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Radio bursts from superconducting strings

Yi-Fu Cai,∗ Eray Sabancilar,† and Tanmay Vachaspati‡

Physics Department, Arizona State University, Tempe, AZ 85287, USA.

We show that radio bursts from cusps on superconducting strings are linearly polarized, thus
providing a signature that can be used to distinguish them from astrophysical sources. We write the
event rate of string generated radio transients in terms of observational variables, namely, the event
duration and flux. Assuming a canonical set of observational parameters, we find that the burst
event rate can be quite reasonable, e.g. order ten a year for Grand Unified strings with 100 TeV
currents, and a lack of observed radio bursts can potentially place strong constraints on particle
physics models.

PACS numbers: 98.80.Cq, 11.27.+d, 95.85.Bh, 95.85.Fm

Cosmic strings are possible relics from the early uni-
verse. Their discovery would substantiate our hot big
bang cosmological model and also provide tremendous
insight into the nature of fundamental interactions.

There are a number of different ways to look for cosmic
strings, mostly based on their gravitational interactions,
and negative searches so far impose constraints on par-
ticle physics models and cosmology. If the strings are
superconducting [1], their electromagnetic emission pro-
vides yet another signature that can be used to search
for them. The electromagnetic emission from a cosmic
string loop is not steady and can have sharp bursts that
can be seen as transient events. In Ref. [2] it was pointed
out that it might be fruitful to look for superconduct-
ing strings by searching for bursts at radio wavelengths.
There is a simple reason for choosing to look in the radio
band. Cosmic strings are large objects and their fun-
damental frequency of emission is very low. The power
emitted at higher frequencies generally falls off with in-
creasing harmonic. Thus there is more power emitted in
the radio than in other bands such as the optical. Also,
as we shall see in Sec. I, the emission in the burst is
beamed, with the beam being widest at lower frequen-
cies. Thus the event rate in radio bursts can be expected
to be larger than those at higher frequencies. On the
other hand, propagation effects in the radio band are
stronger, and these have to be included when evaluating
the signature.

Besides superconducting cosmic strings, there are
other strong motivations for looking at transient radio
phenomenon from pulsars, supernovae, black hole evap-
oration, gamma-ray bursts, active galactic nuclei, and
extra-terrestrial life. A radio burst from a superconduct-
ing cosmic string will have to be distinguished among
bursts from other potential astrophysical sources. With
this in mind, we re-calculate the characteristics of the
string burst and show that it is linearly polarized in a
direction that is independent of the frequency.
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The feasibility of observations depends on the event
rates for radio bursts. Here we focus on evaluating the
event rate in variables that are most useful to observers.
The burst at source occurs with a certain duration and
flux. However, the observed duration and flux depend on
the redshift of the source. We transform the event rate
from source variables to observer variables. These results
will be useful in the ongoing search for radio transients at
the Parkes [3], ETA [4] and LWA [5] telescopes, and the
new generation large radio telescopes such as LOFAR[6]
and SKA [7].

This paper is organized as follows. In Sec. I we calcu-
late the characteristics of a burst from a superconducting
string, including the polarization. In Sec. II we find the
event rate in observer variables, followed by a numerical
evaluation in Sec. IV. We conclude in Sec. V.

I. BURST CHARACTERISTICS

The electromagnetic field due to a superconducting
cosmic string is given by Maxwell’s equations

∂ν∂
νAµ = 4πJµ, (1)

where

Jµ(t, ~x) = I

∫
dσfµ,σδ

(3)(~x− ~f(t, σ)), (2)

and we have assumed that the string denoted by fµ(t, σ)
carries a uniform and constant current I.

A string loop oscillates and the general solution in its
center of mass frame can be written as

f0 = t, ~f(t, σ) =
1

2

[
~f+(σ+) + ~f−(σ−)

]
,

σ± = σ ± t, |~f ′±| = 1,

∫
dσ± ~f± = 0, (3)

where a prime denotes derivate with respect to the argu-
ment.

The power emitted in electromagnetic radiation from
superconducting strings has been analyzed in [8] but the
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polarization has not been studied. So we repeat ear-
lier analyses to show that the radiation is linearly polar-
ized. This also leads into the analysis of the event rate
in Sec. II.

