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We study the fluctuations in luminosity distances due to gravitational lensing by large scale (& 35
Mpc) structures, specifically voids and sheets. We use a simplified “Swiss cheese” model consisting
of a ΛCDM Friedman-Robertson-Walker background in which a number of randomly distributed
non-overlapping spherical regions are replaced by mass compensating comoving voids, each with a
uniform density interior and a thin shell of matter on the surface. We compute the distribution of
magnitude shifts using a variant of the method of Holz & Wald (1998), which includes the effect of
lensing shear. The standard deviation of this distribution is ∼ 0.027 magnitudes and the mean is
∼ 0.003 magnitudes for voids of radius 35 Mpc, sources at redshift zs = 1.0, with the voids chosen
so that 90% of the mass is on the shell today. The standard deviation varies from 0.005 to 0.06
magnitudes as we vary the void size, source redshift, and fraction of mass on the shells today. If
the shell walls are given a finite thickness of ∼ 1 Mpc, the standard deviation is reduced to ∼ 0.013
magnitudes. This standard deviation due to voids is a factor ∼ 3 smaller than that due to galaxy
scale structures. We summarize our results in terms of a fitting formula that is accurate to ∼ 20%,
and also build a simplified analytic model that reproduces our results to within ∼ 30%. Our model
also allows us to explore the domain of validity of weak lensing theory for voids. We find that for 35
Mpc voids, corrections to the dispersion due to lens-lens coupling are of order ∼ 4%, and corrections
to due shear are ∼ 3%. Finally, we estimate the bias due to source-lens clustering in our model to
be negligible.

I. INTRODUCTION

A. Background and Motivation

A number of surveys are being planned to determine
luminosity distances to various different astronomical
sources, and to use them to constrain properties of the
dark energy or modifications to gravity that drive the
cosmic acceleration. It has long been recognized that
perturbations to luminosity distances from weak gravi-
tational lensing will be a source of error for these stud-
ies, both statistical and systematic [1–5]. For supernovae
the lensing noise becomes significant only at high red-
shifts [6], but for gravitational wave sources the lens-
ing noise dominates over the intrinsic luminosity scatter
[7, 8]. Theoretical predictions for the magnification prob-
ability distribution can be folded into the data analysis
of surveys to improve the results [9], and in particular it
is possible to exploit the known non-Gaussian nature of
this distribution [10]. In addition, it is possible to treat
the “lensing noise” in luminosity distances as a signal in
its own right, which provides useful information [11]. (A
tentative detection of this signal in supernovae data has
been claimed in Ref. [12].) For these reasons, it is use-
ful to have a detailed understanding of the magnification
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probability distribution.
There are a number of methods that have been used to

study the effects of weak lensing on luminosity distances:

• Weak lensing theory can be used to predict the
variance of the magnification distribution from the
matter power spectrum [13]. However, the accu-
racy of this approach is limited and in particular it
does not allow one to probe the non-Gaussian tails
of the distribution1.

• One can use numerical ray tracing using the results
of cosmological simulations of large scale struc-
ture, such as the Millennium simulation [15] and
the Coyote Universe project [16], see, eg. Ref. [17].
This approach is highly accurate and is based on a
realistic density distribution. However it requires
substantial computational power and is also lim-
ited in some other respects. The largest simula-
tions to date are are confined to a cube of comov-
ing size z ∼ 0.16, so only a limited range of source
redshifts can be considered. Although the calcula-
tions evolve large scale structure nonlinearly, it is
impractical to get a continuous description of the
evolution, which is needed for computing the per-
turbations to light ray paths; only snapshots of the

1 We note however that there is a proposal for an approximate
“universal probability distribution” for magnifications that takes
as input only the variance of the distribution as predicted by
weak lensing theory, and which would allow prediction of the
non-Gaussian tails [14].
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density distribution are available. Finally, because
the calculations required to evolve the matter dis-
tribution are formidable, it can be difficult to com-
prehensively survey the space of the underlying pa-
rameters of the model, such as the primordial per-
turbation spectrum.

• A third approach is to use simplified analytical
models of the distribution of matter that allow
rapid computation of the full probability distribu-
tion of magnifications, see, eg., Refs. [2, 4, 18, 19].

In this paper we follow the third approach. We develop
an idealized “Swiss cheese” model [2, 20–23] of large scale
structure to study the effect of density inhomogeneities
on luminosity distances. Our model is complementary to
many of the existing models in that we focus on lensing
produced by structures at the largest scales, voids and
sheets, rather than that produced by individual galaxies
and halos, the focus of many existing models.

B. Our void model

In “Swiss cheese” models [2, 20–23], the Universe
contains a network of spherical, non-overlapping, mass-
compensated voids. The voids are chosen to be mass
compensated so that the potential perturbation vanishes
outside each void. We idealize these models even fur-
ther by assuming that each void consists of a central,
uniformly underdense region surrounded by a zero thick-
ness shell. Mass flows outward from the evacuated in-
terior and is then trapped on the wall. Although it
would be more realistic to consider voids with smooth
density profiles, this very simplified model should cap-
ture the essence of the effect of large scale density inho-
mogeneities on luminosity distances. Since voids in the
observable Universe tend to be surrounded by shells that
are relatively thin compared to the size of their evacuated
interiors, the idealization of zero thickness may not be a
severe simplification, particularly because we expect that
the main effect of inhomogeneities on the luminosity dis-
tance depends only on the integral of the density contrast
along the line of sight from the source to the observer.
A key feature of our idealized models is that they can be
evolved in time continuously and very simply.

Within the context of this highly idealized class of
models, we study the distribution of magnitude shifts
relative to what would be found in a smooth cold dark
matter (CDM) model of the Universe with a cosmologi-
cal constant, Λ, for different void sizes and present day
interior underdensities, and for a range of different source
redshifts. Moreover, although we shall use a Newtonian
description that is valid as long as the void radii are small
enough compared with the Hubble length H−1

0 , the cal-
culations can be made fully relativistic if desired. (We
discuss some corrections that are higher order in H0R,
where R is the void radius.)

This paper is a follow-up to our earlier work [20]
(henceforth VFW08), in which we considered the effect
of a randomized set of voids with a single and rather large
comoving radius, 350 Mpc, using a particular model for
a smooth underdense interior inside a mass compensated
shell. That study found that for a source with redshift
zs = 1.8, the mean magnitude shift relative to smooth
flat, CDM for an ensemble of realizations of large scale
voids was unimportant (-0.003), but the distribution of
magnitude shifts was fairly broad, with a standard devi-
ation of about 0.1. Here, we consider a wider range of
redshifts and void sizes, and compute magnitude shifts
relative to a more realistic ΛCDM background with mat-
ter density today ΩM = 0.3 and dark energy density
today ΩΛ = 0.7.

C. Predictions for lensing noise

Our results for the standard deviation σm of the mag-
nitude shifts are summarized by the approximate fitting
formula

σm ≈ (0.027± 0.0007)

(
R

35 Mpc

)α(
f0

0.9

)β ( zs
1.0

)γ
.

(1.1)
Here R is the comoving radius of the voids, zs is the
source redshift, and f0 is the fraction of the total void
mass in its shell today. The exponents are α = 0.51 ±
0.03, β = 1.07±0.04, γ = 1.34±0.05. This fit is accurate
to ∼ 20% for 35 Mpc ≤ R ≤ 350 Mpc, 0.01 ≤ f0 ≤ 0.9,
and 0.5 ≤ zs ≤ 2.1. The mean magnitude shift is again
unimportant, roughly a factor of ten smaller than the
standard deviation (1.1).

Our result (1.1) is computed in the limit of zero shell
thickness. This idealization is not very realistic, since
as we discuss in Sec. III below there is a logarithmic di-
vergence in the variance of the lensing convergence in the
zero thickness limit. This divergence arises from rays that
pass very near to the void walls. The variance in the mag-
nitude shift, however, is finite because of the nonlinear
dependence of magnitude shift on lensing convergence;
the divergence is cut off at lensing convergences of order
unity. (The divergence can also get regulated by finite
sampling effects; see Sec. III). To address this issue we
also consider a more realistic model with void walls of
some finite thickness ∆r. We estimate in Sec. III D that
for f0 = 0.9, R = 35 Mpc, and zs = 1.0, the standard
deviation in magnitude shift is

σm ≈ 0.013

√
1 + 0.23 ln

(
1 Mpc

∆r

)
, (1.2)

a factor of ∼ 2 smaller than the thin-shell limit (1.1) for
∆r = 1 Mpc.

The rms magnitude shift (1.2) due to voids is a fac-
tor of ∼ 3 smaller than that computed from individual
galaxies and halos [4], in accord with expectations from
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weak lensing theory using the power spectrum of den-
sity perturbations (see Ref. [5] and Appendix A). Thus
lensing due to voids is subdominant but not negligible.

We also use our model to estimate the sizes of vari-
ous nonlinear effects that go beyond linear, weak-lensing
theory. We estimate that for R = 35 Mpc voids, the
dispersion σm is altered by ∼ 4% by lens-lens coupling,
by ∼ 3% by shear. There are also large nonlinearities
(∼ 30%− 40%) in our model that arise from the nonlin-
earity of void evolution. These results are qualitatively
in agreement with some previous studies of nonlinear de-
viations from weak lensing theory [24–26].

We also study the source-lens clustering effect [27], the
fact sources are more likely to be located in high density
regions, which enhances the probability of a lens being lo-
cated near the source. We estimate that the correspond-
ing bias in the distribution of magnifications is negligible
in our model.

D. Organization of this paper

This paper is organized as follows. Section II reviews
our Swiss cheese void model. We discuss how the voids
evolve in an FRW background and describe the model pa-
rameters. Next, we describe how our void locations are
randomized, by choosing impact parameters randomly as
light rays exit one void and enter the next. Finally, we de-
scribe our method of computing the magnification. Sec-
tion III describes our simple analytical model which re-
produces the results of the simulations to within ∼ 30%.
It also describes a modification of our void model in which
the shell walls are given a finite thickness, and gives the
corresponding analytical results. Section IV gives the re-
sults of our Monte Carlo simulations for the the probabil-
ity distributions of magnifications, and discusses the de-
pendence of the variance on the parameters of the model.
In Section V, we study the source-lens clustering effect
and the associated bias. Section VI summarizes our re-
sults and their implications. In Appendix A we discuss
the power spectrum of our void model and the corre-
sponding weak lensing prediction. Appendix B reviews
the derivation of the method we use to compute the mag-
nification distribution. Finally, Appendix C is a compar-
ison of our results with other recent studies of lensing
due to voids [18, 19, 28–30, 33]. Our results are broadly
consistent with these previous studies but our model is
simpler in several respects.

