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We study the Drell-Yan process mediated by a new bosonic resonance at the LHC. The bosons
of spin-0, 1, and 2 with the most general leading-order couplings to Standard Model fermions and
gluons are considered, which provide a model-independent formulation for future exploration of
the resonance properties, such as its spin, mass and couplings. In the case of neutral resonances,
we demonstrate how the shapes of the kinematical distributions change as one varies the chiral
couplings of the quarks and leptons, and show how to analyze the couplings by making use of the
forward-backward asymmetry. In the case of charged resonances, we propose a novel technique to
effectively reconstruct the angular distribution in the center-of-mass frame, to a large extent avoiding
the two-fold ambiguity due to the missing neutrino. Similar to the case of a neutral resonance, the
spin information of the resonance can be extracted unambiguously, and chiral couplings and the
asymmetries can be explored in a statistical manner. With the current LHC data, we present
bounds on the mass and cross section times branching fraction of the new resonance and estimate
the future reach.

I. INTRODUCTION

With the start of the LHC experiments, we have en-
tered a new era of high-energy physics that directly
probes Nature at the TeV scale. Depending on the un-
derlying theory, new particles of different kinds may lead
to novel and distinctive signatures at the collider. In
addition to the highly anticipated discovery of the ori-
gin of electroweak symmetry breaking, we will likely also
discover other new resonances associated with this scale,
presumably through the classic Drell-Yan (DY) process
with a striking signal at around the TeV scale. If such
a new resonance is indeed observed, it is important to
determine many of its properties, such as the spin J ,
fermionic chiral couplings, and so on, in addition to its
mass, width and electric charge.

In this work, we consider new spin-0, 1, and 2 reso-
nances that can contribute to the s-channel Drell-Yan
processes. These new heavy bosonic resonances can be
derived from various kinds of new physics models[1–58].
References [2–37] studied a neutral boson, [38–47] deal
with a charged boson and [48–58] include both. For ex-
ample, models with an extended Higgs sector, such as
the widely studied two-Higgs-doublet model [59], often
predict the existence of new scalar bosons of even and/or
odd CP-parity. Models with an extended gauge sym-
metry lead to new vector bosons that may have differ-
ent chiral or even family-nonuniversal interactions with
the SM fermions. For example, various scenarios of a
heavy Z ′ boson have been explored, as reviewed recently
in Ref. [60]. Heavy spin-2 particles can show up in extra-

dimensional models as the Kaluza-Klein excitations of
the graviton [61]. In view of many possible models pre-
dicting such resonances, we keep the couplings between
the standard model (SM) fermions and the resonances as
general as allowed by the unbroken symmetries.
For a new neutral resonance, the final state involves

two charged leptons whose momentum information can
be fully registered by the detector. Therefore, with a
sufficient rate, the particle mass can be readily deter-
mined from the invariant mass distribution. By boosting
to the center-of-mass (CM) frame of the two leptons and
noting that the boost direction preferably coincides with
the momentum of the colliding quark, one can study the
angular distribution of the leptons to extract the spin
information of the resonance.
The case of a charged resonance is more complicated.

This is because the final state contains a charged lep-
ton and the associated neutrino, thus missing energy is
involved in such events. The resonance mass can be
best determined from the Jacobian peak in the transverse
mass distribution. However, there is a difficulty in find-
ing the correct CM frame of the charged lepton and the
neutrino. Even if one assumes that the resonance mass
has been measured, there are generally two possible solu-
tions for the longitudinal momentum of the neutrino. We
develop a novel technique to effectively construct the an-
gular distribution for the charged lepton in the CM frame
in a statistical manner, and show how the spin and chiral
couplings of the resonance can be extracted in a similar
fashion as in the case of neutral resonances.
This paper is organized as follows. In Section II,

we classify types of new resonances that can mediate
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s-channel Drell-Yan processes at the LHC, and discuss
some of the general features of these processes. In addi-
tion, we discuss the most general interactions between
SM fermions and the new resonances allowed by the
Lorentz and gauge invariances, with the corresponding
Feynman rules given in Appendix A. Section III is de-
voted to the discussions of the Drell-Yan process me-
diated by a neutral resonance. The Drell-Yan process
associated with a charged resonance is analyzed in Sec-
tion IV. The current results of the LHC are used to place
a bound on the masses and couplings of these new reso-
nances in Section V. The findings of this work are sum-
marized in Section VI. Appendix B contains details of
the FeynRules implementation of these new interactions.
Appendix C gives a short review of the Wigner djm,m′

functions that are useful for the helicity amplitudes of
our calculations.

II. GENERAL INTERACTIONS OF NEW
DRELL-YAN RESONANCES

We will concentrate exclusively on color-singlet
neutral-current and charged-current s-channel reso-
nances contributing to the Drell-Yan processes at the
LHC

pp → ℓ+ℓ−X and ℓ±νX , (1)

where ℓ generically denotes either an electron or a muon,
ν denotes a neutrino or an antineutrino and X the inclu-
sive hadronic remnants. We consider the most general
couplings for leading-order operators allowed by certain
symmetries for such a new particle. This particle must be
a color singlet and have integer spin. We concentrate on
the possibilities of a scalar (S), vector (V ) and traceless
symmetric second-rank tensor (T ), although other spins
are possible in principle. There are two cases for the elec-
trical charge of the boson. In the case of neutral-current
processes, this boson (generically denoted by R0) must
be neutral whereas for the charged-current processes, this
boson (generically denoted by Rc) must have charge ±1.
In Table I, we summarize the properties of these new
bosons along with the processes to which they contribute.

Notation |Qe| J Partonic processes

R0 0 0, 1, 2 uū, dd̄, gg → ℓ+ℓ−

Rc 1 0, 1, 2 ud → ℓ+ν, du → ℓ−ν

TABLE I: Resonance particles, their quantum numbers, and
s-channel Drell-Yan processes. Qe and J represent their elec-
tric charge and spin respectively.

We now write down the most general Lagrangian be-
tween these new bosons and the SM fermions and glu-
ons allowed by Lorentz, quantum chromodynamic and
electromagnetic gauge invariance. In each case, we
only include the leading effective terms which are ei-
ther dimension-4 or dimension-5 operators. Furthermore,

we drop all terms which vanish when the masses of the
initial-state and final-state particles are taken to zero.

A. Spin-0 states

We begin with the neutral scalar boson S which can
have the following Lagrangian

LS = f i

(

gfSij + igfPijγ5

)

fjS − 1

4

ggS
Λ
F a
µνF

aµνS, (2)

where f can be either a quark or a lepton. The indices i
and j run over generations, and the generation matrices

gfSij = (gfS)ij and gfPij = (gfP )ij are required to be Hermi-
tian by the Hermiticity of the Lagrangian. F a

µν denotes
the gluonic field strength tensor. Here and henceforth,
Λ denotes the cutoff scale of the effective interactions,
which should be at least at the order of the resonance
mass or higher. For the charged scalar boson S±, we
have

LS± = ui

(

hq
Sij + ihq

Pijγ5

)

djS
+ + h.c.

+νi
(

hℓ
Sij + ihℓ

Pijγ5
)

ℓjS
+ + h.c., (3)

where hf
Sij = (hf

S)ij and hf
Pij = (hf

P )ij are allowed to be
general complex matrices.

B. Spin-1 states

Using the same notation, the most general Lagrangian
for the neutral vector boson Vµ is

LV = f iγ
µ
(

gfV ij + gfAijγ5

)

fjVµ, (4)

where gfV ij = (gfV )ij and gfAij = (gfA)ij are required to be
Hermitian matrices. Our convention is fixed with respect

to the SM couplings as gfZV = gZ(
1

2
T f
3 −Qfs2w), gfZA =

− 1

2
T f
3 gZ , where gZ = g/cw, g is the weak coupling and sw

and cw are the sine and cosine of the Weinberg angle. We
have dropped interactions of the neutral vector boson V
with gluons since they do not contribute to this Drell-Yan
process.The charged vector boson has the Lagrangian

LV ± = uiγ
µ
(

hq
V ij + hq

Aijγ5

)

djV
+
µ + h.c.

+νiγ
µ
(

hℓ
V ij + hℓ

Aijγ5
)

ℓjV
+
µ + h.c., (5)

where hf
V ij = (hf

V )ij and hf
Aij = (hf

A)ij are allowed to be
general complex matrices.

C. Spin-2 states

The neutral tensor Lagrangian is given by

LT =
i

Λ

[

f i

(

gfTij − gfATijγ5

)

(γµ∂νfj + γν∂µfj)
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−
(

∂µf iγ
ν + ∂νf iγ

µ
)

(

gf†Tij + gf†ATijγ5

)

fj

]

Tµν

−1

4

ggT
Λ

F a
µαF

aµ
β Tαβ, (6)

where the couplings gfTij = (gfT )ij and gfATij = (gfAT )ij
are general 3 × 3 complex matrices. Note that a
dimension-4 operator between SM fermions and neutral
tensor particle is not allowed since it would be propor-
tional to the trace of the tensor which we have assumed
to be traceless. Finally, the charged tensor has the inter-
action Lagrangian as follows

LT± =
i

Λ

[

ui

(

hq
T ij − hq

ATijγ5

)

(γµ∂νdj + γν∂µdj)

−(∂µuiγ
ν + ∂νuiγ

µ)
(

h̃q
T ij + h̃q

ATijγ5

)

dj

]

T+
µν

+
i

Λ

[

νi

(

hℓ
T ij − hℓ

ATijγ5
)

(γµ∂νℓj + γν∂µℓj)

−(∂µνiγ
ν + ∂ννiγ

µ)
(

h̃ℓ
T ij + h̃ℓ

ATijγ5

)

ℓj

]

T+
µν

+h.c., (7)

where hf
Tij = (hf

T )ij , hf
AFij = (hf

AT )ij , h̃f
Tij = (h̃f

T )ij

and h̃f
ATij = (h̃f

AT )ij are general complex matrices. The
corresponding Feynman rules have been worked out and
can be found in Appendix A.

