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We examine how dark energy constraints from current observational data depend on the analysis
methods used: the analysis of Type Ia supernovae (SNe Ia), and that of galaxy clustering data.
We generalize the flux-averaging analysis method of SNe Ia to allow correlated errors of SNe Ia, in
order to reduce the systematic bias due to weak lensing of SNe Ia. We find that flux-averaging leads
to larger errors on dark energy and cosmological parameters if only SN Ia data are used. When
SN Ia data (the latest compilation by the SNLS team) are combined with WMAP 7 year results
(in terms of our Gaussian fits to the probability distributions of the CMB shift parameters), the
latest Hubble constant (H0) measurement using the Hubble Space Telescope (HST), and gamma ray
burst (GRB) data, flux-averaging of SNe Ia increases the concordance with other data, and leads
to significantly tighter constraints on the dark energy density at z = 1, and the cosmic curvature
Ωk. The galaxy clustering measurements of H(z = 0.35)rs(zd) and rs(zd)/DA(z = 0.35) (where
H(z) is the Hubble parameter, DA(z) is the angular diameter distance, and rs(zd) is the sound
horizon at the drag epoch) by Chuang & Wang (2011) are consistent with SN Ia data, given the
same pirors (CMB+H0+GRB), and lead to significantly improved dark energy constraints when
combined. Current data are fully consistent with a cosmological constant and a flat universe.
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I. INTRODUCTION

Solving the mystery of cosmic acceleration [1, 2] is one
of the most important challenges in cosmology today.
Current observational data are not sufficient for differ-
entiating two likely explanations for the observed cosmic
acceleration: dark energy, and the modification of gen-
eral relativity. For recent reviews, see [3–10].

There are a number of powerful direct probes of dark
energy: Type Ia supernovae (SNe Ia) [1, 2]; galaxy clus-
tering (GC), especially the baryon acoustic oscillations
(BAO) [11, 12]; and weak lensing of galaxies [13, 14].
These methods are complementary to each other, and
each method has its own systematic uncertainties. Other
data, e.g., gamma ray bursts [15–17], can help strengthen
the dark energy constraints.

The cosmic microwave background (CMB) anisotropy
data provide strong priors on cosmological parameters
(see, e.g., [18]). Direct measurements on the Hubble
constant (see, e.g., [19]) also help break the degeneracy
amongst the dark energy and cosmological parameters.

Much progress has been made since the discovery of
cosmic acceleration in 1998. However, current data are
still rather limited in constraining dark energy. In par-
ticular, different analysis methods of the same data could
lead to significantly different constraints on dark energy.
This is probably due to the fact that different methods
have different residual systematic biases, and they of-
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ten assume different priors on cosmological parameters
as well.
In this paper we examine these issues by studying how

dark energy constraints from current observational data
depend on the analysis methods used. In particular, we
explore the impact on the overall dark energy constraints
of (1) using flux-averaging to minimize the weak lensing
bias in the analysis of SNe Ia; (2) using radial and trans-
verse distance constraints derived from GC data without
assuming CMB priors.
We describe our method in Sec.II, present our results

in Sec.III, and conclude in Sec.IV.

II. METHOD

We only use methods that give geometric constraints
on dark energy. The constraints on the growth rate of
cosmic large scale structure are degenerate with the ge-
ometric constraints (see, e.g., [20, 21]); current data do
not allow the determination of both without strong as-
sumptions, e.g., assuming that general relativity is not
modified.
Geometric constraints on dark energy are derived from

the measurement of distances. The comoving distance to
an object at redshift z is given by:

r(z) = cH−1
0 |Ωk|

−1/2sinn[|Ωk|
1/2 Γ(z)], (1)

Γ(z) =

∫ z

0

dz′

E(z′)
, E(z) = H(z)/H0

where sinn(x) = sin(x), x, sinh(x) for Ωk < 0, Ωk = 0,
and Ωk > 0 respectively; and the expansion rate of the
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universe H(z) (i.e., the Hubble parameter) is given by

H2(z) ≡

(

ȧ

a

)2

(2)

= H2
0

[

Ωm(1 + z)3 +Ωr(1 + z)4 +Ωk(1 + z)2 +ΩXX(z)
]

,

where Ωm + Ωr + Ωk + ΩX = 1, and the dark energy
density function X(z) is defined as

X(z) ≡
ρX(z)

ρX(0)
. (3)

Note that Ωr ≪ Ωm, thus the Ωr term is usually omitted
in dark energy studies, since dark energy should only be
important at late times.

A. Analysis of SN Ia Data

SN Ia data give measurements of the luminosity dis-
tance dL(z) through that of the distance modulus of each
SN:

µ0 ≡ m−M = 5 log

[

dL(z)

Mpc

]

+ 25, (4)

where m and M represent the apparent and absolute
magnitude of a SN. The luminosity distance dL(z) =
(1 + z) r(z), with the comoving distance r(z) given by
Eq.(1).
We use the compilation of SN Ia data by Conley et

al. (2011) [22], which include the SNe Ia from the first
three years of the Supernova Legacy Survey (SNLS3),
the largest homogeneous SN Ia data set. We compare
two methods for using these SNe in constraining dark
energy: with flux-averaging of SNe Ia, and without.

