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Abstract

In supersymmetric theories with a strong conformal sector, soft supersym-

metry breaking naturally gives rise to confinement and chiral symmetry

breaking in the strong sector at the TeV scale. We construct and analyze

models where such a sector dynamically breaks electroweak symmetry, and

take the first steps in studying their phenomenology. We consider two sce-

narios, one where the strong dynamics induces vacuum expectation values

for elementary Higgs fields, and another where the strong dynamics is solely

responsible for electroweak symmetry breaking. In both cases there is no

fine tuning required to explain the absence of a Higgs boson below the LEP

bound, solving the supersymmetry naturalness problem. Quark and lep-

ton masses arise from conventional Yukawa couplings to elementary Higgs

bosons, so there are no additional flavor-changing effects associated with the

strong dynamics. A good precision electroweak fit can be obtained because

the strong sector is an SU(2) gauge theory with one weak doublet, and has

adjustable parameters that control the violation of custodial symmetry. In

addition to the the standard supersymmetry signals, these models predict

production of multiple heavy standard model particles (t, W , Z, and b)

from decays of resonances in the strong sector. The strong sector has no

approximate parity symmetry, so WW scattering is unitarized by states

that can decay to WWW as well as WW .



1 Introduction

Supersymmetry (SUSY) gives a compelling solution to the electroweak hierarchy

problem, and provides a sensible framework for speculations about physics above

the TeV scale. It is for this reason that so much of the theoretical and experimental

effort in physics beyond the standard model is devoted to SUSY. However, if SUSY

is the solution of the hierarchy problem it generically predicts a standard-model-like

Higgs boson with mass below mZ , which is ruled out. In the MSSM, this can be

avoided only by radiative corrections that introduce fine tuning at the percent level.

It is possible to avoid this tuning by extending the MSSM, either to raise the Higgs

mass [1] or to give it new decays that are less constrained by experiment [2], but the

models must be carefully constructed to have these features.

Technicolor also gives a compelling solution to the hierarchy problem, but it is

generally considered less plausible than SUSY mainly because of problems with flavor

and precision electroweak tests. The traditional approach to incorporating flavor into

technicolor theories involves extending the gauge group of technicolor to include the

flavor symmetries, which are then broken above the TeV scale [3]. There are daunt-

ing obstacles to constructing realistic models of this kind, and there is no realistic

example in the literature. Furthermore, any such model must have large numbers

of technicolors and/or techniflavors, and therefore is expected to give large correc-

tions to the precision electroweak parameters S and T that are incompatible with

data. The prospects are much better if the couplings responsible for quark and lep-

ton masses arise from the exchange of heavy scalars [4]. This is potentially natural in

supersymmetric models, where SUSY is broken above the TeV scale. In this case, the

higher-dimension operators that generate quark and lepton masses can be generated

from exchange of Higgs scalars, which can incorporate minimal flavor violation and

do not require extending the technicolor gauge sector. The pioneering attempts in

this direction [5] cannot accommodate the large observed value of the top quark mass,

but realistic models have recently been constructed [6] in the context of conformal

technicolor [7]. These are explicit UV complete models with a minimal technicolor

sector at a TeV, that do not conflict with precision electroweak and flavor constraints.

In this paper, we combine SUSY and conformal technicolor in a more direct way in

an attempt to address the shortcomings of both. (For recent closely related work, see

Ref. [8].) A companion paper [9] describes the main ideas and results in a succinct

fashion, while this paper gives a full discussion. This paper is written to be self-

contained, and can be read on its own.

