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A class of calculable global models for neutrino oscillations based on Lorentz and CPT violation
is presented. One simple example matches established neutrino data from accelerator, atmospheric,
reactor, and solar experiments, using only two degrees of freedom instead of the usual five. A third
degree of freedom appears in the model, and it naturally generates the MiniBooNE low-energy

anomalies.

More involved models in this class can also accommodate the LSND anomaly and

neutrino-antineutrino differences of the MINOS type. The models predict some striking signals in

various ongoing and future experiments.

I. INTRODUCTION

The minimal Standard Model (SM) of particle physics
contains three flavors of massless left-handed neutrinos.
However, experiments with solar, reactor, accelerator,
and atmospheric neutrinos have convincingly demon-
strated the existence of neutrino flavor oscillations. This
effect cannot be accommodated within the SM and so
represents forceful evidence for new physics.

A popular hypothesis attributes neutrino oscillations
to the existence of a tiny neutrino mass matrix with off-
diagonal components. Extending the SM to incorporate
this notion produces a model with three flavors of massive
neutrinos (3¥SM), in which oscillations are controlled by
a 3x3 matrix involving six parameters: two mass-squared
differences AmZ, AmZ, . three angles 012, 23, 013, and
a phase J controlling CP violation. The first four of these
parameters must be nonzero to match established experi-
mental data, while recent results provide indications that
the angle 613 must also be nonzero [1, 2].

In this work, we explore an alternative hypothesis
attributing part of the observed neutrino oscillations
to tiny Lorentz and CPT violation, which might arise
in a Planck-scale theory unifying gravity and quantum
physics such as string theory [3]. One motivation for
studying alternative hypotheses for neutrino oscillations
is based on existing data. Several neutrino experiments
have reported potential evidence for anomalous neutrino
oscillations that is incompatible with the 3vSM. This in-
cludes the LSND signal [4], the MiniBooNE low-energy
excess [5], and neutrino-antineutrino differences in the
MiniBooNE [6] and MINOS [7] experiments. Another
motivation is philosophical: having more than one viable
hypothesis is known to be of great value in guiding ex-
perimental and theoretical investigations of new physics.
Lorentz and CPT violation is interesting in this context
because it naturally generates neutrino oscillations and
moreover leads to simple global models describing all es-
tablished and anomalous neutrino data [8, 9].

An appropriate theoretical framework for studying re-
alistic signals of Lorentz violation is effective field the-
ory [10]. In this context, CPT violation is necessarily
accompanied by Lorentz violation [11], and the com-
prehensive description for Lorentz and CPT violation
containing the SM and General Relativity is given by

the Standard-Model Extension (SME) [12, 13]. In the
SME action, each Lorentz-violating term is a coordinate-
independent quantity constructed from the product of a
Lorentz-violating operator and a controlling coefficient.
The combination of observer coordinate invariance and
Lorentz violation implies free particles in the SME follow
geodesics in a pseudo-Riemann-Finsler geometry [14].

Over the last decade or so, many experimental analyses
using a broad variety of techniques have been performed
to seek nonzero SME coefficients for Lorentz and CPT
violation [15]. The interferometric nature of particle
oscillations suggests that sensitive neutrino or neutral-
meson experiments might well yield the first detectable
signals of tiny Lorentz violation. In the neutrino sector,
recent SME-based phenomenological studies [8, 9, 16—
34] and methodologies for experimental analysis [35, 36]
have spurred searches for Lorentz and CPT violation by
the LSND [37], Super-Kamiokande (SK) [38], MINOS
[39, 40], MiniBooNE [41], and IceCube collaborations
[42]. Searches have also been performed with neutral
mesons [43, 44], and recent DO results suggest some evi-
dence for anomalous CP violation [45] that could be at-
tributed to Lorentz and CPT violation [46].

Here, we focus on a special class of ‘puma’ models in
which the 3 x 3 effective hamiltonian hZ; governing oscil-
lations of three flavors of active left-handed neutrinos is
characterized by two simple properties: isotropic Lorentz
violation, and a zero eigenvalue [9]. The isotropic Lorentz
violation implies boost invariance is broken while leaving
rotations unaffected, so h’g is independent of the direc-
tion of the neutrino momentum but must contain uncon-
ventional dependence on the neutrino energy E. This
leads to unconventional energy dependences even in vac-
uum oscillations, producing a broad range of unique neu-
trino behavior. The zero eigenvalue can be attributed to
a discrete symmetry of h;. It ensures quadratic calcula-
bility of the mixing matrix and of oscillation probabilities
for all models, even when matter effects are included.
These two features differ qualitatively from the 3vSM,
in which the Lorentz-invariant mass terms force a 1/E
energy dependence of all terms in h’; and the lack of
symmetry results in calculational complexity.

The unconventional energy dependence in hZ; gener-
ically takes the form of polynomials in E arising from
Lorentz-violating operators of arbitrary mass dimension



in the SME Lagrange density [47]. The polynomial coef-
ficients are therefore determined in terms of SME coef-
ficients for Lorentz violation. For much of this work we
make the plausible assumption that a few terms of com-
paratively low mass dimension dominate the neutrino be-
havior, either by chance or due to the presently unknown
structure of the underlying theory, and hence that only
a few coefficients are needed to reproduce the bulk of
existing neutrino data. Indeed, the basic puma mod-
els considered below have only three degrees of freedom,
which includes one mass and two Lorentz-violating co-
efficients. Remarkably, two of these degrees of freedom
suffice to reproduce all established neutrino behavior, a
frugal result. Moreover, the third degree of freedom nat-
urally reproduces the anomalous results found by Mini-
BooNE [5, 6] without introducing new particles or forces.
Comparatively minor modifications of these simple puma
models that preserve the discrete symmetry of h%; can
also accommodate the LSND signal [4] and anomalies of
the MINOS type [7].

The structure of this paper is as follows. The basic
properties of the general puma models are presented in
Sec. II. Applications to existing experiments are dis-
cussed in Sec. III. A specific model involving one mass
parameter and two Lorentz-violating operators, one of
which is CPT odd, is used for illustrative purposes. Pre-
dictions for future experiments are presented in Sec. IV.
Some of these are strikingly different from models based
on the 3vSM. Variant puma models using three differ-
ent degrees of freedom or more than three parameters
are considered in Sec. V. Finally, Sec. VI contains some
comments on the general nature of the models.

The notation adopted here is that of Refs. [8, 9]. A
mass parameter is denoted m, a coefficient for isotropic
CPT-odd Lorentz violation is denoted a(%, a coefficient
for isotropic CPT-even Lorentz violation is denoted &@),
and a coefficient that could be either aD or ¢4 is de-
noted k(?, where d is the mass dimension of the cor-
responding operator. Note that the value of d fixes the
derivative structure of the operator, which implies d must
be odd for CPT-violating operators and even for CPT-
preserving ones [8]. To identify the various specific puma
models according to their coefficient content, we intro-
duce a convenient nomenclature listing coeflicients in de-
scending order of operator mass dimension. For example,
a model with three degrees of freedom including a mass
term m and coefficients () and é®) for Lorentz violation
is called a cgasm model.

