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Particle production during inflation and gravitational waves detectable by
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Jessica L. Cook∗ and Lorenzo Sorbo†
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Inflation typically predicts a quasi scale-invariant spectrum of gravitational waves. In models of
slow-roll inflation, the amplitude of such a background is too small to allow direct detection without
a dedicated space-based experiment such as the proposed BBO or DECIGO. In this paper we note
that particle production during inflation can generate a feature in the spectrum of primordial grav-
itational waves. We discuss the possibility that such a feature might be detected by ground-based
laser interferometers such as Advanced LIGO and Advanced Virgo, which will become operational
in the next few years. We also discuss the prospects of detection by a space interferometer like
LISA. We first study gravitational waves induced by nonperturbative, explosive particle production
during inflation: while explosive production of scalar quanta does not generate a significant bump
in the primordial tensor spectrum, production of vectors can. We also show that chiral gravitational
waves produced by electromagnetic fields amplified by an axion-like inflaton could be detectable by
Advanced LIGO.

PACS numbers: 04.30.Db, 98.80.Cq, 98.80.Qc

1. INTRODUCTION.

Once we consider perturbations on the top of
a homogeneous and isotropic Friedmann-Robsertson-
Walker Universe, inflation generically predicts quasi-
scale-invariant spectra of scalar and tensor perturbations.

The scalar perturbations have been detected, and all
their properties appear to wonderfully agree with the pre-
dictions of the simplest models of inflation. The tensor
modes, however, have not yet been detected, and we put
our best hopes to find them in the study of their ef-
fect on the polarization of the Cosmic Microwave Back-
ground photons. A direct detection of the tensor modes
from inflation, on the other hand, is not expected before
dedicated space-based interferometers such as the pro-
posed BBO or DECIGO [1], are launched in the next few
decades. Indeed, gravitational interactions are so weak
that we have not yet detected gravitational waves of any
origin.

Experiments searching for gravitational waves of astro-
physical origin, such as LIGO [2], GEO600 [3], Virgo [4],
and TAMA300 [5], have been taking data for several
years. LIGO and Virgo will see their sensitivity improved
by a factor of ∼ 10 in the next few years and might detect
the first gravitational wave as early as 2015. They will
be sensitive to a stochastic background of gravitational
waves whose logarithmic contribution to the critical den-
sity, ΩGW h2, is of the order of 10−9 at a frequency of
∼ 100 Hz. LGCT [6] will have a comparable sensitiv-
ity at similar frequencies. A space-based experiment like
LISA would be able to reach ΩGW h2 ' 10−11 at 10−3 Hz.
The proposed Einstein Telescope [7] would have similar
sensitivity while working at LIGO frequencies. Since the
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spectrum of primordial tensor modes is generically flat or
slightly red, non-detection of tensor modes at CMB scales
strongly constrains a scale invariant background of ten-
sors of inflationary origin to ΩGW h2 <∼ 10−14. For this
reason none of these detectors is usually expected to be
able to detect tensor modes produced during inflation [8].

In this paper we note that production of particles dur-
ing inflation generates a feature in the tensor spectrum
which could be detectable by gravitational interferome-
ters in the (relatively) near future, without conflicting
with CMB constraints.

Nonperturbative production of particles during infla-
tion, first studied in [9], is possible because the rolling in-
flaton provides a time-dependent background that carries
the energy necessary for the production of light species.
The simplest and most studied example of such a sys-
tem is given by a scalar field χ whose mass depends on
the inflaton φ. If χ becomes effectively massless as the
inflaton rolls down its potential, then it becomes energet-
ically cheap to produce its quanta. In this case, particle
production happens at a precise moment during inflation
determined by the time when the total mass of χ crosses
zero. A second possibility is that the inflaton φ couples
to a derivative of some field such as a gauge field [10]. In
this case, the field can stay massless as the inflaton rolls
down its potential, and particle production can happen
steadily during inflation.

Particles produced through these mechanisms carry
energy-momentum tensor Tµν , which perturbs the FRW
metric into:

gµν = a(τ)2(−dτ2 + (δij + hij) dx
idxj) , (1)

where we use conformal time 1 τ and a transverse, trace-

1Throughout the paper we will denote by a prime a derivative with
respect to the conformal time τ , and by a overdot a derivative with
respect to the cosmological time t: ′ ≡ d/dτ , ˙≡ d/dt.
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less decomposition, ignoring perturbations which do not
source gravitational waves. The equation of motion of
the perturbations is:

h′′ij + 2
a′

a
h′ij −∆hij =

2

M2
P

Πij
ab Tab , (2)

where Πij
lm = Πi

l Πj
m− 1

2Πij Πlm is the transverse, trace-
less projector, and Πij = δij−∂i ∂j/∆. For any given ex-
pression of Tab(x, τ), one can then solve formally eq. (2)
as

hij(k, τ) =
2

M2
P

∫
dτ ′Gk(τ, τ ′) Πij

ab(k)Tab(k, τ
′) ,

(3)
where Gk(τ, τ ′) is the retarded propagator solving the
homogeneous transform of eq. (2). In this paper we will

assume a de Sitter background a(τ) = − (H τ)
−1

, so that
the retarded propagator reads

Gk(τ, τ ′) =
1

k3 τ ′2

[ (
1 + k2 τ τ ′

)
sin k (τ − τ ′) +

+ k (τ ′ − τ) cos k (τ − τ ′)
]

Θ (τ − τ ′) . (4)

In the present paper we will examine several ways of
generating a nonvanishing Tab in eq. (3), some of which
induce a significant feature in the spectrum of tensor
modes. If particle production happens explosively at a
precise time during inflation (as in [9]), the spectrum
of gravitational waves will show a feature at the scale
corresponding to the time of particle production. If
particle production happens continuously, on the other
hand, then the spectrum of induced tensor modes will
be smoother. In both cases the amplitude of the ten-
sor spectrum at the scales probed by interferometers
can be much larger than the one probed by CMB mea-
surements. It is worth noting that, since the source of
the gravitational waves is quadratic in a gaussian field,
hij is expected to have a maximal three point function

〈hhh〉 ' 〈hh〉3/2 [11–14]. The direct detectability of ten-
sor modes produced during inflation was also considered
by [15], where it was shown that, if the post-inflationary
Universe is dominated by a fluid stiffer than radiation,
the primordial tensors amplitude can be significantly en-
hanced. More recently, [16] has studied the detectability
of gravitational waves produced by phase transitions dur-
ing inflation.