We assume that the visible sector consists of the MSSM plus a strong sector.
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SUSY is assumed to be broken at the TeV scale in both the MSSM and the strong

sector, as is natural in many theories of SUSY breaking (e.g. gravity mediation). The

idea (already used in Refs. [10, 6]) is that in the strong sector, conformal invariance is

broken softly by SUSY breaking mass terms, giving rise to strong non-supersymmetric

dynamics at the TeV scale. Since all scalars get massive from SUSY breaking while

fermions have chiral symmetries that forbid their masses, it is very plausible that the

strongly interacting fermions confine and break chiral symmetries, as in QCD. This

dynamics can play a role in electroweak symmetry breaking. This is the conformal

technicolor mechanism [7] in the context of SUSY, so we refer to it as “superconformal

technicolor.”1

The presence of both SUSY and strong dynamics at the TeV scale opens up

many interesting phenomenological possibilities, and this paper only initiates the

exploration of these ideas. We will construct an explicit model of the strong sector

that realizes this idea, which we argue can dynamically break electroweak symmetry.

We then investigate two different limiting regimes of the same model that illustrate

two phenomenologically distinct scenarios for electroweak symmetry breaking. The

model has a strong conformal sector based on an SU(2) gauge group with 4 flavors,

which has a strongly interacting conformal fixed point [12]. Additional fields and

interactions are required to stabilize runaway directions in the presence of SUSY

breaking. The additional interactions and the SUSY breaking terms explicitly break

the SU(8) global symmetry of the theory down to SU(2)L×SU(2)R, which is weakly

gauged in the usual way so that chiral symmetry breaking in the strong sector breaks

electroweak symmetry, as in technicolor.

The MSSM Higgs fields couple to the strong sector via superpotential couplings

of the form

W = λuHuOd + λdHdOu, (1.1)

where Ou,d are operators in the strong sector with the same electroweak quantum

numbers as Hu,d. The two different regimes of the model referred to above correspond

to different choices of λu,d.

In the model we construct the operators Ou,d have scaling dimension 3
2
, so the

couplings λu,d are relevant couplings that get strong at some scale. This scale cannot

be too far from the TeV scale, otherwise they are not important for electroweak

symmetry breaking. This amounts to a coincidence of scales, and the problem of

explaining this coincidence is similar to the “µ problem” of the MSSM. In both cases

1This name has also been used in Refs. [11] for models that do not use the conformal technicolor

mechanism to break electroweak symmetry.
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we must explain why a relevant supersymmetric coupling is important near the scale

of SUSY breaking. Perhaps the simplest and most elegant solution to the µ problem

is the Giudice-Masiero mechanism [13], and we review an extension of this mechanism

[6] that explains why the couplings Eq. (1.1) are important at the TeV scale.

1.1 Induced Electroweak Symmetry Breaking

We first consider the case where the couplings Eq. (1.1) are perturbative at the TeV

scale. In this case, the Higgs fields Hu,d are ordinary perturbative degrees of freedom

below the TeV scale. The strong sector dynamically breaks electroweak symmetry

with an order parameter f that we assume is somewhat below the value required to

explain the W and Z masses, e.g. f ' 100 GeV. The heavy hadrons of the strong

sector are expected to have masses of order 4πf ∼ TeV [14], and the SU(2)L×SU(2)R
chiral symmetry of this theory is nonlinearly realized below this scale. The couplings

Eq. (1.1) then generate a tadpole for Hu,d in the effective potential. This induces

a VEV for Hu,d even if m2
Hu,d

> 0, which we assume to be the case. (In standard

SUSY scenarios m2
Hu,d

> 0 at high scales and renormalization group running results

in m2
Hu

< 0 at the TeV scale, but more general boundary conditions at high scales

can lead to m2
Hu,d

> 0 at the TeV scale.) If we neglect the quartic terms in the

potential for Hu,d, the masses of the physical Higgs bosons are simply eigenvalues of

the quadratic terms in the effective potential, while the size of the VEV is determined

by the coefficient of the tadpole. The Higgs mass therefore depends directly on the

SUSY breaking masses, similar to a slepton or squark mass. The Higgs masses can

easily be larger than the LEP bound with no tuning in this scenario, giving a simple

and robust solution to the SUSY Higgs mass problem.

In this scenario electroweak symmetry breaking is shared by the elementary Higgs

bosons and the strong sector:

v2 = v2
u + v2

d + f 2, (1.2)

where v = 246 GeV. For example, for f ' 100 GeV we have
√
v2
u + v2

d = 225 GeV.