For later convenience, we define the angle φRX

f as the
strength of the scalar, vector or tensor coupling relative
to the pseudoscalar, axial vector or axial tensor cou-
plings. It is defined by

cosφV
f =

gfV
√

(

gfV

)2

+
(

gfA

)2
,

sinφV
f =

gfA
√

(

gfV

)2

+
(

gfA

)2
, (8)

for a neutral vector boson. For neutral scalar (tensor)
bosons, replace the V with an S (T ) and the A by a P
(AT ). For charged bosons, the V on the left is replaced
with S±, V ± or T± as approprtiate, the g in the cou-
plings is replaced with h and the V and A subscripts
on the right are replaced as in the neutral case. For il-
lustration, we note that φRX

f = 0 corresponds to a pure

scalar, vector or tensor coupling, φRX

f = π/2 corresponds
with a pure pseudoscalar, axial vector or axial tensor cou-
pling, φRX

f = −π/4 corresponds with a pure left chiral

coupling, and φRX

f = π/4 corresponds with a pure right
chiral coupling.

III. NEUTRAL BOSON RESONANCES

Diagrams for the Drell-Yan process pp → ℓ+ℓ−X medi-
ated by a neutral boson at tree level are shown in Fig. 1,
including the SM diagrams with γ/Z exchanges. The
corresponding helicity amplitudes are listed in Table II
where

DX = s−M2
X + iMXΓX . (9)

We have expressed the scattering amplitudes in terms of
the Wigner djm,m′ functions, where j is the total angu-

lar momentum and m and m′ are the difference of the
helicities of the initial-state and final-state particles, re-
spectively [62]. A short review of the djm,m′ functions can
be found in Appendix C. For s-channel scalar resonances,
the initial state particles must have the same helicities to
conserve angular momentum. The same is true for the
final state particles. For this reason, we find that only
the helicity combinations (λ, λ) → (λ′, λ′) are nonzero.
On the other hand, for s-channel vector and tensor inter-
actions, angular momentum is not sufficient to determine
the helicity combinations of the external particles. How-
ever, the combined effect of the masslessness of the ex-
ternal fields and the properties of the interaction vertices
only allows opposite helicities for the incoming particles
and also for the outgoing particles (λ,−λ) → (λ′,−λ′).

A. Invariant mass spectrum

The best observable to discover a new neutral boson
coupling to quarks and charged leptons is in the spectrum
of the invariant mass

M2
ℓℓ = (pℓ+ + pℓ−)

2
, (10)

If there is no interference, the shape of the invariant mass
distribution is of a Breit-Wigner form and peaked at the
mass of the new boson. However, if there is significant
interference between the new resonance and the SM di-
agrams, there can be appreciable changes in the shape.
In particular, the peak may even be shifted. We show
the di-lepton invariant mass distribution in Fig. 2 for
the process pp → ℓ+ℓ−X , only including the subprocess
uū → ℓ+ℓ−, mediated by a scalar (green dot-dashed),
vector (red dotted) and tensor (blue dashed) boson, along
with the SM (black solid) contributions including the full
spin correlations. The row and column headers specify
the nature of the chiral couplings. Here and henceforth,
for illustration, the mass of the new particle is taken to be
1 TeV while the width is taken to be 20 GeV1. We adopt

1 The precise values of the mass and width will not change, qual-
itatively, our results so long as the width is small compared to
the mass and the mass is large compared to the SM W and Z

boson masses.
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FIG. 1: The s-channel Feynman diagrams responsible for pp → ℓ+ℓ−X. Contributions to q̄q → ℓ+ℓ− are from a photon (γ), a
Z boson (Z), a new scalar particle (S), a new vector particle (V ) and a new tensor particle (T ). Contributions to gg → ℓ+ℓ−

are from a new scalar field (gS) and a new tensor field (gT ).

the parton distribution functions (PDF’s) CTEQ6L [63].
The LHC energy is set at 7 TeV unless stated otherwise.
To clearly see the qualitative features of the interference
effects, we have adjusted the resonance rate to be the
same value as the SM background rate near the peak. We
note, however, that these effects could be much smaller
if the magnitudes of the signal and background are very
different.
For massless fermions, the scalar particle amplitude

(MS) is nonzero only for initial and final states of the
same helicity while the SM contribution is nonzero only
for initial and final states of opposite helicities. For this
reason, there is never any interference between the two,
and a scalar field always renders a Breit-Wigner shape
peaked at the mass of the scalar particle. This can be
seen analytically in Table II, and also numerically in the
dot-dashed (green) curves of Fig. 2.
The new vector boson does interfere with the SM. The

amount of interference depends on the parity properties
of the couplings. The interference always flips sign at the
mass of the new boson due to the phase change in the
propagator s−M2

V . In addition, there is an overall sign
coming from the couplings. After summing over helicities
and integrating over the scattering angle θ, we find that
the interference with the SM photon diagram is given by

∑

hel

∫ 1

−1

d cos θ
(

MγM∗
V +M∗

γMV

)

∝ R
(

gqVmig
ℓ
V jn

)

,

(11)
where R(x) means the real part of x. The interference
with the photon is independent of parity violation and
only depends on the sign of the vectorial coupling. The
interference with the Z boson diagram, on the other
hand, is given by

∑

hel

∫ 1

−1

d cos θ (MZM∗
V +M∗

ZMV ) ∝ (12)

R
[

(gqZV g
q
Vmi + gqZAg

q
Ami)

(

gℓZV g
ℓ
V jn + gℓZAg

ℓ
Ajn

)]

,

which has more complicated dependence on the vector
and axial vector couplings. Since gℓZV is very small, the
sign of the interference is more strongly dependent on
the axial coupling to leptons. Again, the interference
can be seen analytically in Table II and numerically in
the dotted (red) curves of Fig. 2.
In the case of the tensor field, the term proportional to

d2m,m′ does not contribute to interference in the invariant

mass distribution since d2m,m′ is orthogonal to d1m,m′ and
this interference vanishes after integration over θ. The
d1m,m′ term of the tensor amplitude is due to the off-shell
effects and does not contribute to the peak at Mℓℓ =
MV . Consequently, the interference is very weak and
not readily observable in the continuum invariant mass
distribution. The final result is that the tensor boson
has a Breit-Wigner shape peaked at its mass as can be
seen in the dashed (blue) curves of Fig. 2, which is hardly
distinguishable from the case of a scalar.

B. Transverse momentum distribution

Once a new boson resonance is established in the in-
variant mass spectrum, it will be of ultimate importance
to study its other quantum numbers, such as its spin, chi-
ral couplings, etc. For a massless particle, the transverse
momentum is related to the scattering angle

pT = E sin θ. (13)

Thus, the differential distribution of pT may contain ad-
ditional information of chiral interactions of the reso-
nance via the interference with the SM diagrams. We
present the transverse momentum distribution of the neg-
atively charged lepton for a variety of parity violation



5

qi(λ)q̄m(−λ) → ℓj(λ
′)ℓ̄n(−λ′)

Mλλ′

γ = N λλ′

γ d11,λλ′ N λλ′

γ = 8παλλ′Qq

Mλλ′

Z = N λλ′

Z d11,λλ′ N λλ′

Z = − 2s
DZ

(λgqZV + gqZA)(λ
′gℓZV + gℓZA)

Mλλ′

V = N λλ′

V d11,λλ′ N λλ′

V = − 2s
DV

(λgqV + gqA)mi(λ
′gℓV + gℓA)jn

Mλλ′

T = N λλ′

T2 d21,λλ′ +N λλ′

T1 d11,λλ′ N λλ′

T2 = − 2λλ′s2

Λ2DT
H+(g

q
T + λgqAT )miH+(g

ℓ
T + λ′gℓAT )jn

N λλ′

T1 =
2λλ′s2(s−M2

T )

Λ2M2
T
DT

H−(g
q
T + λgqAT )mi H−(g

ℓ
T + λ′gℓAT )jn

ga(λ)gb(−λ) → ℓj(λ
′)ℓ̄n(−λ′)

Mλλ′

gT = N λλ′

gT d21,λλ′ N λλ′

gT = −
λλ′g

g
T
s2

2Λ2DT
H+(g

ℓ
Tjn + λ′gℓATjn)δ

ab

qi(λ)q̄m(λ) → ℓj(λ
′)ℓ̄n(λ

′)

Mλλ′

S = N λλ′

S d00,0 N λλ′

S = s
DS

(iλgqSmi − gqPmi)(iλ
′gℓS + gℓP )jn

ga(λ)gb(λ) → ℓj(λ
′)ℓ̄n(λ

′)

Mλλ′

gS = N λλ′

gS d00,0 N λλ′

gS =
g
g
S
s3/2

2ΛDS
(λ′gℓS − igℓP )jnδ

ab

TABLE II: Helicity scattering amplitudes for the parton-level processes. The amplitudes correspond to the diagrams in Fig. 1.
The particles in the s-channel exchange are labelled by subscripts (γ, Z, S, V and T ) while gS and gT indicate that the initial
states are gluons with scalar and tensor exchange, respectively. λ and λ′ are the helicities and we define H±(M) = M ±M†.

cases in Fig. 3. As expected, there is no interference
between a spin-0 state and the SM diagrams. The fact
that a spin-2 resonance interferes with the SM in the
transverse momentum distribution gives us a potential
new way of determining the spin of the resonance, unlike
the invariant mass distribution. If we find interference
present in both the invariant mass distribution and the
transverse momentum distribution, we can conclude that
the new resonance is a spin-1 particle. Furthermore, the
amount of interference and the sign of the interference
can give information about the size and sign of the parity
violation in the couplings. We emphasize that the anal-
ysis of the pT distribution does not require a knowledge
of the quark moving direction, nor the reconstruction of
the CM frame.