The string dynamics is periodic and so is the current.
Hence we work with discrete Fourier transforms

Aµ(t, ~x) =
∑
ω

e−iωtAµω(~x) , (4)

Jµ(t, ~x) =
∑
ω

∫
d3ke−i(ωt−

~k·~x)Jµω (~k) , (5)

where ω = 4πn/L and n is an integer. Then

Aµω(~x) =

∫
d3x′

∫
d3k

ei
~k·~x′

|~x− ~x′|
Jµω (~k)eiω|~x−~x

′| , (6)

and Jµω (~k) follows from Eq. (2)

Jµω (~k) =
2I

(2π)3L

∫ L/2

0

dt

∫ L

0

dσei(ωt−
~k·~f)f ′µ(t, σ) , (7)

where the delta function appeared in Eq. (2) has been
integrated out. In terms of the left- and right- movers of
Eq. (3) we get

Jµω (~k) =
2I

(2π)3L
(J+

µJ−
0 + J+

0J−
µ), (8)

where

Jµ±(~k) =

∫ L

0

dσ±e
ik·f±/2f ′µ± . (9)

The loops that will give us the strongest observational
signatures will have lengths that are much larger than
the radio wavelengths at which observations are made.
Hence ωL = 4πn � 1, and only high harmonics are of
interest. The integrals J± can be evaluated using the
saddle point approximation. If the saddle point has a
non-vanishing imaginary piece in the complex σ± plane,
the integrals fall off exponentially fast with n, and the

electromagnetic radiation in those directions, ~k, is negli-
gible. The interesting situation is when the saddle point
is real in the evaluation of both Jµ±. This can happen if

k · f ′± = 0, (10)

and corresponds to a “cusp” on the string loop as dis-
cussed in earlier work, and more recently in some gen-
erality in Ref. [9]. The integrals can be evaluated by
expansion around the real saddle point and lead to

Jµω (~k) ' i 2I

(2π)3ω
eµω , (11)

where

eµω = − i

Lα+α−

[
f ′′µ+
α+

∫
du+u+e

iu3
+

∫
du−e

−iu3
− +

f ′′µ−
α−

∫
du+e

iu3
+

∫
du−u−e

−iu3
−

]
,(12)

and

u+ = ω1/3α+σ+ , α+ = (
lµf
′′′µ
+

12
)1/3 ,

u− = ω1/3α−σ− , α− = (
lµf
′′′µ
−

12
)1/3 , (13)

where k ≡ ωlµ.
Notice that eµω depends on the frequency since the

range of integration is proportional to ω1/3. However,
recall that we are interested in high harmonics and so
ωL � 1. In this limit, the term eµω approaches a
frequency-independent form

eµω → eµ ≡
Γ( 1

3 )Γ( 2
3 )

3Lα+α−

(
f ′′µ+
α+
−
f ′′µ−
α−

)
. (14)

Then Eq. (6) gives

Aµω(~x) ∝ eµ , (15)

The corresponding electric and magnetic fields are

~Eω(~x) ∝ ~e,

~Bω(~x) ∝ ~e× k̂ , (16)

where k̂ is the unit vector in the direction of the beam
emitted from the cusp. We have used ~e · k̂ = 0 because
~f ′+ = −~f ′− = k̂ at a cusp and ~f ′′± · ~f ′± = 0 because |~f ′±| = 1
(see Eq. (3)).

The form of the electric field shows that the radia-
tion from cusps is linearly polarized in the direction ~e.
Furthermore, the direction of linear polarization is inde-
pendent of the frequency of observation.

The above analysis applies for radiation exactly along
the direction of the beam. Slightly off the direction of
the beam, the saddle point in the integrals of Eq. (9) will
acquire small imaginary components, and this causes the
beam to die off exponentially fast outside an angle [8, 10]

θω ' (ωL)−1/3 . (17)

Therefore the width of the beam is given by θω. Similarly
the beam at frequency ω is emitted for a duration given
by

δtω '
L2/3

ω1/3
, (18)

This is not the observed duration of the beam which we
will discuss in the next section.