In section 2 we show that the explosive production of
quanta of a scalar field χ can only generate a tiny correc-
tion to the background, quasi-scale invariant spectrum of
tensor modes. A scenario – “trapped inflation” – where
explosive production of particles occurs several times per
efolding of inflation has been considered in [17]. In this
scenario, particle production slows down the rolling of the
inflaton so that inflation can occur even on a (relatively)
steep potential. Our analysis will allow, in section 2 C,
the evaluation of the amplitude of the tensors induced by
the trapping fields.

In section 3 we study a mechanism analogous to that
of section 2, where the scalar field χ is replaced by a
vector field Aµ. In this case production of tensors can
be much more efficient, leading to a peak in the tensor
spectrum that can be an order of magnitude larger than
the quasi-scale-invariant background.

Finally, in section 4 we discuss the case of tensor modes
produced through a gauge field coupled to an axion-like
inflaton (as discussed in [20, 21] and, in greater detail,
in [22]). In this case the amplitude of gravitational waves
can increase dramatically at smaller scales so that the
system can obey the WMAP constraint on primordial
tensors at CMB scales and still lead to detectable tensors
at scales probed by ground-based laser intereferometers.

2. GRAVITATIONAL WAVES FROM SUDDEN
PRODUCTION OF SCALARS DURING

INFLATION.

Several systems can lead to the production of particles
during inflation. The one that has received the most
attention is described by the following lagrangian

Lφχ = −1

2
∂µφ∂

µφ−V (φ)−1

2
∂µχ∂

µχ− g
2

2
(φ− φ0)

2
χ2 ,

(5)
where V (φ) is the potential supporting inflation and
where we neglect for simplicity the self-interactions of
the field χ. If the inflaton φ(τ), while slowly rolling
down V (φ), crosses the value φ0, then the field χ be-
comes momentarily massless, and its quanta can be co-
piously produced. The analysis of [23] shows that the
occupation number of χ, shortly after φ crossed φ0, is

given by nχ(k) = exp
{
−π k2

g |φ̇0|

}
, where φ̇0 = dφ/dt at

the time φ crosses φ0.
In this section we compute the number of gravitons

produced by these quanta of χ. The spatial part of the
stress-energy tensor for the field χ is given by Tab =
∂aχ∂bχ + δab(. . . ), where the part proportional to δab
is projected away by Πij

ab. We promote the field χ(x, τ)
to an operator χ̂(x, τ), which we Fourier transform, fac-
toring one power of the scale factor a(τ) for canonical
normalization

χ̂(x, τ) =
1

a(τ)

∫
d3k

(2π)3/2
eikx χ̂(k, τ) . (6)

Plugging this decomposition into eq. (3) gives the tensor
spectrum

〈hij(k, τ)hij(k
′, τ)〉 =

1

2π3M4
P

∫
dτ ′

a(τ ′)2
Gk(τ, τ ′)×

×
∫

dτ ′′

a(τ ′′)2
Gk′(τ, τ

′′) Πij
ab(k) Πij

cd(k′)×

×
∫
d3p d3p′ pa(kb − pb) p′c(k

′

d − p′d)× (7)

× 〈χ̂(p, τ ′)χ̂(k− p, τ ′)χ̂(p′, τ ′′)χ̂(k′ − p′, τ ′′)〉 .
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The quantity 〈. . . 〉 in the equation above can be reduced
using Wick’s theorem and ignoring the disconnected term
proportional to δ(3)(k)δ(3)(k′). Hence we need only to
evaluate the two-point correlators, being careful to avoid
divergences.

The evolution of the system occurs in three stages:

(i) At early times, significantly before φ reaches φ0,
the Universe does not contain quanta of the χ field. No
gravitational waves are produced by χ during this epoch.

(ii) As φ gets close to φ0, the effective mass of χ,
mχ(t) ≡ g (φ(t)− φ0), starts evolving nonadiabatically,
ṁχ

>∼ m2
χ. The duration ∆tnad of the epoch of nona-

diabaticity is ∆tnad ' (g φ̇0)−1/2, which must be much
shorter than a Hubble time for production of quanta of
χ to be efficient. During this short epoch, the quanta of
χ, while being produced, source gravitational waves.

(iii) After a time of the order of ∆tnad after φ has
passed φ0, the mass mχ(t) evolves adiabatically again.
Even if they are not being produced, quanta of χ are still
filling the Universe and source the tensors before diluting
away in a few efoldings.

In the following subsection we will study the gravita-
tional waves produced during the epoch (iii), while in
subsection 2 B we will discuss those produced during
the nonadiabatic period (ii). As we will see, the ten-
sors produced during these two epochs have comparable
amplitude.

A. Tensor production during the adiabatic epoch.

The main quantity we have to evaluate is
〈χ̂(p, τ ′)χ̂(q, τ ′′)〉. We decompose χ̂(k) into
creation/annihilation operators as χ̂(k, τ) =

χ(k, τ) âk + χ∗(−k, τ) â†−k , where the function χ
must obey the equation

χ′′(k, τ) + ω(k, τ)2 χ(k, τ) = 0 (8)

with

ω(k, τ)2 ≡ k2 + g2 a(τ)2 (φ(τ)− φ0)
2 − a′′(τ)

a(τ)
, (9)

and âk annihilates the vacuum during period (i). We
define the Bogolyubov coefficients α(k, τ) and β(k, τ)
via

χ(k, τ) =
1√
2ω

(
e−i

∫ τ ω α(k, τ) + ei
∫ τ ω β(k, τ)

)
χ′(k, τ) =i

√
ω

2

(
− e−i

∫ τ ω α(k, τ) + ei
∫ τ ω β(k, τ)

)
(10)

so that, in the adiabatic limit ω′ � ω2, α and β are
constants. This way, we can rewrite

χ̂(k, τ) =
e−i

∫ τ ω dτ̃
√

2ω
b̂k(τ) +

ei
∫ τ ω dτ̃
√

2ω
b̂†−k(τ) , (11)

where we have defined the new annihilation operator

b̂k(τ) = α(k, τ) âk + β∗(−k, τ) â†−k , (12)

that annihilates the vacuum during period (iii).
In order to renormalize the theory, we impose that the

operator χ̂(p, τ ′)χ̂(q, τ ′′) within 〈. . . 〉 is normal ordered.