C. Angular distribution

One of the main advantages of the present process is
the feasibility to fully reconstruct the CM system of the
two charged leptons that is the rest frame of the new bo-
son. Although we do not know the direction of the quark
on an event-by-event basis, it is strongly correlated with

the direction of the CM frame of the charged lepton pair
due to the parton distribution functions of the quark ver-
sus the anti-quark in a proton [48]. We calculate this
angle by first boosting into the CM frame of the charged
leptons, and then taking the angle between the moving
direction of the negatively charged lepton and the direc-
tion of the boost. In the case of the gluon initial state,
both directions are equally valid and we simply use the
direction of the boost to measure the negatively charged
lepton as in the quark case.
The angular dependence comes from the Wigner djm,m′

functions. For each helicity combination and each spin
for the new boson, these are determined by the kinemat-
ics (see Appendix C). The mixture of the djm,m′ functions
encodes the information of its spin and chiral interac-
tions. For the scalar field, only d00,0 contributes and so
the angular distribution is flat. This can be seen in the
dot-dashed (green) curves of Fig. 4. For a vector field,
the d1±1,±1 functions contribute. Each one is squared and
summed with the appropriate factors (see Table II). This
gives the angular distribution

∑

|MV |2 =
4s2

|DV |2
[

AV (1 + cos θ)2 +BV (1− cos θ)2
]

,
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4

φR0

ℓ = 0

φR0
u = 0 φR0

u = π
4

φR0
u = π

2
φR0
u = 3π
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FIG. 2: (Color online) Invariant mass distribution for the process pp → ℓ+ℓ−X. The vertical axis is the differential cross
section in arbitrary units and the horizontal axis is the dilepton invariant mass running from 950 GeV to 1050 GeV. The row
and column headers specify the nature of the chiral couplings. The solid (black) curve is for the SM, the dot-dashed (green)
curve includes the scalar field, the dotted (red) curve includes the vector field, and the dashed (blue) curve includes the tensor
field. The scalar and tensor curves are indistinguishable and right on top of each other. The mass of the new particle is taken
to be 1 TeV while the width is taken to be 20 GeV. The LHC energy is set at 7 TeV, and the CTEQ6L PDF sets are used.

AV =
(

gq
V R

gℓ
V R

)2
+
(

gq
V L

gℓ
V L

)2
, (14)

BV =
(

gq
V R

gℓ
V L

)2
+
(

gq
V L

gℓ
V R

)2
,

where the left- and right-chiral couplings are related to

the vector and axial-vector couplings as gf
V L

= gfV −
gfA, gf

V R
= gfV + gfA. This is the formula of a parabola

versus cos θ where the amount of parity violation deter-
mines where the minimum lies. This parabolic shape can
be seen in the dotted (red) curves of Fig. 4. We find
that the angular distribution is symmetric whenever ei-
ther coupling is pure vector or axial vector. If both the
quark and the lepton couplings are parity-violating (mix-
tures of 1 and γ5 terms), then the angular distribution
is shifted to one side or the other. The shift is maximal
when both couplings are purely chiral (the magnitude of
the vector coupling equals that of the axial coupling, as
in 1±γ5). However, it is interesting to note that the dis-
tributions are identical for either purely right-handed or
purely left-handed, and are parity-transformed for right-
and left-mixed couplings.

For the tensor field, the angular dependence is mainly
a mixture of the d2±1,±1 functions (the d1±1,±1 functions

give a small perturbation)

∑

|MT |2 =
16s4

Λ4 |DT |2
[

AT (1 + cos θ)
2
(2 cos θ − 1)

2

+ BT (1− cos θ)2 (2 cos θ + 1)2
]

,

where AT and BT are of the same form as in Eq. (14),
but with the tensor couplings. This is a quartic function
with one local maximum and two local minima, a “W”
shape. It can be seen in the dashed (blue) curves of Fig. 4.
In particular, we find that if either of the couplings are
purely tensor (g ∝ 1) or purely axial tensor (g ∝ γ5)
the distribution is symmetric, with the local maximum
occurring at cos θ = 0. However, if both quark and lep-
ton couplings are mixtures of 1 and γ5, then the curves
shift toward one side or the other, leading to parity vio-
lation. As in the vector case, the shift is maximal when
the coefficient of 1 has the same magnitude as that of γ5.
To be more realistic, we fold in the CTEQ6L parton

distribution functions and adopt some basic acceptance
cuts on the transverse momentum and its pseudo-rapidity
for the charged leptons

pTℓ > 20 GeV, |ηℓ| < 2.5. (15)
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FIG. 3: (Color online) Transverse momentum distribution of ℓ− for the process pp → ℓ+ℓ−X. The vertical axis is the differential
cross section in arbitrary units and the horizontal axis is the transverse momentum running from 450 GeV to 525 GeV. The
row and column headers specify the nature of the chiral couplings. The curve legends are the same as in Fig. 2.

We see the effects in the three panels on the right-hand
side in Fig. 4. Due to the misidentification of the correct
quark momentum direction, the far forward/backward
regions are diluted. The rapidity cut limits the angle
reach in the same region as seen at the drop near 0.8.

D. Forward-backward asymmetry

It is customary to construct the forward-backward
asymmetry, based on the partially integrated rates in the
opposite angular regions, which can be defined as

AFB(c0) =
N(cos θ > c0)−N(cos θ < −c0)

N(cos θ > c0) +N(cos θ < −c0)
. (16)

c0 = 0 will lead to the largest event rate, while a particu-
lar choice of c0 may optimize the size of the asymmetry2.
It is clear that a scalar field will give AFB = 0 for any

value of c0 since it has a flat angular distribution.

2 The asymmetry can be defined with any differential form with
respect to the angular range. Other Lorentz invariant asymme-
tries have also been proposed, for example [64, 65]. Others have
noted that the asymmetry can be used to discriminate between
different Z′ models [3, 6, 27, 32, 66–71].

For a vector field, it is natural to use c0 = 0. It can
be shown that the forward-backward asymmetry at the
peak of a vector resonance is given by

AV
FB = AFB(0) =

3

4

AV −BV

AV +BV

(17)

=
3gqV g

ℓ
V g

q
Ag

ℓ
A

[(gqV )
2 + (gqA)

2]
[

(gℓV )
2 + (gℓA)

2
] =

3

4
sin 2φq sin 2φℓ,

where φV
q and φV

ℓ are defined in Eq. (8). Eq. (17) shows
that the absolute value of the asymmetry is bounded to
be less than or equal to 3/4. Also, if any of the couplings
gqV , g

q
A, g

ℓ
V and gℓA is identically zero, there is no forward-

backward asymmetry, resulting in parity conservation.
The SM asymmetry for the uū → ℓ+ℓ− process at

√
s ≫

MZ is approximately 0.6. As mentioned before, the quark
momentum direction is ambiguous in pp collisions. We
thus take the angle in the CM frame with respect to the
boost direction, which is more likely to be the direction
of the quark.
Again, to be more realistic, we convolute with the par-

ton distribution functions, and take the acceptance cuts
as in Eq. (15). In Fig. 5(a) and 5(b), we present the equal-
valued contours of forward-backward asymmetry for a
vector resonance in the φV

u -φ
V
ℓ plane. Fig. 5(a) shows

contours for uū → ℓ+ℓ− via the resonance only, and Fig.
5(b) includes the PDF convolution at the hadronic level.
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FIG. 4: (Color online) Angular distributions of ℓ− in the CM frame for the process pp → ℓ+ℓ−X. The curve legends are the
same as in Fig. 2. In the top row purely scalar, vectorial and tensorial couplings are used. In the second row left chiral couplings
are used while in the third row left chiral couplings are used for the quark but right chiral couplings are used for the leptons.
In the left column the PDF’s are turned off and the lab frame is the same as the CM frame, while on the right, the PDF’s are
turned on and the boost direction is used. On the right panels, the visible bend-down feature in the forward-backward regions
is due to the kinematical cuts as described in the text.

We see that the asymmetry is reduced when the parton
distribution functions are turned on and acceptance cuts
imposed. The SM value becomes ∼ 0.37. As for the sig-
nal, the maximum is reduced from 3/4 to ∼ 0.41. The
reason for this is that the boost direction corresponds
with the quark direction much of the time but is some-
times in the opposite direction. The asymmetry breaks
up into quadrants separated by the angles φV = nπ/2 for
some integer n where the asymmetry is 0. This is where
the sign of the vectorial or axial coupling changes sign,
thus changing the sign of the asymmetry.

For a tensor particle, we find that c0 6= 0 is required
to obtain a non-zero asymmetry. This can be seen by
noting that for c0 = 0,

∫ 0

−1

d cos θ
[

AT (1 + cos θ)
2
(2 cos θ − 1)

2

+BT (1− cos θ)2 (2 cos θ + 1)2
]

=

∫ 1

0

d cos θ
[

AT (1 + cos θ)
2
(2 cos θ − 1)

2

+BT (1− cos θ)
2
(2 cos θ + 1)

2
]

for all values of AT and BT . In other words, although
the tensor distribution is asymmetric, it always shifts in
such a way as to have equal area under the angular dis-
tribution for positive and negative values of cos θ. For
this reason, it is necessary to use c0 6= 0. We find that
the difference is maximized when c0 = 1/

√
2.

