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We consider the growth of cosmological perturbations to the energy density of dark matter during
matter domination when dark matter is a scalar field that has undergone Bose-Einstein condensa-
tion. We study these inhomogeneities within the framework of both Newtonian gravity, where the
calculation and results are more transparent, and General Relativity. The direction we take is to
derive analytical expressions, which can be obtained in the small pressure limit. Throughout we
compare our results to those of the standard cosmology, where dark matter is assumed pressureless,
using our analytical expressions to showcase precise differences. We find, compared to the standard
cosmology, that Bose-Einstein condensate dark matter leads to a scale factor, gravitational potential
and density contrast that increase at faster rates.
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I. INTRODUCTION

Astrophysical observations indicate that 23% of the
energy density of the Unvierse is of an unknown non-
baryonic form, known as dark matter. While a precise
explanation remains elusive, a weakly interacting, nonrel-
ativistic massive particle is favored. Leading candiates
include supersymmetric particles, such as neautralinos,
and the axion, originally proposed to solve the strong
CP problem in QCD.
Dark matter is often modeled as a pressureless, non-

relativistic particle, known as cold dark matter. While
this model has achieved significant success, in particular
with early universe and large scale cosmology, it meets
with difficulty on galactic scales. Cold dark matter sim-
ulations of galactic halo formation predict density pro-
files with a central cusp [1], while observations indicate
constant density cores [2]. Scalar field dark matter that
has undergone Bose-Einstein condensation [3–9] has been
considered as a solution to this problem since the result-
ing density profiles agree with observed rotation curves
[5, 10–12].
At low temperatures, where wave aspects dominate,

a many-body system of bosons exhibits Bose enhance-
ment, whereby bosons favor joining highly populated
states. As a result, bosons can pile up in the same
ground state forming a coherent matter wave of macro-
scopic size known as a Bose-Einstein condensate (BEC).
This will occur when the thermal de Broglie wavelength,
λ =

√

2π~2/2mkBT , begins to exceed the interparti-

cle spacing, n−1/3, so that wave functions of individual
bosons begin to overlap, where m is the boson mass and
n its number density. Equivalently, Bose-Einstein con-
densation occurs when the temperature, T , drops below
the critical temperature,

Tc =
1

m

2π~2

kB [ζ(3/2)]2/3
n2/3, (1)

where ζ(x) is the Riemann-Zeta function.
The experimental realization of trapped BECs in di-

lute alkaline atoms in 1995 [13] has led to a renewed
interest in BECs, which has been a subject that uni-
fies many disciplines, for example neutron stars [14], su-
perconductivity [15] and, what is our interest here, dark
matter [3–9]. A great virtue in the study of BECs is that
in ultracold atomic systems important system parame-
ters, including the interaction strength between particles
and the dimensionality of the system, can be tuned pre-
cisely. This opens up the possibility of using ultracold
atomic systems in the laboratory to simulate phenom-
ena on galactic and cosmological scales. Possible exam-
ples include creating a system where the BEC is subject
to so-called electromagnetically induced “gravity” with
a 1/r interatomic attractive potential [16] and creating
a controlled explosion of atoms by suddenly making the
s-wave scattering length negative, a phenomenon dubbed
“bosenova” because of its resemblance, on a vastly lower
energy scale, to the core collapse in a supernova [17].

Our focus here is with the cosmological applications of
BECs, in particular BEC dark matter. In addition to the
density profile and rotation curves metioned above, inves-
tigations of BEC dark matter include the study of vortex
formation [6, 18–21], Bose-Einstein condensation in the
early universe [22–24] and axions [25]. Recently a study
of its cosmology was initiated by Harko [26] and Chavanis
[27]. They investigated the evolution of inhomogeneities
in the dark matter energy density. Such inhomogeneities
eventually become nonlinear and lead to galaxy forma-
tion and indirectly affect anisotropies in the cosmic mi-
crowave background radiation. They derived evolution
equations for the density contrast in Newtonian gravity
[27] and post-Newtonian gravity [26, 27] and presented
numerical solutions to these equations.

In this work we also analyze the evolution of cosmo-
logical inhomogeneities after dark matter has undergone
Bose-Einstein condensation. Our departure from previ-
ous results is twofold. First, we present simple analytical
solutions which allow for a precise understanding of how
BEC dark matter differs from standard cold dark mat-
ter. Since dark matter is believed to have a small pres-
sure (indeed, it is often modeled as having zero pressure),
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by taking the small pressure limit such analytical solu-
tions are obtainable. Second, while we will begin with
Newtonian gravity, we derive the evolution equations us-
ing the complete theory of General Relativity. The use
of General Relativity is necessary when considering su-
perhorizon perturbations, which are beyond the reach of
Newtonian gravity. It is also necessary for considering
anisotropies in the radiation spectrum. We do not study
anisotropies here, as it is outside the scope of our work,
but such a study would be interesting and important and
would rely on our results.
In the next section we review the Gross-Pitaevskii

equation coupled to the Poisson equation and the
Thomas-Fermi approximation, which has become the
standard framework for describing a gravitating BEC.
We then derive the equation of state for BEC dark mat-
ter and use it to analyze the homogeneous, unperturbed
cosmology. In section III we derive the evolution equa-
tions for inhomogeneities during matter domination, first
in Newtonian gravity and then in General Relativity.
Throughout we compare our results to those of the stan-
dard cosmology, where dark matter is pressureless. When
making these comparisons we shall refer to such dark
matter as standard cold dark matter (SCDM). We con-
clude in section IV.