II. GENERAL MODEL

In the general puma model, the effective 3 x 3 hamil-
tonian hZg describing the oscillation of three active neu-

trino flavors e, p, 7 takes the form [9]

ve=A +B +C
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where A(E), B(FE), and C(E) are real functions of the
neutrino energy E. In this work, the function A is chosen
to be A =m?/2E, where m is the unique neutrino mass
parameter in the theory. The functions B and C have
unconventional energy dependence, which here is taken
to arise from Lorentz-violating terms in the SME, some
of which may lie in the nonrenormalizable sector. The
treatment of possible contributions to h; from Lorentz-
invariant operators lies outside our present scope and will
be given elsewhere. We assume all SME coefficients con-
tributing to hZ; are spacetime constants, so the model (1)
incorporates translation invariance and conserves energy
and momentum. In the context of spontaneous Lorentz
violation, where the SME coefficients can be interpreted
in terms of expectation values in an underlying theory,
this assumption implies soliton solutions, massive modes,
and Nambu-Goldstone modes [48] are disregarded. The
latter may play the role of the graviton [49], the photon in
Einstein-Maxwell theory [50], or various new forces [51].
For simplicity in most specific models considered here, B
and C are taken to be monomials in F, although more
complicated polynomials or nonpolynomial functions can
also be of interest.

The function A decreases inversely with energy, while
B and C typically increase. At low energies, the effective
hamiltonian h’g is therefore well approximated by the A
term alone. This term has a ‘democratic’ form, exhibit-
ing symmetry under the permutation group S acting on
the three neutrino flavors e, p, 7. In contrast, the un-
conventional energy dependences in the B and C' terms
dominate at high energies. The flavor-space structure of
these terms breaks the S3 symmetry to its Sy subgroup
in the u-7 sector.

For antineutrinos, oscillations are governed by the
CPT image hl; of the effective hamiltonian h”;. The
effect of the CPT transformation on h%; is to change the
signs of any coefficients for Lorentz violation that are
associated with CPT-odd operators in the SME. Since
mass terms are invariant under CPT [11], the A term in
h%s is unaffected by the transformation. At low ener-
gies, the full permutation symmetry of the puma model
is therefore S3 x S5, where S3 is the symmetry acting on
antineutrino flavors. At high energies, the S5 x S3 invari-
ance breaks to Sy x So. If any coefficients for CPT-odd
Lorentz violation are present, differences between neutri-
nos and antineutrinos can become manifest.

An elegant feature of the puma model is the existence
of a zero eigenvalue for the effective hamiltonian, which
is a consequence of the permutation symmetry of the tex-
ture (1). This implies considerable calculational simplifi-
cation compared to the 3vSM with three nonzero eigen-
values. Many results can be obtained exactly by hand
even when all three neutrino flavors mix. A short calcu-



lation reveals that the eigenvalues \,/, ' = 1,2, 3, of the
effective hamiltonian hZ; take the exact form

N o= i3+ B+C—A-B-CP+8(4+ By,
Ay = %{3A+B+C+\/(A—B—C)2+8(A+B)2},
A3 = 0. (2)

The mixing matrix Uy, that diagonalizes hZg; can also
be expressed exactly as

M—24 A+B A+B

Ny Ny Ny
A—2A A+B A+B
Ua’a - N2 N2 N2 . (3)
1 1

V22
In this equation, the index a ranges over a = e, u, 7 and
the normalization factors are

Ni = /(A —24)2+2(A + B)?,
Ny = /(2 —24)2 +2(A + B)2. (4)

The eigenvalues Xa/, the mixing matrix Uwa, and the
normalization factors N, N5 for the antineutrino effec-
tive hamiltonian h%; are obtained by CPT conjugation
of B and C.

In the low-energy limit, the mixing matrix (3) reduces
to the tribimaximal form originally postulated on phe-
nomenological grounds by Harrison, Perkins, and Scott
[52]. The democratic structure of the A term in h¥;
therefore ensures tribimaximal mixing of the three neu-
trino flavors at low energies. Combined with the choice
A = m?/2E > 0, this mixing guarantees agreement of
the puma model with low-energy solar neutrinos [53] and
with the mixing observed in KamLAND [54]. For a suit-
able choice of mass parameter m, as discussed in the next
section, the A term can also correctly describe the L/FE
oscillation signature observed by KamLAND [55].

Another defining feature of the puma model is a
Lorentz-violating seesaw [8] that mimics a mass term at
high energies, without invoking mass. This differs from
the usual seesaw mechanism [56, 57], which is based on
mass terms in the action. Suppose B and C are mono-
mials of the form

B(E) = kPWEP3, C(E)=¢9DEI3, (5)

where p and ¢ are the dimensions of the operators asso-
ciated with the coefficients k(® and é@. In this work,
we take ¢(9 > 0 for definiteness but consider both sign
options for k@, Reversing the sign of ¢4 produces phe-
nomenology closely related to reversing instead the sign
of k(| as can be seen by inspecting Eqs. (2) and (3). If
q > p then C grows faster than B, so at high energies
2 2.(p)\2 m2p—q—3
L JAERPERIE g
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For the choice ¢ = 2(p — 1), the eigenvalue \; is propor-
tional to 1/E and therefore plays the role of an effective
mass term, even though no mass parameter is present at
high energies. Note that imposing this choice requires
the dominant coefficient in C' to be CPT even. The null
entries in the p-7 block of hl; and the fast-growing ee
element guarantee maximal v,, <+ v; mixing at high en-
ergies, consistent with observations of atmospheric neu-
trinos [58-60]. For a suitable choice of the ratio B?/C,
as discussed in the next section, the seesaw mechanism
also reproduces the L/E oscillation signature in the SK
experiment [61].

Since the elements of h%; are real, the probability
P, ., of oscillation from v}, to v, can be written in the
simple form

Pub—NJa = (Sab —4 Z UaaUatUp o Uy Sinz(Au/b’L/2)7

a’>b’

(7)
where the quantities Ay = Agr — Ay are the eigen-
value differences and L is the baseline. For each flavor
pair a, b, the above sum contains three terms labeled
by the values of a/, b/ < a'. Each term is the prod-
uct of an amplitude —4UUUU with a sinusoidal phase.
The antineutrino-oscillation probabilities Py, _,3, are ob-
tained by CPT conjugation. Since A, B, and C are real,
all processes are T invariant. As a result, CP violation
occurs if and only if CPT violation does. Notice that
CP-violating effects can appear even though no analogue
of the phase 0 in the 3vSM exists in the puma model.

All the above properties are insensitive to the ee com-
ponent of the B term in hZ;. As a result, a modified
texture h!%; can be constructed in which the ee entry
in the B term vanishes. We have verified that most of
the properties discussed in the remainder of this work
remain unchanged for this modified texture. One excep-
tion is the renormalizable model presented in Sec. VA,
for which we use a zero ee entry in the B term because
the nonzero value produces a tension between the de-
scriptions of long-baseline reactor and of solar neutrinos.

III. EXPERIMENTS

Next, we study the implications of the general model
(1) for different experiments. Many characteristics of the
model are generic. For definiteness, in this section we
illustrate the discussion with a specific csazm model [9],
for which the coefficients in Eq. (5) are k®) = ¢®) and
&@ = ¢6) Some comments on variant models are pro-
vided in Sec. IV.

The numerical values of the three parameters in the
cgasm model are

m? = 2.6 x 1072 GeV?,
a® = —25x 107" GeV !,
é® = 1.0x10710 GeV 4, (8)



The nonzero value of @(®) implies this model contains
CPT violation. The value for m? is consistent with limits
from direct mass measurements and cosmological bounds
[1].