AT
FB = AFB

(

1√
2

)

=
5

16− 7
√
2

AT −BT

AT +BT

=
20

16− 7
√
2

gqT g
ℓ
T g

q
ATg

ℓ
AT

[(gqT )
2 + (gqAT )

2]
[

(gℓT )
2 + (gℓAT )

2
]

=
5

16− 7
√
2
sin 2φT

q sin 2φT
ℓ , (18)
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FIG. 5: Contours of forward-backward asymmetry labelled by the values of AFB in the uū → ℓ+ℓ− process. In the first row
(a) and (b), a vector resonance is presented and in the second row (c) and (d), a tensor resonance is presented. Plots (a)
and (c) show the result with the new physics amplitude alone in the lab frame while plots (b) and (d) include the PDF’s and
acceptance cuts.

where φT
q and φT

ℓ are defined at the end of Section II.
Similar to Figs. 5(a) and 5(b), the equal-valued contours
of forward-backward asymmetry for a tensor resonance
are presented in Figs 5(c) and 5(d). We again see that
the asymmetry is reduced when the parton distribution
functions are turned on. The maximum asymmetry is
reduced to a little greater than∼ 0.37. The sign is similar

to the vector case.

If an experiment discovers a resonance in the invariant
mass distribution of the neutral Drell-Yan process, mea-
suring the forward-backward asymmetry could help dis-
tinguish the spins in the early days before enough events
are accumulated for reconstructing the angular distribu-
tion. If a significant asymmetry is found in AFB(0), this
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would be evidence of a new vector resonance. If no asym-
metry is found in AFB(0), then one should further deter-

mine AFB(1/
√
2). If AFB(1/

√
2) is significantly different

from zero while AFB(0) = 0, then this would be evidence
of a new tensor particle. If both are zero, then this is evi-
dence for a symmetric distribution, but could come from
any of the spins we have discussed here.

IV. CHARGED BOSON RESONANCE

Charged bosons contribute to the Drell-Yan process
pp → ℓ±νX through the diagrams in Fig. 6 at tree level.
The resulting amplitudes are shown in Table III.

A. Transverse mass distribution

The first place we will look for a charged boson in
Drell-Yan processes is in the transverse mass. Since we
can not detect the neutrino, we can not fully reconstruct
the invariant mass of the lepton system. The best one
can do is to construct the transverse mass which contains
the charged lepton momentum and the missing transverse
momentum:

M2
T = (ETℓ + ETmiss)

2 − (pTℓ + pTmiss)
2
, (19)

where the transverse energy is defined as ET =
√

M2 + p2T , and pTmiss is identified as pTν . In practice,
we assume that the SM leptons are massless. Further-
more, in a 2 → 2 process in the absence of transverse
motion, the missing transverse momentum is equal and
opposite to that of the charged lepton. This allows us
to simplify the transverse mass to MT = 2pTℓ. This
transverse mass distribution develops a Jacobian peak at
the mass of the resonance particle. We plot examples
of transverse mass distributions for a variety of parity
violation cases in Fig. 7. Once again, we see that the
shape of the transverse mass distribution depends on the
parity properties of the fermionic couplings3. Both the
vector and the tensor shapes are modified, due to the
interference effects near the resonance peak, while the
scalar shape remains fixed. This could be important in
determining the mass of a new charged resonance. More-
over, the discovery of interference in the transverse mass
distribution implies that the spin of the new resonant
particle is greater than 0 while the sign and size of the
interference can give information about the sign and size
of the parity violation in the couplings. We emphasize
that the analysis of the transverse mass distribution does
not require a knowledge of the quark moving direction,
nor the reconstruction of the CM frame.

3 The importance of the transverse mass in determining the prop-
erties of the couplings has also been discussed in [72].

B. Angular distribution

Unlike the case mediated by a neutral boson, the angu-
lar analysis is known to be difficult for the charged boson
mediation due to the missing neutrino in the final state,
especially for the LHC as a symmetric pp collider4. As-
suming that pTν = −pTℓ, we can solve for pzν in terms
of the measured charged lepton momentum and the lep-
tonic invariant mass Mℓν

pzν = pzℓ

(

M2
ℓν

2p2Tℓ

− 1

)

± MℓνEℓ

pTℓ

√

M2
ℓν

4p2Tℓ

− 1 , (20)

where all quantities are in the lab frame. If the width
of the new resonance is sufficiently small, then the in-
variant mass is well approximated by the resonant mass
Mℓν ∼ M . With a clear signal identification, the res-
onance mass could be measured in the transverse mass
distribution, just like the MW determination in the SM.
Even so, we still have a two-fold ambiguity in pzν . On
an event-by-event basis, we do not know which one is
correct. Instead, for each solution, we can calculate the
angle of the charged lepton in the CM frame with respect
to the boost direction to approximate the quark moving
direction, formally defined by

cos θ = sign(pzℓ + pzν)
pCM
zℓ

ECM
ℓ

, (21)

which in turn also suffers from the above ambiguity. We
denote the smaller solution of |pzν | by the subscript S
and the larger solution by the subscript L. The cosines
of these angles in the CM frame, can be expressed by the
lab quantities as

cos θS = −
√

1− 4p2Tℓ

M2
sign

(

M

2
− Eℓ

)

,

cos θL = −
√

1− 4p2Tℓ

M2
. (22)

When Eℓ = M/2, this corresponds to the situation where
the lab frame and the CM frame coincide. Both solutions
of cos θ are identical when Eℓ ≤ M/2 5. On the other
hand, the two solutions differ by a sign when Eℓ > M/2.
In this latter case, when a wrong solution is chosen, it
simply moves the angle from cos θ → − cos θ. We show
a contour plot of cos θ in the pzℓ − pTℓ plane for the
two solutions in Fig. 8. As is clear in the plot, cos θ
does not depend on pzℓ except at the transition point
Eℓ = M/2 =

√

p2Tℓ + p2zℓ, where it flips sign.

4 Other attempts to reconstruct the spin with a missing particle
can be found in [73–88].

5 However, there is still the possibility that the boost direction does
not coincide with the quark direction as in the neutral current
case.
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FIG. 6: The s-channel Feynman diagrams responsible for pp → ℓν̄X. Contributions to this process are from a W boson (W ),
a new scalar particle (S), a new vector particle (V ) and a new tensor particle (T ).

di(λ)ūm(−λ) → ℓj(λ
′)ν̄n(−λ′)

Mλλ′

W = Cλλ′

W δλ′,−1d
1
1,1 Cλλ′

W = −
g2W V KM

ij s

DW
δλ,−1

Mλλ′

V = Cλλ′

V d11,λλ′ Cλλ′

V = − 2s
D

V ±
(λhq

V + hq
A)mi(λ

′hℓ†
V + hℓ†

A )jn

Mλλ′

T = Cλλ′

T2 d21,λλ′ + Cλλ′

T1 d11,λλ′ Cλλ′

T2 = − 2λλ′s2

Λ2D
T±

T+(h
q
T + λhq

AT )miT+(h
ℓ†
T + λ′hℓ†

AT )jn

Cλλ′

T1 = −
2λλ′s2(s−M2

T±
)

Λ2M2

T±
D

T±
T−(hq

T + λhq
AT )miT−(h

ℓ†
T + λ′hℓ†

AT )jn

di(λ)ūm(λ) → ℓj(λ
′)ν̄n(λ

′)

Mλλ′

S = Cλλ′

S d00,0 Cλλ′

S = s
D

S±
(iλhq

S − hq
P )mi(iλ

′hℓ†
S + hℓ†

P )jn

TABLE III: Helicity scattering amplitudes for the parton-level processes. The amplitudes correspond with the diagrams in
Fig. 6. The particles in the s-channel exchange are labeled by subscripts (W , V , T and S). λ and λ′ are the helicities and we

define T±(M) = M ± M̃ where M̃ means that we replace h by h̃ in M .

These observations lead us to reconstruct adequate an-
gular variables to compensate the loss of information due
to the missing neutrino. By taking the large solution
cos θL, which is negatively definite, we obtain the distri-
bution −| cos θ|. Convoluting with the PDF and impos-
ing the acceptance cuts

pTℓ > 250 GeV, pTmiss > 250 GeV, |ηℓ| < 2.5, (23)

we reconstruct the angular distributions as seen in the
left column of Fig. 9. We further symmetrize the dis-
tribution by splitting the large solution in half and tak-
ing the mirror image on the cos θ > 0 side, as seen in
the right column of Fig. 9 with the solid (black) curves.
With this prescription, we reproduce the correct angular
distribution if the true distribution is symmetric (e.g.,
no parity violation), and we only obtain the average over
the positive and negative regions of cos θ, as compared
with the dashed (blue) curves in the right column that
present left-left chiral couplings for a vector and a tensor
state. In all cases, the spin information is well preserved
and this gives us an unambiguous way to determine the
spin of a charged boson resonance without the need to
reconstruct the CM frame.

On the other hand, the small solution carries both signs
and thus contains information not only about the spin,
but also the asymmetry. In the region Eℓ < M/2, this
solution is the same as the large solution and thus the
angle is typically correctly reconstructed. In the region
Eℓ > M/2, however, either this solution or the one with
an opposite sign could be right and we cannot determine
it on an event-by-event basis. In each plot in the left col-
umn of Fig. 10, we plot the angular distribution using the
small solution. The distribution is different for each spin
and asymmetry and it generally covers the entire range of
cos θ. As expected, the small solution is essentially cor-
rect about cos θ <∼ −0.6, but there is a clear deficit when
cos θ approaches 0−. The missing events are incorrectly
assigned to the bins in − cos θ > 0, which is also seen as
an excess near cos θ → 0+.