II. BOSE-EINSTEIN CONDENSATE DARK

MATTER

A. Hydrodynamic Description

We assume that dark matter is composed of scalar
bosons, of mass m, that have undergone a phase transi-
tion toward Bose-Einstein condensation. To describe the
BEC we employ the standard symmetry-breaking mean
field approach, which is expected to be valid for systems
with a sufficiently large number of particles and at tem-
peratures far below the BEC transition temperature. In
this approach we may start with the Gross-Pitaevskii en-
ergy functional:

E[ψ] =

∫

d3x
[

~
2

2m
|∇ψ(t, ~x)|2 + 1

2
V0|ψ(t, ~x)|4

+
1

2
mVG(t, ~x)|ψ(t, ~x)|2

]

,

(2)

where ψ(t, ~x) is the order parameter, or macroscopic wave
function, describing the BEC and is normalized such that
|ψ|2 is the number density. The first term is the standard
kinetic energy term of nonrelativistic quantum mechan-
ics. The second term represents a quartic, contact inter-
action with strength

V0 =
4π~2as
m

, (3)

where as is the s-wave scattering length, which we take to
be positive (as > 0). The third term is the gravitational

potential,

VG(t, ~x) = −Gm
∫

d3x′
|ψ(t, ~x′)|2
|~x− ~x′|2 , (4)

which satisfies Poisson’s equation:

∇2VG(t, ~x) = 4πGm|ψ(t, ~x)|2. (5)

By including the gravitational potential, (2) describes a
BEC coupled to gravity.
In the mean field approach one ignores high order cor-

relations due to bosonic quantum field fluctuations. This
allows the BEC to be described by the equations of mo-
tion that follow from variation of (2), under the con-
straint that the total number of particles is conserved:

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + V0|ψ|2ψ +mVGψ − µψ, (6)

where µ is the chemical potential. This equation is known
as the Gross-Pitaevskii equation. It may be written in
the hydrodynamic representation, which is more useful
for our purposes, by separating the wave function into
its modulus and phase,

ψ(t, ~x) = |ψ(t, ~x)|eiS(t,~x), (7)

both of which are real, and then describing the conden-
sate in terms of its energy density and local velocity:

ρ(t, ~x) = mc2|ψ(t, ~x)|2, v(t, ~x) =
~

m
∇S(t, ~x). (8)

In terms of these variables the Gross-Pitaevskii equation
(6) and the Poisson equation (5) become

∂ρ

∂t
= −∇ · (ρ~v) (9a)

−∂~v
∂t

= − ~
2

2m2
∇
(

1

ρ
∇2ρ

)

+
1

2
∇(~v2)

+
V0
m2c2

∇ρ+∇VG (9b)

∇2VG =
4πG

c2
ρ. (9c)

Aside from the first term on the right hand side of (9b),
the top two equations comprise the hydrodynamic de-
scription of the condensate since (9a) is the continuity
equation and (9b) is the Euler equation from classical
fluid dynamics. The first term on the right hand side of
(9b) is called the quantum pressure term. Unfortunately
this term often makes analytic solutions difficult to come
by. It may be traced to the first term in (2), which orig-
inates from the uncertainty principal and hence cannot
find its analog in classical physics. Because this term con-
tains the gradient of the energy density, as the number of
particles in the condensate, or equivalently the size of the
wave function, increases, the quantum kinetic energy be-
comes negligible compared to other energy contributions
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except near boundaries of the condensate. Neglecting the
quantum pressure term is known as the Thomas-Fermi
approximation (for a more precise definition of the grav-
itational Thomas-Fermi regime see [20]). It is a common
practice to employ the Thomas-Fermi approximation in
the study of perturbations to BEC densities [30], some-
thing we shall do in the next section.

B. Equation of State

The equation of state for a fluid relates the pressure
to the energy density, p = p(ρ), and is of fundamental
importance in cosmology. It may be obtained for a ho-
mogeneous BEC by ignoring the gravitational potential
in (2) and taking ψ(t, ~r) = ψ0 to be real and constant,
where ψ2

0 = N/V is the number density. From (2) the
BEC has energy

E = V

(

1

2
V0ψ

2
0

)

=
1

2
V0
N2

V
. (10)

The pressure is then

p = − ∂E

∂V

∣

∣

∣

∣

N

=
1

2
V0ψ

4
0 . (11)

In a BEC each particle contributes an energy mc2, so
the energy density is mc2 times the number density, ρ =
mc2ψ2

0 , and we find the equation of state

p =
V0

2m2c4
ρ2 =

2π~2as
m3c4

ρ2 ≡ λρ2, (12)

where λ = 2π~2as/m
3c4.