By construction, a® and é&®) are the only nonzero
SME coeflicients defined in an isotropic frame I. In some
scenarios, it is reasonable to identify I with a universal
inertial frame U such as that defined by the cosmic mi-
crowave background (CMB), but other possibilities exist.
Whatever the choice for I, the experiment frame FE is
boosted in it by some combination of the Earth’s motion
relative to the CMB, the Earth’s revolution about the
Sun, and the Earth’s rotation. The coefficients a(® and
&®) therefore induce anisotropic effects via the net boost
in I. These could, for example, be detected by searches
for sidereal or annual variations in E [43]. Experimental
constraints and signals must be reported in a specified
frame, but the frame F itself is inappropriate because
it is noninertial and experiment specific. By convention,
the canonical inertial frame used to report results is a
Sun-centered frame S [15, 62]. Inspection reveals that
the size of the effects in S induced by the values (8) all
lie below the sensitivity levels achieved in experiments
to date [37, 39-42]. Future experiments might offer im-
proved sensitivity and thereby provide a distinct avenue
for testing the model.

A. General features

The predictions of any model for neutrino and antineu-
trino oscillations can be visualized using a certain plot in
E-L space [8]. Experiments are represented on the plot
as regions determined by their baseline and energy cover-
age, while a given theory is represented by its characteris-
tic oscillation wavelengths Lo = 27/|Aqp | associated
with the eigenvalue differences A, (E). The absolute
value is used because the oscillation phase is insensitive
to the sign of Ag/pr. For each curve, Loy /2 = Loy (E)/2
indicates the first maximum of a kinematic phase in the
oscillation probability, thereby establishing the minimal
distance from the neutrino source required for appear-
ance or disappearance signals in a specific oscillation
channel. Substantial signals appear in the region above
each curve but are suppressed below it.

Figure 1 shows this plot for the puma model with
values (8) and the 3vSM. The 3vSM has two indepen-
dent oscillation lengths, Lo = 47E/Am2 and Laym =
4rE/Am?2, ., both of which grow linearly with the en-
ergy and are therefore represented by straight lines in
the plot. In the puma model, however, the unconven-
tional energy dependences from B(F) and C(FE) produce
more general curves instead. These curves partially dif-
fer for neutrinos and antineutrinos, a consequence of the
CPT violation implied by the values (8).

The figure shows that the puma curves merge with
the 3vSM lines L and Laty at low and high energies,
respectively, suggesting consistency of the puma model
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FIG. 1: Energy dependences of the oscillation lengths for neu-
trinos (top) and antineutrinos (bottom). The disappearance
lengths for the puma model are L3i (top, solid line), Loi
(top, dashed line), L31 (bottom, solid line), and La1 (bottom,
dashed line), displayed for the values (8). The dotted lines are
the disappearance lengths L (solar) and Latm (atmospheric)
in the 3vSM.

with results in KamLAND, solar, and atmospheric ex-
periments. This agreement is confirmed in the subsec-
tions below. However, the two models are qualitatively
different at intermediate energies.

Novel effects arise from the unconventional energy de-
pendence of hl;, which generates energy-dependent mix-
ing. The flavor content of the three eigenstates of hlg
therefore changes with energy. Figure 2 shows this energy
dependence for the values (8). At low energies, the flavor
content approaches the tribimaximal limit. However, at
high energies the eigenstate v, becomes completely popu-
lated by v.. This implies the mixing v, <+ v, is maximal
and controlled by As;. The onset of this feature coincides
with the onset of the Lorentz-violating seesaw. Indeed,
as the mass term A becomes negligible in hZ;, the frac-
tion of v, in vy grows with the separation between the
lines Lo; and Ls3; in Fig. 1.

Notice that the mixing angles in the 3vSM are en-
ergy independent parameters that can freely be chosen
to match data. In contrast, the mixing angles in the
puma model at low and high energies are determined by
the texture of h%; and therefore are fixed features of the
model that cannot be adjusted according to experiment.
This reduced freedom is one reason why the puma model
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FIG. 2: Flavor content of the three neutrino eigenstates of
h%s (left) and the three antineutrino eigenstates of hZ% (right)
as a function of energy. For the puma model, the left-hand
panel shows the energy dependences of |U,.|* (white), |Uq,|*
(light grey), and |U,/.|? (dark grey) for each neutrino mass
eigenstate v,/, a’ = 1,2,3, while the right-hand panel dis-
plays the analogous energy dependences for antineutrinos.
For the 3vSM, the corresponding quantities |Ua/e|2 (regions
above dashed lines), |U,,|* (regions between dashed and solid
lines), and |U,.|* (regions below solid lines) for neutrinos and
those for antineutrinos are energy independent. The models
coincide at all energies for the eigenstates vs, U3, but v1, 71
match vo, U2 only at low energies.

offers an economical description of confirmed neutrino
data.

The energy dependence of the mixing matrix U implies
the oscillation amplitudes —4UUUU in each flavor chan-
nel and the corresponding probability (7) are also energy
dependent. For given flavors a, b, the oscillation ampli-
tudes are shown in Fig. 3. Note that negative amplitudes
occur for disappearance channels, while positive ampli-
tudes occur for appearance channels. The Sy symmetry
of h%; implies the four amplitudes for v, — v;, Ve — U,
v — vy, and U, — U, are identical to those shown in the
corresponding four central panels in the figure. The low-
energy S3 symmetry of hYj; forces the low-energy ampli-
tudes to values set by tribimaximal mixing and ensures
the low-energy equalities P, ,, = P, —u, = Puou,
and Py, 5, = Py, 5, = Py 5.. At high energies, the
amplitudes become either zero or one due to the Lorentz-
violating seesaw mechanism. The lower four panels in the
figure reveal that the dominant amplitude at high ener-
gies has (a/,0') = (3,1), leading to maximal v, < v,
mixing and to an oscillation phase proportional to As;
and hence to 1/E. Note also that the zero component
Use of the mixing matrix (3), which is a consequence of
the null eigenvalue of h’;, implies that the oscillation in
any channel involving v, or 7, is controlled by only one
amplitude because the other two vanish.

The three figures reveal many of the evolving proper-
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FIG. 3: Energy dependence of the oscillation amplitudes in
the puma model. In each flavor channel, the amplitude factors
—4UUUU in Eq. (7) are plotted for each of the three (a’,b")
values 21 (solid lines), 31 (dashed lines), and 32 (dotted lines).

ties associated with h%; and hZ; at intermediate energies.
For example, a peak appears between 10 MeV and 100
MeV in the L3; curve for neutrinos in Fig. 1, accompa-
nied by corresponding features in Figs. 2 and 3. The
peak represents a divergence in Ls1, which occurs when
A, vanishes. Using the exact expressions (2) for the
eigenvalues of h%;, we find that in general peaks occur
for all positive energies E solving the equation

AB-C)+B*=0. (9)

The peaks can in general occur for both neutrinos and an-
tineutrinos. The absence of these features in the antineu-
trino plots suggests an origin in CPT violation. Since
coefficients for CPT-odd Lorentz violation reverse sign
under a CPT transformation, the nature of the solutions
to Eq. (9) for antineutrinos changes. For the values (8),
a single positive energy solves this equation for neutri-
nos, but no solutions exist for antineutrinos and hence
no antineutrino peaks arise in Fig. 1.