Within the beam, the energy radiated in a burst per
unit frequency per unit solid angle, is

d2Erad
dωdΩ

∼ 2I2L2|~e|2 , θ < θω , (19)

where θ denotes the angle measured from the direction
of the beam. The energy arriving at a distance r is given
by

1

r2
d2Erad
dωdΩ

∼ 2
I2L2

r2
|~e|2 , θ < θω . (20)
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Cosmic string loops are large objects and the funda-
mental frequency of radiation, given by ∼ L−1, is very
small. Hence radiation that can be observed is due to
emission at very high harmonics. Although the energy
per solid angle does not depend on the frequency, the
width of the beam θω does become smaller with increas-
ing frequency. This suggests that the event rate will
be largest at lower frequencies where the beam is wider.
Hence it seems favorable to seek bursts from strings in
the radio band, though the dependence of the event rate
on frequency can be more complicated because the more
numerous small loops produce higher frequencies.

We now examine the event rate in more detail.

II. BURST EVENT RATE

Arguments of scale invariance and simulations of a cos-
mic string network indicate that the loop distribution
function in the radiation-dominated epoch is

dnL0
∼ κ dL0

L
5/2
0 t3/2

, (21)

where nL is the number density of loops of size L at
cosmic time t < teq, where teq is the time of radiation-
matter equality, and κ ∼ 1. In the matter dominated
epoch, t > teq, there will be two components to the loop
distribution. The first is the loops that were produced in
the radiation dominated era but survived into the matter
era. The second is the loops that were produced during
the matter dominated era and these are expected to have
a 1/L2 distribution. The total loop distribution is a sum
of these two components,

dnL0
∼
(
κM + κR

√
teq
L0

)
dL0

L2
0t

2
, (22)

where κR and κM are order 1 coefficients relevant for
the radiation and matter era distributions. We will take
κM ∼ κR ≡ κ.

Radiative losses from loops imply that the loops shrink
with time and so

L(t) = L0 − Γ(t− ti), (23)

where Γ is a parameter and we will use t � ti, i.e. we
consider a time much later than the time when the loop
was produced. For shrinkage due to gravitational radia-
tion, Γ ∼ 100Gµ, where µ is the string tension, e.g. for
strings produced at the scale of 1014 GeV, Gµ ≈ 10−10.
Therefore the loop distribution function, taking energy
losses into account, is

dn(L, t) =
κCLdL

t2(L+ Γt)2
, (24)

where

CL ≡ 1 +

√
teq

L+ Γt
, (25)

For L � Γt0, the radiation era loops are more impor-
tant because we will be interested in Γ < 10−6 whereas
teq/t0 ≈ 10−5. For larger L, the matter era loops domi-
nate.

We now write this formula in terms of the redshift, z,
in the matter dominated era

dn(L, z) ' κCL(1 + z)6dL

t20[(1 + z)3/2L+ Γt0]2
, (26)

where

1 + z =

(
t0
t

)2/3

, (27)

and

CL = 1 + (1 + z)3/4

√
teq

(1 + z)3/2L+ Γt0
. (28)

The current age of the universe is t0 ' 4× 1017 s.
If a loop has a cusp, there will be a burst in every

period of oscillation. So the rate of cusps on a loop of
length L is c/L where c ∼ 1 is the probability that a loop
will contain a cusp [11]. If the loop is at cosmological
redshift, the observed rate of cusps on a given loop will
be c/(L(1 + z)) due to time dilation.

The radiation from a cusp can be emitted in any di-
rection. Only the bursts pointing in the direction of the
observer are relevant. Since the beam width at frequency
ω is θω ∼ (ωL)−1/3 (Eq. (17)), the event rate will be sup-
pressed by a factor θ2ω.

Combining all these factors gives an event “produc-
tion” rate in a spatial volume dV

dṄ ' c θ2ω
L(1 + z)

dn(L, z)dV , (29)

Note that the beam of radiation emitted from a cusp is
wider at lower frequencies. Thus if a burst is observed at
a particular frequency ωe, it will also be observed at all
lower frequencies.