Fortunately, we are able to simulate the expectation
and thus restore the distribution on a statistical basis.
In each plot on the right column of Fig. 10, the dashed
(blue) curve is the expected angular distribution if we
know the full momentum information of the neutrino.
For cos θ > 0, we take the difference between the solid
(black) curve on the left column and the dashed (blue)
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FIG. 7: (Color online) Transverse mass distribution for the process pp → ℓ±νX. The vertical axis is the differential cross
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large solution is negative everywhere while the small solution
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curve on the right column, to obtain the excess. We
would like to move those events back to the bins in
− cos θ < 0 to restore the original distribution. It is

very important to realize that the fractional excess (the
above excess divided by the solid (black) curve on the
left column) turns out to be numerically the same for all
of the scalar, vector and tensor resonances. Denoted by
f as a function of cos θ, we obtain this simulated frac-
tional excess as a universal function for all spins, shown
in Fig. 11. This observation leads to a powerful procedure
for the restoration of the angular distribution: Given a
data set, presumably like the solid (black) curve on the
left column, we apply the fractional excess function to
the cos θ > 0 region bin by bin, then subtract this re-
sult out from the data, and finally move the result to the
region of cos θ < 0 for the correction.

Plotted on the right column in solid (black) are the
corrected angular distributions. In the case of symmetric
distributions, the reconstruction works perfectly and the
solid (black) curve completely coincides with the expec-
tation of the dashed (blue) line. In the case of asym-
metric distributions, the reconstruction is perfect on the
edges but slightly off in the middle where the dashed
(blue) curve can be seen. This is due to the more likely
mismatch between the directions for the true quark mo-
mentum and the boost. Nevertheless, it is sufficient to
present features of the asymmetry. We reiterate that
our correction for each distribution is independent of the
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FIG. 9: (Color online) Angular distribution of ℓ for the pro-
cess pp → ℓν when only the large solution of the neutrino pz
is taken. The cut-off feature in the forward-backward regions
is due to the kinematical cuts as described in the text.

resonance spin, although it depends on the parton distri-
bution function as well as the mass of the new resonant
particle.

C. Forward-backward asymmetry

The angular distributions for the large solution average
out the events and thus lead to no asymmetry. The cor-
rected angular distributions for the small solution as in
the right column of Fig. 10 preserve the asymmetry prop-
erty to a large extent. We could use these angular distri-
butions in the same way as in the neutral current case, or
we could use the small solution directly only in the region
| cos θ| >∼ 0.5 without performing the cos θ ↔ − cos θ cor-
rection. Thus similar analyses to Fig. 5 in the the neutral
currents can be performed. This is a significant progress
for the charged boson signal at the LHC as a symmetric
collider.
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FIG. 10: (Color online) Angular distribution of ℓ for the pro-
cess pp → ℓν when only the small solution of the neutrino
pz is taken. Each row lists a case of distinct spin and parity
violation. Each plot on the left gives the angular distribution
directly obtained from the small solution. On the right, the
dashed (blue) curve is the angular distribution with full mo-
mentum information of the neutrino. The solid (black) curve
is the angular distribution obtained from the corresponding
distribution on the left by following the procedure explained
in the main text. The cut-off feature in the forward-backward
regions is due to the kinematical cuts as described in the text.
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V. SEARCHES FOR DRELL-YAN TYPE
SIGNALS AT THE LHC

A. Neutral current channel

The CMS and ATLAS Collaborations have studied
dilepton events at 7 TeV in search of a heavy neutral
boson [89, 90]. They present their results in terms of the
production cross section times branching fraction as a
function of mass, which takes into account the couplings,
mass and width of the new particle for general spin. In
this note, we extend this by projecting the expected 95%
confidence level bounds to 10 fb−1 at 7 TeV and 10 fb−1

and 300 fb−1 at 14 TeV. We also place bounds on the
product of couplings as a function of mass for each spin
while using a standard width.
We simulate the process pp → ℓ+ℓ−X in the SM at

tree level using the parton-level Monte Carlo package
CalcHEP [91, 92] and normalize our parton-level calcula-
tions to the data by fitting to the two highest bins (from
85 GeV to 95 GeV) from Fig. 2 of Ref. [89]. Including the
numerical normalization factors 0.56 for the e+e− chan-
nel and 1.01 for the µ+µ− channel, our results and the
CMS data are given in Fig. 12 by the solid (black) curve
and the (black) dots, respectively. Signals, including
interference with the SM background, corresponding to
new resonances of different spins, masses, and fermionic
couplings were then done and superimposed on the plot.
For simplicity and illustration purposes, we assumed that
all the couplings were taken to be real in the numerical
studies and that only the first two generations of fermions
were taken into account. In the case of the new vector bo-
son, we used the same couplings as for the SM Z. For the
scalar boson, we used the same absolute value for the cou-
plings but we did not include pseudo-scalar or flavor non-
diagonal couplings (i.e. gqS11

gℓS22 = gqS22
gℓS22 = 0.035).
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FIG. 12: (Color online) Invariant mass distribution of the
charged leptons for the process pp → µ+µ−X at the LHC
with 7 TeV. The solid (black) curve is the SM expectation
while the dot-dashed (green), dotted (red) and dashed (blue)
curves are respectively for spin-0, -1, and -2 resonances with
a mass of 750 GeV and a width of 22.5 GeV. The latest CMS
data [89] are superimposed in the figure as the (black) dots
with vertical error bars.

For the tensor, we did the same as for the scalar except
that we multiplied the product of couplings by 10−6 (i.e.
gqT11

gℓT22 = gqT22
gℓT22 = 0.035× 10−6).

In numerical estimates of the signal events, the width
of the new resonance was taken as 3% of its mass, in line
with the assumption made in Ref. [89]. We considered
the events in the invariant mass window of ±20% of its
mass

4

5
M ≤ Mℓℓ ≤

6

5
M , (24)

where M is the mass of the new particle. The number
of events for the e+e− and µ+µ− channels were added
(N = Ne + Nµ) to give the total number of predicted
events for the SM. This number of events was plugged
into the one bin log likelihood [62]

LL = 2

[

N ln

(

N

ν

)

+ ν −N

]

, (25)

where ν is the number of events (for both the e+e− and
µ+µ− channels) expected in the SM plus the new boson.
A value of LL = 4 was taken as the 95% confidence level
and ν was solved for. Taking into account the SM expec-
tation and given an available integrated luminosity, this
is converted into a signal cross section times the branch-
ing fraction for a given mass, and the results are plotted
in Fig. 13 for 7 TeV and 14 TeV.
We wish to emphasize that our results here can be

broadly applied to any resonant signal as outlined in the
earlier sections. The production cross section is governed
by the resonant coupling to the initial state partons, and
the decay branching fraction is proportional to the cou-



15

pling to the final state leptons. Thus with the determina-
tion of the resonant mass and width by the kinematical
peak and the line shape, we expect to gain the informa-
tion for the fundamental couplings gqgℓ for a scalar or a
vector resonance, and gqgℓ/Λ

2 for a tensor.
To illustrate this point, we take the commonly studied

“sequential Z ′ model” as an example for a vector reso-
nance (Z ′

SM ), which has the same coupling as the SM Z
boson. In Fig. 13, we also include the cross section times
branching fraction (the blue dashed curve) for this model
as labeled by Z ′

SM . Where this curve crosses the solid
(black) curve gives the bound (or projected bound) for
this model. We find a lower bound on Z ′

SM of 1135 GeV
consistent with the CMS results. We also find that CMS
could bound the mass at ∼ 2.5 TeV with 10 fb−1 at
7 TeV, ∼ 4.1 TeV with 10 fb−1 at 14 TeV and ∼ 5.5 TeV
with 300 fb−1 at 14 TeV. This procedure can easily be ap-
plied to other specific models. The couplings and widths
simply need to be set and the mass scanned over to de-
termine the cross section times branching fraction.

B. Charged current channel

Following the same procedure as in the previous sec-
tion, we calculate the 95% confidence level bounds and
projected bounds on a new charged resonant boson. We
base our results on the the CMS data published in
[93, 94]. We simulate pp → ℓν (ℓ = e, µ) in the SM
at tree level, again using the parton-level Monte Carlo
package CalcHEP, and normalize our parton-level calcu-
lations to the data by multiplying our simulation with a
numerical factor which brings the two highest bins (from
50 GeV to 100 GeV) into agreement. We found the nu-
merical factor to be 0.76 for the electron and 0.91 for
the muon. A plot of our SM calculation and the CMS
data can be seen in Fig. 14 where the solid (black) line
is the parton-level prediction of the SM and the (black)
dots are the CMS data for the case of the muon. For
illustration, for the new vector boson in this figure, we
used the same couplings as for the SM W . For the scalar
boson, we used the same absolute value for the couplings
but we did not include pseudo-scalar or flavor nondi-
agonal couplings (i.e. hq

S11
hℓ
S22 = hq

S22
hℓ
S22 = 0.0534).

For the tensor, we did the same as for the scalar except
that we multiplied the product of couplings by 10−6 (i.e.
hq
T11

hℓ
T22 = hq

T22
hℓ
T22 = 0.0534× 10−6).