However, we require normal ordering in terms of the b̂k
operators while using the vacuum state defined by the âk
operators. This way we calculate the number of quanta
of our initial particle definition existing at the end. Us-
ing the decomposition (12) and the commutation relation
[âq, â

†
p] = δ(3)(p− q), we obtain

〈χ̂(p, τ ′)χ̂(q, τ ′′)〉 =
δ(3)(p + q)

2
√
ωp(τ ′)ωp(τ ′′)

[ (
ei

∫ τ′′
τ′ ωp β∗(−p, τ ′)β(−p, τ ′′) + h.c.

)
+ (13)

+
(
e−i

∫ τ′ ωp−i
∫ τ′′ ωpα(p, τ ′)β∗(p, τ ′′) + (τ ′ ↔ τ ′′,h.c.)

) ]
.

Using the expression above and Wick’s theorem, eq. (7) can be written as

〈hij(k, τ)hij(k
′, τ)〉 = δ(3)(k+k′)

8π3 M4
P

∫
d3p

(
p2 − (p ·k)2

k2

)2 ∫
dτ ′

a(τ ′)2

Gk(τ, τ ′)√
ωp(τ ′)ωk−p(τ ′)

∫
dτ ′′

a(τ ′′)2

Gk(τ, τ ′′)√
ωp(τ ′′)ωk−p(τ ′′)

×

×
[ (
ei

∫ τ′′
τ′ ωpβ∗(|p|, τ ′)β(|p|, τ ′′) + h.c.

)
+
(
e−i

∫ τ′ ωpe−i
∫ τ′′ ωpα(|p|, τ ′)β∗(|p|, τ ′′) + (τ ′ ↔ τ ′′,h.c.)

) ]
×

×
[ (
ei

∫ τ′′
τ′ ωk−pβ∗(|k− p|, τ ′)β(|k− p|, τ ′′) + h.c.

)
+

+
(
ei

∫ τ′ ωk−pe−i
∫ τ′′ ωk−pα(|k− p|, τ ′)β∗(|k− p|, τ ′′) + (τ ′ ↔ τ ′′,h.c.)

) ]
. (14)

When multiplied out, some terms in the above equation are rapidly oscillating and we neglect them as they give
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subdominant contribution to the integrals. At this point
we need to evaluate the Bogolyubov coefficients α and β.

1. Evaluating β.

The function χ obeys eq. (8), and quanta of χ are pro-
duced during the short epoch of nonadiabatic evolution
of ω(k, τ), during which we neglect the expansion of the
Universe. In a de Sitter background and in the slow-roll
approximation, φ evolves approximately linearly in phys-

ical time φ(t) = φ0 + φ̇0 t or as φ(τ) = φ0 − φ̇0

H log( ττ0 ) in

conformal time. t and τ are defined such that φ(t = 0) =
φ(τ = τ0) = φ0. The duration ∆tnad of the nonadiabatic
epoch is determined by the condition ṁχ

>∼ m2
χ, yielding

∆tnad ∼ 1/
√
g|φ̇0|. It is consistent to neglect the expan-

sion of the Universe if ∆tnad � 1/H so that the validity

of our analysis requires g � H2/|φ̇0|.

Under these conditions the equation for χ during the
nonadiabatic epoch reduces to

χ̈+
(
k2H2 τ2

0 + g2 φ̇2
0 t

2
)
χ = 0 , (15)

to which we can apply the analysis of [23], obtaining, up

to an irrelevant phase, the Bogolyubov coefficients

α(τ > τ0, k) =
√

1 + e−π κ2 ei ακ ,

β(τ > τ0, k) = e−
π
2 κ

2

, (16)

where we have defined κ ≡ kH τ0/

√
g φ̇0 and ακ =

Arg
[
Γ
(

1+i κ2

2

)]
− κ2

2 log κ2

4 .

2. The two point function.

After the phase of nonadiabatic evolution of mχ, the
Universe contains∼

∫
d3k |β|2/a(τ)3 quanta of χ per unit

volume. We are now in the position of computing the
spectrum of gravitational waves generated by such a pop-
ulation, which is given by the integral (14), where ω is
defined in (9). The expression of ω can be drastically sim-
plified by observing that, at the end of the nonadiabatic
period, g (φ− φ0) ∼ g φ̇0 ∆tnad ∼ (g φ̇0)1/2 � H. As a
consequence, the second term in (9) is much larger than
the third one. Moreover, the exponential suppression in
β means only momenta k <∼ (g φ̇0)1/2/(H τ0) contribute
significantly to the integral. Noting also that, following
the non-adiabatic period, |τ | < |τ0|, the k2 in (9) is
negligible as well.

Therefore, during the entire phase (iii) of the adi-
abatic evolution of the system, we can approximate
ω ' |g (φ(τ)− φ0) /(H τ)|, where φ(τ) − φ0 '
−(φ̇0/H) log(τ/τ0). Using these estimates, we can write
the integral (14) in the limit τ → 0 (i.e., at the end of
inflation, long after τ0) as

〈hij(k)hij(k
′)〉 =

δ(3)(k + k′)

4π3 k6

H8

g2 φ̇2
0M

4
P

∫ ∞
−∞

d3p

(
p2 − (p · k)2

k2

)2

× (17)

×
{
|β (p)|2 |β (k− p)|2 +Re [α(p)α∗(k− p)β∗(p)β(k− p)]

} [∫ 0

τ0+∆τnad

dτ τ
sin(k τ)− k τ cos(k τ)

ln(τ0/τ)