The volume element is converted to a redshift element
using the distance-redshift relation assuming a matter-
dominated, flat cosmology

H0dr =
dz

(1 + z)3/2
, (30)

where H0 = 2/(3t0) = 72 km/sec/Mpc. Then

r =
2

H0

[
1− 1√

1 + z

]
, (31)

and the physical volume is

dV =
16π

H3
0

[
1− 1√

1 + z

]2
dz

(1 + z)9/2
, (32)

where we have integrated over the angular coordinates.
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As a consequence, the burst production rate is

dṄ ' At0νeCL
(νeL)5/3

(1 + z)−1/2[
√

1 + z − 1]2

[(1 + z)3/2L+ Γt0]2
dLdz, (33)

where all the numerical factors have been consolidated in
A ∼ 50, and the subscript “e” on νe denotes that it is
the frequency at emission.

From an observer’s point of view, the burst production
rate is not relevant; instead we must find the event rate
that observers can expect to see within the parameters
of their instruments. Thus the event rate must be ex-
pressed in terms of quantities such as the energy flux per
frequency interval, S, to which the instrument is sensi-
tive, and the burst duration, ∆, that can be detected.
So we must transform the variables (L, z) occuring in
Eq. (33) to (S,∆). That will give the event rate in terms
of variables that are relevant to observation.

The observed frequency is related to the emitted fre-
quency by a redshift factor

νo =
νe

1 + z
. (34)

The energy flux per frequency interval can be found from
the radiated energy in Eq. (20), which gives the total
energy radiated from the cusp. To get the energy radi-
ated per unit time, we need to divide that expression by
the observed duration of the burst, ∆. So the observed
energy per unit time per unit area per unit frequency
interval is

S ' I2L2

r2∆
, (35)

where r is given in terms of z in Eq. (31). We have cho-
sen to normalize the cosmological scale factor to be one
today, a(t0) = 1, and hence the coordinate distance r is
also the physical distance at the present epoch. As a sim-
plifying assumption we will only consider the case when
the current, I, is a constant. In general, the current will
depend on the cosmological epoch because it can build
up due to string interactions with a cosmological mag-
netic field and dissipate due to scattering of the charge
carriers on the string.

The duration of the burst is determined by a combi-
nation of the duration at emission (“intrinsic” duration),
the cosmological redshift, and the time delays due to scat-
tering with the cosmological medium. This last factor is
important for bursts at long wavelengths such as in the
radio. The intrinsic burst duration at the emission point
is given in Eq. (18). To obtain the burst duration at the
observation point, we have to include a factor of 1/γ2

where γ ∼ (ωL)1/3 is the Lorentz factor at the cusp.
This factor was first derived in Ref. [12] and is also seen
in synchrotron radiation [13]; it was, however, missed in
Ref. [2]. It arises because the cusp is moving toward the
observer and so photons emitted over a time interval δt
arrive at the observer in the interval δt(1 − v) where v
is the speed of the string in the emitting region near the

cusp. In addition, we need to include a cosmological red-
shift factor to account for time dilation. This gives the
intrinsic beam duration at the observation point

∆tin '
(1 + z)L2/3

ν
1/3
e

1

(νeL)2/3
' 1

νo
. (36)

The burst duration due to scattering with the turbu-
lent intergalactic medium at given frequency, νo, and red-
shift, z, is modeled as a power law [14, 15] (for a review,
see [16])

∆ts ' δt1
(

1 + z

1 + z1

)1−β (
νo
ν1

)−β
, (37)

where, empirically,

δt1 = 5 ms, z1 = 0.3, ν1 = 1.374 GHz, β = +4.8. (38)

Note that with our conventions in Eq. (37), β > 0. (In
Ref. [2] the sign conventions were such that β was nega-
tive.)

The total burst duration, ∆, is a sum in quadratures of
the intrinsic time width and the width due to scattering

∆ =
√

∆t2in + ∆t2s , (39)

Inserting the expressions in Eqs. (36) and (37) leads to

1 + z =
(∆2ν2o − 1)1/2(1−β)

δ
1/(1−β)
1 νo

, (40)

where

δ1 ≡ νβ1 δt1(1 + z1)β−1 . (41)

Inserting numerical values from Eq. (38) gives

1 + z ' 82

(∆2ν2o − 1)1/2(β−1)

(
ν1
νo

)
. (42)

Our calculations assume that z < zrec ' 1100, the red-
shift at recombination. Then the constraints 0 < z < zrec
gives