1. SN Ia Data

For a set of 472 SNe Ia, Conley et al. (2011) [22]
give the apparent B magnitude, mB, and the covariance
matrix for ∆m ≡ mB −mmod, with

mmod = 5 log10 DL(z|s)− α(s− 1) + βC +M, (5)

where DL(z|s) is the luminosity distance multiplied by
H0 for a given set of cosmological parameters {s}, s is
the stretch measure of the SN light curve shape, and C is
the color measure for the SN. M is a nuisance parameter
representing some combination of the absolute magni-
tude of a fiducial SN Ia, M , and the Hubble constant
H0. Since the time dilation part of the observed lumi-
nosity distance depends on the total redshift zhel (special
relativistic plus cosmological), we have [23]

DL(z|s) ≡ c−1H0(1 + zhel)r(z|s), (6)

where z and zhel are the CMB restframe and heliocentric
redshifts of the SN.

For a set of N SNe with correlated errors, we have [22]

χ2 = ∆mT ·C−1 ·∆m (7)

where ∆m is a vector with N components, and C is the
N ×N covariance matrix of the SNe Ia.
Note that ∆m is equivalent to ∆µ0, since

∆m ≡ mB −mmod = [mB + α(s− 1)− βC]−M. (8)

The total covariance matrix is [22]

C = Dstat +Cstat +Csys, (9)

with the diagonal part of the statistical uncertainty given
by [22]

Dstat,ii = σ2
mB ,i + σ2

int + σ2
lensing + σ2

host correction

+

[

5(1 + zi)

zi(1 + zi/2) ln 10

]2

σ2
z,i + α2σ2

s,i + β2σ2
C,i

+2αCmBs,i − 2βCmBC,i − 2αβCsC,i, (10)

where CmBs,i, CmBC,i, and CsC,i are the covariances be-
tween mB, s, and C for the i-th SN. Note also that
σ2
z,i includes a peculiar velocity residual of 0.0005 (i.e.,

150 km/s) added in quadrature [22].
The statistical and systematic covariance matrices,

Cstat and Csys, are generally not diagonal [22], and are
given in the form:

Cstat+Csys = V0+α2Va+β2Vb+2αV0a−2βV0b−2αβVab.
(11)

where V0, Va, Vb, V0a, V0b, and Vab are ma-
trices given by the SNLS data archive at
https://tspace.library.utoronto.ca/handle/1807/24512/.
Cstat includes the uncertainty in the SN model. Csys

includes the uncertainty in the zero point. Note that
Cstat and Csys do not depend on M, since the relative
distance moduli are independent of the value of M [22].
We refer the reader to Conley et al. (2011) [22] for

a detailed discussion of the origins of the statistical and
systematic errors. As an example, we note that the cor-
relation of errors on different SNe arises from a statistical
uncertainty in the zero point of one passband, e.g., rM .
This directly affects all SNe with rM measurements due
to K-corrections (restframe B to rM ), and indirectly af-
fects even the SNe without rM measurements through
the empirical SN models by changing the templates and
the measured color-luminosity relationship.

2. The Recipe for Flux-Averaging of SNe Ia

Because we live in a lumpy universe, SN Ia observations
can be misinterpreted if the effect of gravitational lens-
ing is not properly accounted for (see, e.g., [24]). Flux-
averaging of SNe Ia was proposed to reduce the effect
of the weak lensing of SNe Ia on cosmological parameter
estimation [25]. The basic idea is that because of flux
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conservation in gravitational lensing, the average magni-
fication of a large number of SNe Ia at the same redshift
should be unity. Thus averaging the observed flux from a
large number of SNe Ia at the same redshift can recover
the unlensed brightness of the SNe Ia at that redshift.
Wang & Mukherjee (2004) [26] and Wang (2005) [27]

developed a consistent framework for flux-averaging SNe
Ia. Wang & Mukherjee (2004) [26] gave the recipe for
flux-averaging SNe Ia in the absence of correlated errors.
Here we modify and generalize the recipe to allow corre-
lated errors of SNe Ia.
As described in [25], the fluxes of SNe Ia in a redshift

bin should only be averaged after removing their redshift
dependence, which is a model-dependent process. For χ2

statistics using MCMC or a grid of parameters, here are
the steps in flux-averaging:
(1) Convert the distance modulus of SNe Ia into

“fluxes”,

F (zl) ≡ 10−(µdata

0
(zl)−25)/2.5 =

(

ddataL (zl)

Mpc

)−2

. (12)

(2) For a given set of cosmological parameters {s}, ob-
tain “absolute luminosities”, {L(zl)}, by removing the
redshift dependence of the “fluxes”, i.e.,

L(zl) ≡ d2L(zl|s)F (zl). (13)

(3) Flux-average the “absolute luminosities” {Li
l} in

each redshift bin i to obtain
{

L
i
}

:

L
i
=

1

Ni

Ni
∑

l=1

Li
l(z

(i)
l ), zi =

1

Ni

Ni
∑

l=1

z
(i)
l . (14)

(4) Place L
i
at the mean redshift zi of the i-th redshift

bin, now the binned flux is

F (zi) = L
i
/d2L(zi|s). (15)

(5) Compute the covariance matrix of F (zi) and F (zj):

Cov
[

F (zi), F (zj)
]

(16)