Dark matter is thought to be cold and nearly pressure-
less. The standard assumption is that it is a pressureless,
perfect fluid, which we will refer to as standard cold dark
matter (SCDM), with equation of state pSCDM = 0. BEC
dark matter has nonzero pressure and the non-trivial
equation of state (12). We will analyze BEC dark matter
using the dimensionless quantity

w ≡ p

ρ
= λρ. (13)

When solving for approximate, analytical solutions, we
will take w to be a small perturbation around the SCDM
solution wSCDM = 0. The SCDM results can be obtained
by setting w = 0.
In general w is not constant, but we will make use of

it evaluated at its (constant) present-day value w0. Fur-
ther, we can introduce the dark matter fraction ΩDM =
ρ/ρc, where ρc is the critical energy density necessary for
a flat universe [28]. Then

w0 = λΩDM,0ρc,0 (14)

where ΩDM,0 and ρc,0 are the present-day values.

C. Homogeneous, Isotropic Cosmology

If we ignore perturbations, the Universe is well known
to be flat, isotropic and homogeneous on the distance
scales of interest [29]. It may be described by the evolu-
tion of the scale factor, a(t), which evolves according to
the Friedmann equations [28],

H2 =
8πG

3c2
ρ0, ρ̇0 = −3H (ρ0 + p0) , (15)

where H = ȧ/a is the Hubble parameter and a dot de-
notes a time derivative. Here, and from now on, the sub-
scripted 0 on the energy density, ρ0, and the pressure, p0,
indicate that these are unperturbed, background quanti-
ties. The cosmology of BEC dark matter follows from the
Friedmann equations and the equation of state. In sec-
tion III A, when studying inhomogeneities in Newtonian
gravity, we will derive the Friedmann equations directly
from (9). Here we simply quote their well known form.
Our goal in this subsection is to determine the evolu-

tion of the scale factor during matter domination when
BEC dark matter, with equation of state (13), dominates
the total energy density of the Universe and perturba-
tions have been ignored (perturbations will be considered
in the next section). Using (13) and the second equation
in (15) we have [26]

ρ0(a) =
A

a3 − λA
, (16)

where A, since it is the exponential of an arbitrary con-
stant, is positive, but otherwise arbitrary. It may be fixed
by requiring the energy density to have its present-day
value, ρ0 = ρ0,0, when the scale factor has its present-day
value, a = a0, leading to A = ρ0,0a

3
0/(1 + λρ0,0). With

this we may rewrite (16) as [26, 27]

ρ0(a) =
ρ0,0(1−W0)

(a/a0)3 −W0
, (17)

where for convenience we defined W0 ≡ w0/(1 + w0).
Using the solution (17) and the first equation in (15) we
obtain [26]

√

ΩDM,0(1−W0)H0(t− t′) =
2
√
W0

3

(

y − tan−1 y
)

,

(18)
where t′ is an arbitrary constant, and

y ≡

√

1

W0

(

a

a0

)3

− 1. (19)

t′ may be fixed by applying an initial condition. Initially,
in the very early Universe when the temperature was
sufficiently high, BEC dark matter will not yet have con-
densed. As the Universe expands and cools, dark matter
will eventually begin to condense, taking a finite period
of time to complete [24]. Once complete, (17) is valid,
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so that completion occurs during a > a0W
1/3
0 . The ini-

tial condition we apply, which was used in [26, 27], is

a(t = 0) = a0W
1/3
0 , or equivalently y(t = 0) = 0, which

sets t′ = 0.

So far everything we have done is exact. We will now
use the approximation w0 ≪ 1, which is the statement
that the present-day pressure is small. It follows from
this that W = w0 + O(w2

0) and y ≃
√

(a/a0)3/w0 is
large. Expanding around large y and small w0 we obtain

√

ΩDM,0(H0t) =
2

3

√

w0 +O(w2
0)

[

−π
2
+ y +

1

y
+O(y−3)

]

. (20)

This equation may be solved for a and then expanded around small w0 to obtain

a(t)

a0
=

(

9ΩDM,0

4

)1/3
[

(H0t)
2/3 +

√
w0

2π

9
√

ΩDM,0(H0t)1/3
− w0

24 + π2

81ΩDM,0(H0t)4/3

]

+O(w
3/2
0 ). (21)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

H0t

a�
a 0

FIG. 1. The evolution of the scale factor is plotted during
an epoch of matter domination. The dashed line corresponds
to the SCDM result. The solid lines are our approximate,
analytical results (21) for BEC dark matter. From top to
bottom they correspond to w0 = 0.1, 0.01 and 0.001. The
dotted lines are the exact results (18) for the same values of
w0.