II. SIMPLE MODEL OF LENSING DUE TO
VOIDS

In this section we describe our simplified Swiss cheese
model of large scale voids, and explain how we compute
the distribution of magnifications in the model.

A. Newtonian model of a single void

As discussed in the introduction, we will consider void
radii R ranging from 35 Mpc to 350 Mpc, which are small
compared to the Hubble length. Therefore we can use
Newtonian gravity to describe each void; the correspond-
ing error is of order (H0R)

2 � 1 which we ignore.
We choose the background cosmology in which we

place our voids to be an FRW Universe with matter frac-
tion ΩM and cosmological constant fraction 1−ΩM . We
denote by aex(t) the corresponding scale factor, which
is normalized so that aex(t) = 1 today. It satisfies the
Friedman equation(

ȧex

aex

)2

= H2
0

(
ΩM
a3

ex

+ 1− ΩM

)
, (2.1)

where H0 is the Hubble parameter, which has the solu-
tion

3H0t
√

1− ΩM
2

= sinh−1

(
a

3/2
ex

a
3/2
Λ

)
. (2.2)

Here aΛ = (ΩM/ (1− ΩM ))
1
3 is the scale factor at which

the cosmological constant starts to dominate.
Our void model consists of a spherical region of con-

stant comoving radius R, with a uniform density interior
surrounded by a thin shell. We assume that the void is
mass compensated, so the total mass enclosed is the same
as what it would be in FRW, namely

M =
H2

0 ΩMR
3

2G
. (2.3)

We denote by f(t) the fraction of this mass in the thin
shell, so that the mass in the interior is [1−f(t)]M . The
fractional density perturbation in comoving coordinates
δm(x, t) = δρ(x, t)/ρ is therefore

δm(x, t) = −f(t)Θ(R− r) +
1

3
f(t)Rδ(r −R), (2.4)

where Θ(x) is the function defined by Θ(x) = 1 for x > 0
and Θ(x) = 0 for x < 0.

The corresponding potential perturbation φ, in a New-
tonian gauge in which the metric has the form

ds2 = − (1 + 2φ) dt2 + a2
ex(t) (1− 2φ) dx2, (2.5)

is given by solving the Poisson equation ∇2φ =
3H2

0 ΩMδm(x, t)/(2aex). This gives

φ(x, t) =
H2

0 ΩMf(t)

4aex(t)

(
R2 − r2

)
Θ(R− r). (2.6)

The corresponding radial acceleration is

ar = −H
2
0 ΩMf(t)

2aex(t)2
rΘ(R− r).



4

For each void, the potential will take the form (2.6) in a
spherical polar coordinate system centered on that void,
and the total potential is given by summing over the
voids. The potential vanishes in between the voids.

We next discuss how to compute the time evolution of
the fraction f(t) of the void mass in the thin shell. We
will work to leading, Newtonian order in (H0R)2, and we
will also neglect the surface pressure that would arise in
a relativistic calculation. The uniform interior behaves
like a positive energy FRW cosmology. It has negative
curvature, k < 0, and a scale factor ain(t) that obeys the
equation(

ȧin

ain

)2

= H2
0

(
ΩM
a3

in

+ 1− ΩM −
k

a2
inH

2
0

)
, (2.7)

since the cosmological constant is the same inside and
outside the void but the matter density is not. We de-
fine the positive constant a0 = −ΩMH

2
0/k, the inverse

of which is proportional to the density contrast at early
times. The solution to Eq. (2.7) is

3H0t
√

1− ΩM
2

=

ˆ (
ain
aΛ

) 3
2

0

dx√
1 + x2 + x

2
3
aΛ

a0

. (2.8)

This solution assumes that ain = aex = 0 at t = 0, so that
the interior and the exterior regions started expanding at
the same time. Otherwise the deviations from FRW are
large at early times. Eliminating t between Eqs. (2.2) and
(2.8) gives the relationship between ain and aex, which is

sinh−1

(
a

3/2
ex

a
3/2
Λ

)
=

ˆ (
ain
aΛ

) 3
2

0

dx√
1 + x2 + x

2
3
aΛ

a0

. (2.9)

Note that the above equations imply that ain > aex, as
k < 0. The density of the interior is equal to the mean
FRW density times (aex/ain)3 < 1, and so the fraction of
mass in the shell is

f(t) = 1−
(
aex

ain

)3

. (2.10)

We numerically solve Eq. (2.9) to obtain aex/ain as a
function of aex/aΛ, ΩM and a0. In the remainder of the
paper, we will parameterize our void models in terms of
the value today f0 = f(t0) of the mass fraction f(t) in
the shell. We will usually pick f0 = 0.9. The parameter
a0 can be computed from f0 and ΩM .

B. Algorithm for randomization of void placement

We now discuss how we choose the number and loca-
tions of voids in our model. In some previous studies [34–
36], the centers of all the voids encountered by a given
ray were chosen to be collinear, so that the ray passed
through the centers of all the voids. In these studies the

lensing demagnification was large enough to successfully
mimic the effects of dark energy. However, as discussed
in VFW08, the large demagnification was an artifact of
the non-randomness of the void locations, which is not
in accord with observations of the distribution of voids
[37–40]. In this paper, we use a more realistic void dis-
tribution, which we compute according to the following
procedure:

1. Fix the comoving void size R.

2. Fix the redshift of the source zs.

3. Place voids all along the ray from the source to the
observer, lined up so that they are just touching.
The source and the observer are placed in FRW
regions. The distance from the source to the shell
of the adjacent void is chosen to be a fixed small
parameter, and the distance between the observer
and the shell of the adjacent void then depends on
the number of voids that can fit between the source
and observer.

4. Randomize impact parameters by shifting each void
in a random direction perpendicular to the direc-
tion of the light ray, so that the square b2 of the
impact parameter is uniformly distributed between
0 and R2.

Note that with this algorithm, each ray spends some
time in FRW regions between each pair of voids. An
alternative procedure would that used by Holz & Wald
[2], in which after exiting a void, a ray immediately en-
ters another void without traversing an FRW region. In
this model the effective packing fraction of voids would
be a factor ∼ 2 or so higher than in our model, and the
rms magnifications and demagnification would be corre-
spondingly enhanced.

C. Method of computing magnification along a ray

We now turn to a description of the method we use to
compute the magnification for a ray propagating through
a Universe filled with randomly placed voids, as described
in the last subsection. Our method is essentially a modifi-
cation of the method introduced by Holz & Wald [2], and
goes beyond weak-lensing theory. In this section we de-
scribe the computational procedure; a derivation is given
in Appendix B.

Starting from the perturbed FRW metric (2.5), we con-
sider an observer at t = t0 (today) and x = 0, or equiv-
alently at η = η0, where η =

´
dt/aex (t) is conformal

time. We consider a source at x = xs = xsn, where
n is a unit vector. The geodesic joining the source and
observer in the background FRW geometry is

xα (x) = (η0 − x, nx) , (2.11)

for 0 ≤ x ≤ xs, where x is the comoving distance (or
affine parameter with respect to the flat metric ds̄2 =
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aex (t)
−2
ds2 = −dη2 + dx2). Following Holz & Wald [2],

we solve the geodesic deviation equation relative to this
unperturbed ray in order to find the net magnification
and shear. We do not include deflection of the central
ray since the resulting corrections are relatively small;
see Appendix B and Ref. [2].

We denote by ~k = d/dx = −∂η+ni∂i the past directed
tangent vector to the ray. We also introduce a pair of
spatial basis vectors ~eA, A = 1, 2, so that ~eA and n are
orthonormal with respect to ds̄2. We define the projected
Riemann tensor

RAB = R̄αγβδk
γkδeαAe

β
B , (2.12)

for A,B = 1, 2 where R̄αγβδ is the Riemann tensor of the

perturbed FRW metric without the aex (t)
2

factor:

ds2 = − (1 + 2φ) dη2 + (1− 2φ) dx2. (2.13)

Next we consider the differential equation along the
ray

d2

dx2
AAB (x) = −RAC (x)ACB (x) , (2.14)

whereRAC (x) means the projected Riemann tensor eval-
uated at xα = xα (x), and capital Roman indices are
raised and lowered with δAB . We solve the differential
equation (2.14) subject to the initial conditions at the
observer

AAB (0) = 0,
dAAB
dx

(0) = δAB . (2.15)

Finally the magnification along the ray, relative to the
background FRW metric, is2

µ =
x2
s

|detA(xs)|
, (2.16)

where the right hand side is evaluated at the location
x = xs of the source. Note that this quantity, the ra-
tio between the perturbed and unperturbed angular di-
ameter distances, is a conformal invariant, as we show
explicitly in Appendix B.

The matrix A(xs)/xs can be expressed as a product
of an orthogonal matrix and a symmetric matrix with
two real eigenvalues 1−κ± γ, where κ is called the lens-
ing convergence and γ the shear. The magnification is
therefore

µ = |(1− κ)2 − γ2|−1. (2.17)

2 In our Monte Carlo simulations we discard all cases where the
determinant is negative, and so the absolute value sign in Eq.
(2.16) can be dropped. As explained in Ref. [2], this prescription
yields the distribution of magnifications of primary images; it
is not possible using the geodesic deviation equation method to
compute the distribution of total luminosity of all the images of
a source.

This computational procedure is essentially the same
as that used by Holz & Wald [2], except that Holz &
Wald work in the physical spacetime rather than the con-
formally transformed spacetime, and at the end of the
computation they compute the ratio between the quan-
tity x2

s/(detA) evaluated in the perturbed spacetime and
in the background spacetime. In our approach we do
not need to compute a ratio, and furthermore the source
term in the differential equation (2.14) vanishes in FRW
regions between the voids, which simplifies the compu-
tation. See Appendix B for more details on the relation
between the two approaches.