B. Reactor antineutrinos

In the puma model, the general survival probability for
reactor antineutrinos is
(A+ B)*
—2—2
12

Py, =1-16 sin® (A9, L) . (10)
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FIG. 4: Reactor-antineutrino survival probabilities as a func-
tion of L/E in the puma model (solid line) and in the 3vSM
(dashed line). The data are from the long-baseline Kam-
LAND experiment, for which L ~ 180 km [55].

At low energies, the A term in hZ; dominates. Using

the low-energy limits Ni — 642, N; — 342, we find for
Py, ., the simple low-energy approximation

5 ((3m3L
4E

~ 8 &
Pyeﬁge ~1-— §Sln

) (low energy). (11)

The fixed value 8/9 for the oscillation amplitude matches
expectations because at low energies h”; is diagonalized
using the tribimaximal mixing matrix. This result ap-
plies to reactor antineutrinos in both long- and short-
baseline experiments. The large disappearance ampli-
tude for reactor antineutrinos is evident in the 7, — 7,
panel of Fig. 3.

1. Long-baseline reactor: KamLAND

In the 3vSM, the reactor-antineutrino survival proba-
bility for long-baseline experiments is

(12)

Ve—Ve

Am2L
P3SM 1 gin? 2912sm2< Mo >

4FE

The data indicate values for the 3vSM parameters of
sin” 2601 =~ 0.92 and Am2 ~ 7.58 x 107° V2 [54]. Com-
paring the oscillation phase in this result with that in
Eq. (11), we find that agreement with the KamLAND
results can be achieved by choosing the mass parameter
m? to be m?* = Am2 /3 [9]. This gives the numerical
value adopted in Eq. (8). The match between the two
models is shown in Fig. 4.

Notice that the disappearance of reactor antineutrinos
is described using only one parameter m. The conven-
tional solar mixing angle 6,2 is eliminated as a degree
of freedom by the form of the texture hlg;. Inspecting
Eq. (11) reveals that at low energies the effective value
of sin” 26,5 is numerically fixed to (sin2 2012)er =~ 0.89,
which is close to the measured magnitude. The reader is

however cautioned that this interpretation fails at higher
energies due to the energy dependence of the mixing in
the puma model.

2. Short-baseline reactors

In recent years, numerous reactor experiments with
short baselines L < 1 km such as Bugey (L ~ 15,40 m)
[63], CHOOZ (L ~ 1 km) [64], Gosgen (L ~ 38,46, 65 m)
[65], and Palo Verde (L ~ 750,890 m) [66] have sought
evidence for the disappearance of electron antineutrinos
with null results. The explanations of these results differ
qualitatively in the puma model and the 3vSM.

In the 3vSM, the T, survival probability is

2
%) . (13)

VeV, 1E
For energies F ~ 3 MeV, this gives an antineutrino disap-
pearance length 27 E/Am2,  ~ 8.1 x 10'® GeV~1!, which
is about 1.5 km. The null experimental results are there-
fore interpreted in the 3vSM as a consequence of a small
mixing angle 613. Note that the 3vSM survival prob-
abilities (12) and (13) for long and short baselines, re-
spectively, have the same form but involve four different
parameters, Am2, 612, Am2,.., and ;3.

In contrast, in the puma model the oscillation probabil-
ity (11) holds at low energies for any baseline. Only the
single parameter m is required to describe both the long-
and short-baseline data. For energies F ~ 3 MeV, the
antineutrino disappearance length is Loy /2 = ﬁ/Zm =~
2rE/Am2 ~ 2.5 x 102° GeV~!, which is about 50 km.
The null reactor results are therefore understood in this
model as a consequence of the short baselines, which limit
the contribution of the oscillation phase to the survival
probability, rather than a consequence of a small oscilla-
tion amplitude as in the 3vSM. Indeed, the amplitude of
the oscillating term in Eq. (11) is 8/9, which is large.

Since the puma model contains no term with a phase
involving Am?2, , we see that at low energies the effec-
tive value (sin®2613)eg of the 3vSM quantity sin? 20,3 is
exactly zero. This is a consequence of the zero value
of Use, as can be confirmed by comparing the 3vSM
mixing matrix with the tribimaximal limit of the mix-
ing matrix (3). Note, however, that the energy depen-
dence of the mixing matrix makes this result invalid at
higher energies, where the effective value (sin2 2013)efr
extracted from high-energy experiments can be nonzero
even though Us. identically vanishes.

P3SM 1 — sin® 2645 sin® (

C. Solar neutrinos

For neutrinos propagating in matter, the effective
hamiltonian hY; acquires an additional term [67]. The
modified effective hamiltonian (k%)™ in the solar inte-
rior can be written as

( ZH)% = (hgﬁ')ab + V®5a66b67 (14)
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FIG. 5: Averaged survival probability for solar neutrinos in
the puma model (solid line) and in the 3vSM (dashed line).
Both cases include matter-induced effects in the adiabatic ap-
proximation. The data are from Ref. [53].

where the solar matter potential Vi, takes the value V; =
V2Grne ~ 7.84 x 102! GeV at the solar core [68].

The presence of the solar potential preserves the puma
texture (1) because it corresponds to a simple redefinition
of the function C' of the form C — C + V. The exact
eigenvalues and the exact mixing matrix in the presence
of matter can therefore be found immediately by apply-
ing this redefinition to Egs. (2), (3), and (4). A short
calculation reveals that the averaged survival probability
of solar neutrinos in the adiabatic approximation takes
the exact form

(Pyosw) = ((/\%4—2A) (,\1_2A))2

NM N
M _ _ 2

For the lower-energy region of the solar spectrum with
E ~ 0.1 MeV, the solar potential Vg and the functions B
and C' are negligible. In this limit, the averaged survival
probability becomes

(Py,—0,) = Z |Uare|* = 5 (low energy), (16)

in agreement with the data. This result is to be expected
because the vacuum mixing matrix is tribimaximal at low
energies.

For higher energies, the solar potential and the
Lorentz-violating terms can introduce novel effects, de-
pending on the form of the functions B and C. The de-
tailed form of the averaged survival probability therefore
becomes model dependent. However, the neutrino sur-
vival probability initially drops below the limiting value
5/9 as the energy increases. This generic effect is a con-
sequence of the energy independence of Vg, which en-
sures Vg becomes relevant at energies comparable or be-
low those for the Lorentz-violating terms and thereby
enhances the disappearance of v,.

i
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FIG. 6: Survival probability for atmospheric neutrinos as a
function of L/E in the puma model (solid line) and in the
3vSM (dashed line) compared to SK data, for which Lgx ~
600 km [61].

The above features are visible in Fig. 5. The solid line
displays the averaged survival probability for the values
(8). The curve is similar to that obtained from the 3vSM
and is compatible with observations.

D. Atmospheric neutrinos

In the puma model, the exact survival probability of
atmospheric neutrinos is

(A+ B)*
NENG
(A+ B)?
Nt
(A+ B)?