This is the desired equation expressing the evolution of
the scale factor in the small pressure limit during matter
domination for BEC dark matter. We note that upon
setting w0 = 0 we immediately obtain the SCDM result:
aSCDM ∝ t2/3. The additional terms are modifications
taking into account the nonzero pressure of BEC dark
matter.
Using the WMAP result ΩDM,0 = 0.228 [31], we have

plotted the scale factor in figure 1. The dashed line on
the bottom is the SCDM solution. The solid lines are our
approximate, analytical solutions (21) for various w0 (see
caption) and the dotted lines the exact solutions (18) for
the same w0. As can be seen, as H0t gets smaller the
analytical solutions become less accurate. The reason
for this can be traced to our assumption that y in (19)
becomes large for small w0. As a/a0 decreases, this as-
sumption becomes less valid. In (21) this manifests itself
as the magnitude of the w0 terms increasing for smaller
H0t, making the truncated expansion in (21) less valid.

Since present-day has been defined as a/a0 = 1, we can
see that BEC dark matter leads to a larger scale factor
than for SCDM.

III. INHOMOGENEITIES

In section II C we considered the homogeneous,
isotropic Universe. In this section we perturb around
this Universe with the goal of determining the evolution
of the perturbations, or inhomogeneities, to the energy
density of BEC dark matter. We begin in the following
subsection with inhomogeneities in Newtonian gravity.
For nonrelativistic matter and subhorizon perturbations,
Newtonian gravity is (nearly) sufficient for determining
the leading order solutions [29]. In section III B we solve
for the evolution of inhomogeneities in General Relativ-
ity. While the use of the complete gravitational theory of
General Relativity has the benefit of verifying our New-
tonian solutions, it also introduces relativistic corrections
and allows for the consideration of superhorizon pertur-
bations, which Newtonian gravity is incapable of describ-
ing. While we could present only the General Relativistic
results, we find the Newtonian analysis more transpar-
ent and some discussions in section III A are necessary
for justifying a straight forward application of General
Relativity in section III B.

A. Inhomogeneities in Newtonian Gravity

In the absence of perturbations, the Universe is well
known to be homogeneous and isotropic on the distance
scales of interest [29]. This means the energy density
of matter does not vary over space and the velocity of
matter is due only to expansion and obeys the Hubble
law:

ρ0 = ρ0(t), ~v0 = ~v0(t, ~x) = H(t)~x, (22)
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where the subscripted 0’s indicate that these are back-
ground, unperturbed quantities. Before perturbing
them, there are two important equations we can derive.
Plugging these quantities into the continuity equation
(9a) and the divergence of the Euler equation (9b) com-
bined with the Poisson equation (9c) we find

ρ̇0 = −3Hρ0, Ḣ +H2 = −4πG

3c2
ρ0, (23)

which are the Friedmann equations and, as promised in
section II B, we have derived them directly from (9). Note
that compared to (15), the Friedmann equations here
are missing the pressure term. This is because these are
the nonrelativistic Friedmann equations, derived within
Newtonian gravity. If we were to write our equations
in terms of the mass density instead of the energy den-
sity, then, as can be seen from (15), only the pressure
would contain factors of c, showing that it is a relativis-
tic correction. An alternative form for these equations
will soon be of use. Below we will introduce the scale
factor, a(t), which will be related to the Hubble param-
eter by H = ȧ/a, where a dot denotes a time derivative.
In terms of the scale factor the two equations in (23) can
be written

ȧ2 =
8πGa2

3c2
ρ0, ä = −4πGa

3c2
ρ0. (24)

We now perturb the above quantities around their
background values:

ρ(t, ~x) = ρ0(t) + δρ(t, ~x) (25a)

~v(t, ~x) = ~v0(t, ~x) + δ~v(t, ~x) = H(t)~x+ δ~v(t, ~x) (25b)

VG(t, ~x) = VG0(t, ~x) + δVG0(t, ~x). (25c)

In terms of these perturbed quantities, (9) becomes

(δρ̇)x = −ρ0∇x · δ~v −∇x · (δρ~v0) (26a)

−δ~̇v = − ~
2

2m

1

ρ0
∇x(∇2

xδρ) +∇x(~v0 · δ~v)

+
2c2w

ρ0
∇xδρ+∇xδVG (26b)

∇2
xδVG =

4πG

c2
δρ, (26c)

where we’ve used the unperturbed version of (9) to can-
cel terms and w was defined in (13). Soon we will
Fourier transform these equations to facilitate solving
them. However, in their present form they will mix
Fourier modes. To avoid this we move to comoving coor-
dinates, ~q, given by ~x = a(t)~q, which requires transform-
ing derivatives as [29]

(

∂

∂t

)

x

=

(

∂

∂t

)

q

− ~v0 · ∇x, ∇x =
1

a
∇q. (27)

Then (26) becomes

δ̇ = −1

a
∇ · δ~v (28a)

−δ~̇v = − ~
2

2m

1

a3
∇(∇2δ) +Hδ~v +

2c2w

a
∇δ

+
1

a
∇δVG (28b)