We now turn to a discussion of the method we use to
compute approximate solutions to the differential equa-
tion (2.14). Consider a small segment of ray, from x = x1

to x = x2 say. Since the differential equation is linear,
we have

[
AAB(x2)

ȦAB(x2)

]
=

[
JAC (x2, x1) KA

C (x2, x1)
LAC (x2, x1) MA

C (x2, x1)

]
×
[
ACB(x1)

ȦCB(x1)

]
. (2.18)

for some 2× 2 matrices J, K, L, M which together form
a 4× 4 matrix. To linear order in RAB we have3

JAC = δAC −
ˆ x2

x1

dx (x2 − x)RAC (x) , (2.19a)

KA
C = (x2 − x1) δAC

−
ˆ x2

x1

dx

ˆ x

x1

dx̄ (x̄− x1)RAC (x̄) ,(2.19b)

LAC = −
ˆ x2

x1

dxRAC (x) , (2.19c)

MA
C = δAC −

ˆ x2

x1

dx (x− x1)RAC (x) . (2.19d)

We evaluate these matrices for a transition through a sin-
gle void, using the potential (2.6), the metric (2.13) and
the definition (2.12) of RAB . We neglect the time evo-
lution of the potential during passage through the void;
the corresponding corrections are suppressed by (H0R)2.

3 Holz & Wald [2] drop all of the integrals over the projected Rie-
mann tensor in Eqs. (2.19) except the one in the formula for LAB .
This is valid to leading order in (H0R)2. We keep the extra terms
in Eqs. (2.19) even though our formalism neglects other effects
that also give fractional corrections of order (H0R)2. The extra
terms change σm by a few percent.
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This gives

JAC = δAC + c2P(z)

(
1 4
4 1

)
, (2.20a)

KA
C = (x2 − x1)δAC +

2

3
c3P(z)

(
1 2
2 1

)
, (2.20b)

LAC = 2cP(z)

(
1− R2

3c2 4

4 1− R2

3c2

)
, (2.20c)

MA
C = δAC + 2c2P(z)

(
1 + R2

3c2 2

2 1 + R2

3c2

)
. (2.20d)

Here b is the impact parameter, c =
√
R2 − b2,

P(z) =
3

2
H2

0 ΩM
x (xs − x)

xs

f(z)

aex(z)
, (2.21)

and f(z) is defined by Eq. (2.10). In these equations x
and z are evaluated at the center of the void.

Our computational procedure can now be summarized
as follows:

1. Pick some source redshift zs, void radius R, and
fraction of void mass on the shell today f0.

2. Choose void locations according to the prescription
described in Sec.II B.

3. For each void, compute the 4 × 4 matrix that is
formed by the matrices J,K,L and M from Eqs.
(2.20).

4. Perform a similarity transformation J→ U−1 ·J·U
on each of the matrices J,K,L,M for some ran-
domly chosen SO(2) matrix U, to randomize the
direction of the vectorial impact parameter.

5. Multiply together all the 4 × 4 matrices, and mul-
tiply by the initial conditions (2.15), to evaluate
AAB (xs).

6. Compute the magnification µ relative to FRW from
Eq. (2.16), and then distance modulus shift ∆m
from

∆m = −5

2
log10 (µ) (2.22a)

=
5

2 ln 10
ln |(1− κ)2 − γ2|. (2.22b)

7. Repeat steps 2 to 6 a large number of times to gen-
erate the distribution p(∆m; zs) of distance modu-
lus shifts ∆m for sources at redshift zs, for a ran-
domly chosen direction from the observer.

8. Finally, we correct this distribution to obtain the
observationally relevant quantity, the probability
distribution of magnitude shifts for a source chosen

randomly on a sphere at a distance corresponding
to redshift zs. The corrected distribution is [2]

P(∆m; zs) = Np(∆m; zs)/µ

= Np(∆m; zs)102∆m/5, (2.23)

where N is a normalization constant.

D. Relation to weak lensing theory

In weak lensing theory the matrix A(xs)/xs that de-
scribes the deflections of the rays is presumed to be al-
ways very close to the unit matrix, so the total integrated
effect of the inhomogeneities on a given ray can be treated
linearly. The solution to Eq. (2.14) in this approximation
is given by Eq. (2.19b) with x1 = 0, x2 = xs,

AAB(xs)

xs
= δAB −

ˆ xs

0

dx
x(xs − x)

xs
RAB(x). (2.24)

Taking the determinant and linearizing again, the con-
tribution from shear vanishes and the magnification is
µ = 1 + 2κ where the lensing convergence κ is given by
the standard formula

κ =
3

2
H2

0 ΩM

ˆ xs

0

dx
x (xs − x)

xsaex (z)
δm(x). (2.25)

Here δm(x) is the fractional over density, x is the comov-
ing distance, xs is comoving distance to the source, and
aex (z) is the scale factor. Evaluating this for our void
model gives

κ =
∑
i

κi, (2.26)

where the sum is over the voids and

κi = −3H2
0 ΩM

xi(xs − xi)
xsaex(zi)

f(zi)ci

[
1− R2

3c2i

]
(2.27)

is the lensing convergence from the ith void. Here zi and
xi are the redshift and comoving distance to the center
of the ith void, ci =

√
R2 − b2i and bi is the ith impact

parameter. Our model goes beyond the weak lensing
result (2.26) as it includes lens-lens couplings and shear.

III. APPROXIMATE ANALYTICAL
COMPUTATION OF MAGNIFICATION

DISPERSION

A. Overview

In the previous section, we described a Monte Carlo
procedure for computing the probability distribution
P(∆m; zs) of magnitude shifts ∆m for sources at red-
shift zs, for our Swiss cheese model of voids. We will be
particularly interested in the mean

〈∆m〉 =

ˆ
d∆m∆mP(∆m; zs) (3.1)
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and variance

σ2
m =

ˆ
d∆m (∆m− 〈∆m〉)2 P(∆m; zs) (3.2)

of this distribution. In subsequent sections of the paper
we will describe the results of our Monte Carlo simula-
tions and their implications. In this section, however, we
will take a detour and describe a simple, approximate,
analytic computation of the variance. The approxima-
tion consists of using the weak lensing approximation to
compute the total lensing convergence κ (accurate to a
few percent, see Sec. IV B), and then using an approx-
imate cutoff procedure to incorporate the effect of the
nonlinear relation (2.22b) between κ and the magnitude
shift ∆m. We will see in Sec. IV below that this analytic
approximation agrees with our Monte Carlo simulations
to within ∼ 30%.

Neglecting shear, the relation (2.22b) reduces to

∆m =
5

ln 10
ln |1− κ| (3.3)

where κ is given by Eqs. (2.26) and (2.27). We will see
shortly that the the variance of κ diverges. This diver-
gence is an artifact of our use of a distributional density
profile for each void, with a δ-function on the void’s sur-
face, and can be removed by endowing each shell with
some small finite thickness ∆r (see Sec. III D below). The
variance of ∆m, on the other hand, is finite, because of
the nonlinear relation (3.3). We shall proceed by using
the linearized version

∆m = − 5

ln 10

[
κ+O(κ2)

]
(3.4)

of Eq. (3.3), and by simply cutting off the divergent in-
tegrals that arise, at κ ∼ 1, the regime where the nonlin-
earity of the relation (3.3) becomes important.

B. Variance of magnitude shifts

From Eq. (3.4) we find for the mean and variance of
the magnitude shift

〈∆m〉 = − 5

ln 10

[
〈κ〉+O(κ2)

]
,

σ2
m =

(
5

ln 10

)2 [
〈κ2〉 − 〈κ〉2 +O(κ3)

]
. (3.5)

The averages are over the set of impact parameters {bi :
i ∈ [1, j(xs)]} in Eq. (2.27), where j(xs) is the number of
voids out to the source at xs. In computing the averages,
it will prove convenient to define

qi = 1− b2i /R2, (3.6)

so that each qi is distributed uniformly between zero and
one, since impact parameters arbitrarily close to the void
boundary are permitted. In fact, a shortcoming of our

model is the vanishing thickness of the void wall. We
therefore introduce lower cutoffs Ci for each void4, that
is, we restrict qi to lie in the range Ci ≤ qi ≤ 1. We will
discuss below the origin and appropriate values of these
cutoffs.

With this assumption we obtain for the mean of the
lensing convergence (2.27) of the ith void

〈κi〉 = −H2
0 ΩMxsRwi

ˆ 1

Ci

dqi

[
3
√
qi −

1
√
qi

]
= −2H2

0 ΩMxsRwi
√
Ci(1− Ci) (3.7)

where

wi =
xi(xs − xi)f(zi)(1 + zi)

x2
s

. (3.8)

The mean lensing convergence (3.7) is always negative,
since Ci < 1; introducing the cutoff leads to a bias toward
de-magnification. This is a shortcoming of the model,
since for any mass-compensated perturbation 〈κi〉 = 0 5.
Below, we shall ignore small corrections that are powers
of Ci, and will take 〈κi〉 = 0 for all i.

By contrast the second moment 〈κ2
i 〉 diverges logarith-

mically in the limit Ci → 0:

〈κ2
i 〉 =

(
H2

0 ΩMxsRwi
)2 ˆ 1

Ci

dqi

(
3
√
qi −

1
√
qi

)2

(3.9a)

=
(
H2

0 ΩMxsRwi
)2 [− lnCi −

3

2
+O(Ci)

]
.(3.9b)

This divergence is caused by rays that just graze the δ
function shell of the void.

Because κ is a sum of κi, its mean is the sum of the
individual means, but

〈κ2〉 =
∑
i

〈κ2
i 〉 −

∑
i 6=j

〈κi〉〈κj〉 (3.10)

and therefore

σ2
κ = 〈κ2〉 − 〈κ〉2 =

∑
i

(〈κ2
i 〉 − 〈κi〉2) . (3.11)

Combining this with Eqs. (3.4) and (3.9b) and dropping
terms linear in Ci gives for the variance in magnitude
shift

σ2
m = σ2

0

∑
i

w2
i

(
− lnCi −

3

2

)
, (3.12)

4 These cutoffs will be used only for construction of our analytical
model in this section; they are not used in Monte Carlo simula-
tions in the remainder of the paper.

5 To restore this feature we could either scale the contribution from
the underdense core downward by a factor of Si = 1 +

√
Ci +Ci

or scale the contribution from the overdense shell upward by the
same factor Si.
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where we have defined

σ0 =
5H2

0 ΩMxsR

ln 10
. (3.13)

We choose the cutoffs Ci to correspond to κi ∼ 1, as
discussed above; from Eqs. (2.27) and (3.8) this gives

Ci = (H2
0 ΩMRxswi)

2. (3.14)

The approximate analytic result given by Eqs. (3.8) and
(3.12) – (3.14) is plotted in Fig. 10 in Sec. IV B below.
It agrees with our Monte Carlo simulations to within
∼ 30%, which is reasonable given the crudeness of our
analytic cutoff procedure.