In numerical estimates of the signal events, the width
of the new resonance was taken as 2% of its mass.
The significance was calculated by taking the number
of events in the window

2

5
M < MT <

6

5
M . (26)

The one bin log likelihood was then calculated for the
sum of the electron case and the muon case.
We again plotted the LL = 4 line as the 95% confidence

level in Fig. 15. Once again, to illustrate the approach to
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FIG. 13: (Color online) 95% C. L. bound on the production
cross section times branching fraction versus the new resonant
boson mass. The curve labeled CMS is with respect to the
data measured by the CMS Collaboration [89], while the other
solid (black) curves are projections for the specified integrated
luminosity. The dashed (blue) curve is for a Z′ with the same
couplings as the SM Z.

generalize to other models, we plot the cross section times
branching fraction of a new charged vector boson with
the same couplings as that in the SM, the “sequential W ′

model”, denoted by W ′
SM . We find that W ′

SM is bound
to be heavier than 1500 GeV at 95% confidence level
which is close to the CMS result [93]. We also find that
CMS could achieve a bound of ∼ 2.5 TeV with 10 fb−1 at
7 TeV, a bound of ∼ 4.5 TeV with 10 fb−1 at 14 TeV and
a bound of ∼ 5.2 TeV with 300 fb−1 at 14 TeV. We again
note that this procedure can be followed with any models.
After the couplings and widths are set appropriately, the
cross section times branching fraction can be calculated
and plotted as a function of mass.
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FIG. 14: (Color online) Transverse mass distribution of the
charged lepton at the LHC with 7 TeV. The solid (black) curve
is the SM expectation while the dot-dashed (green), dotted
(red) and dashed (blue) curves are respectively for spin-0, -
1, and -2 resonances with a mass of 1 TeV and a width of
20 GeV. The latest CMS data [94] are superimposed as the
(black) dots with vertical error bars.

VI. SUMMARY

We have considered the most general new resonant s-
channel contributions to Drell-Yan production of leptons
at the LHC including spin-0, 1 and 2 bosons. We formu-
lated the most general leading-order interactions between
these new particles and the SM fields involved in the DY
channel that satisfy Lorentz and EM invariances includ-
ing both parity conserving and violating terms. Using
these interactions, we have calculated the helicity ampli-
tudes and expressed them in terms of the Wigner djm,m′

functions, explicitly showing the angular dependence of
these collisions in the CM frame.
For the neutral current process pp → ℓ+ℓ−X , we find

that

• the lepton pair invariant mass distribution may
provide information for the chiral interactions. A
new spin-1 field interferes with the SM process,
thus modifying its shape from the Breit-Wigner
resonance and the position of its peak, while both
spin-0 and spin-2 fields do not have significant in-
terference with the SM and appear as simple Breit-
Wigner resonances.

• the transverse momentum of the charged lepton
also provides information for the chiral interactions.
Both the spin-1 and spin-2 fields present interfer-
ence with the SM background. Along with the in-
variant mass distribution, this gives another way to
distinguish between the spins.

• defining an angle of ℓ− with respect to the boost
direction (likely to be the initial quark direction)
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FIG. 15: (Color online) 95% C. L. bound on the production
cross section times branching fraction versus the new reso-
nant boson mass. The curve labeled CMS is with respect to
the data measured by the CMS Collaboration [93, 94], while
the other solid (black) curves are projections for the specified
integrated luminosity. The dashed (blue) curve is for a W ′

with the same couplings as the SM W .

in the CM frame of the system, one is able to con-
struct the Wigner djm,m′ functions as well as their
asymmetry due to parity violation. We note that
an asymmetry only occurs for a spin-1 or 2 boson
when both the quark coupling and the lepton cou-
pling are not either purely vectorial (tensorial) or
axial vector (axial tensor) and is maximized when
the vectorial (tensorial) and axial (axial tensor)
couplings are equal in magnitude.

• although it is well-known that a chiral spin-1 bo-
son generates an asymmetry when the forward and
backward directions are defined in the full angular
range from 0 < cos θ < 1 and −1 < cos θ < 0, re-
spectively, the tensor asymmetry would be zero if
taking this range. Instead, we find that the asym-
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metry is maximized for the tensor when considering
the asymmetry in the range 1/

√
2 < cos θ < 1 and

−1 < cos θ < −1/
√
2, respectively. Thus the asym-

metry gives a new way to distinguish between the
spins.

• scanning over mass and cross section times branch-
ing fraction for the new bosons, we obtained the
95% confidence level bounds based on the current
CMS results as well as projected bounds for future
integrated luminosities and machine energies. To
illustrate how to apply our formulation and calcu-
lation to other DY resonances, we plotted the cross
section times branching fraction as a function of
mass for a new vector boson with the same cou-
plings as the SM Z boson (denoted by Z ′

SM ).

For the charged current process pp → ℓ±νX , we find
that

• the ℓν transverse mass distribution may provide in-
formation for the chiral interactions. Spin-1 and
spin-2 fields interfere with the SM process, thus
modifying its shape from the conventional nonin-
terfering transverse mass distribution as well as
the position of the Jacobian peak while a spin-0
field does not have significant interference with the
SM and appears with the conventional shape. The
shifted position of the peak can be important in
determining the mass of the new resonance.

• although determining the angle of ℓ± with respect
to the boost direction is more challenging due to the
two-fold ambiguity in the z-component of the neu-
trino momentum, we find a novel statistical method
for reconstructing the angular distribution. This
method involves creating two distributions, one for
the small neutrino z-component momentum and
another for the large neutrino z-component mo-
mentum. We find that the large solution faithfully
preserves the symmetrized Wigner djm,m′ function
and therefore fully determines the spin of the new
resonance but not the asymmetry. The small solu-
tion distribution, on the other hand, does contain
information about the asymmetry and we show how
that information can be extracted.

• scanning over mass and cross section times branch-
ing fraction for the new bosons, we obtained the
95% confidence level bounds based on the current
CMS results as well as projected bounds for future
integrated luminosities and machine energies. To
illustrate how to apply our formulation and calcu-
lation to other DY resonances, we plotted the cross
section times branching fraction as a function of
mass for a new vector boson with the same cou-
plings as the SM W boson (denoted W ′

SM ).

We would like to reiterate that our formulation makes
the future phenomenological and experimental searches

straightforward. Our proposal for the large and small so-
lutions for the charged current channel overcomes the dif-
ficulty of the two-fold ambiguity due to the missing neu-
trinos, that should be adopted for studies of new charged
resonances.
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Appendix A: Feynman Rules

In this appendix, we provide the Feynman rules used in
the analyses. The interaction vertices between the neu-
tral resonances and the SM fields are listed in Fig. 16.
The interaction vertices between the charged resonances
and the SM fermions are listed in Fig. 17. The relevant
SM vertices are reproduced in Fig. 18 to fix our conven-
tion.

Appendix B: FeynRules Implementation

We implemented our formulation using the FeynRules
Mathematica package [95]. We will make the Feyn-
Rules model files available through the FeynRules model
database where those who are interested can download
and use it. We briefly describe this implementation in
this section.
This implementation uses two FeynRules model files.

The first is the SM that comes with FeynRules (“SM.fr”),
although we will include a copy of this file in case changes
are made to the SM model files later. We added all the
new particles, parameters and Lagrangian terms to a new
file we call “plus.fr”.
The names of the particles along with their charge,

mass and width are listed in Table IV. These are the
names that are used when running a Monte Carlo pro-
gram.
The couplings are implemented with names that are

similar to the ones we use in this article. However, there
is a six-character limit in CalcHEP for the names of pa-
rameters, so some names are shortened. We list the pa-
rameter names in Table V. The couplings are imple-
mented in a very general way in the FeynRules file and
are all set to zero by default so that the user can turn
on the vertices that they are interested in. Some are re-
moved from the Monte Carlo file using “Definitions” in
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ub
j

ua
i

S [i(gu
S)ij − (gu

P )ijγ5]δ
ab

db
j

da
i

S [i(gd
S)ij − (gd

P )ijγ5]δ
ab

ℓj

ℓi

S i(gℓ
S)ij − (gℓ

P )ijγ5

ua
j

ub
i

Vµ iγµ[(gu
V )ij + (gu

A)ijγ5]δ
ab

da
j

db
i

Vµ iγµ[(gd
V )ij + (gd

A)ijγ5]δ
ab

ℓj

ℓi

Vµ iγµ[(gℓ
V )ij + (gℓ

A)ijγ5]

ub
j

ua
i

Tµν i
Λ[(gu

T )ij − (gu
AT )ijγ5](γ

µpν
1 + γνp

µ
1)δab

+ i
Λ
[(gu†

T )ij − (gu†
AT )ijγ5](γ

µpν
2 + γνp

µ
2)δ

ab

p1

p2

db
j

da
i

Tµν i
Λ[(gd

T )ij − (gd
AT )ijγ5](γ

µpν
1 + γνp

µ
1)δab

+ i
Λ
[(gd†

T )ij − (gd†
AT )ijγ5](γ

µpν
2 + γνp

µ
2)δ

ab

p1

p2

ℓj

ℓi

Tµν i
Λ[(gℓ

T )ij − (gℓ
AT )ijγ5](γ

µpν
1 + γνp

µ
1)

+ i
Λ
[(gℓ†

T )ij − (gℓ†
AT )ijγ5](γ

µpν
2 + γνp

µ
2)

p1
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Ga
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Gb
ν

S − ig
g
S

Λ ( − p1 · p2g
µν + pν

1p
µ
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FIG. 16: Interaction vertices between the new bosons and SM fields.

the FeynRules model file. These can easily be turned
on by removing the appropriate definitions (the full cou-
plings are included in the Lagrangians), but the user
should remember the hermiticity requirements on some
of the couplings. Furthermore, if the user desires to use
this implementation with a Monte Carlo package that can
handle complex parameters, it is possible to turn off the
splitting of these couplings into real and imaginary parts
by commenting out the “Definitions” line of the complex
couplings.

The full Lagrangians described in this article were in-
cluded in the FeynRules model files. FeynRules was then
run on this file and all the resulting vertices were checked
against our independent calculations of these vertices and
agreement was found.