N¥

Py, =1-4 sin® (3A91 L)

-2 sin® ($As,L)

-2 sin® ($AsL).  (17)

However, as E grows the A term becomes negligible, so
the sole mass parameter m is irrelevant for high-energy
oscillations. Requiring C to increase with energy faster
than B yields the high-energy limits \; — —2B2%/C,
A — C, N — 2B? and N — C?. The electron-
neutrino content then lies exclusively in the second eigen-
state. This leaves the other two uniformly populated by
v, and v, as can be verified by examining Fig. 2. The
survival probability (17) then takes the simple form

B%L
P, s, = 1- sin? (T) (high energy)

L(p))2
N o [ ()7L
~ 1 —sin (W) y (18)

where in the second equation the leading contributions
to B and C are expressed as monomials of the form (5).
Note that the unit amplitude of the oscillation term im-
plies maximal mixing, as discussed following Eq. (6).



In contrast, the 3vSM survival probability for atmo-
spheric neutrinos takes the form

Am2,, L
P3SN~ 1 — sin® 263 sin’ (%) (19)

depending on two parameters 623 and Am?2,,. Exper-
imental data provide the values sin® 26,3 > 0.90 and
|Am2, | ~ 2.32 x 1073 eV? [58]. Comparison of Egs.
(18) and (19) suggests agreement with atmospheric data
can be obtained when the ratio of (k)2 and ¢(@ satisfies
E())2
( &(q)) = %Amgtm. (20)
This condition has been used to constrain the coefficients
a®) and ¢® in Eq. (8) [9]. The resulting match between
the two models is shown in Fig. 6 along with SK data.
Note that the ratio (20) represents only one degree of
freedom. Nonetheless, it suffices to reproduce the data
for atmospheric neutrinos via Eq. (18). The other degree
of freedom in the two coeflicients loc(p), &9 determines
the onset of the Lorentz-violating seesaw. Increasing ¢
while holding fixed the ratio (20) causes the seesaw to
trigger at lower energies.

E. Short-baseline accelerator neutrinos

At high energies £ > 1 GeV, a variety of short-baseline
experiments have reported null results. BNL-E776 (L =
1 km) searched for v, — v. and 7, — 7, at 1 GeV
[69]. CCFR (L ~ 1 km) searched for v, — v, 7,, —
Ve, Ve — Uy, and U, — T, at 140 GeV [70]. CDHS
(L ~ 130 m) searched for v, disappearance at 1 GeV
[71]. CHORUS (L ~ 600 m) searched for v, — v, at 27
GeV [72]. NOMAD (L ~ 600 m) searched for v, — v,
and ve — v; at 45 GeV [73]. NuTeV (L ~ 1 km) searched
for v, — ve and U, — T, at 150 GeV [74].

The puma model is consistent with all these null re-
sults. For energies above the seesaw scale ~ 1 GeV,
v, ++ vy mixing becomes maximal by construction, as
described following Eq. (6). This feature implies vanish-
ing high-energy mixing and hence no oscillations in the
channels v, — ve, U, — Ve, Ve — v, and U, — U,. The
behavior can be seen directly from Fig. 3, which displays
the energy dependence of the oscillation amplitudes.

In the v, — v; channel, the oscillation amplitude
is maximal at high energies. However, the oscillation
phase is controlled by As;, which generates an appear-
ance length Lo; of several hundred kilometers at 1 GeV.
The lack of a signal in this channel in the CHORUS or
NOMAD data is therefore understood here as a conse-
quence of their short baselines.

F. MiniBooNE anomalies

Two results from the MiniBooNE experiment indicate
possible oscillation effects that cannot be accommodated
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FIG. 7: Comparison of the puma model (solid lines; x2 = 1.0,
X2 = 0.9), the tandem model [20] (dotted lines; x2 = 1.9,
X% = 1.0), and the 3vSM (dashed lines; x2 = 2.2, x= = 1.1),
with MiniBooNE neutrino [5] and antineutrino [6] data.

within the 3vSM. For neutrino oscillations v, — v,
MiniBooNE finds a 30 excess of events at low energies
around 200-500 MeV [5]. For antineutrino oscillations
Uy — Ve, & 1.30 low-energy excess has also been reported
[6], with recent preliminary data suggesting a larger ex-
cess [75].

These results are interesting in the present context
because they lie in the energy region where the seesaw
mechanism is triggered. Following onset of the seesaw,
the eigenvalue A1 decreases linearly with energy while Ay
grows rapidly. The appearance length Laj oc (Ag — Ap)~?
therefore drops steeply, becoming a few hundred meters
at MiniBooNE energies. This produces a large oscillation
phase and hence a signal in the experiment. However, the
oscillation amplitude for v, <+ v. mixing rapidly goes to
zero as the v, <+ v, mixing becomes maximal, as can
be seen in Fig. 3. As a result, the appearance signal in
MiniBooNE vanishes at higher energies.

The puma model therefore naturally describes a low-
energy excess in MiniBooNE. Moreover, the excess can
differ substantially for neutrinos and antineutrinos when
a coefficient for CPT-odd Lorentz violation is involved, as
occurs for the cgasm example (8). In general, the energy
at which the excess appears depends on the seesaw scale
and becomes smaller as ¢(9) increases. For the values (8),
the match to data is shown in Fig. 7.

We emphasize that these interesting features of the
model arise without introducing additional particles or
forces. They are a consequence of the comparatively el-
egant texture (1) that describes all compelling neutrino-
oscillation data.

IV. PREDICTIONS

The discussion in the previous sections demonstrates
that two of the three parameters of the model (1) suf-
fice to reproduce all the compelling data for neutrino
and antineutrino oscillations, while the third accommo-



0.10p7y

Probability

Probability

Probability

Probability

02 04 0.6 0.8
E (GeV)

FIG. 8: Prediction for the probabilities of v. appearance (left)
and of U, appearance (right) in various long-baseline exper-
iments according to the puma model (solid lines) and the
3vSM (upper dashed lines, sin? 26013 = 0.02; middle dashed
lines, sin? 20,5 = 0.05; lower dashed lines, sin? 2013 = 0.08).
Matter effects are included.

dates the two MiniBooNE anomalies. Comparison to the
3vSM, which uses five nonzero parameters to describe es-
tablished results but cannot reproduce the MiniBooNE
anomalies, suggests the puma model offers a frugal inter-
pretation of known data.

The model predicts a variety of signals, some of which
differ qualitatively from 3vSM expectations. In this sec-
tion, we address some features of relevance to future ex-
periments.

A. Long-baseline neutrinos

A variety of long-baseline experiments, including
LBNE (L ~ 1300 km) [76], MINOS (L ~ 735 km) [77],
NOvA (L ~ 810 km) [78], and T2K (L ~ 298 km) [79],
have design capabilites to search for v, appearance in a
v, beam. These searches are motivated in part by the
prospects of measuring the 3vSM parameter 613. No such
parameter exists in the model (1), but signals in these ex-
periments may nonetheless appear.

To characterize potential signals in the puma model,
recall that the appearance length Loy for v, — v, de-
creases steeply with energy due to the seesaw mechanism.
Baselines L > Lo; therefore involve rapid oscillations, so
accelerator experiments with long baselines can observe
only the averaged oscillation probability, given exactly
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FIG. 9: Prediction for the probabilities of v, disappearance
(left) and of 7, disappearance (right) in various long-baseline
experiments according to the puma model (solid lines) and
the 3vSM (dashed lines). Matter effects are included. The
data are taken from Refs. [7, 58, 80].

(A+ B)?