C. Finite sampling effects

In addition to computing the width σ2
m of the distribu-

tion of magnitude shifts ∆m, we now compute a different
quantity σ2

m,med(N) which is, roughly speaking, the esti-
mate of the width that one would obtain with N samples
∆mα, 1 ≤ α 6= N , drawn from the distribution. More
precisely, this quantity is defined as follows. From the N
samples we construct the estimator

σ̂2
m ≡

1

N − 1

N∑
α=1

∆m2
α −

1

N(N − 1)

(
N∑
α=1

∆mα

)2

.

(3.15)
This quantity is itself a random variable with expected
value

〈
σ̂2
m

〉
= σ2

m. However for finite N the median value

of the distribution of σ̂2
m can be significantly different

from σ2
m. We denote this median value by σ2

m,med(N).

In the limit N →∞ we have σm,med(N)→ σm. We note
that realistic supernovae surveys will have no more than
∼ 104 supernovae.

To estimate this median value, we use the fact that for
each void i, finite sampling imposes a minimum value on
qi of qi ∼ 1/N on average, which acts like a statistical
cutoff in the integral (3.9b). This is in addition to the
physical cutoff (3.14) discussed above, which we will de-
note by qi,c from now on. For N samples qi,α, 1 ≤ α ≤ N ,
the probability that all N samples are larger than a value
Ci which is larger than qi,c is

P0(< Ci) =

(
1− Ci
1− qi,c

)N
. (3.16)

Differentiating once we find that the probability distri-
bution of Ci is

P (Ci) =

∣∣∣∣dP0(< Ci)

dCi

∣∣∣∣ =
N(1− Ci)N−1

(1− qi,c)N
. (3.17)

For very large values of N and small qi,c an adequate
approximation is

P (Ci) ≈ N exp[−N(Ci − qi,c)], (3.18)

which is properly normalized for Ci ≥ qi,c if we extend
the range of Ci to infinity, thereby incurring an error
∼ exp(−N).

We now average the expression (3.12) for the width σ2
m,

using the distribution (3.18) to average over the cutoffs
Ci. The result is

σ2
m,med ≈ σ2

0

∑
i

w2
i (3.19)

×
[
lnN − 3

2
−
ˆ ∞

0

dxe−x ln(x+Nqi,c)

]
.

If we define

S(f0, zs) =
∑
i

w2
i ,

γ(Nqi,c) = −
ˆ ∞

0

dxe−x ln(x+Nqi,c), (3.20)

then Eq. (3.19) becomes

σ2
m,med ≈ σ2

0

[
S(f0, zs)

(
lnN − 3

2

)
+
∑
i

w2
i γ(Nqi,c)

]
.

(3.21)

The result (3.21) was obtained by averaging over the
cutoffs {Ci} using the probability distribution (3.18), and
is an estimate of the median of the distribution of σ̂2

m.
Of course the actual value of σ̂2

m computed from a Monte
Carlo realization of N lines of sight, or obtained from
N observations of magnifications, may differ from the
result (3.21). We would like to also estimate the spread
in values of σ̂2

m. From Eq. (3.12), and taking the variance
with respect to the distribution of cutoffs Ci, we find(

∆σ2
m,med

σ2
m,med

)2

=

∑
i w

4
iVar(Nqi,c)[∑

i w
2
i (lnCi + 3/2)

]2 , (3.22)

where

Var(Nqi,c) = (lnCi)2 −
(
lnCi

)2
=

ˆ ∞
0

dxe−x[ln(x+Nqi,c)]
2 − [γ(Nqi,c)]

2

(3.23)

Here the overbars denote an expectation value with re-
spect to the probability distribution (3.18). The quantity
(3.22) is a measure in the fractional spread in our esti-
mate of the median, and should give a lower bound on
the fractional spread in values of σ̂2

m.
Two limits of Eqs. (3.21) and (3.22) are especially

simple. First, for Nqi,c � 1, we have γ(Nqi,c) ≈
γE = 0.5772 . . ., the Euler-Mascheroni constant, and also
Var(Nqi,c) ≈ 1.645 and −lnCi ≈ lnN + γE . This gives

σ2
m,med ≈ σ2

0S(f0, zs)

(
lnN − 3

2
+ γE

)
, (3.24a)

∆σ2
m,med

σ2
m,med

≈

√
1.645

Nvoid(lnN + γE − 3/2)
, (3.24b)
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where Nvoid = xs/(2R) is the number of voids and we
have used the crude approximation wi = constant in
the second equation. Second, for Nqi,c � 1, we have
γ(Nqi,c) ≈ − lnNqi,c, Var(Nqi,c) ≈ 1/(Nqi,c)

2, and

lnCi ≈ ln qi,c, and so we obtain

σ2
m,med ≈ σ2

0

[
−3

2
S(f0, zs)−

∑
i

w2
i ln qi,c

]
(3.25a)

∆σ2
m,med

σ2
m,med

∝ 1

N
. (3.25b)

The second case (3.25a) coincides with the N -
independent width (3.12) – (3.14) computed earlier. We
see that the results are dictated by a competition between
statistical and physical cutoffs via the dimensionless pa-
rameter Nqi,c.

As discussed above, our simulations are effectively cut
off at κi ∼ 1; this implies a physical cutoff

qi,c ∼ (H2
0 ΩMRxswi)

2

≈ 2.2× 10−7

(
H0ΩMxs

0.23

)2(
h0.7R

35Mpc

)2

(4wi)
2.(3.26)

Here we have scaled the factor ΩMH0xs to its value at
ΩM = 0.3, zs = 1.0, the quantity h0.7 is given by H0 =
70h0.7 km s−1Mpc−1, and we note that 4wi ≤ f(zi)(1 +
zi). From the estimate (3.26) we expect the Nqi,c � 1
limit to apply for N . 106. In this case the cutoff is
purely statistical and the physical cutoff is unimportant.
The prediction (3.24a) for σm,med for N = 104 and zs = 1
is shown in Fig. 1, together with results from our Monte
Carlo simulations, which are described in Sec. IV below.
The plot shows good agreement between the model and
the simulations.

For this case, a lower bound on the fractional spread in
the values of σ̂2

m around its median value is given by Eq.
(3.24b). That is, in any given simulation or observational
survey with N light sources, the scatter of values about
the expected will be at least this large. For example, with
N = 104, zs = 1 and R = 35 Mpc, the implied spread
is & 6%. In this regime where the cutoff is primarily
statistical, the range of likely values of σ̂m is substantial,
and only decreases logarithmically with increasing N .

When N & 106, we move into the Nqi,c � 1 regime
where Eqs. (3.25) apply. The results in this regime were
discussed in Sec. III B above, and are plotted in Fig. 10
in Sec. IV B below. Equation (3.25b) indicates that the
spread scales as 1/N in this regime. However this es-
timate is only a lower bound for the spread in values
of σ̂2

m, as discussed above. In fact, from Eq. (3.15) the
standard deviation of σ̂2

m can be computed in terms of N
and of the second and fourth moments of ∆m; it scales
like 1/

√
N as N →∞. In any case, the spread decreases

more rapidly as N increases after the transition to the
large N regime. We will see in Sec. IV below that this
prediction agrees well with our Monte Carlo simulations.

0.10 1.000.500.20 0.300.15 0.70

5 ´ 10-4

0.001

0.005

0.010

0.050

f0

Σ
m

,m
ed

FIG. 1: The green line is our analytic model (3.24a) of the
median width of the distribution of magnitude shifts ∆m, for
N = 104 samples, source redshift zs = 1.0 and void radius
R = 35 Mpc, as a function of the fraction of mass f0 on the
void shells today. The data points are from our Monte Carlo
simulations with the same parameter values, described in Sec.
IV below.

D. Extension of void model to incorporate finite
shell thickness

In this subsection we consider a modification of our
void model, in which the void wall is given a finite co-
moving thickness ∆ri that acts as a physical cutoff in
the divergent integral (3.9a). The corresponding value
of the cutoff parameter qi,c is qi,c = 2∆ri/R, from Eq.
(3.6). The value of wall thickness that corresponds to
the cutoff (3.26) is thus ∆ri ∼ 3 pc(R/35 Mpc)3, which
is much smaller than the expected void wall thicknesses
∼ Mpc in large scale structure. Thus, our thin-shell void
model is somewhat unrealistic; the results are modified
(albeit only logarithmically) once the wall thickness ex-
ceeds ∼ pc scales. This motivates modifying the model
to incorporate a finite wall thickness.

Consider next how the wall thickness evolves with red-
shift. At very early times, when the perturbation is in
the linear regime, it maintains its shape in comoving co-
ordinates, so the cutoff scale is some fixed fraction of
R. Once the perturbation becomes nonlinear, the shell
thickness should freeze out in physical extent, implying
a comoving size ∝ 1/a. Thus, a suitable model for the
redshift dependence of the cutoff would be

qc(a) = ε0W (a/a0), (3.27)

where W (x) is a function with W (x)→ 1 for x� 1 and
W (x)→ K0/x for x� 1. Here a0(f0) is the scale factor
when the perturbation ceases to be linear, and K and ε0
are constants that may also depend on f0. Very roughly,
we expect qc(a) ∼ 0.1 so Nqi,c � 1 as long as N & 10,
so that Eq. (3.25) will apply.

Suppose now that for a restricted range of source red-
shifts it suffices to take the fractional shell wall thickness
εs = ∆ri/R in comoving coordinates to be the same for
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FIG. 2: The magnitude shift ∆m as a function of source
redshift zs for a single run, for voids of radius R = 35 Mpc,
fraction of mass on the shell today f0 = 0.9, in a ΛCDM
cosmology with ΩM = 0.3.

all shells. Then from Eq. (3.12) we get6

σ2
m = σ2

0S(f0, zs) [− ln εs + ln(2) +O(εs ln εs)] . (3.29)

Equation (3.29) has the same form as Eq. (3.24a), but
since Nεs � 1, the implied σm is smaller. For example,
evaluating this expression for f0 = 0.9, zs = 1.0 and
R = 35 Mpc gives

σm ≈ 0.013

√
1 + 0.23 ln

(
1 Mpc

∆r

)
. (3.30)

where ∆r = εsR is the wall thickness.
The logarithmic divergence of σ2

m will also be regulated
by treating the shell as composed of fragments that rep-
resent local density enhancements such as galaxy clusters
and superclusters for purposes of computing the magni-
fication of passing light beams. We shall examine this
further refinement of our model elsewhere.