∇2δVG =
4πG

c2
a2ρ0δ, (28c)

where

δ ≡ δρ

ρ0
(29)

is the density contrast. In (28) we refrained from writing
subscripted q’s and, for the Euler equation (28b), used
the fact that the velocity of a BEC is irrotational, as
follows from (8). These equations may be combined by
taking the divergence of the Euler equation (28b) and
then subbing into it the continuity equation (28a) and
the Poisson equation (28c), giving

δ̈ = − ~
2

2m

1

a4
∇4δ − 2Hδ̇ +

2wc2

a2
∇2δ +

4πG

c2
ρ0δ. (30)

This equation describes the evolution of the density con-
trast, δ, in an expanding universe. Our interest is to solve
this equation and look for growing modes representing
the growth of inhomogeneities. Such inhomogeneities will
eventually become nonlinear (δ > 1) leading to galaxy
formation. We focus here on the linear regime (δ < 1),
where a perturbative analysis is accurate, paying partic-
ular attention to the rate at which inhomogeneities in
BEC dark matter grow compared to SCDM.
To solve (30) we begin by Fourier transforming the

density contrast,

δ(t, ~x) =

∫

d3k

(2π)2/3
δk(t)e

i~k·~x, (31)

so that (30) becomes

δ̈k+2Hδ̇k+

(

~
2

2m

k4

a4
+ 2wc2

k2

a2
− 4πG

c2
ρ0

)

δk = 0. (32)

At present, to solve (32) one needs to specify the exact
time dependence of the scale factor a(t). To avoid this,
we can transform the independent variable from cosmic
time, t, to the scale factor, a, with the help of (24), to
obtain [27]

d2δk
da2

+
3

2a

dδk
da

+
3

2a2

(

~
2k4

8πGm2a4ρ0
+

wc4k2

2πGa2ρ0
− 1

)

δk = 0,

(33)

where now δk(a), ρ0(a) and w(a) are functions of the
scale factor.
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For large enough k, the solutions are oscillating sound
waves. From (32) we can see that this corresponds to the
gravity term being negligible and pressure dominating.
For small enough k the gravity term dominates and the
solutions are growing or decaying. Since we are interested
in growing solutions, our focus is then on smaller modes.
Ideally we would solve (33) exactly. Unfortunately, it
does not appear possible to find exact solutions [27]. The
problem is due to the k4 term, which comes from the
quantum pressure term in (9b). At the end of section
IIA we mentioned that the quantum pressure term of-
ten causes difficulty for finding analytical solutions and
that neglecting it is known as the Thomas-Fermi approx-
imation. We will now employ this approximation. Note
that making the Thomas-Fermi approximation leads to
the standard classical hydrodynamic equations [29]. We
will make heavy use of this fact in the next subsection.
Making the Thomas-Fermi approximation, (33) can be

written

d2δk
da2

+
3

2a

dδk
da

+
3

2a2

[

(a0
a

)2
(

k

kJ,0

)2

− 1

]

δk = 0, (34)

where a0 is the present-day value of the scale factor and
kJ = a(2πGρ0/wc

4)1/2 is the Jeans mode, with present
day value

kJ,0 = a0

√

2πGρ0
wc4

= a0

(

3ΩDM,0H
2
0

4c2w0

)1/2

. (35)

The Jeans mode gives the exact point of crossover from
oscillating solutions to growing and decaying solutions.
Oscillating solutions occur for modes k > kJ while grow-
ing and decaying solutions occur for modes k < kJ . Since
kJ,0 is independent of a, all dependence on the scale fac-
tor (other than in δk) has been explicitly written in (34).
The solution is [27]

δk(a) =C
′

k1

(a0
a

)1/4

J−5/4

[

√

3

2

(a0
a

) k

kJ,0

]

+ C′

k2

(a0
a

)1/4

J5/4

[

√

3

2

(a0
a

) k

kJ,0

]

,

(36)

where C′

k1 and C′

k2 are arbitrary constants and J±5/4 are
Bessel functions of the first kind. In figure 2(a) we have
dropped the decaying solution (C′

k2 = 0) and plotted the
growing solution for k = kJ,0. For a < a0, the solution

is oscillating, since pressure is dominating over gravity,
as can be seen from (34). For a > a0, gravity begins to
dominate and the growing solution emerges.

As mentioned previously, the direction we take in this
paper is to find analytical solutions in the small pressure
limit that, upon setting w0 = 0, reproduce SCDM results.
Such a solution can be obtained by expanding (36), but
we must be careful to expand around a small quantity.
Since growing solutions occur for k < kJ , we will focus
on modes that satisfy k ≪ kJ,0 and k/kJ,0 will be our
small quantity. For these modes, we find

δk(a) = Ck1

[

(

a

a0

)

+ w0
3k2

2k̃2

(

a

a0

)−1
]

+ Ck2

[

(

a

a0

)−3/2

− w0
k2

6k̃

(

a

a0

)−7/2
]

+O(w2
0),

(37)

where k̃2 ≡ w0k
2
J,0 (and is independent of w0), Ck1 is

an arbitrary constant proportional to C′

k1 and likewise
for Ck2 and C′

k2. One can see clearly that for w0 = 0
this equation reproduces the SCDM solution: δk,SCDM =

C′′
k1a+ C′′

k2a
−3/2 [28].