W 2

<Pvu~>uc> =4

To allow for matter effects on neutrinos traversing the
Earth, NM and N} are given by Eq. (4) with the re-
placement C' — C' + Vg, where the Earth’s matter po-
tential Vi is Viy ~ 1.2 x 10722 GeV.

For energies above the seesaw scale, v, <> v; mixing
dominates while v, <+ v, mixing is highly suppressed.
However, to describe the SK and MINOS data, the see-
saw must trigger below 1 GeV. This means only small
signals from v,, — v, transitions can appear in the high-
energy experiments LBNE, MINOS, and NOvA. In con-
trast, T2K runs at lower energies, and so a larger appear-
ance signal that decreases rapidly with the energy is to
be expected. Quantitative predictions for the probabili-
ties for v, and T, apppearance in the various experiments
are shown in Fig. 8 for the values (8). Note that matter
effects are almost negligible compared to the large eigen-
value Ao controlling the mixing, whereas for the 3vSM
curves they induce substantial differences between the
probabilities for v, and 7. appearance.

We remark in passing that attempting to interpret
these signals as arising from a nonzero 3vSM angle 613
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FIG. 10: Predictions for the probability of 7. disappearance
in the Daya Bay, Double Chooz, and RENO experiments ac-
cording to the puma model (solid lines) and the 3vSM (dashed
lines, labeled with the value of sin? 2013).

would predict that 03 is larger in T2K than in the other
higher-energy experiments. This is compatible with re-
cent results for v, appearance [2]. Note also that within
this perspective the effective values of 6,3 obtained with
long-baseline accelerators are unrelated to the effective
values of 013 extracted from studies of reactor antineu-
trinos discussed in Sec. IIIB 2.

High-energy long-baseline experiments can also per-
form precision studies of v,, disappearance. For this os-
cillation channel, no differences between the puma model
and the 3vSM are expected in LBNE, MINOS, and
NOUvA because they operate at energies above the seesaw
scale. However, significant differences between neutrinos
and antineutrinos are predicted for the lower-energy por-
tion of the T2K spectrum when the theory contains a co-
efficient for CPT-odd Lorentz violation, as in the cgasm
model. The predictions are displayed in Fig. 9, where as
before the values (8) are used for illustration.

B. Short-baseline neutrinos

Using baselines in the range 1-2 km, modern reactor
experiments such as Daya Bay (L ~ 1985 m) [81], Dou-
ble Chooz (L ~ 1050 m) [82], and RENO (L ~ 1380
m) [83] propose to measure the disappearance of reactor
antineutrinos. Like their long-baseline cousins, these ex-
periments are driven partly by prospects for measuring
the 3vSM mixing angle 613.

In the puma model, the 7, survival probability for en-
ergies 2-9 MeV has a large amplitude, as can be seen
from Eq. (11). The oscillation signal in a given reactor
experiment therefore depends only on the size of the base-
line L compared to the antineutrino disappearance length
Zgl/2 ~ 50 km discussed in Sec. III B2. The baselines
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FIG. 11: Predictions for the probability of U. appearance
at the three baselines proposed for the DAESALUS experi-
ment according to the puma model (solid lines) and the 3vSM
(dashed lines, labeled with the value of sin? 2013).

for the Daya Bay, Double Chooz, and RENO experiments
are all short compared to this, with Daya Bay having the
greater sensitivity to oscillation signals due to its longer
baseline. Since Lo; grows linearly with the energy, any
oscillation signal in these experiments is expected to ap-
pear predominantly at low energies. Using the model
values (8), the predictions for the disappearance prob-
abilities in the three experiments are shown in Fig. 10.
Preliminary indications for a nonzero low-energy value of
sin? 2613 ~ 0.085 at about 1.7¢ have very recently been
presented by the Double Chooz collaboration [84]. Con-
firmation of this result and of comparable values in high-
energy measurements would falsify the three-parameter
puma model, while confirmation of an energy dependence
of the measured values of 6,3 would falsify the 3vSM.

We note in passing that the recent suggestion of an
overestimation of antineutrino fluxes in short-baseline re-
actor experiments [85] is difficult to reconcile with the
three-parameter puma model. Since effects at low ener-
gies are governed by only one parameter m, which is fixed
by KamLAND data, no other oscillation length appears
at reactor energies. The existence of only one parameter
is a consequence of the S3 flavor symmetry, so a slight
breaking of this symmetry at low energies could accom-
modate an additional parameter and hence a correspond-
ing signal. This construction would introduce another
degree of freedom but requires no additional neutrinos.
However, investigations along these lines lie beyond the
scope of the present work.

Another experiment of interest in the context of short-
baseline neutrinos is the recent DAESALUS proposal [86]
to study CP violation, which would generate neutrinos
at several different baseline distances from a detector us-
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FIG. 12: Averaged survival probability for solar neutrinos in
the csazm model (solid line) and in the 3vSM (dashed line).
Both cases include matter-induced effects in the adiabatic ap-
proximation. The data are taken from Ref. [53].

ing high-power accelerator modules to beam protons onto
graphite sources. A popular configuration would offer the
capability to search for 7,, — 7. transitions using three
baselines of about 1.5 km, 8 km, and 20 km. The large
oscillation amplitude in this region suggests appearance
signals in the detector can be expected from the more
distant sources. The predicted appearance probabilities
for the three proposed baselines are shown in Fig. 11.

V. VARIANT PUMA MODELS

In the preceding sections, the implications of the gen-
eral texture (1) have been illustrated with the csasm
model, using the specific values (8). However, other
models can be constructed using hZ; that successfully
describe most or all compelling neutrino data. Some of
these offer distinctive features or intriguing possibilities
for simultaneously describing experimental anomalies be-
yond the MiniBooNE ones. This section outlines some
results for a few of these variant models.

A. The ciazm model

The texture hZ; with the smallest monomial orders p
and ¢ in Eq. (5) requires only renormalizable operators
of dimensions 3 and 4 in the minimal SME, hence pro-
ducing a cqagm model. For definiteness, we adopt in this
subsection the specific numerical values

m? = 2.6 x 10723 GeV?,
a® = —25x 1072 GeV,
Y = 1.0x107%, (22)

&
As mentioned at the end of Sec. II, we use a zero ee en-
try in the B term for this model. The coefficient a(*)

comes with CPT violation, so differences between neu-
trino and antineutrino properties can be expected. These
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FIG. 13: Prediction for the probabilities of v. appearance
(left) and of D. appearance (right) in various long-baseline
experiments according to variant puma models (solid lines,
labeled by the model) and the 3vSM (upper dashed lines,
sin? 26013 = 0.15; lower dashed lines, sin? 26013 = 0.05). Matter
effects are included.

values are consistent with limits from direct mass mea-
surements, cosmological mass bounds, and constraints on
anisotropic oscillations.

The cqazm model is compatible with all accepted ex-
perimental oscillation results discussed in Sec. III, includ-
ing those obtained with reactor, solar, and atmospheric
neutrinos. However, the eigenvalue Ao grows too slowly
to produce a signal in MiniBooNE because the function
C is linear in energy.

An interesting qualitative difference introduced by the
model appears in the predicted averaged survival proba-
bility for solar neutrinos, shown in Fig. 12. The probabil-
ity curve incorporates a striking neutrino-disappearance
maximum in the central-energy region, despite passing
though all data points. This reflects the importance at
lower energies of the coefficient (), an effect absent for
the a(® coefficient in the csasm model. The curve shape
suggests future analyses of solar data in the 1-10 MeV
part of the neutrino spectrum could provide an interest-
ing experimental test of the model.