IV. RESULTS OF MONTE CARLO
SIMULATIONS FOR MAGNIFICATION

DISTRIBUTIONS

We now turn to describing the results of our Monte
Carlo simulations based on the algorithm described in

6 Eq. (3.29) differs from Eq. (3.12) in that the −3/2 has been re-
placed by ln 2. This slightly more accurate version of the equa-
tion is derived as follows. Instead of using the cutoff procedure
embodied in Eq. (3.9a), we use a regulated density profile of
the form δm(r) = −fΘ(R1 − r) + αΘ(R − r)Θ(r − R1) where
R1 = R(1 − εs) and α = f [(1 − εs)−3 − 1]−1. The variance in
the lensing convergence can then be computed from〈

κ2i
〉

= 9H4
0Ω2

M

x2i (xs − xi)2

x2saex(xi)2R2

ˆ R
0
dr

ˆ R
0
dr̄δm(r)δm(r̄)

×rr̄ ln

∣∣∣∣ r + r̄

r − r̄

∣∣∣∣ , (3.28)

from Eq. (2.25).

FIG. 3: The probability distribution of magnitude shifts ∆m
for a simulation in a ΛCDM cosmology with ΩM = 0.3, with
sources at redshift zs = 1, comoving voids radius R = 35
Mpc, and fraction of void mass on the shell today f0 = 0.9.

Sec. II. In the remainder of this paper, unless otherwise
specified, we will adopt the fiducial parameter values of
matter fraction ΩM = 0.3, source redshift zs = 1.0, void
size R = 35 Mpc, and fraction of void mass on shell today
f0 = 0.9. Our choice of void size is motivated by the fact
that observed void sizes [37–45] range from a typical size
of ∼ 10 Mpc to an upper limit of ∼ 100 Mpc. For this
fiducial case, we show in Fig. 2 the distance modulus shift
∆m as a function of redshift zs for a single realization of
the void distribution. The values jump discontinuously
after each void, and illustrate the stochastic nature of the
lensing process.

Next, we repeat this computation some large number
N of times in order to generate the distribution of mod-
ulus shifts ∆m. In the rest of the paper we will focus in
particular on the mean 〈∆m〉 and standard deviation σm
of this distribution, and also on the estimator σ̂m(N) of
the standard deviation that one obtains at finite N , given
by Eq. (3.15), which satisfies σ̂m(N)→ σm as N →∞.

The distribution for the fiducial case for N = 2×106 is
shown in Fig. 3. For this case the standard deviation is
σm = 0.03135± 0.0003 and the mean is 〈∆m〉 = 0.004±
0.001 (where the error is estimated based on dividing the
data into 200 groups of 10000 runs). Our result for the
standard deviation agrees to within ∼ 30% with that of a
different Swiss cheese void model by Brouzakis, Tetradis
and Tzavara [29]; see Fig. 5 of that paper which applies
to R = 40 Mpc voids at zs = 1. It also agrees to within
a factor ∼ 2 with the predictions of weak lensing theory
using an approximate power spectrum for our void model,
as discussed in Appendix A.

Figure 4 shows how our estimated standard deviation
σ̂m(N) varies with number of runs N . The quantity plot-
ted is log10 |σ̂m/σm − 1|, where σm = 0.03135 is an esti-
mate of the N → ∞ limit, here taken from our largest
run with N = 106. This plot exhibits several interesting
features that are in good agreement with the analytical
model described in Sec. III. First, in the low N regime at
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FIG. 4: The estimator σ̂m of the standard deviation of the
distribution of magnitude shifts ∆m, as a function of number
N of runs, for sources at redshift zs = 1, comoving voids
radius R = 35 Mpc, and fraction of void mass on the shell
today f0 = 0.9. The plotted quantity is log10 |σ̂m/σm − 1|,
where σm = 0.03135 is an estimate of the N →∞ limit, here
taken from our largest run with N = 106.

say N ∼ 104, the values of σ̂m(N) differ systematically
from the asymptotic value by a few tens of percent, re-
flecting the difference between σm,med and σm. Second,
there is a somewhat smaller scatter in this regime, of
∼ 5%, in agreement with the prediction (3.24b). Third,
there is a transition to a different behavior atN ∼ 3×105,
after which both the scatter and systematic deviation
from the asymptotic value are much smaller.

In the rest of this paper, we will use the value N = 106

unless otherwise specified. From Fig. 4 this corresponds
to an accuracy of ∼ 1 percent.

We show in Fig. 5 the mean 〈∆m〉 of the distribution
as a function of source redshift zs, for R = 35 Mpc and
N = 2×106. The errors shown are estimated by dividing
the data into 200 groups of 10000 runs. The effect of the
nonzero mean on cosmological studies cannot be reduced
by using a large number of supernovae, unlike the effect
of the dispersion σm. However, the mean 〈∆m〉 ∼ 0.003
magnitudes shown in Fig. 5 is too small to impact cos-
mological studies in the foreseeable future.

In Figs. 6, 7, and 8 we show the probability distri-
butions of magnitude shifts ∆m for some other cases:
source redshifts of zs = 1.1, 1.6 and 2.1, and void radii
of R = 35 Mpc, 100 Mpc, and 350 Mpc. We now turn
to a discussion of the dependence of our results on these
parameters, as well as on the fraction of mass in the shell
today f0.

A. Dependence on void size

In Fig. 9 we show the standard deviation σm of the
magnitude shift as a function of void size R, for three
different redshifts, zs = 1.1, 1.6, 2.1. To a good approxi-
mation the standard deviation grows as the square root
of the void size, σm ∝

√
R. We can understand this

FIG. 5: [Top] The mean 〈∆m〉 of the distribution of magni-
tude shifts ∆m as a function of source redshift zs, for voids
of radius R = 35 Mpc with fraction of mass on the shell to-
day f0 = 0.9, for N = 106 samples. [Bottom] The same for
R = 100 Mpc.

scaling by making some order of magnitude estimates.
In making these estimates, we consider two different

classes of rays. Consider first rays that never come very
close to the shell of any of the voids, i.e. we exclude the
case b − R � R, where b is the impact parameter. The
potential perturbation ∆φ for passage through a void is
of order ∆φ ∼ fR2H2

0 , where f is the fraction of void
mass in the shell (or equivalently the fractional density
perturbation in the void interior). The contribution to
the lensing convergence from this void is then of order
κ ∼ ∆φ/(H0R) ∼ fH0R. Next, the trajectory of rays is
a random walk, so the net lensing convergence is the rms
convergence for a single void multiplied by the square
root of the number ∼ 1/(H0R) of voids. Thus the con-
tribution to the rms magnitude shift from this class of
rays is of order

σm ∼ f
√
H0R. (4.1)

Consider next rays which just graze the shell of at least
one of the voids. These grazing rays are subject to large
deflections, because of the δ-function in density on the
surface of the void. The large deflections cause cause the
second moment

〈
κ2
〉

of the lensing convergence to di-
verge, as discussed in Sec. III B. However, the standard
deviation of the magnitude shift ∆m is still finite, be-
cause of the logarithmic relation (3.3) between ∆m and
κ.

For estimating the effect of these grazing rays, we ne-
glect shear. The convergence κ of the grazed void will
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FIG. 6: The probability distributions of magnitude shifts ∆m
for simulations with sources at redshifts of zs = 1.1 (top),
zs = 1.6 (middle) and zs = 2.1 (bottom), for comoving voids
of radius R =35 Mpc with 90% of the void mass on the shell
today.

be of order unity or larger if the impact parameter b is
b = R(1− ε), where ε ∼ f2R2H2

0 , from Eq. (2.27). This
will occur with probability∼ ε. The contribution of these
rays to

〈
(∆m)2

〉
∝
〈
[ln(1− κ)]2

〉
will be of order ε times

the number ∼ 1/(H0R) of voids, or σm ∼ f
√
H0R, the

same as the result (4.1) for the non-grazing rays.

These considerations show that both the underdense
void and the mass-compensating shell make substantial,
comparably large contributions to σm. This suggests that
it may be important to refine the shell model to include
its fragmentation into localized overdensities representing
galaxy clusters and galaxies, as discussed in Sec. III D
above.

FIG. 7: The probability distributions of magnitude shifts ∆m,
at source redshifts zs of 1.1 (top), 1.6 (middle) and 2.1 (bot-
tom), as in Fig. 6 except with comoving void radius ofR = 100
Mpc.

B. Dependence on fraction of void mass on the
shell

In this subsection we discuss the dependence of the
magnification distribution on the fraction f0 of void mass
on the shell today, or, equivalently, on the fractional over-
density δρ/ρ, cf. Eq. (2.4) above. Figure 10 shows the
results of our simulations for σm as a function of f0 for
N = 106, together with a fit of the form (4.2)

σm(f0) = αf0 + βf2
0 (4.2)

for some constants α and β. We find that α = 0.025 ±
0.006 and β = 0.0085 ± 0.0064. Thus, the data show a
statistically significant deviation from linear behavior, of
the order of ∼ 30− 40%.

We now discuss the various sources of nonlinearity that
arise in the computation. We will consider three different
types of effects.