Dropping the decaying solution (Ck2 = 0) we have
plotted the growing solution in figure 2(b). The dashed
line is the w0 = 0 SCDM solution, the dotted line is
the exact solution (36) and the solid lines are our ap-
proximate, analytical solutions (37) for various values of
k2/k2J,0 (see caption). Here again we find that the ap-

proximate solutions become less valid as a/a0 decreases.
The reason is the same as before: as a/a0 decreases, the
w0 term in (37) increases, lessoning the validity of the
truncated expansion. We also find that inhomogeneities
are larger with BEC dark matter. In a universe with
BEC dark matter, then, galaxy formation is expected to
happen sooner than in the ΛCDM universe [26, 27].

To write the solution (37) in terms of cosmic time, t,
requires knowledge of how the scale factor evolves with
time. Since the evolution of the scale factor changes as
different components dominate the total energy density,
we must further specify a particular epoch of the Uni-
verse during which we wish to determine a(t). In (21)
we found a(t) during matter domination when BEC dark
matter dominates the total energy density. It is custom-
ary to drop the purely decaying Ck2 solution so that,
upon subbing (21) into (37), we have

δk(t) = Ck1

(

9ΩDM,0

4

)1/3
[

(H0t)
2/3 +

√
w0

2π

9
√

ΩDM,0

(H0t)
−1/3

+ w0
k2

k̃2

(

2

3Ω2
DM,0

)1/3

(H0t)
−2/3 − w0

24 + π2

81ΩDM,0
(H0t)

−4/3

]

+O
(

w
3/2
0

)

,

(38)
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FIG. 2. In (a) the exact solution (36) is shown for k = kJ,0. In (b) the dashed line is the w0 = 0 SCDM solution, the solid lines
are our approximate, analytical solutions (37) for, from top to bottom, k2/k2

J,0 = 1/10, 1/20 and 1/50. The dotted line is the

exact solution (36) for k2/k2

J,0 = 1/20.

Again, we find the SCDM solution when setting w0 = 0.
In (38) the leading modification to the SCDM solu-

tion is positive. Thus, we see analytically that BEC dark
matter leads to an increased rate for the growth of in-
homogeneities compared to SCDM. This result is in line
with [26, 27], however in those papers the authors deter-
mined their complete solutions numerically. Here we have
obtained analytical solutions for growing modes during
matter domination. It is well known that the growth of
inhomogeneities occurs at an appreciable rate only dur-
ing matter domination [29], and thus we have focused on
this epoch.
In this subsection we have made a nonrelativistic,

Newtonian analysis for the evolution of inhomogeneities.
However, in our final equation (38) we used the relativis-
tic result (21) which followed from the fully relativistic
Friedmann equations (15) and not the Newtonian Fried-
mann equations (23). Using the Newtonian Friedmann
equations would remove the

√
w0 term. The importance

of this term, then, begs the question of how important
relativistic corrections are for the density fraction. One
possibility would be to make a post-Newtonian analysis,
as was done in [26, 27]. Post-Newtonian gravity [32, 33]
includes the leading relativistic corrections from General
Relativity, and not just those in the Friedmann equa-
tions. We opt instead to make a fully relativistic analysis
using General Relativity.

B. Inhomogeneities in General Relativity

From this point forward we set c = 1. We consider
only a flat universe and scalar perturbations and write
the metric in conformal Newtonian gauge as

ds2 = a2(η)
[

(1 + 2Ψ)dη2 − (1− 2Φ)δijdx
idxj

]

, (39)

where Ψ and Φ are scalar perturbations, η is conformal
time related to cosmic time via dt = adη and the xi

are comoving coordinates. The Hubble parameter, in

terms of conformal time, is given by H = a′/a, where a
prime will denote differentiation with respect to η, and
the Friedmann equations are

H2 =
8πG

3
a2ρ0, H′ = −4πG

3
a2 (ρ0 + 3p0) , (40)

which may also be written as

(

a′

a

)2

=
8πG

3
a2ρ0,

a′′

a
=

4πG

3
a2(ρ0 − 3p0). (41)

The Hubble length, or horizon, is given by the physi-
cal distance H−1 = (aH)−1 ∼ aη. A perturbation with
comoving mode k ∼ 1/λ has a physical wavelength of
roughly aλ. Thus kη < 1 corresponds to superhorizon
modes with physical wavelengths longer than the Hub-
ble horizon and kη > 1 corresponds to subhorizon modes
with physical wavelengths shorter than the Hubble hori-
zon. In the previous subsection we considered only sub-
horizon modes, since this is all a Newtonian analysis can
accommodate. In this subsection we consider both sub-
horizon and superhorizon modes.
The metric (39) obeys the Einstein field equations