The CalcHEP interface [96] was then run on this
model, which generated a set of CalcHEP model files.
We used CalcHEP to generate the analytic formulas for
the squared matrix element for all the 2 → 2 Drell-Yan
processes where we only included the first generation
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db
j

ua
i

S+ [i(hq
S)ij − (hq

P )ijγ5]δ
ab

ℓj

νi

S+ i(hℓ
S)ij − (hℓ

P )ijγ5

db
j

ua
i

V +
µ iγµ[(hq

V )ij + (hq
A)ijγ5]δ

ab<

ℓj

νi

V +
µ iγµ[(hℓ

V )ij + (hℓ
A)ijγ5]<

db
j
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i

T+
µν i

Λ[(hq
T )ij − (hq

AT )ijγ5](γ
µpν

1 + γνp
µ
1)δab<

p1
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+ i

Λ
[(h̃q

T )ij − (h̃q
AT )ijγ5](γ

µpν
2 + γνp

µ
2)δ

ab

ℓj
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Λ[(hℓ
T )ij − (hℓ
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FIG. 17: Interaction vertices between the new charged bosons and SM fermions.
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FIG. 18: Interaction vertices between the SM gauge bosons and fermions, where the weak coupling gW is related to the Fermi
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fermions. We checked these formulas against our own in-
dependent calculations of these squared matrix elements
and found agreement. We then used these model files to
do the numerical studies described in this article.

These model files are intended to be used in unitary
gauge and below the effective cutoff of these vertices.
Furthermore, these interactions are not ultraviolet com-
plete and should not be used for other processes than the
Drell-Yan processes described here.

Appendix C: dj
m,m′ Function Review

In this appendix, we briefly review the Wigner djm,m′

functions. Suppose the incoming state has total angu-
lar momentum j and total spin m along the direction
of motion of one of the particles. We will call this the
z-direction and the total spin is the difference of the par-
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Name Mass Width

S SV MSV WSV

Vµ VV MVV WVV

Tµν TV MTV WTV

S± SVP± MSVP WSVP

V ±
µ VVP± MVVP WVVP

T±
µν TVP± MTVP WTVP

TABLE IV: Particles implemented in FeynRules. In the first
column is the symbol we use for the particle in this article.
In the last 3 columns are the ASCII names we use for these
particles, their masses and widths in FeynRules. These are
the names that would be used in a simulation. The masses
are set to 1 TeV by default while the widths are set to be
20 GeV by default, but both of these parameters are free and
can be set by the user.

Name Real part Imaginary part

gfSij gSfij gSfRij gSfIij

gfPij gPfij gPfRij gPfIij

ggS gSg

gfV ij gVfij gVfRij gVfIij

gfAij gAfij gAfRij gAfIij

ggV gVg

gfTij/Λ gTfij gTfRij gTfIij

gfATij/Λ gUfij gUfRij gUfIij

ggT /Λ gTg

hf
Sij hSfij hSfRij hSfIij

hf
Pij hPfij hPfRij hPfIij

hf
V ij hVfij hVfRij hVfIij

hf
Aij hAfij hAfRij hAfIij

hf
Tij/Λ hTfij hTfRij hTfIij

hf
ATij/Λ hUfij hUfRij hUfIij

h̃f
Tij/Λ hYfij hYfRij hYfIij

h̃f
ATij/Λ hZfij hZfRij hZfIij

TABLE V: Couplings implemented in FeynRules. In the first
column is the symbol we use for the coupling in this article.
In the second column is the ASCII name we use for this cou-
pling in FeynRules while the third and fourth columns contain
the the real and imaginary parts. The letter “f” refers to the
flavor and runs over “u”, “d” and “l” for the neutral cur-
rent couplings while it runs over “q” and “l” for the charged
current couplings. The i and j stand for the generation.

ticles’ helicities6. The final state has the same total angu-
lar momentum and spin m′ along the direction of motion

d00,0 = 1

d11,±1 = 1
2
(1± cos θ)

d21,±1 = 1
2
(1± cos θ)(2 cos θ ∓ 1)

d22,±1 = − 1
2
(1± cos θ) sin θ

TABLE VI: Wigner dj
m,m′ functions relevant for our processes

and used in the helicity amplitudes given in Tables II and III.

of one of the final state particles and at an angle θ with
respect to the z-direction. We will define the x-direction
such that the whole process occurs in the x-z plane. The
spin along this direction is the difference of helicity of the
final state particles. With these definitions, the djm,m′

function is defined as the overlap between the incoming
and outgoing states

djm,m′(θ) = 〈j,m′, θ|j,m〉 =
〈

j,m′ ∣
∣eiJyθ

∣

∣ j,m
〉

, (C1)

where we have extracted the angular dependence into the
operator exp(iJyθ) which rotates the final state around
the y-axis to an angle θ with respect to the z-axis. Com-
monly used functions are listed in Table VI. For j = 0,
the generator of rotations around the y-axis is Jy = 0
and so

d00,0(θ) = 1. (C2)

For j = 1, the generator Jy is

Jy =
−i√
2







0 1 0

−1 0 1

0 −1 0






. (C3)

We also find that

J2
y =

−1

2







−1 0 1

0 −2 0

1 0 −1






(C4)

and

J2n
y = J2

y , J2n+1
y = Jy, (C5)

where n > 0. With this information, exp(iJyθ) can be
expanded and it can be shown that

d1m,m′ = eiJyθ =









1

2
(1 + cos θ) 1√

2
sin θ 1

2
(1− cos θ)

− 1√
2
sin θ cos θ 1√

2
sin θ

1

2
(1− cos θ) 1√

2
sin θ 1

2
(1 + cos θ)









,

(C6)
where m and m′ refer to the elements of the matrix.



21

[1] For recent reviews on Z′ and W ′ searches, see, e.g., M.-
C. Chen and B.A. Dobrescu, in K. Nakamura et al. [
Particle Data Group Collaboration ], J. Phys. G G37,
075021 (2010).

[2] F. del Aguila, M. Quiros, F. Zwirner, Nucl. Phys. B287,
419 (1987).

[3] V. D. Barger, N. G. Deshpande, J. L. Rosner, K. Whis-
nant, Phys. Rev. D35, 2893 (1987)

[4] U. Baur, K. H. Schwarzer, Phys. Lett. B180, 163 (1986).
[5] P. Langacker, M. -x. Luo, Phys. Rev. D45, 278-292

(1992).
[6] F. del Aguila, M. Cvetic, P. Langacker, Phys. Rev. D48,

969-973 (1993). [hep-ph/9303299].
[7] P. Abreu et al. [ DELPHI Collaboration ], Z. Phys. C65,

603-618 (1995).
[8] S. Riemann, [hep-ph/9610513].
[9] A. Leike, Phys. Rept. 317, 143-250 (1999). [hep-

ph/9805494].
[10] H. Davoudiasl, J. L. Hewett, T. G. Rizzo, Phys. Rev.

D63, 075004 (2001). [hep-ph/0006041].
[11] B. C. Allanach, K. Odagiri, M. A. Parker, B. R. Webber,

JHEP 0009, 019 (2000). [hep-ph/0006114].
[12] T. G. Rizzo, JHEP 0306, 021 (2003). [hep-ph/0305077].
[13] M. Dittmar, A. -S. Nicollerat, A. Djouadi, Phys. Lett.

B583, 111-120 (2004). [hep-ph/0307020].
[14] M. S. Carena, A. Daleo, B. A. Dobrescu, T. M. P. Tait,

Phys. Rev. D70, 093009 (2004). [hep-ph/0408098].
[15] P. Burikham, T. Figy, T. Han, Phys. Rev. D71, 016005

(2005). [hep-ph/0411094].
[16] T. G. Rizzo, [hep-ph/0610104].
[17] A. Djouadi, G. Moreau, R. K. Singh, Nucl. Phys. B797,

1-26 (2008). [arXiv:0706.4191 [hep-ph]].
[18] K. Agashe, H. Davoudiasl, S. Gopalakrishna, T. Han,

G. -Y. Huang, G. Perez, Z. -G. Si, A. Soni, Phys. Rev.
D76, 115015 (2007). [arXiv:0709.0007 [hep-ph]].

[19] B. Fuks, M. Klasen, F. Ledroit, Q. Li, J. Morel, Nucl.
Phys. B797, 322-339 (2008). [arXiv:0711.0749 [hep-ph]].

[20] P. Langacker, Rev. Mod. Phys. 81, 1199-1228 (2009).
[arXiv:0801.1345 [hep-ph]].

[21] F. Petriello, S. Quackenbush, Phys. Rev. D77, 115004
(2008). [arXiv:0801.4389 [hep-ph]].

[22] C. Coriano, A. E. Faraggi, M. Guzzi, Phys. Rev. D78,
015012 (2008). [arXiv:0802.1792 [hep-ph]].

[23] H. Davoudiasl, G. Perez, A. Soni, Phys. Lett. B665, 67-
71 (2008). [arXiv:0802.0203 [hep-ph]].

[24] F. J. Petriello, S. Quackenbush, K. M. Zurek, Phys. Rev.
D77, 115020 (2008). [arXiv:0803.4005 [hep-ph]].

[25] Y. Gershtein, F. Petriello, S. Quackenbush, K. M. Zurek,
Phys. Rev. D78, 095002 (2008). [arXiv:0809.2849 [hep-
ph]].

[26] T. G. Rizzo, JHEP 0908, 082 (2009). [arXiv:0904.2534
[hep-ph]].

[27] P. Osland, A. A. Pankov, A. V. Tsytrinov, N. Paver,
Phys. Rev. D79, 115021 (2009). [arXiv:0904.4857 [hep-
ph]].

[28] J. Erler, P. Langacker, S. Munir, E. R. Pena, JHEP 0908,
017 (2009). [arXiv:0906.2435 [hep-ph]].

[29] Y. Li, F. Petriello, S. Quackenbush, Phys. Rev. D80,
055018 (2009). [arXiv:0906.4132 [hep-ph]].