First, in weak lensing theory, the magnification is a
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FIG. 8: The probability distributions of magnitude shifts ∆m,
at source redshifts zs of 1.1 (top), 1.6 (middle) and 2.1 (bot-
tom), as in Fig. 6 except with comoving void radius ofR = 350
Mpc.

linear function of the density perturbation. Our com-
putation includes some nonlinear effects that go beyond
weak lensing theory, specifically lens-lens coupling (the
fact that the deflection due to one lens modifies the de-
flection caused by subsequent lenses) and shear (the effect
of the non-trace components of the matrices RAB and
AAB). To explore the magnitude of these effects, we per-
formed Monte Carlo simulations where we compute the
lensing convergence for each void and add these to obtain
the total lensing convergence (2.26), and then compute
∆m from κ using the exact nonlinear relation (2.22b)
for zero shear. The resulting value of σm for f0 = 0.9,
zs = 1, R = 35 Mpc, N = 106 is σm = 0.0292, about 7%
smaller than the value σm = 0.0314 obtained by multi-
plying the 4× 4 matrices. Thus, there is a ∼ 7% change
from lens-lens coupling and shear. For R = 100 Mpc, the
change due to lens-lens coupling and shear is ∼ 10%. We
also performed simulations where we kept just the trace
part of the matrix RAB , in order to exclude the effects

FIG. 9: The standard deviation σm of the distribution of
distance modulus shifts ∆m as a function of void radius R,
computed using N = 106 runs for each point. The bottom
line (stars) is for sources at zs = 1.1, the middle line (squares)
is zs = 1.6, and the top line (diamonds) is zs = 2.1. Void radii
range from 35 to 350 Mpc and the fraction of void mass on
the shell today is f0 = 0.9. The lines are fits of the form
σm ∝

√
R.
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FIG. 10: The standard deviation σm as a function of the
fraction f0 of the void mass on the shell today, for void radii
of R = 35 Mpc and source redshift of zs = 1, computed using
N = 106 runs for each point. The dashed blue curve is a
fit of the form σm = αf0 + βf2

0 . This plot shows that there
are nonlinearities present at the level of ∼ 30 − 40%. The
solid green curve is the analytic model (3.12) – (3.14), which
is accurate to ∼ 30%.

of shear, but included lens-lens couplings by computing
4 × 4 matrices for each void and multiplying all these
matrices. In this case the deviations of σm from the full
simulations are ∼ 3% for f0 = 0.9, zs = 1, R = 35 Mpc
and ∼ 6% for R = 100 Mpc. Thus, corrections due to
shear are of this order.

These nonlinearities due to lens-lens coupling and
shear are significantly smaller than the nonlinearity
shown in Fig. 10. Thus other sources of nonlinearity
must dominate. For the remainder of this subsection we
will neglect lens-lens coupling and shear, to simplify the
discussion.

A second type of nonlinearity present in our computa-
tions is the fact that the void mass fraction f(z) at some
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FIG. 11: The factor h(z, f0) by which nonlinear evolution cor-
rects the growth function D+(z) of linear perturbation theory,
for our void model. The upper curve is for f0 = 0.9 and the
lower curve is for f0 = 0.5.

redshift z depends nonlinearly on its value f0 = f(0)
today, due to nonlinearity in the void evolution. There-
fore, even if we make the weak-lensing approximation of
a linear dependence of the magnification on the density
perturbation f(z), the magnification will still be a non-
linear function of f0. We can parameterize this nonlinear
evolution effect by writing

f(z; f0) = f0D+(z)h(z, f0), (4.3)

whereD+(z) is the growth function of linear perturbation
theory, normalized so that D+(0) = 1, and the function
h(z, f0) incorporates the nonlinearity. This function sat-
isfies h(z, f0)→ 1 as f0 → 0 and also as z → 0, and can
be computed using the results of Sec. II A above. Figure
11 plots this function for f0 = 0.5 and f0 = 0.9, and
shows that the nonlinearities in the evolution are signifi-
cant.

This nonlinear evolution effect is the dominant source
of nonlinearity in our simulations. To illustrate this, we
define, for a given source redshift zs, the parameter

fmid ≡ f(zs/2, f0). (4.4)

In other words, fmid is the fraction of void mass on the
shell for voids halfway to the source, the distance where
most of the lensing occurs. We can use fmid instead
of f0 as a parameter to describe our voids. With this
choice of parameterization, the nonlinear evolution ef-
fect is significantly reduced. This is illustrated in Fig.
12, which shows the same data as in Fig. 10, but as a
function of fmid rather than f0. The best fit parame-
ters in the quadratic fit σm = αfmid + βf2

mid are now
α = 0.032 ± 0.005, β = 0.0016 ± 0.0057, showing that
there is no statistically significant nonlinearity.

A third type of nonlinearity in our simulations arises
from the nonlinear relation between the lensing conver-
gence κ and the magnitude shift ∆m. This effect should
be present in our data but is quite small. If we neglect
lens-lens coupling, shear, and the nonlinear evolution ef-
fect, then we expect logarithmic terms in the relation
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FIG. 12: The standard deviation σm as a function of the
fraction fmid of the void mass on the shell for voids halfway to
the source, for void radii of R = 35 Mpc and source redshift of
zs = 1. The solid line is a fit of the form σm = αfmid +βf2

mid.
For this choice of parameterization there is no statistically
significant nonlinearity detectable in the data.

between σm and f0, of the form

σ2
m ∼ αf2

0 + βf2
0 ln f0 + . . . , (4.5)

where α and β are constants which are independent of
f0. This follows from the analysis of Sec. III B above,
where the logarithmic divergence in the variance is cutoff
at κ ∼ 1; see Eqs. (3.12) and (3.14). However our data
show that the logarithmic terms in Eq. (4.5) are quite
small.

Next, we discuss the effects of allowing a distribution
of values of void mass fraction on the shell f0 in our
simulations, rather than having a fixed value. We per-
formed simulations where we pick a value of f for for each
void crossing according to the following prescription. We
choose a random values for 1/a0 from a Gaussian distri-
bution with a mean of 8 and a variance of 30, truncated
to lie in the range that corresponds to 0 ≤ f ≤ 1. Figure
13 compares the probability distributions for magnitude
shifts with and without variations in f . Treating f as a
random variable increases the standard deviation σm by
∼ 3%.

C. Dependence on source redshift

Figure 14 shows the standard deviation σm of the mag-
nitude shift distribution as a function of source redshift
zs, for three different void sizes. The standard deviation
increases with redshift faster than zs. This increase is
due in part to the increasing number of voids but there
are additional factors.

To understand the redshift dependence analytically we
use the expression for the dispersion in lensing conver-
gence from weak lensing theory, given by Eq. (A2) in
Appendix A. The matter power spectrum ∆(k, z)2 for
our void model is proportional to f(z)2, so we obtain
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FIG. 13: A comparison of the probability distributions of
magnitude shifts ∆m in two different cases: fraction of mass
on the shell today fixed at f0 = 0.9 (circles), and f0 drawn
from a distribution as described in the text (stars). In both
cases void radius is R = 35 and source redshift is zs = 1.0.
The spread in the shell surface densities gives rise to a wider
distribution of magnitude shifts, by about ∼ 3%.

FIG. 14: The standard deviation σm as a function of source
redshift zs, computed using N = 106 runs, for voids of radii
R = 35 Mpc (red, crossed circles), 70 Mpc (green, squares),
and 105 Mpc (blue, circles). The lines are fits proportional to
the analytic estimate (4.6).

that

〈
κ2
〉
∝
ˆ xs

0

dxw(x, xs)
2f(z)2, (4.6)

where w(x, xs) = (1 + z)H0x(xs − x)/xs and f(z) is de-
fined by Eq. (2.10). In the range of redshifts 0.5 ≤ zs ≤
1.5 this redshift dependence is approximately a power
law, proportional to z1.35

s , to within ∼ 5% percent7. This
redshift dependence agrees with the results of our simu-
lations shown in Fig. 14 to within ∼ 10%.

7 The asymptotic behavior at large zs is that the expression (4.6)
increases linearly in zs.

D. Numerical fit to parameter dependence

We complete this part of the analysis by giving a three
parameter fit for the standard deviation σm as a function
of void radius R, fraction of void mass on the shell today
f0, and source redshift zs. The result is

σm ≈ (0.027± 0.0007)

(
R

35 Mpc

)α(
f0

0.9

)β ( zs
1.0

)γ
,

(4.7)
where the parameters are α = 0.51 ± 0.03, β = 1.07 ±
0.04, γ = 1.34 ± 0.05. This fit is accurate to ∼ 20% for
35 Mpc ≤ R ≤ 350 Mpc, 0.01 ≤ f0 ≤ 0.9, 0.5 ≤ zs ≤ 2.1.

V. BIAS DUE TO SOURCES OCCURRING
PREFERENTIALLY IN HIGH DENSITY

REGIONS

For sources which are randomly distributed in space,
it is known that the total expected apparent luminosity
of a source, including all primary and secondary images,
must agree with that of the background FRW model [2].
Hence, in situations where the probability of caustics can
be neglected, the probability distribution (2.23) of mag-
nifications µ must be unbiased. Biases arise in our com-
putations because of caustic effects, and also because we
study the probability distribution of the magnitude shift
∆m, which is a nonlinear function of µ, cf. Eq. (2.22a).

However, there is an additional fundamental source of
bias which arises from the fact that sources are not ran-
domly distributed in space, and instead preferentially oc-
cur in high density regions, where they are more likely to
be close to a lens. This is the source-lens clustering effect
[27]. In this section, we make an analytical estimate of
the bias δm of the distribution of magnitude shifts that
is due to source-lens clustering in our void model.

In our computations so far in this paper, we have
placed the source outside the voids, in the FRW regions.
However, in reality most matter is concentrated on the
edges of voids, and so sources are more likely to be on
the void edges. If we demand that sources always be lo-
cated on void edges, then the mean of the distribution is
shifted by an amount (see derivation below)

δm =
1

3 ln (10)
(1 + zs)H

2
0R

2ΩMfs. (5.1)

Here zs is the redshift of the source and fs = f(zs) is
the fraction of mass on the shell for voids at the source
redshift. Evaluating this estimate for ΩM = 0.3, zs =
1.0, R = 35 Mpc, f0 = 0.9 gives δm ∼ 5 × 10−6, and
δm ∼ 5× 10−4 for R = 350 Mpc. These biases are below
the accuracy of upcoming cosmology surveys.

Turn now to the derivation of the formula (5.1). We
start from the standard formula (2.25) for the lensing
convergence in weak lensing theory. We consider just the
contribution to κ from the last void. In the integral, over
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this void, we approximate the factors x and 1/aex (z) as
constants. Writing η = xs − x we obtain

κlast void =
3

2
H2

0 (1 + zs) ΩM

ˆ
last void

ηδm(x, t)dη. (5.2)

We also neglect the time dependence of δm(x, t) for inte-
grating over the last void.

We now consider two different models for randomizing
the relative displacement between the center of the last
void and the source. We denote by b the transverse dis-
placement of the void center from the line of sight, as
before, and denote by ηv the distance from the void cen-
ter to the plane through the source perpendicular to the
line of sight.