Gν
µ = 8πGT ν

µ , (42)

where the Einstein tensor Gν
µ is a function of the met-

ric and T ν
µ is the stress-energy tensor. The perturbed

Einstein field equations, δGν
µ = 8πGδT ν

µ , are [29]

4πGa2δT 0
0 = ∇2Φ− 3H (Ψ′ +HΦ) (43a)

4πGa2δT 0
i = (Ψ′ +HΨ),i (43b)

4πGa2δT i
j =

1

2
(Φ−Ψ),ij −

[

Ψ′′ +H(2Ψ′ +Φ′)

+ (2H′ +H2)Φ +
1

2
∇2(Φ−Ψ)

]

δij ,

(43c)
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where we have used the standard notation that a Latin
index refers to spatial components only and a comma de-
notes a partial derivative, e.g. Ψ,i = ∂Ψ/∂xi. In this sub-
section, as above, we restrict our attention to the epoch
of matter domination, during which BEC dark matter
is dominating the total energy density of the Universe.
Then T ν

µ is the stress-energy tensor for dark matter. As
explained in the previous subsection, we are able to drop
the quantum pressure term in the Euler equation (9b)
by making the Thomas-Fermi approximation. This ap-
proximation reduces the equations (9) to the standard
classical hydrodynamic equations of a perfect fluid. Such
equations may be derived from the stress-energy tensor
for a perfect fluid,

T ν
µ = (ρ+ p)uνuµ − pδνµ, (44)

where uµ is the 4-velocity of the fluid. Conservation of
the stress-energy tensor and the nonrelativistic limit re-
produces exactly the continuity equation (9a) and the
Euler equation (9b) if one drops the quantum pressure
term and makes the identification p = V0ρ

2/2m2c4,
which is identical to the equation of state (12), which
was derived through other means. Perturbations to the
perfect fluid stress-energy tensor are given by [29]

δT 0
0 = δρ, δT i

0 = a(ρ0 + p0)δv
i, δT j

i = −δpδji . (45)

Since the perturbations to the stress-energy tensor are
diagonal, (43c) tells us Φ = Ψ. In the following, then, we
shall label all scalar perturbations with Φ.
BEC dark matter satisfies the equation of state (13),

so that δp = 2wδρ. Combining (43a) and (43b) we obtain

Φ′′

k +3(1+ 2w)HΦ′

k+ [2H′+H2+2w(3H2+ k2)]Φk = 0,
(46)

and from (43a) alone

δk = −2

[

1

HΦ′

k +

(

1 +
k2

3H2

)

Φk

]

, (47)

where we made use of the Friedmann equations, δk =
δρk/ρ0 is the density contrast and we have Fourier trans-
formed both Φ and δ. If we are able to solve (46) for
Φk, then we may place it into (47) to obtain δk. Note
that, in general, the δk in (47) is the density contrast
for the perturbation to the total energy density. Since
we are restricting ourselves to the epoch of matter dom-
ination, the total energy density is the energy density of
dark matter and the δk in (47) is the same δk that we
solved for in the previous subsection, the inhomogeneity
to BEC dark matter during matter domination.
To solve (46) we first transform the independent vari-

able from conformal time, η, to the scale factor, a, yield-
ing

∂2Φk

∂a2
+

1

4a
(14 + 30w)

∂Φk

∂a
+

3w

a2

(

1 +
k2

4πGa2ρ0

)

Φk = 0. (48)

Using the results in section II C we can exchange w for its present-day value, w0, and obtain

∂2Φk

∂a2
+

1

4a

[

14 + w0
30

(a/a0)3

]

∂Φk

∂a
+
w0

a20

3

(a/a0)5

(

1 +
1

2

a

a0

k2

k̃2

)

Φk +O(w2
0) = 0. (49)

We could have written this equation in its entirety, and not just through order w0. However, it does not appear
possible to solve the complete equation analytically. Instead we solve the equation in the small pressure limit. This
allows use to solve for the solution expanded around small w0. We find

Φk = C′

k1

{

1 + w0

[

3k2

2k̃2

(

a

a0

)−2

− 2

(

a

a0

)−3
]}

+ C′

k2

{

(

a

a0

)−5/2

− w0

[

k2

6k̃2

(

a

a0

)−9/2

− 21

22

(

a

a0

)−11/2
]}

+O(w2
0),

(50)

where C′
k1 and C′

k2 are arbitrary constants. This equation gives the evolution of the gravitational potential for any a.
During matter domination we may write it in terms of cosmic time by using (21). It is customary to drop the purely
decaying Ck2 solution so that we have

Φk = C′

k1

{

1 + w0

(

4

9ΩDM,0

)2/3
[

3k2

2k̃2
(H0t)

−4/3 − 2

(

4

9ΩDM,0

)1/3

(H0t)
−2

]}

+O(w
3/2
0 ). (51)