=
1

NiNj

[

ln 10/2.5

dL(zi|s)dL(zj |s)

]2

·

Ni
∑

l=1

Nj
∑

m=1

L(z
(i)
l )L(z(j)m )〈∆µdata

0 (z
(i)
l )∆µdata

0 (z(j)m )〉

where 〈∆µdata
0 (z

(i)
l )∆µdata

0 (z
(j)
m )〉 is the covariance of the

measured distance moduli of the l-th SN Ia in the i-th
redshift bin, and the m-th SN Ia in the j-th redshift bin.
L(z) is defined by Eqs.(12) and (13).
(6) For the flux-averaged data,

{

F (zi)
}

, compute

χ2 =
∑

ij

∆F (zi)Cov
−1

[

F (zi), F (zj)
]

∆F (zj) (17)

where

∆F (zi) ≡ F (zi)− F p(zi|s), (18)

with F p(zi|s) = (dL(z|s)/Mpc)−2.
For the sample of SNe we use in this study,

we flux-averaged the SNe with dz = 0.07, to
ensure that all redshift bins contain at least one
SN. Our SN flux-averaging code is available at
http://www.nhn.ou.edu/∼wang/SNcode/.

B. Galaxy Clustering Data

For GC data, we use the distance measurements from
the SDSS DR7 data. We compare two sets of distance
measurements from SDSS DR7: (1) “CW2”: the mea-
surement ofH(z)rs(zd) and rs(zd)/DA(z) (whereH(z) is
the Hubble parameter,DA(z) is the angular diameter dis-
tance, and rs(zd) is the sound horizon at the drag epoch)
by Chuang & Wang (2011) [28] from the two-dimensional
two-point correlation function of SDSS DR7 Luminous
Red Galaxies (LRGs); (2) “WP2”: the measurement of
rs(zd)/DV (z = 0.2) and rs(zd)/DV (z = 0.35) (where
DV (z) is the spherically-averaged distance) by Percival
et al. (2010) [29] from the spherically-averaged power
spectrum of combined data of SDSS DR7 LRG and main
galaxy samples and 2-degree Field Galaxy Redshift Sur-
vey (2dFGRS).
Using the two-dimensional two-point correlation func-

tion of SDSS DR7 in the scale range of 40-120Mpc/h,
Chuang & Wang (2011) [28] found that

H(z = 0.35)rs(zd) = 13020± 530 km/s (4%)

rs(zd)/DA(z = 0.35) = 0.1518± 0.0062 (4%)

r = −0.0584, (19)

where r is the normalized correlation coefficient be-
tween H(z = 0.35)rs(zd) and rs(zd)/DA(z = 0.35), and
rs(zd) is the sound horizon at the drag epoch (given
by Eqs.(28) and (32). The inverse covariance matrix of
H(z = 0.35)rs(zd) and rs(zd)/DA(z = 0.35) is

C−1
GC,CW2 =

(

0.35722E − 05 0.17833E − 01
0.17833E − 01 0.26104E + 05

)

(20)

Spherically-averaged data give a measurement of dz ≡
rs(zd)/DV (z), with

DV (z) ≡

[

r(z)2 cz

H(z)

]1/3

. (21)

Chuang & Wang (2011) found that

dCW
0.35 ≡ rs(zd)/DV (z = 0.35) = 0.1161± 0.0034 (2.9%)

(22)
from the spherically-averaged correlation function of
SDSS LRGs.
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Using the spherically-averaged power spectrum of com-
bined data of SDSS DR7 LRG and main galaxy samples
and 2dFGRS, Percival et al. (2010) [29] found that

dWP
0.2 ≡ rs(zd)/DV (z = 0.2) = 0.1905± 0.0061 (3.2%)

dWP
0.35 ≡ rs(zd)/DV (z = 0.35) = 0.1097± 0.0036 (3.3%)

r = 0.337, (23)

where r is the normalized correlation coefficient of d0.2
and d0.35. The inverse covariance matrix of (d0.2, d0.35)
is [29]

C−1
GC,WP =

(

30124 −17227
−17227 86977

)

(24)

For comparison, we also consider the distance measure-
ments from the WiggleZ survey at z = 0.6 by Blake et
al. (2011) [30], and from the 6dF GRS at z = 0.106 by
Beutler et al. (2011) [31]:

d0.6 ≡ rs(zd)/DV (z = 0.6) = 0.0692± 0.0033

d0.106 ≡ rs(zd)/DV (z = 0.106) = 0.336± 0.015(25)

GC data are included in our analysis by adding the
following term to the χ2 of a given model with

χ2
GC = ∆pi

[

C−1
GC(pi, pj)

]

∆pj , ∆pi = pi−pdatai . (26)

For the Chuang & Wang (2011) GC measurements [28],
p1 = H(z = 0.35)rs(zd) and p2 = rs(zd)/DA(z = 0.35).
For the Percival et al. (2010) GC measurements [29],
p1 = d0.2 and p2 = d0.35. Note that pdatai (i = 1, 2) are
given in Eqs.(19) and (23), and the inverse covariance
matrices are given in Eqs.(20) and (24). Since the Wig-
gleZ and 6dF surveys give independent measurements,
Eq.(26) is replaced with χ2

GC =
∑2

i=1(∆pi)
2/σ2

pi
, with

p1 = d0.6, and p2 = d0.106, and σpi
(i = 1, 2) given in

Eq.(25).