]2

,

where ∆τnad/|τ0| = H ∆tnad ' H (gφ̇0)−1/2 � 1. As we
will see in eq. (20) below, the result depends only loga-
rithmically on ∆tnad so that ignorance of its exact value
does not affect significantly the results. Next, we recog-
nize that at large values of k the two point function is
suppressed by the factor of (sin kτ − kτ cos kτ)/k3 com-

ing from the Green’s functions. Since H2/gφ̇ � 1, p

is only suppressed after pτ0 > gφ̇/H2 � 1. Therefore
the integrand gets its main contribution from the region
p � k. Using these approximations, the above equation

is simplified to

〈hij(k)hij(k
′)〉 =

δ(3)(k + k′)

4π3 k6

H8

g2 φ̇2
0M

4
P

×∫
d3p

(
p2 − (p · k)2

k2

)2(
e
−πp

2H2τ2
0

gφ̇ + 2 e
− 2πp2H2τ2

0
gφ̇

)
×(∫ 0

τ0+∆τnad

dτ τ
sin(k τ)− k τ (k τ)

ln(τ0/τ)

)2

. (18)

After computing the integral in d3p, we are left with the
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simple expression

〈hij(k)hij(k
′)〉 =

δ(3)(k + k′)

2π5 k6 |τ0|3
H4

M4
P

(
1 +

1

4
√

2

)
×

×

(
g φ̇0

H2

)3/2

F|∆τnad/τ0| (k|τ0|) , (19)

where

Fε(y) ≡
∣∣∣∣∫ 1−ε

0

x
(sinxy − xy cosxy)

log x
dx

∣∣∣∣2 'ε→0

' [(y cos y − sin y) log ε]
2
. (20)

The two point function (19) should be added to the
standard, quasi scale invariant contribution from infla-
tionary gravitational waves so that the resulting power
spectrum reads

Pt(k) ' 2H2

π2M2
P

[
1 + 4.8× 10−4 (kτ0 cos kτ0 − sin kτ0)

2

|k τ0|3
×

× H2

M2
P

(
g φ̇0

H2

)3/2

log2


√
g φ̇0

H

 . (21)

We thus see that the effect of the creation of quanta
of χ is to superimpose a scale dependent contribution
to the scale invariant spectrum of tensors generated by
inflation.

We next observe that φ̇0 =
√

2 εH MP , where ε� 1 is
the slow-roll parameter. Supplying reasonable values for
H, MP , and ε allows us to find that the |kτ0|-dependent
part of the spectrum is maximized at |kτ0| ' 2, where
the component from particle production evaluates to

∼ 1.8 × 10−4 H2

M2
P

( gφ̇0

H2 )3/2 log2(

√
gφ̇0

H ). Using the same

approximation, the log2 term gives at most a factor
∼ 102; therefore, the correction to the standard result

is at most of the order 10−2H1/2/M
1/2
P , which is several

orders of magnitude smaller than unity.
We thus conclude that the presence of a gas of adi-

abatically evolving scalar particles produced nonpertur-
batively during inflation generates a tiny correction to
the spectrum of primordial tensors. This result agrees
with [24], where it was shown that in the Minkowsky
limit, H → 0, a gas of adiabatically evolving scalars does
not generate any gravitational waves. In our case, since
we are on an expanding background, gravitational waves

are produced, but the effect is still small and unobserv-
able.

Let us next estimate the amount of gravitational waves
produced during the period of nonadiabatic evolution of
mχ(τ).

B. Tensor production during the nonadiabatic
epoch.

The period of nonadiabatic evolution of mχ(τ) lasts
much less than a Hubble time. We will use again our
physical time variable t = H−1 log(τ0/τ). Since we are
now looking at the period |H t| � 1, we can approximate
the change of variable as τ ' τ0 (1−H t). This implies
that we can replace τ ′ and τ ′′ by τ0 in the integrands
of eq. (7). During this short time, the field χ will obey
eq. (15).

During the periods of adiabatic evolution of mχ, the
concept of a particle of χ is well defined, and the use of
the Bogolyubov coefficients gives an appropriate way of
computing the spectrum of gravitons produced by the gas
of quanta of χ. During the short epoch of nonadiabatic
evolution of mχ, however, it is more convenient to switch
to a different prescription. Following e.g. [25], we set

〈χ̂(p, t′)χ̂(q, t′′)〉 = δ(3)(p + q)
[
χ(p, t′)χ∗(p, t′′)−

− χ̃(p, t′)χ̃∗(p, t′′)
]

(22)

where χ(p, t) is the solution, with appropriate boundary
conditions, to eq. (15), and χ̃(p, t) is the solution to the
same equation in the adiabatic approximation:

χ(p, t) =

√
H τ0

(g φ̇0)1/4
e−i π/8 e−π p̄

2/8D−1+ip̄2

2

[(−1 + i)η] ,

χ̃(p, t) =

√
Hτ0

(gφ̇0)1/4

e
i
[
η
2

√
η2+p̄2+p̄2/2 log(η/p̄+

√
1+η2/p̄2)

]
√

2
√
η2 + p̄2

,

(23)

where we have defined a dimensionless time η =
(g φ̇0)1/2 t and a dimensionless momentum p̄ =

pH τ0/(g φ̇0)1/2 and Da(z) is the parabolic cylinder func-
tion. The term in χ̃(p, t) in eq. (22) takes care of the
UV-divergent terms which would otherwise appear in the
tensor spectrum.

Working forward from (2.3), the expression for the con-
tribution of the nonadiabatic epoch to the two point cor-
relator of the graviton simplifies to

〈hij(k, τ)hij(k
′, τ)〉 =

δ(3)(k + k′)

2π3M4
P

H4

k6

[
sin k τ0k τ0 cos k τ0

]2 ∫
d3p

(
p2 − (p · k)2

k2

)2

(H τ0)2× (24)

×
∫
dt′dt′′ [χ(p, t′)χ∗(p, t′′)− χ̃(p, t′)χ̃∗(p, t′′)] [χ(k− p, t′)χ∗(k− p, t′′)− χ̃(k− p, t′)χ̃∗(k− p, t′′)] .
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We next observe that for |k τ0| � 1 the two point function
of the graviton is suppressed by the coefficient ∝ k−4 in
front of the integrals of eq. (24). In the unsuppressed

regime |k τ0| <∼ 1, the quantity k̄ = kH |τ0|/(g φ̇0)1/2 �
1, so that we can set k = 0 in the second line of eq. (24).
At this point the angular integral can be easily computed,
and by observing that both χ and χ̃ in eq. (23) are of the

form (H |τ0|)1/2 (g φ̇0)−1/4 × [function of (p̄, η)], we can
write, after appropriate changes of variables,

〈hij(k, τ)hij(k
′, τ)〉 =

16

15π2

δ(3)(k + k′)

k6 |τ0|3
H4

M4
P

×

×

(
g φ̇0

H2

)3/2

[sin k τ0 − k τ0 cos k τ0]
2×

×
∫
p̄6 dp̄

∫
dη′ dη′′ F (p̄, η′, η′′)2 , (25)

where F (p̄, η′, η′′) in the second line is a dimensionless
function built out of the dimensionless functions appear-
ing in eqs. (23), whose integral gives an O(1) result.