In our first model, we assume b and ηv are randomly
distributed, proportional to bdηvdb, with 0 ≤ ηv ≤ R
and 0 ≤ b ≤ R. Computing the integral (5.2) for our
void model (2.4) gives

κlast void =
3

2
H2

0 ΩM (1 + zs) (5.3)

×

{
−2fsηvα+ 2fR2ηv

3α

− 1
2f (ηv + α)

2
+ fR2

3α (ηv + α)

ηv > α
ηv < α

where α =
√
R2 − b2. Now averaging over b

and ηv gives the expected value of 〈κlast void〉 =
(1 + zs)H

2
0R

2ΩMfs/15.
In the second model, we assume that b and ηv are

correlated so that the source is always on the surface of
the void. The average of κlast void (b, ηv) in this model is

〈κlast void〉 =

ˆ π/2

0

sin θ κ (R sin θ, R cos θ) dθ, (5.4)

which using the formula (5.3) gives zero. Subtracting the
means of the two models gives an estimate of the bias,
and multiplying the result by 5/ ln 10 to convert from δκ
to δm gives the formula (5.1).

VI. CONCLUSIONS

In this paper, we presented a simple model to study the
effects of voids on distance modulus shifts due to gravi-
tational lensing. A number of future surveys will gather
data on luminosity distances to various different astro-
nomical sources, to use them to constrain properties of
the source of cosmic acceleration. The accuracy of the re-
sulting constraints will be degraded somewhat by lensing
due to nonlinear large scale structures. We studied this
effect by considering a ΛCDM Swiss cheese cosmology
with mass compensating, randomly located voids with
uniform interiors surrounded by thin shells.

We used an algorithm to compute the probability dis-
tributions of distance modulus shifts similar to that of
Holz & Wald [2]. The rms magnitude shift due to gravi-
tational lensing of voids is fairly small; the dispersion σm

due to 35 Mpc voids for sources at zs = 1 is σm = 0.031,
which is ∼ 2 − 3 times smaller than that due to galaxy
clusters (see Appendix A below). Also the mean magni-
tude shift due to voids is of order δm ∼ 0.003±0.001. We
also studied the bias that arises from the source-lens clus-
tering effect, and estimated that the contribution from
voids to this bias is quite small, of order δm ∼ 5× 10−6.
Refining our model by giving each void shell a finite thick-
ness of ∼ 1 Mpc reduces the dispersion σm by a factor
∼ 2.

We used our model to estimate the sizes of various non-
linear effects that go beyond linear, weak-lensing theory.
We estimate that for R = 35 Mpc the dispersion σm is al-
tered by ∼ 4% by lens-lens coupling, by ∼ 3% by shear.
For 100 Mpc voids these numbers become 3% and 6%
respectively.

Our simple and easily tunable model for void lensing
can be used as a starting point to study more complicated
effects. For example, one can use various algorithms to
generate realizations of distributions of non-overlapping
spheres in three dimensional space. Given such a realiza-
tion one could use the algorithm of this paper to study
correlations between magnifications along rays with small
angular separations, which would be relevant to future
pencil beam surveys [46]. Finally, our model is comple-
mentary to other simplified lensing models in the litera-
ture that focus on lensing due to halos but neglect larger
scale structures, for example the model of Refs. [18, 19].
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Appendix A: Comparison with weak lensing theory

In this appendix we show that our results agree moder-
ately well with the predictions of weak lensing theory, by
computing an approximate matter power spectrum for
our void model. We also obtain an independent estimate
of the lensing due to voids by using the power spectrum
of the Millennium simulation[15].

It is somewhat complicated to compute an exact power
spectrum for our distribution of voids. As a simple
model, we choose a two-void probability distribution
function for which the locations of the two voids are in-
dependently and uniformly distributed inside some large
finite volume, except that the probability is set to zero
when the distance between the void centers is less than
2R. For this model, using the void density profile (2.4),
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FIG. 15: The estimate (A1) of the matter power spectrum
∆(k, z)2 for our void distribution, as a function of comoving
wavenumber k, evaluated today at z = 0. The lower curve
includes the correlation correction factor in square brackets in
Eq. (A1), and the middle curve omits it. The upper curve is
an approximate version of the nonlinear matter power spec-
trum at z = 0 obtained from the Millennium ΛCDM N -
body simulation [15], shown for comparison. The parame-
ter values chosen were H0 = 73km s−1 Mpc−1, ΩM = 0.3,
f0 = f(0) = 0.9, R = 35 Mpc.

we find for the power spectrum8

∆(k, z)2 =
2α

3π
f(z)2k3R3j2(kR)2

[
1− 12α

j1(2kR)

kR

]
.

(A1)
Here α is the void packing fraction, which is π/6 in our
model, k is wavenumber, j1 and j2 are spherical Bessel
functions of the first kind, and f(z) is the fraction of
the void mass in the shell, which can be computed as
a function of redshift using the results of Sec. II A. We
note that this power spectrum is not an exact represen-
tation of our void model, because in our procedure we
first choose a direction to the source and then generate
a density perturbation field that depends on this direc-
tion. Thus, our procedure does not correspond exactly
to choosing a direction randomly in a pre-existing homo-
geneous, isotropic random process9, i.e. 〈δρ(x)δρ(y)〉 is
not just a function of |x− y|. Homogeneity is necessary
in order to represent the two point function in terms of
a power spectrum.

The power spectrum (A1) is shown in Fig. 15, both
with and without the correction factor in square brack-
ets that arises from the correlation between void loca-
tions. For comparison, we also show in Fig. 15 an esti-

8 This model is not completely consistent, since the power spec-
trum can become negative for large packing fractions. The incon-
sistency is presumably a signal that our assumed 2-void probabil-
ity distribution cannot be obtained starting from any symmetric
non-overlapping n-void probability distribution. We ignore this
inconsistency here since the correlation effects that give rise to
the correction factor in square brackets in Eq. (A1) give only a
small (< 1%) correction to

〈
κ2

〉
in any case.

9 If the model were exactly homogeneous there would be a nonzero
probability for the observer to be located inside a void.

mate of the nonlinear power spectrum10 obtained from
the Millennium simulation [15]. The figure shows that
our assumed void model is in rough agreement with the
simulation: the two power spectra agree to within a fac-
tor ∼ 2−3 at large scales, for 3 Mpc . k−1 . 30 Mpc, but
disagree at small scales k−1 � 1Mpc, where the Millen-
nium spectrum contains more power. This is as expected
because our model does not attempt to model structure
on these small scales.

We now turn to computing the effects of lensing using
these power spectra. From the formula (2.25) for lensing
convergence κ in weak lensing theory, it follows that for
subhorizon modes the variance in κ is [14, 47]

〈
κ2
〉

=

ˆ
d ln k

[
9π

4
H2

0 Ω2
M

ˆ xs

0

dxw(x, xs)
2 ∆(k, z)2

k

]
,

(A2)
where x is comoving coordinate, xs is the position of the
source and w = (1 + z)H0x (xs − x) /xs is the lensing
efficiency factor. The corresponding standard deviation
in magnitude shift ∆m is σm = 5

√
〈κ2〉/ ln 10, from Eq.

(3.4). We compute the integrand of the ln k integral by
numerically integrating over redshift, for a source redshift
of zs = 1. The result is shown in Fig. 16.

Consider first the result for our void distribution. Fig.
16 shows that the envelope of d

〈
κ2
〉
/d ln k asymptotes

to a constant at large k, indicating a logarithmic diver-
gence in the variance

〈
κ2
〉
. As discussed in the body of

the paper, this divergence is an artifact of our use of dis-
tributional density profile for each void, with a δ-function
on the void’s surface. The divergence can be regulated
by endowing each shell with some small finite thickness
∆r, which is approximately equivalent to truncating the
integral over k in Eq. (A2) at k ∼ 1/∆r. Integrating Eq.
(A2) between 10−2Mpc−1 and 102Mpc−1 gives the result
σm = 0.011, which is substantially smaller than the re-
sult σm = 0.031 obtained from our nonlinear method in
Sec. IV above. The agreement is improved if we inte-
grate up to 105Mpc−1, corresponding the effective cutoff
lengthscale in our simulations estimated in Sec. III (even
though this shell thickness lengthscale is unrealistic). In
this case σm = 0.016, a factor of ∼ 2 smaller than our
simulations. The factor ∼ 2 disagreement is not too sur-
prising, since as mentioned above the derivation of Eq.
(A2) requires the assumption that the density perturba-
tion is a homogeneous isotropic random process, which
is violated to some extent by our void model.

It is also of interest to compute the standard deviation
σm for the Millennium simulation spectrum. Figure 16

10 We use the following fit to the Millennium power spectrum, ob-
tained from Fig. 9 of Ref. [15]: ∆(k, z)2 = α(k)(1+z)β(k), where
the functions α and β are chosen so that ∆(k)2 = 1.40889 +
1.67105x − 0.11816x2 − 0.0356049x3 − 0.0367596x4 at z = 0
and ∆(k)2 = 0.87558 + 1.56132x− 0.117482x2 − 0.0299214x3 −
0.0383988x4 at z = 0.98, where x = log10(kMpc/h). This fit is
accurate to ∼ 30%.
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FIG. 16: The variance of the lensing convergence per unit log-
arithmic wavenumber, d

〈
κ2

〉
/d ln k, for a source at redshift

zs = 1, computed from the spectra shown in Fig. 15. The
upper curve is the Millennium simulation, the lower curve is
our void model.

shows that the variance of the lensing convergence per
unit logarithmic wavenumber d

〈
κ2
〉
/d ln k peaks at k ∼

100 kpc (in agreement with Sec. 10.5 of Ref. [5]). This in-
dicates that lensing is dominated by galactic scale struc-
tures, as claimed by Holz & Wald [2]. The total standard
deviation11 from all scales 10−2Mpc ≤ k−1 ≤ 103Mpc is
σm = 0.044. The standard deviation from integrating
only over the scales of voids 3Mpc ≤ k−1 ≤ 103Mpc is
σm = 0.010, a factor ∼ 4 smaller; this standard deviation
agrees well with our estimate (1.2) for the thick-wall void
model.

Appendix B: Derivation of procedure for computing
magnification distribution

In this appendix we describe in more detail the deriva-
tion of our prescription for computing magnifications
along a ray given by Eqs. (2.12) – (2.16).