C. CMB data

CMB data give us the comoving distance to the
photon-decoupling surface r(z∗), and the comoving sound
horizon at photo-decoupling epoch rs(z∗) [32]. Wang &
Mukherjee 2007 [33] showed that the CMB shift param-
eters

R ≡
√

ΩmH2
0 r(z∗)/c,

la ≡ πr(z∗)/rs(z∗), (27)

together with ωb ≡ Ωbh
2, provide an efficient summary of

CMB data as far as dark energy constraints go. This has
been verified by [34]. Replacing ωb with z∗ gives identical
constraints when the CMB distance priors are combined
with other data [35].

The comoving sound horizon at redshift z is given by

rs(z) =

∫ t

0

cs dt
′

a
= cH−1

0

∫ ∞

z

dz′
cs

E(z′)
,

= cH−1
0

∫ a

0

da′
√

3(1 +Rb a′) a′
4E2(z′)

, (28)

where a is the cosmic scale factor, a = 1/(1 + z),
and a4E2(z) = Ωm(a + aeq) + Ωka

2 + ΩXX(z)a4,
with aeq = Ωrad/Ωm = 1/(1 + zeq), and zeq =
2.5 × 104Ωmh2(TCMB/2.7K)−4. The sound speed is

cs = 1/
√

3(1 +Rb a), with Rb a = 3ρb/(4ργ), Rb =

31500Ωbh
2(TCMB/2.7K)−4. We take TCMB = 2.725.

The redshift to the photon-decoupling surface, z∗, is
given by the fitting formula [36]:

z∗ = 1048
[

1 + 0.00124(Ωbh
2)−0.738

] [

1 + g1(Ωmh2)g2
]

,
(29)

where

g1 =
0.0783 (Ωbh

2)−0.238

1 + 39.5 (Ωbh2)0.763
(30)

g2 =
0.560

1 + 21.1 (Ωbh2)1.81
(31)

The redshift of the drag epoch zd is well approximated
by [37]

zd =
1291(Ωmh2)0.251

1 + 0.659(Ωmh2)0.828
[

1 + b1(Ωbh
2)b2

]

, (32)

where

b1 = 0.313(Ωmh2)−0.419
[

1 + 0.607(Ωmh2)0.674
]

,(33)

b2 = 0.238(Ωmh2)0.223. (34)

We have derived the one-dimensional marginalized
probability distributions (pdf) of (la, R, z∗, ns, rs(zd))
from WMAP7 data, for three different assumptions
about dark energy: (1) wX(z) = −1; (2) wX(z) = w
(constant); (3) wX(z) = w0 + wa(1 − a) [38]. We find
that these pdf’s are nearly independent of the assump-
tion about dark energy, and are well fitted by Gaussian
distributions with the following means and standard de-
viations:

〈la〉 = 302.35, σ(la) = 0.86

〈R〉 = 1.728, σ(R) = 0.02

〈z∗〉 = 1091.32, σ(z∗) = 1.0

〈ns〉 = 0.963, σ(ns) = 0.016

〈rs(zd)〉 = 152.85Mpc, σ(rs[zd]) = 1.85Mpc. (35)

Our Gaussian fits are fully consistent with the bestfit
values for a constant w from Komatsu’s website [39].
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The normalized covariance matrix of
(la, R, z∗, ns, rs(zd)) is











1.0000 .20794 .47422 −.54889 .34914
.20794 1.0000 .74409 −.44370 −.76929
.47422 .74409 1.0000 −.79575 −.19121
−.54889 −.44370 −.79575 1.0000 −.09973
.34914 −.76929 −.19121 −.09973 1.0000











(36)
We find that the addition of rs(zd) is redundant, and

amounts to partially double-weighting the CMB con-
straints; so its measurement cannot be used in the CMB
priors unless it is used to replace la(z∗). This was not ap-
parent when WMAP5 data were used [40]; this is because
WMAP7 data provide significantly tighter constraints on
the set of CMB distance priors.
Since the primary GC data we use in this paper have

been marginalized over ns [28], we should marginalized
the CMB distance priors over ns as well. When marginal-
ized over ns and rs(zd), the inverse covariance matrix of
(la, R, z∗) from WMAP7 is

Cov−1
CMB =





1.8571 25.929 −1.1433
25.929 5963.3 −99.319
−1.1433 −99.319 2.9443



 (37)

CMB data are included in our analysis by adding the
following term to the χ2 of a given model with p1 =
la(z∗), p2 = R(z∗),and p3 = z∗:

χ2
CMB = ∆pi

[

Cov−1
CMB(pi, pj)

]

∆pj , ∆pi = pi−pdatai ,
(38)

where pdatai are the mean from Eq.(35), and Cov−1
CMB is

the inverse covariance matrix of [R(z∗), la(z∗), z∗] from
Eq.(37). Note that p4 = ns should be added if the con-
straints on ns are included in the GC data. Finally, our
Gaussian fit for the pdf of rs(zd) should be useful when
fitting for BAO peak locations.