The result of this subsection is that the contribution
to the two-point function of the graviton by the nonadia-
batic epoch (ii) has the same form, modulo a logarithmic
term, as the contribution from the adiabatic epoch dis-
cussed in section 2 A. We conclude that the overall effect
of graviton creation by the scalars χ gives a negligible
correction to the standard spectrum of tensors generated
by inflation. Let us next discuss what happens if there
are several events of explosive production of scalars.

C. An application: tensor modes in trapped
inflation.

The analysis of sections 2 A and 2 B has shown that
the spectrum of tensor modes induced by a single event
of production of scalars has the form

Ptχ '
H4

M4
P

(k|τ0| cos k|τ0| − sin k|τ0|)2

(2π)3 k3 |τ0|3

(
g φ̇0

H2

)3/2

(26)

up to a coefficient of order one. Let us now suppose
that there are several instances of particle production.
In particular, we will assume that particle production
happens so often to lead to trapped inflation [17], i.e., to
a slowing down of the rolling of the inflaton more signifi-
cant than that due to Hubble friction2. Since the tensor
modes excited by each burst of particles sum incoher-
ently, the resulting power spectrum of the tensor will just
be the sum of the individual power spectra. If the bursts

2The mechanism leading to trapped inflation is similar to that re-
sponsible for warm inflation [18, 19], although in the case of warm
inflation friction is provided by a thermal bath rather than by non-
perturbative particle production.

happen frequently enough, summation the various con-
tributions to Ptχ is equivalent to integration over dτ0

∆
dφ
dτ0

,
where ∆ = φi+1−φi is the distance in field space between
two sites of particle production. We therefore get,

Pttrapped '
∫
dτ0

a(τ0) φ̇0

∆

H4

M4
P

(k|τ0| cos k|τ0| − sin k|τ0|)2

(2π)3 k3 |τ0|3

×

(
g φ̇0

H2

)3/2

, (27)

i.e., in an order of magnitude estimate,

Pttrapped '
φ̇0

(2π)3H ∆

H4

M4
P

(
g φ̇0

H2

)3/2

, (28)

which shows that the resulting spectrum is scale invari-
ant.

Let us now connect this result to the parameter space
of trapped inflation. Plugging the ”slow roll” equation
of trapped inflation [17], (g φ̇0)5/2 ' (2π)3H ∆V ′, into
the equation for the tensors, we obtain

Pttrapped '
H V ′

gM4
P

. (29)

This should be compared to the standard amplitude
of gravitational waves Ptstandard ' H2/M2

P , so that
Pttrapped/Ptstandard ' H V ′/g V . In order to proceed fur-

ther, we choose a form of the potential. For V (φ) =
m2 φ2/2 (the case studied in [17]) Pttrapped/Ptstandard '
m/gMP . This is much smaller than unity in the
phenomenologically allowed region of parameter space
of [17]. Therefore, even in the case of several bursts of
scalars, the induced spectrum of tensors is subdominant
with respect to the standard one ∼ H2/M2

P .

3. PRODUCTION VIA VECTORS.

We have seen in the previous section that explosive
production of scalar particles does not lead to a signif-
icant production of gravitational waves. This is due to
the fact that, in the Minkowsky limit, energy-momentum
and helicity conservation forbid a χχ→ hij process [24].
It is therefore natural to ask whether vectors will pro-
vide a more efficient source of gravitational waves. In
this section we will show that this is indeed the case.

We will only focus on the gravitational waves produced
during the period of adiabatic evolution subsequent to
the creation of the vectors. Based on the similarities
between the results of sections 2 A and 2 B, we expect
that the contribution of the nonadiabatic period will at
most give an order one correction to the results presented
here.

We consider the gauge-invariant lagrangian

L = −1

4
Fµν F

µν − (DµΨ) (DµΨ)∗ − V (|Ψ|2) , (30)
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where Dµ = ∇µ−i eAµ is the gauge-covariant derivative.
We will assume that the Higgs field Ψ is a function of
time during inflation, but we will not identify it with the
inflaton; its role will be discussed towards the end of this
section. Defining ψ ≡ |Ψ|, it is possible to show [26]
that, as long as ψ is spatially constant, it is consistent to
choose the Coulomb gauge A0 = 0, ∇ · A = 0, with A
satisfying the equation

A′′(k, τ) +
(
k2 + e2 a2(τ)ψ2(τ)

)
A(k, τ) = 0 , (31)

so when ψ crosses zero, production of photons occurs pre-
cisely in the same way as described above in the case of
scalars. In particular, the expression of the Bogolyubov
coefficients is calculated the same way as that of sec-
tion 2.A.1. The portion of spatial part of the stress-
energy tensor of A we are interested in is given by
Tij = A′iA

′
j + εikl∂

kAlεjmn∂
mAn. After promoting the

photon to a quantum field Â(τ, x), which we decompose
on a basis of helicity vectors e±

Â =
∑
λ=±

∫
d3k

(2π)
3/2

[
eλ(k)Aλ(τ, k) âλ(k) eik·x + h.c.

]
,

(32)

we write eq. (3) as

ĥij(k) = −2H2

M2
P

∫
dτ ′Gk(τ, τ ′) τ ′2

∫
d3q

(2π)3/2
×

×Πij
lm(k)

[
Â′l(q, τ

′) Â′m(k− q, τ ′)− (33)

− εlab qa Âb(q, τ ′) εmcd (kc − qc) Âd(k− q, τ ′)
]
.