Another distinctive feature of the model is a large sig-
nal for v, — v, oscillations in long-baseline experiments.
The signal decreases with energy, as shown in Fig. 13.
Analysis of the recent data supporting electron-neutrino
appearance in the T2K and MINOS experiments [2] could
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FIG. 14: Comparison of the cgcam model (solid lines; x2 =
1.0, X2 = 0.8), the tandem model [20] (dotted lines; x2 = 1.9,
X% = 1.0), and the 3vSM (dashed lines; x2 = 2.2, x= = 1.1),
with MiniBooNE neutrino [5] and antineutrino [6] data.

provide a sharp constraint on this signal, potentially ex-
cluding the values (22).

B. The cscam model

Other interesting variant models can be constructed
using only CPT-even operators. Using monomials of
smallest order produces a cgcym model. We choose here
the specific numerical values

m? = 2.6 x 1072 GeV?,
7.7 %1072,
0 = 1.0x 10717 GeV 2 (23)

Qo
Do,
A=
I

As for other examples considered in this work, these
values are consistent with limits from direct mass mea-
surements, cosmological mass bounds, and constraints on
anisotropic oscillations.

Like the cgasm and cgazm models, the cgeam model
provides a good match to the data from reactor, solar,
and atmospheric neutrinos discussed in Sec. III. The
presence of the ¢ term substantially affects the physics
in the region 10 MeV to 1 GeV. It generates a signal in
the MiniBooNE region that includes low-energy excesses
in both neutrinos and antineutrinos, as shown in Fig. 14.
Note the asymmetry in the signal, which here reflects
experimental acceptance rather than CPT violation.

For v, appearance in long-baseline experiments, the
probabilities are generically closer in magnitude to those
of the 3vSM with a moderate value of 63, as shown
in Fig. 13. One interesting feature is the substantially
larger signal produced in T2K relative to MINOS, which
is compatible with the central values of recently reported
measurements [2].
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FIG. 15: Prediction for the probabilities of v, disappearance
(left) and of 7,, disappearance (right) in various long-baseline
experiments according to the csascam model (solid lines; XE =
1.4, x2 = 0.9 for MINOS) and the 3vSM (dashed lines; x2 =
1.0, X2 = 1.6 for MINOS). Matter effects are included. The
data are taken from Refs. [7, 58, 80].

C. Four-coefficient models

Some indication of a potential difference between v,
and 7, disappearance probabilities has recently been re-
ported by the MINOS collaboration [7]. Although the ef-
fect may disappear with improved statistics, a difference
of this kind is of interest in the present context because
it cannot be accommodated in the 3vSM, which requires
identical neutrino and antineutrino masses.

In three-parameter puma models, the survival proba-
bilities of muon neutrinos and antineutrinos at MINOS
energies are generically the same. The result holds be-
cause at high energies the relevant eigenvalue difference
is Ag; ~ 2B?/C. This is even under CPT provided the
B term is either odd or even, which is true whenever the
B term is only a monomial in E. For the cgasm model
for example, this symmetry is reflected in Fig. 9. These
puma models therefore cannot accommodate anomalies
of the MINOS type either.

In this subsection, we show that an ad hoc modifica-
tion using an additional parameter can describe anoma-
lies of this type. The key idea is as follows. Instead
of choosing a monomial in energy for the B term, we
can take a binomial involving two different monomial or-



ders p and r < p, one even and one odd. This produces
a four-coefficient model with both CPT-odd and CPT-
even terms contributing at high energies. If the value of
r is close to p and the corresponding coeflicients are simi-
lar in size, then the oscillation probabilities for neutrinos
and antineutrinos differ at high energies. In particular,
the energies of the first oscillation maxima of neutrinos
and antineutrinos differ, which is a feature of the MINOS
effect. However, to preserve compatibility with other ex-
periments, the ee entry of the effective hamiltonian hZg
must remain unchanged. The extra coeflicient should
therefore appear only in the ep and er entries of hlg.
One way to achieve this is to choose a binomial for the
C term as well, compensating for the modification of the
ee entry arising from the change to B.

As an example, we can add a fourth coefficient to the
csasm model while leaving unchanged its main features.
Choosing r = 4, which satisfies the requirement r < p =
5 with r near p, the fourth coefficient can be denoted
¢, To generate a neutrino-antineutrino difference at
high energies, it suffices to redefine the B and C' terms
as B— B+ ¢WE, C — C —éYE. For definiteness, we
can take the numerical values

m? = 2.6 x 1072 GeV?,

&M = 2.0x 1072,

a® = —2.6x1071 GeV !,

é® = 1.0x1071% GeV 4, (24)

which as before are consistent with limits from direct
mass measurements, cosmological mass bounds, and con-
straints on anisotropic oscillations. These choices pre-
serve the attractive features of the simpler cgasm model.

The introduction of the fourth coefficient primarily af-
fects the probabilities of v, and 7,, disappearance in long-
baseline experiments, as shown in Fig. 15 for the values
(24). In particular, the MINOS data in Ref. [7] are rea-
sonably described by the model. The location of the pri-
mary minimum for antineutrino oscillations is at a higher
energy than that for neutrinos, in agreement with the re-
ported effect. We emphasize that this result is achieved
with a single additional parameter, without any masses,
in a global model of neutrino oscillations. Note also that
this cgascym model predicts a large difference between
the probabilities of v, and 7, disappearance in the T2K
experiment. However, the v, appearance probabilities in
long-baseline experiments are essentially unchanged from
those for the cgasm model shown in Fig. 8.

D. Enhanced models

In a search for appearance of electron antineutrinos
in a beam of muon antineutrinos, the LSND experiment
found evidence for a small probability P, 7, ~ 0.26 &
0.08% of 7,, — T, oscillations at baseline L = 30 m and
energies in the range 20-60 MeV [4]. This signal cannot
be accommodated within the 3vSM because the required

13

L T
atm
22[
10 V iz
KamLAND. -\ MINOS/OPERA/ICARUS
> 200 .~ /é\
8 10°°k o 106 g
g E 2Ly \ CCFR/NuTeV
- pgﬁfﬁm MiniBoong BNEET76 uTeV
1018L  RENO %
OscSNS ) ] 102
£ Gosg KARMEN < 3
10160 . " e ) .
102 102 107! 1 10 10
E (GeV)

FIG. 16: Energy dependences of the oscillation lengths for
antineutrinos in the doubly enhanced puma model. The cor-
responding plot for neutrinos in the top panel of Fig. 1 re-
mains unaffected. The disappearance lengths for the model
are Ls1 (solid line) and Lo1 (dashed line), displayed for the
values given by Egs. (24), (27), and (28). The dotted lines are
the disappearance lengths L (solar) and Latm (atmospheric)
in the 3vSM.