D. Gammay-ray Burst Data

We add gammay-ray burst (GRB) data to our analy-
sis, since these are complementary in redshift range to the
SN Ia data. We use GRB data in the form of the model-
independent GRB distance measurements from Wang
(2008c) [41], which were derived from the data of 69
GRBs with 0.17 ≤ z ≤ 6.6 from Schaefer (2007) [42]1.
The GRB distance measurements are given in terms of

[41]

rp(zi) ≡
rp(z)

rp(0.17)
, rp(z) ≡

(1 + z)1/2

z

H0

ch
r(z),

(39)

1 The proper calibration of GRBs is an active area of research.
For recent studies on the impact of detector thresholds, spectral
analysis, and unknown selection effects, see, e.g., [43–46].

where r(z) is the comoving distance at z.
The GRB data are included in our analysis by adding

the following term to the χ2 of a given model:

χ2
GRB = [∆rp(zi)] ·

(

Cov−1
GRB

)

ij
· [∆rp(zj)]

∆rp(zi) = rp
data(zi)− rp(zi), (40)

where rp(z) is defined by Eq.(39). The covariance matrix
is given by

(CovGRB)ij = σ(rp(zi))σ(rp(zj))
(

CovGRB

)

ij
, (41)

where CovGRB is the normalized covariance matrix from
Table 3 of Wang (2008c) [41], and

σ(rp(zi)) = σ (rp(zi))
+ , if rp(z) ≥ rp(z)

data;

σ(rp(zi)) = σ (rp(zi))
−
, if rp(z) < rp(z)

data,(42)

where σ (rp(zi))
+
and σ (rp(zi))

−
are the 68% C.L. errors

given in Table 2 of Wang (2008c) [41].

E. Dark energy parametrization

Since we are ignorant of the true nature of dark energy,
it is useful to measure the dark energy density function
X(z) ≡ ρX(z)/ρX(0) as a free function of redshift [47–
49]. This has the advantage of allowing dark energy mod-
els in which ρX(z) becomes negative in the future, e.g.,
the “Big Crunch” models [50, 51], which are precluded
if we parametrize dark energy with an equation of state
wX(z) [48].
Here we parametrize X(z) by cubic-splining its values

at z = 1/3, 2/3, and 1.0, and assume that X(z > 1) =
X(z = 1). For simplicity of notation, we define X0.33 ≡
X(z = 1/3), X0.67 ≡ X(z = 2/3), and X1.0 ≡ X(z =
1). Fixing X(z > 1) reflects the limit of current data,
and avoids making assumptions about early dark energy
that can be propagated into artificial constraints on dark
energy at low z [33, 48].
For comparison with the work of others, we also con-

sider a dark energy equation of state linear in the cosmic
scale factor a, wX(a) = w0 + (1 − a)wa [38]. A related
parametrization is [35]

wX(z) = w0(3a− 2) + 3w0.5(1− a), (43)

where w0.5 ≡ wX(z = 0.5). Wang (2008b) [35] showed
that (w0, w0.5) are much less correlated than (w0, wa),
thus are a better set of parameters to use. We find
that (w0, w0.5) converge much faster than (w0, wa) in
a Markov Chain Monte Carlo (MCMC) likelihood anal-
ysis for the same data.

III. RESULTS

We perform a MCMC likelihood analysis [52] to obtain
O(106) samples for each set of results presented in this
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Ω
m

w
SNe only
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not flux−averaged; stat+sys
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Ω
k
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FIG. 1: The 2D marginalized contours of (w,Ωm,M) for SNe data
(with and without flux-averaging), assuming a flat universe. The
contours are at 68% and 95% confidence levels.

paper. We assume flat priors for all the parameters, and
allow ranges of the parameters wide enough such that fur-
ther increasing the allowed ranges has no impact on the
results. The chains typically have worst e-values, defined
to be the variance(mean)/mean(variance) of 1/2 chains,
much smaller than 0.005, indicating convergence. The
chains are subsequently appropriately thinned to ensure
independent samples.
In addition to the SN Ia, CMB, GC, and GRB data

discussed in Sec.II, we impose a prior of H0 = 73.8 ±
2.4 km s−1Mpc−1, from the HST measurements by Riess
et al. (2011) [19].
We do not assume a flat universe unless specifically

noted. In addition to the dark energy parameters de-
scribed in Sec.II E, we also constrain cosmological pa-
rameters (Ωm,Ωk, h, ωb), where ωb ≡ Ωbh

2. In addi-
tion, we marginalize over the SN Ia nuisance parameters
{α, β,M}.
We will present results for dark energy density at z =

1/3, 2/3, and 1, as well as (w0, wa) and (w0, w0.5), and a
constant dark energy equation of state w.