∆min < ∆ < ∆max , (43)

where

∆min =
1

νo

{
1 +

[
0.075

(
ν1
νo

)]2(β−1)}1/2

, (44)

∆max =
1

νo

{
1 +

[
82

(
ν1
νo

)]2(β−1)}1/2

. (45)

For example, with νo = ν1, ∆min ∼ 7 × 10−10 s and
∆max ∼ 1.3× 10−2 s.
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To transform from intrinsic variables (L, z) to observer
variables (S,∆) we need to calculate the Jacobian of the
transformation. We have already obtained z(∆, S) in
Eq. (40). From Eq. (35) we also obtain

L =
r

I

√
S∆, (46)

and r is a function of z (Eq. (31)) which is a function
of (S,∆) as in (40). Some algebra then leads to the
Jacobian factor∣∣∣∣ ∂(L, z)

∂(S,∆)

∣∣∣∣ =
νoL∆

2(β − 1)δ
1/(1−β)
1 S(∆2ν2o − 1)1−1/2(1−β)

,

(47)
where L = L(S,∆) via Eq. (46).

Now we can get the event rate in observer variables
from the production rate of Eq. (33),

dṄ ' At0
2(β − 1)

CLν
2
o∆

S(νoL)2/3
1

∆2ν2o − 1

× [
√

1 + z − 1]2

(1 + z)1/6[(1 + z)3/2L+ Γt0]2
dSd∆ , (48)

where we have used Eq. (34), L is given by Eq. (46), and
r(z) by Eq. (31). Note that ∆2

minν
2
o > 1 and so the event

rate does not have a singularity for ∆ ∈ [∆min,∆max].
Eq. (48) is our final expression for the differential event

rate. We will now analyse the expression to extract cer-
tain closed form results.

III. EVENT RATE ANALYSIS

Even though the emitted burst duration in Eq. (18)
depends on the length of the loop, the observed burst
duration in Eq. (39) is independent of the length of the
loop. Hence, for a given burst duration at a certain fre-
quency, a loop (of any length) has to be at the redshift
given by Eq. (40). This fixes the distance to the loop.
The energy flux from a loop, however, does depend on
its length and Eq. (46) gives L ∝

√
S. The only implicit

dependence of the event rate in Eq. (48) on S occurs
through L which also appears in CL. If we consider the
limit S → ∞, we have (1 + z)3/2L � Γt0 and CL → 1,
and simple power counting gives

dṄ ∝ dS

S7/3
, S →∞ . (49)

For smaller S, such that (1 + z)3/2L � Γt0, the power
counting gives

dṄ ∝ dS

S4/3
. (50)

The dependence of the event rate on the burst dura-
tion is less apparent. Note that long duration bursts,
∆� 1/νo, are only possible if the loop is very close, and
then too it is not possible to have bursts of arbitrarily

long duration at some fixed observation frequency. The
maximum possible duration occurs at z = 0 and is given
in Eq. (45). So to find the event rate for duration bursts
close to ∆max, we expand the event rate around z = 0.
First we obtain

z ' ν2βo ∆max

(β − 1)δ21
(∆max −∆) , (51)

which leads to

dṄ ∝
(

∆max −∆

S

)4/3

dSd∆ , (52)

where we have assumed L � Γt0 which implies that S
cannot be too large.

Having obtained these limiting forms for the event rate,
we now turn to a numerical evaluation.

IV. NUMERICAL ESTIMATES

We now find the event rate as a function of the flux
and the burst duration by numerically evaluating and
integrating Eq. (48).

For our numerical estimates we take the cosmological
parameters

t0 = 4× 1017 s , teq = 2.4× 1012 s . (53)

We also assume the string parameters

I = 105 GeV , Γ = 10−8. (54)

Typically, for string loop decay due to gravitational radi-
ation, Γ ∼ 100Gµ where G is the gravitaional Newton’s
constant and µ is the string tension. Therefore our choice
of Γ corresponds to Gµ ∼ 10−10 or a symmetry breaking
energy scale of 1014 GeV, which is a scale at which Grand
Unification may occur.