Since during the epoch under consideration the vectors
are nonrelativistic, Â′(k, τ) ' ω Â(k, τ) � k Â(k, τ),
we can neglect the second term in brackets in the above
equation. The two point function of the graviton, using
a derivation analogous to that for the scalar fields, takes
the form

〈hij(k, τ)hij(k
′, τ)〉 = δ(3)(k+k′)

8π3 M4
P

∫
d3p

(
1 + (k ·p)2

k2 p2

) (
1 + [k ·(k−p)]2

k2 |k−p|2

)
× (34)

×
{
|β(p)|2|β(|k− p|)|2 + Re [α(p)β∗(p)β(|k− p|)α∗(|k− p|)]

} (∫ τ
−∞

dτ ′

a(τ ′)2Gk(τ, τ ′)
√
ωp(τ ′)ωk−p(τ ′)

)2

.

The main difference with respect to the case of the scalar
modes is that the term

√
ω ω in the last factor appears

in the numerator rather than in the denominator. Since
the quanta of the gauge field are nonrelativistic, such a
term enhances the amplitude of gravitational waves.

Observing that the approximations of section 2.A.2
hold also in the present case, we obtain the following
expression of the power spectrum of the tensors

Pt(k) ' 2

π2

H2

M2
P

[
1 + 4.4× 10−6 H2

M2
P

(
e ψ̇0

H2

)7/2

×

× |kτ0|3 2F3

(
3

2
,

3

2
;

5

2
,

5

2
,

5

2
;−|kτ0|

2

4

)2 ]
, (35)

where the dependence on |kτ0| is such that the term asso-
ciated to the vectors vanishes both at small and a large
|kτ0| and is maximized at |kτ0| ' 5, where the second
term in brackets in eq. (35) corrects the scale invariant
component of the tensor spectrum by

∆Pt

Pt
' 9× 10−5 H2

M2
P

(
e ψ̇0

H2

)7/2

. (36)

The above equation shows that graviton production via

vectors is enhanced by a factor (gφ̇0/H
2)2 with respect

to the production via scalars described in section 2 above.
If we replace the vectors by spin-1/2 particles, a similar
computation shows that the enhancement with respect
to the scalar case is by a single power of g φ̇0/H

2.

In order to estimate the magnitude of the effect of (36),
we must address the question of the origin of the quan-
tity ψ̇0. Due to the requirement of gauge invariance,
the potential for Ψ must depend on |Ψ|2 only. This im-
plies that Ψ = 0 is either a maximum or a minimum of
V (Ψ). Since during slow roll the inflaton φ must satisfy

φ̇ ∝ V ′(φ) 6= 0, Ψ cannot be a slowly rolling inflaton
when the vectors become massless.

It is however possible that Ψ is a scalar with mass mΨ

(possibly significantly larger than the Hubble parame-
ter), which is different from the inflaton and is excited
by some sharp phenomenon during inflation. Such a phe-
nomenon could be a due to a feature in the inflaton po-
tential, a bending trajectory, event of bubble nucleation,
or some other event of particle production [27, 28].

Without committing to any specific model, we assume
that for some reason, at some point during inflation,
the field Ψ starts oscillating with amplitude Ψ̄ so that
ψ̇0 ∼ mΨ Ψ̄. We require that the energy in Ψ does not



8

10�5 10�4 0.001 0.01 0.1 1
f�Hz�

10�15

10�13

10�11

�GW h2

FIG. 1. Amplitude of gravitational waves as a function of
frequency in the case N = 10, γ = 0.2, e = .3, H =
6.7×1013 GeV. The value of τ0 is chosen in such a way to have
a feature localized at ∼ 10−3 Hz. The star denotes the sensi-
tivity of a space-based laser interferometer similar to LISA.

dominate over the energy stored in the inflaton, so the
Universe is still well described by a de Sitter geometry.
This implies that m2

Ψ Ψ̄2/(6H2M2
P ) ≡ γ � 1. Putting

together all these factors, we obtain

∆Pt

Pt
' 2× 10−3 e7/2 γ7/4

(
MP

H

)3/2

, (37)

which can be of order unity or larger.
Note that eq. (37) gives a (possibly substantial) under-

estimate of the magnitude of the effect, since the field Ψ
can perform several oscillations before dying out in a few
Hubble times, and resonance will increase exponentially
the occupation number for the vectors, leading in turn
to an enhancement by a factor ∼ emΨ/H of the value of
∆Pt/Pt. We leave to future work a detailed analysis of
this effect.

Before concluding this section we note that in general
the field Ψ will not be coupled to a single U(1) gauge field,
but to some nonabelian gauge field, which will contain
several U(1) subgroups. If there are N such subgroups,
the value of ∆Pt/Pt will be multiplied by N .

We plot in figure 1, for illustrative purposes, the spec-
trum (35) of tensor modes as a function of the frequency
in the case N = 10, γ = 0.2, e = .3, H = 6.7× 1013 GeV
(which corresponds to a tensor to scalar ratio r = .2 at
the CMB scales).

The analysis of this section shows that reasonable val-
ues of γ and N can lead to a feature whose amplitude is
O(102) times larger than the tensor background. While
this is not negligible, it is not sufficient to cover the gap
of four orders of magnitude between the standard ten-
sor amplitude and the sensitivity of a LISA-like experi-
ment or the six orders of magnitude needed to reach the

projected sensitivity of Advanced LIGO. As mentioned
above, however, it is possible that resonant effects in-
crease exponentially the occupation number of the vec-
tors and therefore the amplitude of the feature in the
tensor modes.

4. GRAVITATIONAL WAVES PRODUCED
DURING AXION INFLATION VIA HELICAL

PHOTONS.

In this final section we study a scenario where a
pseudoscalar inflaton φ interacts with a gauge field Fµν
through the coupling

Lφ,Fµν = − φ

4 f
Fµν F̃

µν , (38)

where f is a constant with the dimension of mass. The
rolling inflaton excites, through this coupling, quanta of
the electromagnetic field, which in their turn source the
tensor components of the metric.