During radiation domination, which preceded matter domination, Φk is constant for superhorizon modes [34].
Since the Hubble horizon expands faster than the physical wavelength of a perturbation, the wavelength of the
perturbation eventually becomes subhorizon. If this occurs during radiation domination, the perturbation decays
quickly to zero [34]. If instead the perturbation survives into matter domination, then it evolves according to (51).
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We find immediately, upon setting w0 = 0, that (51) reproduces the SCDM solution of a constant gravitational
potential for both superhorizon and subhorizon modes. BEC dark matter introduces t-dependent corrections, so that
the gravitational potential is no longer constant.
With the solution (50) for the gravitational potential we can obtain the density contrast using (47). To do so we

first transform the independent variable in (47) from conformal time to the scale factor and then, analogously to how
we arrived at (49), we use the results in section II C to find

δk = −2

{

a∂aΦk +

[

1 +
k2

4k̃2
a

a0

(

1− w0 + w0

(

a

a0

)−3
)]

Φk

}

. (52)

Into this equation we plug (50) to obtain the desired result:

δk = Ck1

{

a

a0
+ w0

[

3k2

2k̃2

(

a

a0

)−1

− 7

(

a

a0

)−2
]

+
4k̃2

k2

[

1 + w0 + 4w0

(

a

a0

)−3
]}

+ C2k

{

(

a

a0

)−3/2

− w0

[

k2

6k̃2

(

a

a0

)−7/2

− 283

66

(

a

a0

)−9/2
]

− 6k̃2

k2

(

a

a0

)−5/2
[

1 + w0 + w0
63

22

(

a

a0

)−3
]}

+O(w2
0),

(53)

where Ck1 = −k2C′

k1/2k̃
2(1 − w0) and likewise for Ck2 and C′

k2. This result may be compared to the Newtonian
result (37). The fully relativistic solution (53) reproduces the Newtonian terms (37) exactly. We may rewrite (51) in
terms of cosmic time by using (21). It is customary to drop the purely decaying C2k solution, so that we have

δk = Ck1

(

9ΩDM,0

4

)1/3
{

(H0t)
2/3 +

√
w0

2π

9
√

ΩDM,0

(H0t)
−1/3

+ w0





k2

k̃2

(

2

3Ω2
DM,0

)1/3

(H0t)
−2/3 − 24 + π2

81ΩDM,0
(H0t)

−4/3





+
4k̃2

k2

(

4

9ΩDM,0

)1/3 [

1 + w0 + w0
16

9ΩDM,0
(H0t)

−2

]

}

.

(54)

During radiation domination, δk for SCDM is constant
for superhorizon modes and grows at most logarithmi-
cally for subhorizon modes [34]. The growth of inho-
mogeneities is largest during matter domination, during
which δk for BEC dark matter evolves according to (54)
in the small pressure limit. For w0 = 0, (54) reproduces
the SCDM solution. The dominant additional terms are
positive and thus the growth rate of inhomogeneities in-
creases for BEC dark matter compared to SCDM. For
subhorizon modes, kη ∼ kt1/3 ≫ 1 and we can drop the
k−2 terms. This case was already discussed in the previ-
ous subsection. For superhorizon modes, kη ∼ kt1/3 ≪ 1
and we can drop all but the k−2 terms:

δk = −2C′

k1

[

1 + 2w0 + w0
16

9ΩDM,0
(H0t)

−2

]

. (55)

From this solution we can see that during matter domi-
nation superhorizon inhomogeneities for SCDM are con-
stant, while for BEC dark matter there is growth.

IV. CONCLUSION

In this work we studied the resulting cosmology when
dark matter is a scalar field that has undergone Bose-
Einstein condensation. Such a model of dark matter has
been shown to be in better agreement with the density
profiles of galactic halos than standard cold dark mat-
ter in the ΛCDM model. We focused on the growth of
inhomogeneities, i.e. perturbations to the dark matter
energy density. Since, as is well known, such perturba-
tions only grow appreciably during matter domination,
we considered only this epoch.

Such an analysis had been considered in earlier work
[26, 27] within the context of Newtonian and post-
Newtonian gravity. Our analysis differed from these pa-
pers principally in two ways. First, the direction we
took was to derive simple, analytical formulas that clearly
showcased the modifications BEC dark matter produces
in the standard cold dark matter solutions. Second, while
we did make our analysis first within Newtonian gravity,
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we then used the complete theory of General Relativity,
finding solutions for the scale factor, gravitational po-
tential and density contrast. We found analytically that
each one of these quantities increases at a faster rate com-
pared to when dark matter is in the form of standard cold
matter, consistent with the numerical results in [26, 27].
Our fully relativistic solutions for the gravitational po-

tential in (51) and the density contrast in (53) are valid
for both subhorizon and superhorizon perturbations, the
latter of which is beyond the reach of Newtonian grav-
ity. These fully relativistic solutions are also also neces-

sary for studying anisotropies in the radiation spectrum.
While we did not include an analysis of anisotropies here,
such an analysis we expect to lead to new and interesting
physics and would rely on our results.
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