The scattering contribution to the burst duration in
Eq. (37) contains a number of parameters that are de-
termined empirically, and are shown in Eq. (38). In
exploring parameter space, we shall assume a range of
parameters motivated by the Parkes survey [3],

νo ∈ (1.230, 1.518) GHz ,

∆ ∈ (10−3, 1) s ,

S ∈ (10−5, 10+5) Jy . (55)

Note the conversion

1 Jy = 10−23
ergs

cm2 − s−Hz
. (56)

In the following figures, we show the differential event
rate of Eq. (48) as functions of the flux and burst dura-
tion. First, in Fig. 1 we plot the differential event rate
as a function of S for several different choices of νo and
∆. The plot is made on a log-log scale to accommodate
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FIG. 1: The differential event rate of radio bursts emitted from superconducting cosmic strings as a function of flux S. In the
left panel, the observed frequency is fixed, νo = 1 GHz, and the duration is chosen to be ∆ = 10−4, 10−3, 10−2 s (top to bottom
curves). In the right panel, the duration is fixed, ∆ = 0.01 s, and the observed frequency is chosen to be νo = 0.01, 0.1, 1.4 GHz
(top to bottom curves for small S).

the wide range of scales, and shows two different power
law behaviors, consistent with the analytical results in
Eq. (49), (50).

In Fig. 2 we show the dependence of the differential
event rate on the burst duration for a variety of values of
S and νo.

The integrated event rate as a function of the flux S
and burst duration ∆ is shown in the left- and right-
panels of Fig. 3. The asymptotic fits to these plots are

dṄ

dS
' 10−7

(
S

1 Jy

)−4/3
s−1Jy−1 , (57)

dṄ

d∆
' 10−2

(
∆

1 ms

)−9/4
s−2 . (58)

Hence an experiment that integrates events over the
ranges of ∆ in Eq. (55), and is sensitive to milli Jan-
sky fluxes, will observe on the order of one radio bursts
per month, if there are superconducting cosmic strings
with the chosen parameters. Turning this figure around,
a search for cosmological radio transients can place strin-
gent constraints on superconducting cosmic strings. If we
consider radio bursts emitted by superconducting strings
with observable frequency 1.23 GHz and flux greater than
300 mJy, the event rate is ∼ 10−3 per hour, and is a
factor of 10 smaller than the upper bound given by the
Parkes survey [3], 0.025 per hour. Since the predicted
event rate depends on the string parameters, this result
implies that current radio experiments already rule out
an interesting part of parameter space (current and string
tension).

V. CONCLUSIONS

We have addressed two observational aspects of radio
transients produced by cusps on superconducting strings.
First we have shown that the radiation emitted along the
beam direction is linearly polarized, and the direction of
polarization is independent of the frequency. The polar-
ization can be used as a discriminating signature for radio
bursts from superconducting strings, though a more de-
tailed study should also consider the dependence of the
polarization as a function of angle from the direction of
the beam and the variation in the polarization over the
duration of the event. Second, we have calculated the
event rate of radio bursts from cusps on superconducting
strings in terms of observational variables, namely the
burst duration and the flux. Our calculation includes
the Jacobian that results from the transformation from
string variables to observational variables.

Unlike burst events in higher energy parts of the elec-
tromagnetic spectrum, a novelty of the calculation for
radio bursts is that the burst duration depends on the
redshift of the burst event due to two contributions: the
cosmological redshift and the scattering due to interven-
ing matter. As is well understood, the former grows with
redshift as 1+z and when the redshifting of the frequency
is also taken into account, gives a duration of 1/νo. The
contribution of scattering is given by Eq. (37) [14, 15]
and is somewhat counterintuitive because it diminishes
with increasing redshift. To understand this (partially),
we note that the burst duration increases due to scatter-
ing because scattering allows photons to bend into the
direction of the observer. If the relevant scattering can
be thought to occur at roughly half the distance to the
source, for a source that is farther away, the half-way
scattering point is also more distant. Therefore, for fixed
observational frequency, the frequency at the scattering
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FIG. 2: The differential event rate of radio bursts from superconducting cosmic strings as a function of duration ∆. In the left
panel, the observed frequency is fixed, νo = 1.4 GHz, and the flux is chosen to be S = 10−2, 1, 102 Jy (top to bottom curves).
In the right panel, the flux is fixed as S = 1 Jy, and the observed frequency is chosen to be νo = 0.01, 0.1, 1 GHz (top to
bottom curves). The range of ∆ lies in [∆min,∆max] as defined in Eqs. (44), (45).
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FIG. 3: The integrated event rate of radio bursts with fixed observable frequency, νo = 1.23 GHz, from superconducting cosmic
strings as functions of the flux S (left panel) and the duration ∆ (right panel). The intervals of integration and other parameters
are given in Sec. IV.

point is also higher, and hence scattering is less efficient.
Thus more distant bursts get a smaller contribution to
their duration from the scattering. The two contributions
to the burst duration are added in quadrature, yielding
Eq. (39).