In this section we will first derive the amplitude and
the properties of the spectrum of tensor modes generated
by this mechanism. We will then study the prospects of
direct detection of such modes, focusing on the specific
case where V (φ) ∝ φ2.

A. The amplitude of the tensor modes.

The production of tensor modes by a pseudoscalar
inflaton through gauge field production was discussed
in [20] and, in greater detail, in [22], where it was pointed
out that these modes are chiral. We sketch here the
derivation of the spectrum of gravitational waves gen-
erated by this mechanism, referring the reader to [22] for
a thorough discussion.

In terms of the vector potential A (τ, x), defined by
a2 B = ∇ × A, a2 E = −A′ and neglecting the spatial
gradients of φ, the equations for the gauge field subject
to the coupling (38) read(

∂2

∂τ2
−∇2 − φ′

f
∇×

)
A = 0, ∇ ·A = 0 , (39)

where the prime denotes differentiation with respect to
the conformal time τ . We promote the classical field
A(τ, x) to an operator Â (τ, x), which we decompose on
a basis of helicity vectors e± as in eq. (32).

The functions A± must satisfy the equations A′′± +
(k2 ∓ k φ′/f)A± = 0. Since we are working on an inflat-
ing background, we assume the de Sitter metric a (τ) '
−1/(H τ) and φ̇ = φ′/a =

√
2 εH MP ' constant.

Hence, the equation for A± reads

d2A±(τ, k)

dτ2
+

(
k2 ± 2 k

ξ

τ

)
A±(τ, k) = 0 , (40)
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where we have defined

ξ ≡ φ̇

2 f H
=

√
ε

2

MP

f
. (41)

We will be interested in the case ξ >∼ O (1), and we
assume, without loss of generality, that ξ > 0. Then
A− stays essentially in vacuum, and we will ignore it
from now on. However, the mode function A+ devel-
ops an instability, and it peaks at momenta k for which
(8 ξ)

−1 � |k τ | � 2 ξ, where it is well approximated by

A+(τ, k) ' 1√
2 k

(
k

2 ξ aH

)1/4

eπ ξ−2
√

2ξ k/aH . (42)

The “wrong” sign of the term proportional to ξ in eq. (40)
induces an exponential amplification ∝ eπ ξ of the mode
function for the photon A+ at sub-horizon scales. Such a
large occupation number for the vector field is in its turn
a strong source of gravitational waves. Another inflaton-
gauge field interaction term that leads to amplification of
gauge field modes is the kinetic coupling f(φ)Fµν F

µν .
Such coupling, however, generates only a moderate oc-
cupation number of superhorizon photons [29] and, as
a consequence, is not expected to induce an important
production of tensors.

We can now study the production of gravitational
waves induced by the helical photons. To do so, we plug
the expression (42) into eq. (33), and we project onto its
left- and right-handed components. Of course, one should
also take into account the parity-symmetric component
of gravitons that is generated by the usual amplification
of vacuum fluctuations in de Sitter space. This is un-
correlated from those discussed above so that the overall
power spectra of the helicity-± components of the gravi-
ton can be written for ξ & 2 (as we will see, this is the
regime we are interested in) as

Pt,+ =
H2

π2M2
P

(
1 + 8.6× 10−7 H2

M2
P

e4π ξ

ξ6

)
,

Pt,− =
H2

π2M2
P

(
1 + 1.8× 10−9 H

2

M2
P

e4π ξ

ξ6

)
. (43)

We thus see that, as a consequence of the violation of
parity, the amplitude of the spectra of the left- and the
right-handed tensor modes generated by the gauge field
differs by a factor ∼ 103. While the parity violating com-
ponent could in principle be exponentially large, it was
pointed out in [20] that the gauge field also contributes,
through its coupling with the inflaton, to the spectrum
of scalar perturbations. This contribution is highly non-
gaussian, and its amplitude is therefore strongly con-
strained by the non-observation of nongaussianities in
the Cosmic Microwave Background and the Large Scale
Structure bispectra. It turns out that the parameter ξ,
when computed at CMB and at LSS scales, is constrained
to be smaller than about 2.6. This implies that the ξ-
dependent contribution to the tensor spectra (43), when
computed at cosmological scales, is negligibly small.

10�16 10�12 10�8 10�4 1 104
f�Hz�

10�14

10�12

10�10

10�8

�GW h2

FIG. 2. Amplitude of gravitational waves as a function of
frequency in the case Nc = 55, ξC = 2.1. The star denotes
the projected sensitivity of Advanced LIGO.

Now, the main observation of this section is that the
quantity ξ = φ̇/(2 f H) is time dependent and increases
as the inflaton rolls down its potential. The condition
ξ <∼ 2.6 originates from constraints from CMB and LSS
data. Therefore ξ had to be smaller than 2.6 when LSS
scales exited the horizon. However, ξ can be much larger
at later times when scales relevant to gravitational wave
interferometers left the horizon. Since there are some 40
efoldings of inflation between the time LSS scales left the
horizon and the time LIGO scales left the horizon [8], it is
necessary to consider the entire shape of the inflationary
potential to know how ξ evolves. In the next subsection
we will study in detail, as an example, the parameter
space for this scenario in the case of a quadratic infla-
tionary potential. As we will see, there exists a portion
of parameter space where Advanced LIGO will be able
to observe gravitational waves even if the current bound
from nongaussianities is satisfied.

B. Gravitational waves from natural chaotic
inflation observable by Advanced LIGO.

In this subsection we study the power spectrum of the
gravitational waves (43) in the case where the inflaton
potential takes the chaotic form V (φ) = µ2 φ2/2. The
model of natural chaotic inflation of [30] (see also [31])
leads precisely to this situation: a pseudoscalar inflaton
with a quadratic potential. Other forms of the potential
for a pseudoscalar inflaton were considered in the mod-
els of inflation from axion monodromy [32–34], and we
expect that the predictions from these models will not
differ significantly from those presented here.