FIG. 17: Comparison of enhanced puma model (solid line,
x? = 1.6) and the 3vSM (dashed line, x* = 2.6) with LSND
antineutrino data [5].

mass-squared difference Amfqyp ~ 1 eV? is orders of
magnitude larger than Am2 and Am2,,..
In the general puma model, the oscillation 7, — 7, is

given exactly by
Ao L
sin? <%> . (2p)

which is governed by the same eigenvalues that control
reactor antineutrinos. The energies in the LSND experi-
ment are greater than those of reactor antineutrinos, but
the appearance length is smaller by about two orders of
magnitude. Achieving this with a monomial energy de-
pendence in h%; while preserving consistency with other
experiments is challenging, as it requires a large power of
the energy and a seesaw triggered around 10 MeV.

An interesting option generating the required steep fall

(A+ B)*
——

PFM%UC =8
N1N2
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FIG. 18: Predictions for the probability of 7. appearance at
the three baselines proposed for the DAESALUS experiment
according to the enhanced puma model (solid lines) and the
3vSM (upper dashed lines, sin®26013 = 0.15; lower dashed
lines, sin® 2613 = 0.05).
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FIG. 19: Prediction for the probabilities of v, disappearance
(left) and of 7, disappearance (right) in various long-baseline
experiments according to the doubly enhanced puma model
(solid lines; x2 = 1.3, x2 = 0.9 for MINOS) and the 3vSM
(dashed lines; x2 = 1.4, x2 = 1.8 for MINOS). Matter effects
are included. The data are taken from Refs. 7, 58, 80].
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and rise in Lo (F) is to introduce a smooth nonpolyno-
mial function with a peak. A function of this type could
act as an enhancement of h; arising from a series of co-
efficients in the SME. It can be approximated generically
using at least three parameters, one to position it, one
to fix its height, and one to specify its width. A simple
example is a gaussian enhancement of the form

6h = aexp[—B(E —¢)?]. (26)

To preserve the Sy symmetry of h7;, the enhancement
can be limited to the em and €7 entries of hY; via the
redefinitions B — B + 6h and C — C — 6h. Under the
CPT transformation mapping hl; to hlz, the signs of
« and ¢ change. As a result, either the function or its
CPT conjugate is localized at an unphysical value of the
energy, and so the enhancement affects either neutrinos
or antineutrinos but not both.

As an example, consider an enhanced cgasm model
with specific enhancement values

a = 3.0x 107" GeV,
B = 3.0x10% GeV 2,

e = 60 MeV. (27)

The positive value of € ensures that only antineutrinos are
affected. This enhancement produces a sharp dip in the
disappearance length Ly (E) centered around 60 MeV, as
displayed in Fig. 16. The resulting oscillation probability
Py, 5, contains a nonzero signal in the same region as
the LSND data, as shown in Fig. 17. Since the Lo, curve
passes through the region of sensivity for the DAESALUS
experiment [86], large signals are predicted in all three
detectors as shown in Fig. 18. A large oscillation signal is
also predicted at high energies in the OscSNS experiment
[87].

Differences between v, and 7, disappearance proba-
bilities can also be generated by another enhancement of
this general type. Two simultaneous enhancements can
be included without interference provided they are local-
ized in different regions of the spectrum. Figure 16 shows
the effect on the disappearance length L3; of adding a
second enhancement with the values

as = —2.0x 107 GeV,
By = 13 GeV ™2,
ga = 1.7 GeV. (28)

The resulting disappearance probabilities for muon neu-
trinos and antineutrinos in long-baseline experiments are
shown in Fig. 19. While the single extra coefficient in
the four-parameter cgascym model is more economical
in generating an anomaly like that reported by MINOS
[7], the introduction of the second enhancement centered
near 2 GeV produces interesting and distinctive oscilla-
tion signals in the LBNE and NOvA experiments for v,
disappearance, as shown in Fig. 19. In contrast, the v,
appearance probabilities displayed for the cgasm model
in Fig. 8 are largely unaffected by the enhancement.



VI. DISCUSSION

In this work, we have investigated the behavior of neu-
trinos governed by an effective hamiltonian h%; of the
puma form (1). This texture is interesting in part be-
cause it leads to descriptions of neutrino oscillations that
are globally compatible with experimental data. The as-
sociated Lorentz-violating models are intriguing because
they are frugal, they have a certain elegance, and their
novel features are compatible with data in unexpected
ways. We remark in passing that the existence of these
models was unclear a priori, becoming apparent only
through a systematic search for viable candidates.

The frugality can be traced to the use of only two de-
grees of freedom to describe established data, while a
third degree of freedom efficiently encompasses the Mini-
BooNE anomalies. Adding a fourth degree of freedom
readily generates an anomaly of the MINOS type, while
a three-parameter enhancement produces a signal in the
LSND experiment. These four latter degrees of freedom
are ad hoc, and their necessity depends on the ultimate
confirmation of the MINOS and LSND anomalies. How-
ever, to our knowledge the resulting texture represents
the sole extant global model for neutrino oscillations, and
moreover uses degrees of freedom comparable in number
to those of the 3vSM.

The symmetry of hZ; also implies a certain elegance.
The puma texture (1) could naturally stem from more
fundamental physics at the unification scale that gen-
erates a democratic contribution to the dominant mass
operator in the low-energy effective theory. The result-
ing S3 symmetry then holds at low energies and ensures
tribimaximal mixing but is broken to Sy at higher ener-
gies by subdominant terms in the SME. This symmetry
structure leads to the attractive quadratic calculability
of the models. The coefficients required for compatibil-
ity with data are of plausible Planck-suppressed size.

The novel features of the puma models originate in the
unconventional energy dependence in the eigenvalues of

v and the mixing matrix U. Indeed, it is a pleasant sur-
prise that the models pass the test of compatibility with
existing data, despite their qualitative differences com-
pared to the 3vSM. One striking feature is the Lorentz-
violating seesaw, which makes viable the absence of a
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mass parameter at high energies. Another satisfying fea-
ture is the steep drop with energy of the oscillation length
Loy, which is naturally enforced by the third degree of
freedom required to generate the Lorentz-violating see-
saw. As discussed above, this drop enables Ly to at-
tain the vicinity of the MiniBooNE experiment in F-L
space, thereby generating a low-energy signal compatible
with the MiniBooNE anomaly. Moreover, this feature
appears in conjunction with a rapid decrease in the rele-
vant oscillation amplitudes accompanying the large oscil-
lation phase. This accounts for null signals in high-energy
short-baseline accelerator experiments without invoking
the tiny oscillation phase of the 3vSM.

The puma texture h¥; predicts certain signals that dif-
ferentiate sharply between it and the 3vSM. One key fea-
ture is the energy dependence of the effective mixing an-
gle #13. This implies the probability of v, appearance is
larger in the T2K experiment than in the MINOS exper-
iment. It also predicts no accompanying signal in reactor
experiments, a result at odds with the 3vSM. With an en-
hancement present, strong signals are predicted in exper-
iments at intermediate energies and moderate baselines
such as the proposed DAESALUS experiment. Another
unique signal predicted by some models is CPT viola-
tion, which implies differences in oscillation probabilities
between neutrinos and antineutrinos. Perhaps the most
direct evidence for Lorentz violation would be the dis-
covery of oscillation anisotropies arising from the boost
relative to the isotropic frame. One signal would be side-
real variations of oscillations in the laboratory frame [43],
which in the puma models are predicted to be some 10-
100 times below current sensitivities [9]. In any event,
the results in this work show that Lorentz- and CPT-
violating models can serve as an experimentally viable
foil to the 3vSM, while offering a simple and credible
alternative for realistic modeling of neutrino oscillations.
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