A. The effect of flux-averaging of SNe Ia

Figs.1 shows the 2D marginalized contours of
(w,Ωm,M), assuming a constant equation of state for
dark energy, w, and a flat universe. Note that the
inclusion of systematic errors of SNe leads to signifi-
cantly larger uncertainties in estimated parameters, com-
pared to when only statistical errors of SNe are included.
Clearly, flux-averaging (thick solid lines) leads to larger
errors on dark energy and cosmological parameters if only
SN Ia data are used.
Fig.2 shows the 2D marginalized contours of (w0, wa)

and (w0, w0.5) for SNe data combined with with CMB,
H0, GRB, and GC (CW2) data. The solid contours
are for flux-averaged SNe, and dotted contours are for
SNe without flux-averaging. The SNe data with or with-
out flux-averaging lead to qualitatively consistent results,
with flux-averaging expanding the parameter space at
w0 < −1, which shifts the bestfit model from w0 > −1
towards w0 = −1, and from wa < 0 towards wa = 0 (it

w
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FIG. 2: The 2D marginalized contours of (w0, wa) and (w0, w0.5)
for SNe data (with and without flux-averaging) combined with
galaxy clustering (CW2), CMB, H0, and GRB data. The contours
are at 68% and 95% confidence levels.
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FIG. 3: The 2D marginalized contours of
(X0.33,X0.67, X1.0,Ωm,Ωk) for SNe data (with and without
flux-averaging) combined with galaxy clustering (CW2), CMB,
H0, and GRB data. The contours are at 68% and 95% confidence
levels.

has a smaller impact on w0.5 since w0.5 is less correlated
with w0 than wa). Table I tabulates the mean and 68.3%
confidence intervals for (w0, wa) and (w0, w0.5) for SNe
data combined with with CMB, H0, GRB, with or with-
out GC (CW2) data (the latter corresponds to Fig.2).

Fig.3 shows the 2D marginalized contours of
(X0.33, X0.67, X1.0,Ωm,Ωk) for SNe data combined with
CMB, H0, GRB, and GC data (CW2). The solid con-
tours are for flux-averaged SNe, and dotted contours
are for SNe without flux-averaging. The SNe data with
or without flux-averaging lead to qualitatively consis-
tent results, with a shift of the bestfit model towards
a cosmological constant; this is the same trend as in the
(w0, wa) and (w0, w0.5) parametrizations. Note that flux-
averaging leads to significantly tighter constraints on the
dark energy density at z = 1, X1.0; this indicates that
the impact of flux-averaging increases with redshift, since
(X0.33, X0.67, X1.0) are only weakly correlated. This is as
expected, since the bias in estimated parameters due to
weak lensing increases with redshift [27].



7

TABLE I: Effect of flux-averaging SNe on (w0, wa) and (w0, w0.5)

SNe+CMB+H0+GRB

flux-averaging w0 wa w0 w0.5

yes −0.987 (−1.247,−0.727) −0.780 (−2.046, 0.516) −0.997 (−1.268,−0.722) −1.260 (−1.546,−0.965)

no −0.780 (−1.013,−0.545) −1.424 (−2.891, 0.045) −0.783 (−1.023,−0.547) −1.248 (−1.549,−0.946)

SNe+CMB+H0+GRB+GC(CW2)

yes −0.995 (−1.211,−0.776) −0.676 (−1.884, 0.566) −1.000 (−1.216,−0.784) −1.211 (−1.454,−0.966)

no −0.832 (−1.061,−0.606) −1.353 (−2.844, 0.151) −0.842 (−1.067,−0.615) −1.266 (−1.559,−0.972)

B. Comparison of different galaxy clustering data

We now explore the differences of the various galaxy
clustering (GC) measurements in constraining dark en-
ergy, assuming a constant equation of state for dark
energy, w. Fig.4 shows the 2D marginalized contours
of (w,Ωm,Ωk) for different GC measurements combined
with CMB, H0, and GRB data.

The first row of Fig.4 compares the H(z = 0.35)rs(zd)
and rs(zd)/DA(z = 0.35) measurements by Chuang &
Wang (2011) [28] with their d0.35 = rs(zd)/DV (z = 0.35)
measurement (both from SDSS DR7 LRGs), as well as
the d0.2 and d0.35 measurements by Percival et al. (2010)
[29] from SDSS DR7 LRG and main galaxy samples
and 2dFGRS, and the d0.6 measurement by Blake et al.
(2011) from the WiggleZ survey [30] combined with the
d0.106 measurement by Beutler et al. (2011) from 6dF
GRS.

For the Chuang & Wang (2011) [28] GC measure-
ments (CW2 and CW1), the constraints on w are tight-
ened significantly by going from spherically-averaged
data (CW1), i.e., d0.35, to 2D data (CW2), i.e., H(z =
0.35)rs(zd) and rs(zd)/DA(z = 0.35), as indicated by
comparing the thin solid contours (CW1) to thick solid
contours (CW2) in the first row of Fig.4. This is as ex-
pected, as more information from GC is included in CW2
compared to CW1.

Both the Percival et al. (2010) GC measurements
(WP) and the combined WiggleZ survey and 6dF GRS
measurements (CB+) favor w < −1, while the Chuang
& Wang (2011) [28] GC measurements favor w = −1.

The second row in Fig.4 compares the d0.2 and d0.35
measurements by Percival et al. (2010) [29] (WP2), with
their measurements of d0.2 and d0.35 separately. Clearly,
most of the constraining power on w comes from d0.35.
While the d0.2 measurement favors w = −1, the d0.35
measurement favors w < −1.

