re-sliced
to produce a toroidal cross section of the event horizon?
2) Alternatively, could the gauge conditions of our gen-
eralized harmonic evolution code be modified in order to
produce a binary black hole merger in a spatial slicing
with a toroidal event horizon? 3) Why have recent nu-
merical simulations of merging black holes not produced
slicings with a toroidal horizon when it has been thought
that an intermediate toroidal phase should be relatively
generic? The answer to the first question is clearly ‘yes’.
Previous work in the literature [3, 4, 6, 11] shows that it
is possible to have a spacelike slicing of a dynamical event
horizon with a toroidal topology, and that the question
of whether the horizon is toroidal depends on how the
spacelike slice intersects the spacelike crossover set X , as
we review in Section IV.
Questions 2) & 3), however, are far more mysterious

and are ripe for future investigation. Is the lack of toroids
in our simulations endemic to the types of foliations used

in numerical relativity as a whole, or just to the general-
ized harmonic [18, 26, 27] gauge conditions we currently
use in the SpEC code? It would be interesting to see if
a toroidal event horizon phase could be produced from
the same initial data used in our current simulations by
modifying gauge conditions in such a way as to retard
the lapse function near the merger point of the black
holes. So far our attempts to do so have been unsuccess-
ful. Hence, it has been speculated that some property
of those numerical gauge choices that yield stable binary
black hole evolutions also avoids slicings in which the
event horizon is toroidal.
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