We have also found the integrated event rate as a func-
tion of the flux and burst duration. For the canonical set
of parameters listed in Sec. IV, the integrated event rates
are reasonable, at the level of one event per month. Such
event rates indicate that the search for radio bursts can
serve as excellent probes of the superconducting string
model.

Our analysis has been performed under some simplify-
ing assumptions that may need to be re-examined in the
future. Our formula for the burst duration due to scat-

tering of radio waves, Eq. (37), should be re-examined
in the cosmological context, since the relevant cosmo-
logical epochs are concurrent with reionization, forma-
tion of large scale structure, and other astrophysical ac-
tivity. Note that we have also neglected the cosmolog-
ical acceleration which will dilute the number density
of cosmic strings and thus reduce the event rate of ra-
dio bursts at low redshifts. We have also sharply cut-
off all radio bursts prior to the epoch of recombination.
In principle, there will be a gradual cut-off, though this
may not make much difference to the final results. From
the string side, we have assumed a constant current on
all strings, whereas we expect the current to grow as a
string cuts through ambient magnetic fields. If a primor-
dial magnetic field exists, our assumption may be justi-
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fied. In the absence of a primordial magnetic field, cur-
rents on strings will build up only after structures have
generated magnetic fields. We have also assumed that
the dominant energy loss from strings is due to gravita-
tional radiation and not due to electromagnetic losses,
i.e. Γµ = 100Gµ2 � 10I

√
µ. For I ∼ 105 GeV, this is

valid if the string energy scale is larger than 1014 GeV,
i.e. Gµ > 10−10. For yet lighter strings, Γ will be
set by electromagnetic losses, and for very light strings,
µ ∼ (1 TeV)2, the strings are dragged by the cosmologi-
cal plasma, at least on large length scales, and the string
dynamics will be very different. In the regime where grav-
itational losses dominate and radio bursts due to short
loops dominate the event rate, our numerical results give

Ṅ ' 2× 10−5µ
−5/2
−8 I

2/3
5 s−1 , 100Gµ2 > 10I

√
µ, (59)

where µ−8 ≡ Gµ/(10−8) and I5 ≡ I/(105 GeV). If the
string parameters are such that the power lost to elec-
tromagnetic radiation is larger than that to gravitational
radiation, we should replace the expression for gravita-
tional power emission, 100Gµ2, by the electromagnetic

power 10I
√
µ. This occurs when I > 1.2× 108µ

3/2
−8 GeV.

Then

Ṅ ' 2× 10−3µ
5/4
−8 I

−11/6
8 s−1 , 100Gµ2 < 10I

√
µ. (60)

There are several radio telescopes currently in opera-
tion searching for radio transients, e.g. Parkes [3], ETA
[4], LWA [5], LOFAR [6], and others under construction,

e.g. SKA [7]. It would be useful to tailor the analysis in
our paper to the specific range of observational parame-
ters that will be employed in these searches.

Cosmic string cusps also produce gravitational wave
bursts [17], which can be detectable by sensitive interfer-
ometers such as LIGO, VIRGO and LISA, ultra high en-
ergy neutrino bursts [18], which can be detectable by the
space based cosmic ray detector JEM-EUSO and by ra-
dio telescopes LOFAR and SKA via Askaryan effect [19].
There has already been some initiative to look for elec-
tromagnetic counterparts of gravitational wave bursts at
LIGO and VIRGO [20]. Linearly polarized radio signal
and simultaneous detection of accompanying bursts from
the same cusp can help distinguish cosmic strings from
astrophysical sources, and hence help to discover cosmic
strings or to put constraints on superconducting string
parameters.
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