The measurements of d0.35 by Chuang & Wang (2011)
[28] and Percival et al. (2010) [29] are similar in preci-
sion, but differ systematically: dCW

0.35 ≡ rs(zd)/DV (z =
0.35) = 0.1161 ± 0.0034, while dWP

0.35 ≡ rs(zd)/DV (z =
0.35) = 0.1097 ± 0.0036. The lower measured value of
dWP
0.35 implies a smaller H(z = 0.35), which in turn im-

plies a more negative w. When combined with CMB, H0,
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FIG. 4: The 2D marginalized contours of (w,Ωm,Ωk) for differ-
ent galaxy clustering measurements combined with CMB, H0, and
GRB data. The contours are at 68% and 95% confidence levels.

and GRB data, dCW
0.35 favors w = −1, while dWP

0.35 favors
w < −1. Note that these two measurements used differ-
ent methods to analyze GC data: Chuang &Wang (2011)
used the galaxy correlation function, while Percival et al.
(2010) used galaxy power spectrum. It is not surprising
that they lead to different distance measurements from
GC.
For the rest of this paper, we will present only results

using the GC measurements by Chuang & Wang (2011)
[28]; these are more conservative as they were derived
without assuming CMB priors.

C. Constraints on dark energy and H(z)

Figs.5-7 show the 2D marginalized contours of dark en-
ergy and cosmological parameters for the three different
sets of dark energy parameters: (1) wX(z) = w=const.;
(2) wX(z) = w0 +wa(1− a), and wX(z) = w0(3a− 2) +
3w0.5(1 − a); (3) X(z) ≡ ρX(z)/ρX(0) given by a cu-
bic spline at z < 1 over Xzi ≡ X(zi), with z1 = 1/3,
z2 = 2/3, and z3 = 1, and X(z > 1) = X(z = 1).
Fig.8 shows the dark energy density function ρX(z)

measured from SNe data (flux-averaged with dz = 0.07),
galaxy clustering measurements (CW2), combined with
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confidence levels.
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CMB, H0, and GRB data. The upper panel of Fig.8
shows both ρX(z) and ρm(z), in units of yoctograms per
cubic meter, with 1 yoctogram = 10−24 grams. The un-
certainties in X(z), ΩX = 1−Ωm −Ωk, and h have been
propagated into that of ρX(z). The lower panel of Fig.8
shows the corresponding X(z) = ρX(z)/ρX(0). Fig.9
shows the corresponding cosmic expansion history H(z).
Clearly, given the same priors of CMB, H0, and GRB

data, SNe lead to much stronger constraints on dark en-
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FIG. 7: The 2D marginalized contours of
(X0.33,X0.67,X1.0,Ωm,Ωk) for SNe data (flux-averaged),
galaxy clustering measurements (CW2), combined with CMB,
H0, and GRB data. The contours are at 68% and 95% confidence
levels.

FIG. 8: Dark energy density function ρX(z) measured from SNe
data (flux-averaged with dz = 0.07), galaxy clustering measure-
ments (CW2), combined with CMB, H0, and GRB data. The
contours are at 68% and 95% confidence levels. The upper panel
shows both ρX(z) and ρm(z) in units of yoctograms per cubic me-
ter, with 1 yoctogram = 10−24 grams. The lower panel shows the
corresponding X(z) = ρX(z)/ρX (0).

ergy than galaxy clustering data at present. Note also
that the addition of galaxy clustering data to SN data
leads to significantly improved constraints.
Table II gives the dark energy density function X(z) ≡

ρX(z)/ρX(0) and the cosmic expansion history H(z),
as well as (Ωm,Ωk, h, ωb), measured from current data
of SNe+GC+CMB+H0+GRB. The H(z) measurements
are derived using Eq.(2). Tables III-IV give the normal-
ized covariance matrices of the X(z) and H(z) measure-
ments. Note that both the X(z) and H(z) measurements
are only weakly correlated at different redshifts.
To quantify the comparison in dark energy constraints,
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TABLE II: X(z), H(z), and cosmological parameters estimated from current data with 68.3% C.L. upper and lower uncertain-
ties.

µ σ µ+ σ− µ− σ+

X(z = 1/3) 0.969 0.108 0.862 1.077

X(z = 2/3) 1.152 0.347 0.812 1.492

X(z = 1.0) 0.453 0.863 −0.385 1.284

Ωm 0.252 0.016 0.236 0.268

Ωk −0.0049 0.0131 −0.0180 0.0080

h 0.734 0.019 0.715 0.753

ωb 0.02234 0.00062 0.02170 0.02290

H(z = 1/3)/H0 1.148 0.040 1.107 1.186

H(z = 2/3)/H0 1.419 0.093 1.328 1.510

H(z = 1.0)/H0 1.511 0.221 1.289 1.731

TABLE III: Normalized covariance matrix of X(z) from current data

1 2 3

1 1.0000 0.1830 −0.1195

2 0.1830 1.0000 −0.1283

3 −0.1195 −0.1283 1.0000

(a)

(b)

FIG. 9: The cosmic expansion history H(z) measured from SNe
data (flux-averaged with dz = 0.07), galaxy clustering measure-
ments (CW2), combined with CMB, H0, and GRB data. The
error bars indicate the 68.3% confidence level ranges.

we can use the general dark energy Figure-of-Merit
(FoM) defined by Wang (2008b) [35]

FoM =
1

√

detCov(f1, f2, ..., fN )
(44)

where (f1, f2, ..., fN) is the set of parameters that have
been chosen to parametrize dark energy. The Dark En-
ergy Task Force (DETF) defined the dark energy FoM
to be the inverse of the area enclosed by the 95% confi-
dence level contour of (w0, wa) [53]. The areas enclosed
by contours are difficult to calculate for real data, as
these contours can be quite irregular. The definition of
Eq.(44) has the advantage of being easy to calculate for
either real or simulated data. For (f1, f2) = (w0, wa),
FoM of Eq.(44) is proportional to the FoM defined by
the DETF for ideal Gaussian-distributed data, and the
same as the relative FoM used by the DETF in Fisher
matrix forecasts.
Table V shows the dark energy FoM from SNe (flux-

averaged), galaxy clustering measurements (CW2), to-
gether with CMB, H0, and GRB data, for (w0, wa),
(w0, w0.5), and (X0.33, X0.67, X1.0).