Consider an observer O and a source S. The angular
diameter distance DA(O,S) is defined by

D2
A = δA/δΩ (B1)

where δA is the proper area of the source, orthogonal to
the direction to the observer, and δΩ is the observed solid
angle at the observer subtended by the source. Under a
conformal transformation of the metric, δΩ is invariant
while δA transforms by a factor of the conformal fac-
tor evaluated at the source. It follows that if we define
D̄A to be the angular diameter distance computed in the
conformally transformed spacetime (2.13), then we have

11 This total standard deviation due to lensing computed using
weak lensing theory and the Millennium simulation agrees well
with that computed using other methods. For example, the cor-
responding standard deviation for zs = 1.5 is σm = 0.066, which
agrees within ∼ 20% with the standard deviation of the distri-
bution shown in Fig. 1 of Ref. [4].

DA = a(S)D̄A, where a is the scale factor. We now define
the magnification relative to FRW to be12

µ =
D2
A,0

D2
A

, (B2)

where DA,0 is the angular diameter distance computed in
the unperturbed FRW model. Expressing the two angu-
lar diameter distances in Eq. (B2) in terms of the confor-
mally transformed versions, the factors of a(S) cancel13,
and we obtain that

µ = D̄2
A,0/D̄

2
A = x2

s/D̄
2
A, (B3)

where xs is the comoving coordinate of the source.
To compute the angular diameter distance D̄A(O,S)

in the conformally transformed spacetime (2.13), we use
the same method that Holz & Wald [2] used in the phys-
ical spacetime, whose derivation we now outline in the

context of an arbitrary spacetime. Let ~k = d/dx be the
past-directed tangent vector to the null geodesic joining
O and S, where x is affine parameter with x = 0 at O.

We choose vectors ~l, ~e1, ~e2 at O so that ~eα̂ = (~k,~l, ~eA),

A = 1, 2 form an orthonormal basis, i.e., satisfy ~k2 =
~l2 = ~k · ~eA = ~l · ~eA = 0, ~k · ~l = −1, ~eA · ~eB = δAB .
This orthonormal basis is extended along the geodesic
by parallel transport.

Now let ~η(x) be an infinitesimal connecting vector that
joins the geodesic to some nearby geodesic. The compo-
nents of ~η on the orthonormal basis satisfy the geodesic

deviation equation d2ηα̂/dx2 = −Rα̂β̂γ̂δ̂kβ̂kδ̂ηγ̂ . More

explicitly, expanding ~η = µ~k + ν~l + ηA~eA, the geodesic
deviation equation becomes

ν̈ = 0, (B4a)

µ̈ = νR− ηCRC , (B4b)

η̈A = νRA − ηCRAC . (B4c)

Here dots denote derivatives with respect to x, R =
Rabcdk

albkcld, RA = −RabcdkalbkcedA, and RAB =
Rabcdk

aebAk
cedB .

We are interested in a set B of rays all of which pass
through O and which define an element of solid angle
δΩ at O. The corresponding deviation vectors ~η(0) must
vanish at O, and the initial derivatives d~η/dx(0) are or-

thogonal both to ~k and to the four velocity of the ob-
server, ~uO. If we specialize the choice of orthonormal
basis so that ~uO · ~eA = 0, then it follows that ν = ν̇ = 0

12 This definition could equivalently be expressed in terms of lumi-
nosity distances DL, since DL = (1 + z)2DA for any spacetime.

13 We neglect the contribution to µ caused by the perturbation in
the observed redshift of the source, which enters when we express
the magnification in terms of the observed redshift. This effect
gives a subdominant contribution to µ for subhorizon modes [48,
49].
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at O, and from Eq. (B4a) we obtain that ν(x) = 0 every-
where. By the linearity of the geodesic deviation equation
it now follows that

ηA(x) = AAB(x)η̇B(0) (B5)

for some 2 × 2 matrix AAB . This matrix satisfies the
differential equation (2.14) and initial conditions (2.15)
given in Sec. II C above, from Eq. (B4c) with ν = 0. We
define the quantity

∆(O,S) =
x2
s

detA(xs)
, (B6)

which is the so-called van Vleck determinant [50]. One
can show that this is invariant under rescaling of affine
parameter, under changes of the orthonormal basis that

preserve ~k, and under interchange of O and S.
We now define a set of angular coordinates θ = θA that

parameterize the solid angle measured by the observer,

by θA = θA0 + η̇A(0)/(~k · ~uO), where θ0 is the direction
to the source. The element of solid angle is then

δΩ =

ˆ
B
d2θ =

1

(~k · ~uO)2

ˆ
B
d2η̇A(0)

=
1

(~k · ~uO)2 |detA(xs)|

ˆ
B
d2ηA(xs), (B7)

where we have rewritten the integral using the Jacobian
of the transformation (B5).

Now consider the element of area δA measured at the
source S. This is defined to be the area in the rest frame
of the source, orthogonal to the direction to the observer.

We choose an orthonormal basis ~k,~l′, ~e′A at S so that the

four velocity is (~k + ~l′)/2, and decompose the connect-

ing vector as ~η = µ′~k + ν′~l′ + η′
A
~e′A. Then the area

is just δA =
´
B d

2η′
A

. Now the two orthonormal bases

(~k,~l, ~eA) and (~k,~l′, ~e′A) at S are related by some fixed
Lorentz transformation, so we obtain

ν = ν′,

µ = µ′ +
1

2
ν′D2 +HABη

′ADB ,

ηB = H B
A η′

A
+ ν′DB , (B8)

for some SO(2) matrix HAB and vector DA. Since ν =

0 everywhere it follows that ηA and η′
A

are related by
an SO(2) transformation, which preserves area, and so
δA =

´
B d

2ηA(xs). Combining this with Eqs. (B1), (B6)
and (B7) now gives for the angular diameter distance

DA(O,S)2 =
x2
s(
~k · ~uO)2

|∆(O,S)|
. (B9)

This is independent of the normalization of the affine
parameter and of the four-velocity of the source, but does
depend on the four-velocity of the observer.

We now apply the formula (B9) to a stationary ob-
server in the perturbed Minkowski spacetime (2.13), to
obtain the angular diameter distance D̄A of Eq. (B3)
above. Specializing the affine parameter x to be the co-

moving coordinate gives ~k · ~uO = 1, and then combining
Eqs. (B3), (B6) and (B9) gives the magnification formula
(2.16).

Finally, we note that in computing the matrix A(xs),
we follow Holz & Wald [2] in neglecting the influence
of the metric perturbation on the background geodesic,
and on the parallel transport of the orthonormal basis.
The corresponding corrections to the angular diameter
distance have been computed in the weak lensing limit in
Refs. [48, 49] and are subdominant for subhorizon modes,
that is, are suppressed by a factor of (H0R)2.

Appendix C: Comparison with other studies of
lensing due to voids

Luminosity distance in the context of Swiss Cheese cos-
mology has been studied by Clifton & Zuntz [28], Brouza-
kis, Tetradis & Tzavara [23, 29], Szybka [30], Valkenburg
[31, 32] and Biswas & Notari [33]. Other studies in per-
turbed FRW cosmologies have been done by Holz & Wald
[2] and Hui & Greene [51]. In this appendix we summa-
rize the relevant results from this literature and compare
with our results.

In Clifton & Zuntz [28], the mean and standard devi-
ation of apparent magnitude shifts are studied for red-
shifts up to zs ∼ 1 in ΛCDM cosmology. One difference
between their study and ours is that they model voids
using a fully relativistic Lemaitre-Tolman-Bondi model
with a smooth choice of density profile, whereas we use
a simpler Newtonian model where each void consists of
a central uniformly underdense region surrounded by a
zero thickness shell. Fractional corrections to the New-
tonian approximation scale as (H0R)

2 ∼ 0.0001 for 35
Mpc voids, so a fully relativistic void model is not really
necessary; our model is substantially simpler than theirs.
A second difference between the two studies is that they
choose a configuration of voids where the void centers
lie along the line of sight. Due to this choice, the lens-
ing contributions from successive voids add coherently
instead of random walking, which significantly changes
the magnification probability distribution. Specifically,
for zs = 1 and deep voids, Clifton & Zuntz obtain a
standard deviation in modulus shift of σm ∼ 0.01 (their
Fig. 16), similar to our value, but they obtain a mean
shift of 〈δm〉 ∼ 0.02, a factor ∼ 10 larger than ours.
This difference arises from their lack of randomization of
impact parameters.

Other similar studies are those of Brouzakis, Tetradis
& Tzavara [29] and Biswas & Notari [33]. Brouzakis et al.
also use a fully relativistic Lemaitre-Tolman-Bondi void
model with a smooth choice of density profile. They find
values of standard deviation σm which agree to within
∼ 30% with our model; see their Fig. 5 which applies
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to R = 40 Mpc voids at zs = 1. Brouzakis et al. [29]
and also Biswas & Notari [33] studied the dependence of
the magnification distribution on void sizes, source red-
shift, and fractional underdensity in the void interior,
and found results which agree qualitatively with ours.
The effects of randomizing void impact parameters was
also studied by Szybka [30], who found as did we that the
dimming effect due to voids is not enough to mimic the
effect of dark energy. The effect of shear is also studied by
Szybka, who found its effects to be very small, in agree-
ment with our results discussed in Sec. IV B above. The
main advantage of our model compared to these studies
is simplicity: our model allows us to explore and under-
stand the effects of a wide range of parameter values.

Kainulainen & Marra [18, 19] introduce a different
technique to study lensing. While we compute the prob-
ability distribution of magnifications by doing Monte
Carlo simulations of ray tracing, Kainulainen & Marra
[18] develop a method that allows them to rapidly com-

pute an approximate form of the entire probability distri-
bution through a combination of numerical and analyti-
cal techniques. However, their application of this method
focus on the lensing due to galaxies and halos, not on the
larger-scale structures of sheets and voids, so our study
is not directly comparable to theirs. We note however
that it should be possible to apply their techniques to
compute the lensing due to voids.

Finally, a recent paper by Lavallaz & Fairbairn [52]
performs a similar study modeling voids as 30 Mpc
Lemaitre-Tolman-Bondi spheres with Kostov parameter-
ization [53]. They assume that the supernovae number
density is proportional to the mass density inside voids
and they study the redshift range 0.01 < z < 2.0. They
find that if there is essentially no cut off in the lower
range of z, the scatter in the inferred equation of state
parameter w is about 10%, while imposing a cut off in
the lower range of z decreases the scatter.
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