[30] M. V. Chizhov, G. Dvali, [arXiv:0908.0924 [hep-ph]].
[31] E. Salvioni, G. Villadoro, F. Zwirner, JHEP 0911, 068

(2009). [arXiv:0909.1320 [hep-ph]].
[32] R. Diener, S. Godfrey, T. A. W. Martin, [arXiv:0910.1334

[hep-ph]].
[33] For a recent review, see, for example, P. Langacker,

[arXiv:0911.4294 [hep-ph]].
[34] M. V. Chizhov, V. A. Bednyakov, J. A. Budagov,

[arXiv:1005.2728 [hep-ph]].
[35] F. del Aguila, J. de Blas, M. Perez-Victoria, JHEP 1009,

033 (2010). [arXiv:1005.3998 [hep-ph]].
[36] E. Accomando, A. Belyaev, L. Fedeli, S. F. King,

C. Shepherd-Themistocleous, Phys. Rev. D83, 075012
(2011). [arXiv:1010.6058 [hep-ph]].

[37] T. Abe, T. Masubuchi, S. Asai, J. Tanaka,
[arXiv:1103.3579 [hep-ph]].

[38] W. Y. Keung and G. Senjanovic, Phys. Rev. Lett. 50,
1427 (1983).

[39] J. M. Frere, W. W. Repko, Phys. Lett. B254, 485-488
(1991).

[40] Z. Sullivan, Phys. Rev. D66, 075011 (2002). [hep-
ph/0207290].

[41] A. Birkedal, K. Matchev, M. Perelstein, Phys. Rev. Lett.
94, 191803 (2005). [hep-ph/0412278].

[42] K. Agashe, S. Gopalakrishna, T. Han, G. -
Y. Huang, A. Soni, Phys. Rev. D80, 075007 (2009).
[arXiv:0810.1497 [hep-ph]].

[43] S. Gopalakrishna, T. Han, I. Lewis, Z. -g. Si, Y. -F. Zhou,
Phys. Rev. D82, 115020 (2010). [arXiv:1008.3508 [hep-
ph]].

[44] M. Frank, A. Hayreter, I. Turan, Phys. Rev.D83, 035001
(2011). [arXiv:1010.5809 [hep-ph]].

[45] M. Schmaltz and C. Spethmann, JHEP 1107, 046 (2011)
[arXiv:1011.5918 [hep-ph]].

[46] C. Grojean, E. Salvioni, R. Torre, JHEP 1107, 002
(2011). [arXiv:1103.2761 [hep-ph]].

[47] E. Accomando, D. Becciolini, S. De Curtis, D. Dominici,
L. Fedeli, [arXiv:1107.4087 [hep-ph]].

[48] P. Langacker, R. W. Robinett, J. L. Rosner, Phys. Rev.
D30, 1470 (1984).

[49] M. Cvetic, S. Godfrey, in Barklow, T.L. (ed.) et al.: Elec-
troweak symmetry breaking and new physics at the TeV
scale 383-415. [hep-ph/9504216].

[50] H. -C. Cheng, K. T. Matchev, M. Schmaltz, Phys. Rev.
D66, 056006 (2002). [hep-ph/0205314].

[51] T. Han, H. E. Logan, B. McElrath, L. -T. Wang, Phys.
Rev. D67, 095004 (2003). [hep-ph/0301040].

[52] T. Han, H. E. Logan, L. -T. Wang, JHEP 0601, 099
(2006). [hep-ph/0506313].

[53] K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez,
J. Virzi, Phys. Rev. D77, 015003 (2008). [hep-
ph/0612015].

[54] R. S. Chivukula, N. D. Christensen, E. H. Simmons,
Phys. Rev. D77, 035001 (2008). [arXiv:0712.0546 [hep-
ph]]

[55] J. Alwall, P. Schuster, N. Toro, Phys. Rev. D79, 075020
(2009). [arXiv:0810.3921 [hep-ph]].

[56] O. Cata, G. Isidori, J. F. Kamenik, Nucl. Phys. B822,
230-244 (2009). [arXiv:0905.0490 [hep-ph]].

[57] R. Barbieri, A. E. Carcamo Hernandez, G. Corcella,
R. Torre, E. Trincherini, JHEP 1003, 068 (2010).
[arXiv:0911.1942 [hep-ph]].

[58] X. -P. Wang, Y. -K. Wang, B. Xiao, J. Xu, S. -h. Zhu,



22

Phys. Rev. D83, 117701 (2011). [arXiv:1104.1161 [hep-
ph]].

[59] For a recent review, see, for example, G. C. Branco,
P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher,
J. P. Silva, [arXiv:1106.0034 [hep-ph]] and the references
therein.

[60] P. Langacker, [arXiv:0911.4294 [hep-ph]].
[61] N. Arkani-Hamed, S. Dimopoulos, G. R. Dvali, Phys.

Rev. D59, 086004 (1999). [hep-ph/9807344]; L. Ran-
dall, R. Sundrum, Phys. Rev. Lett. 83, 3370-3373 (1999).
[hep-ph/9905221].

[62] G. Cowan in K. Nakamura et al. [ Particle Data Group
Collaboration ], J. Phys. G G37, 075021 (2010).

[63] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai,
P. M. Nadolsky and W. K. Tung, JHEP 0207, 012 (2002)
[arXiv:hep-ph/0201195].

[64] P. Ferrario and G. Rodrigo, Phys. Rev. D 78, 094018
(2008) [arXiv:0809.3354 [hep-ph]].

[65] J. L. Hewett, J. Shelton, M. Spannowsky, T. M. P. Tait
and M. Takeuchi, arXiv:1103.4618 [hep-ph].

[66] J. L. Rosner, Phys. Rev. D35, 2244 (1987).
[67] S. Godfrey, J. L. Hewett, T. G. Rizzo, Phys. Rev. D37,

643 (1988).
[68] J. L. Rosner, Phys. Rev. D54, 1078-1082 (1996). [hep-

ph/9512299].
[69] M. Dittmar, Phys. Rev. D55, 161-166 (1997). [hep-

ex/9606002].
[70] Y. -k. Wang, B. Xiao, S. -h. Zhu, Phys. Rev.D83, 015002

(2011). [arXiv:1011.1428 [hep-ph]].
[71] Z. -q. Zhou, B. Xiao, Y. -k. Wang, S. -h. Zhu, Phys. Rev.

D83, 094022 (2011). [arXiv:1102.1044 [hep-ph]].
[72] T. G. Rizzo, JHEP 0705, 037 (2007). [arXiv:0704.0235

[hep-ph]].
[73] For a recent review, see, for example, L. -T. Wang,

I. Yavin, Int. J. Mod. Phys. A23, 4647-4668 (2008).
[arXiv:0802.2726 [hep-ph]].

[74] A. J. Barr, Phys. Lett. B596, 205-212 (2004). [hep-
ph/0405052].

[75] J. M. Smillie, B. R. Webber, JHEP 0510, 069 (2005).
[hep-ph/0507170].

[76] A. Datta, K. Kong, K. T. Matchev, Phys. Rev. D72,
096006 (2005). [hep-ph/0509246].

[77] A. J. Barr, JHEP 0602, 042 (2006). [hep-ph/0511115].
[78] R. Cousins, J. Mumford, J. Tucker, V. Valuev, JHEP

0511, 046 (2005).
[79] C. Athanasiou, C. G. Lester, J. M. Smillie, B. R. Webber,

JHEP 0608, 055 (2006). [hep-ph/0605286].
[80] L. -T. Wang, I. Yavin, JHEP 0704, 032 (2007). [hep-

ph/0605296].
[81] J. M. Smillie, Eur. Phys. J. C51, 933-943 (2007). [hep-

ph/0609296].
[82] O. Antipin, A. Soni, JHEP 0810, 018 (2008).

[arXiv:0806.3427 [hep-ph]].
[83] O. Gedalia, S. J. Lee, G. Perez, Phys. Rev. D80, 035012

(2009). [arXiv:0901.4438 [hep-ph]].
[84] F. Boudjema, R. K. Singh, JHEP 0907, 028 (2009).

[arXiv:0903.4705 [hep-ph]].
[85] L. Edelhauser, W. Porod, R. K. Singh, JHEP 1008, 053

(2010). [arXiv:1005.3720 [hep-ph]].
[86] H. -C. Cheng, Z. Han, I. -W. Kim, L. -T. Wang, JHEP

1011, 122 (2010). [arXiv:1008.0405 [hep-ph]].
[87] G. Moortgat-Pick, K. Rolbiecki, J. Tattersall, Phys. Lett.

B699, 158-163 (2011). [arXiv:1102.0293 [hep-ph]].
[88] O. J. P. Eboli, C. S. Fong, J. Gonzalez-Fraile,

M. C. Gonzalez-Garcia, Phys. Rev. D83, 095014 (2011).
[arXiv:1102.3429 [hep-ph]].

[89] S. Chatrchyan et al. [CMS Collaboration],
arXiv:1103.0981 [hep-ex].

[90] G. Aad et al. [ ATLAS Collaboration ], Phys. Lett.B700,
163-180 (2011). [arXiv:1103.6218 [hep-ex]].

[91] A. Pukhov, [hep-ph/0412191].
[92] A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin,

D. Kovalenko, A. Kryukov, V. Savrin et al., [hep-
ph/9908288].

[93] V. Khachatryan et al. [CMS Collaboration],
arXiv:1012.5945 [hep-ex];

[94] S. Chatrchyan et al. [CMS Collaboration],
arXiv:1103.0030 [hep-ex].

[95] N. D. Christensen, C. Duhr, Comput. Phys. Commun.
180, 1614-1641 (2009). [arXiv:0806.4194 [hep-ph]].

[96] N. D. Christensen, P. de Aquino, C. Degrande, C. Duhr,
B. Fuks, M. Herquet, F. Maltoni, S. Schumann, Eur.
Phys. J. C71, 1541 (2011). [arXiv:0906.2474 [hep-ph]].