IV. SUMMARY AND DISCUSSION

We have examined how dark energy constraints from
current observational data depend on the analysis meth-
ods used: the analysis of Type Ia supernovae (SNe Ia),
and that of galaxy clustering data (GC).
We generalize the flux-averaging analysis method of

SNe Ia to allow correlated errors of SNe Ia, in order
to reduce the systematic bias due to weak lensing of
SNe Ia. We find that flux-averaging leads to larger
errors on dark energy and cosmological parameters if
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TABLE IV: Normalized covariance matrix of H(z)/H0 from current data

1 2 3

1 1.0000 0.2657 0.0727

2 0.2657 1.0000 −0.0575

3 0.0727 −0.0575 1.0000

TABLE V: Dark energy FoM from current data

CMB+H0+GRB+ FoMr({Xi}) σ(w0) σ(w0.5) rw0,w0.5 FoMr(w0, w0.5) σ(w0) σ(wa) rw0,wa FoMr(w0, wa)

SNe 18.61 0.27 0.33 −0.12 11.02 0.27 1.32 −0.70 3.98

GC 0.44 0.44 0.59 −0.74 5.76 0.39 2.40 −0.89 2.31

SNe+GC 32.00 0.22 0.27 −0.51 19.80 0.22 1.24 −0.84 6.74

only SN Ia data are used (see Fig.1). When SN Ia
data (the latest compilation by the SNLS team) are
combined with WMAP 7 year results, the latest Hub-
ble constant (H0) measurement using the HST, and
gamma ray burst (GRB) data, flux-averaging of SNe Ia
increases the concordance of SNe Ia with other data, and
shifts the bestfit cosmological model notably closer to
w = −1 (see Fig.2 and Table I). This leads to signifi-
cantly tighter constraints on the dark energy density at
z = 1, and the cosmic curvature Ωk (see Fig.3). We have
made our SN flux-averaging code publicly available at
http://www.nhn.ou.edu/∼wang/SNcode/.

Note that since the flux-averaging of SNe Ia increases
the concordance of SN Ia with other data, the combined

data with flux-averaging of SNe Ia gives comparable con-
straints for most parameters, and smaller uncertainties
for dark energy density at z = 1, X1.0 (most affected by
weak lensing), and Ωk (strongly correlated with X1.0),
compared with combined data with no flux-averaging of
SNe Ia. The combination of concordant data tightens
the overall constraints, while that of discordant data may
not.

We find that given the same pirors (CMB+H0+GRB),
both the Percival et al. (2010) GC measurements [29]
(WP: d0.2 and d0.35) and the combined WiggleZ survey
and 6dF GRS measurements [30, 31] (CB+: d0.6 and
d0.106) favor w < −12, while the Chuang & Wang (2011)
GC measurements [28] (CW2: H(z = 0.35)rs(zd) and
rs(zd)/DA(z = 0.35)) favor w = −1 (see Fig.4). This
could be due to the difference in the analysis methods
used to derive these GC measurements. We find that the
GC measurements by Chuang & Wang (2011) are consis-
tent with SN Ia data (which favor w = −1), and tighten
the dark energy constraints significantly when combined

2 Similar results were found by [54, 55] using Percival et al. (2010)
GC measurements [29].

with SN data (see Fig.5-7).
For the convenience of future work, we have derived

Gaussian fits to the probability distributions of a set of
CMB parameters, [la(z∗), R(z∗), z∗, ns, rs(zd)], that sum-
marize the WMAP7 data, as well as well their covari-
ance matrix. Note that while [la(z∗), R(z∗), z∗] are suf-
ficient for summarizing the CMB priors when ns de-
pendence has been marginalized over in GC analysis,
[la(z∗), R(z∗), z∗, ns] need to be used when the con-
straints on ns from GC are included (as will be the case
for future GC data). We find that rs(zd) gives redun-
dant information, its measurement cannot be used in the
CMB priors unless it is used to replace la(z∗). Also, our
Gaussian fit for the pdf of rs(zd) from WMAP7 can be
useful when fitting for BAO peaks in GC data analysis.
We find that current data are fully consistent with a

cosmological constant and a flat universe, consistent with
the latest findings by others (see, e.g., [18, 55–61]). Since
the uncertainties remain large, a deviation from a cosmo-
logical constant is far from being ruled out (see Fig.8).
At present, SN data provide much stronger constraints

than GC data (see Table V). This will change when
ambitious galaxy surveys are carried out from space in
the future [62, 63]. We can expect dramatic progress in
our measurement and understanding of dark energy in
the next decade or so.
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