In the case of the chaotic potential V (φ) = µ2 φ2/2,
the value of φ during inflation is related to the num-
ber N of efoldings before the end of inflation through
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φ(N ) = 2
√
N MP . The parameter µ can be determined

by COBE normalization. Denoting by NC the number of
efoldings corresponding to COBE scales (47 . NC . 62
depending on the details of reheating [35, 36]), we have

µ2 =
6π2 Pζ
N 2
C

M2
P , (44)

where Pζ ' 2.5× 10−9.
Using the slow roll parameter ε = 1/(2N ), we can

write ξ =
√
ε/2MP /f as ξ(N ) = ξC

√
NC/N , where ξC

is the value of ξ computed NC efoldings before the end
of inflation. We require ξC <∼ 2.6 in order not to gen-
erate nongaussianities in the CMB which are too large.
Note that a comparable constraint on nongaussianities
originates from the large scale structures at wavenum-
bers k ' 0.1 Mpc−1 (see [37] for a recent review), which
correspond to scales that left the horizon about NC − 5
efoldings before the end of inflation.

Inserting the above expressions into eq. (43), we obtain
the following expression of the energy density in gravita-
tional waves as a function of N

ΩGW h2 = 6× 10−14 N
N 2
C

× (45)

×

[
1 + 4.2× 10−14 N 4

N 5
C

e4π ξC
√
NC/N

ξ6
C

]
.

Since gravitational waves at a frequency f correspond
to scales that exited the horizon about 35+log(f/0.1Hz)
efoldings after the COBE scales, we can plot ΩGW h2 as
a function of f for given NC and ξC by setting N = NC−
35 − log(f/0.1 Hz) in equation (45). We plot in figure 2
the spectrum of gravitational waves for a representative
set of parameters.

1. Constraints and detectability.

The parameter space of this system is constrained by
the following requirements: first, the backreaction of the
electromagnetic modes on the inflating background must
be negligible; second, the nongaussianities induced by
the same electromagnetic modes through the mechanism
discussed in [20] must be within the limits imposed both
by CMB and by LSS observations.

Backreaction on the inflating background is negligible
for [38] e2πξ/ξ3 � 700V ′(φ)2/H6, i.e.,(

N
NC

)7/2
e2π ξC

√
NC/N

ξ3
C

� 6× 1010 . (46)

This implies that, if we want backreaction to be negligi-
ble all the way to a frequency f , this condition must be
satisfied with N = NC − 35− log(f/0.1Hz).

As for nongaussianities, the bound of [20], when eval-
uated at COBE scales, gives the constraint ξC < 2.6.

45 50 55 60 65
Nc

1.5

2.0

2.5

Ξ

FIG. 3. Values of ξC corresponding to detectable tensor
modes by Advanced LIGO, as a function of the total num-
ber of efoldings of inflation from the time COBE scales left
the horizon. The shaded area on the top left corner corre-
sponds to the region where backreaction cannot be neglected
and our analysis cannot be trusted. The shaded area on the
top part of the plot corresponds to the region where LSS non-
gaussianities are too large to be consistent with observations.
The shaded area at the bottom corresponds to the region
where the amplitude of tensor modes is below the Advanced
LIGO detection threshold. Finally, the thinner dotted line
corresponds to the lower limit of portion of parameter space
accessible to an instrument such as the Einstein Telescope.

Comparable bounds also apply to nongaussianities eval-
uated at Large Scale Structure scales that left the horizon
some 5 efoldings after COBE scales. We therefore impose
ξ(NC − 5) < 2.6.

We can now discuss the detectability of the tensor
modes (43) by gravitational interferometers. To fix ideas
we will focus on Advanced LIGO, which will start taking
data in the next few years. Advanced LIGO is expected
to be able to detect ΩGW h2 = 10−9 at a frequency of
about 100 Hz. The white area in figure 3 corresponds
to the region of parameter space where primordial ten-
sor modes might be detected by Advanced LIGO without
contradicting the constraints described above. Detection
would be possible for values of ξC of the order of 2, cor-
responding to f ' 1017 GeV. The shaded area in the
upper-left corner of the figure corresponds to a region
of the parameter space where backreaction of the elec-
tromagnetic modes on the inflating background cannot
be neglected, and an analysis similar to that of [38] is
needed. While such an analysis is beyond the scope of
the present work, it is worth stressing that that region
cannot be excluded by existing data and might lead to
detectable tensor modes.

An instrument such as the Einstein Telescope [7] would
be a factor ∼ 102 more sensitive in energy than Advanced
LIGO while working at the same frequencies. The thin
dotted line in figure 3 delimits the region of parameter
space that would lead to a detection of tensors by such
an instrument.
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Space-based interferometers like LISA, which are sen-
sitive to much lower frequencies, will not be able to de-
tect the tensors (43). Indeed, LISA scales are too close
to cosmological scales and the evolution of ξ during in-
flation is not sufficient to overcome the constraints from
nongaussianities.

We also note that the gravitational waves produced
this way will be chiral [22] and that [39] discussed the
prospects of a direct detection of a background of chi-
ral stochastic gravitational waves. These gravitational
waves will also have a large [11], parity violating [13, 14]
three point function. Finally, it is nice to speculate how
a detection of chiral gravitational waves such as those
described by (43) could correlate with the detection of
nongaussianities such as those discussed by [20] at cos-
mological scales: observation of both the nongaussian
signal in the CMB and of gravitational waves at LIGO
scales would provide a test of inflation at very different
times.

To summarize, we have shown that particle production
during inflation can lead to a feature in the spectrum of
tensor modes. If such a feature happens at the right
wavelengths, the tensors might be directly detectable by
gravitational interferometers. While production of scalar
quanta during inflation generates only a modest amount
gravitational waves, vectors provide a much more efficient
source of tensors. A single event of explosive production

of vectors can lead to a significant feature, which is how-
ever not large enough to be detectable without an exper-
iment such as BBO or DECIGO. It is however possible
that resonant production of vectors, associated to an os-
cillating Higgs field during inflation, leads to a significant
enhancement of particle and tensor production during in-
flation. In this case, the amplitude of the feature in the
tensor spectrum might be large enough to be detectable
in the not-too-far future. We leave the detailed study of
this phenomenon to future work. Finally, the analysis of
section 4 shows that, if the inflaton is an axion coupled
to a U(1) gauge field, it can lead to an amplification of
gravitational waves that would be directly detectable by
Advanced LIGO and/or Advanced Virgo in the next few
years.
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