Because the electroweak symmetry breaking VEV is dominantly in the elementary

Higgs fields, quark and lepton masses can arise through conventional perturbative

Yukawa couplings. This means that there is no additional flavor problem associated

with the strong dynamics. Of course we still have the SUSY flavor problem, namely

the squark and slepton masses and A terms can be flavor-dependent. We assume that

this is addressed by one of the many possible mechanisms in the literature.

A good precision electroweak fit can be obtained in this model. The strong sector

is based on a SU(2) gauge theory with a single technidoublet, so the corrections are
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not enhanced by large N factors. The UV contribution to the S parameter is very

uncertain because this theory is very different from QCD. The fact that the longi-

tudinal modes of the W and Z are dominantly perturbative excitations reduces the

IR contribution from the strong sector to the S parameter. The custodial symmetry

breaking from λu � λd gives positive contribution to the T parameter that also helps

with the fit. The conclusion is that we can get a good precision electroweak fit even

if we assume that the UV contribution to the S parameter is large and given by the

value extrapolated from QCD.

The collider phenomenology for this model includes all of the usual SUSY signals,

together with additional signals arising from the strong sector. The strong sector

has a relatively low scale 4πf . TeV, which may make it more accessible than

conventional technicolor.2 The theory below the TeV scale has 3 additional CP odd

states A0
2 and H±2 that are heavier than the other Higgs fields and are dominantly

pseudo Nambu Goldstone bosons (PNGBs) from the strong sector. These can be

either singly produced, or pair produced from decays of heavy resonances in the

strong sector. There are many possible signals, and we will only outline some of the

possibilities in this paper.

1.2 Strong Electroweak Symmetry Breaking

We then consider another possibility where there is no light Higgs below the TeV

scale. SUSY breaking in the strong sector triggers electroweak symmetry breaking,

as in conformal technicolor. The quark and lepton masses arise from couplings to the

strong sector of the form

∆W ∼ (yu)ijQiu
c
jOu + (yd)ijQid

c
jOd + · · · (1.3)

This can arise in the same model we construct for the previous scenario for a different

choice of parameters. The couplings λu,d in Eq. (1.1) are relevant operators that get

strong at some scale Λ∗. If Λ∗ is above the SUSY breaking scale, the elementary

Higgs fields become part of the strong sector, and there is a dual description where

the Yukawa couplings become couplings of the form Eq. (1.3). Below the scale Λ∗,

the operators Ou,d have dimension 3
2
, so these operators behave like flavor-dependent

interactions in “walking” technicolor.3 Alternatively, the scale Λ∗ may be naturally

2Low-scale technicolor has been previously studied, motivated by large N technicolor theories [15].

However, as previously noted these theories have serious problems with the precision electroweak fit.
3The use of SUSY conformal fixed points to get “walking” behavior of flavor couplings has been

previously considered in Ref. [16].
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near the TeV scale, as discussed above. In this case we do not require large Yukawa

couplings at high scales. In either case, the couplings Eq. (1.3) inherit the minimal

flavor violating structure of the Yukawa couplings, so there is no flavor problem

associated with the strong dynamics. Of course, the SUSY flavor problem must still

be addressed by some mechanism.

The precision electroweak fit does not pose a problem for this model. There is

a contribution to the T parameter from λu 6= λd. If this contribution is positive

(as suggested by perturbation theory) we can get a good fit provided that the UV

contribution to the S parameter from the strong sector is somewhat smaller (e.g. by

a factor of 2) than the QCD estimate. We conclude that given our present state of

knowledge precision electroweak data does not strongly constrain this model.

The collider signals include the standard missing energy SUSY signals, but not

the SUSY Higgs signals. There are technicolor-like signals associated with the strong

sector. One difference from conventional technicolor is that the strong sector generally

has no approximate parity symmetry, so the resonances that unitarize WW scattering

can decay to WWW as well as WW .

2 The Strong Superconformal Sector

In this section we describe the requirements for a successful model of the strong sector,

and construct an explicit model as an existence proof. The main issue is preventing

runaway directions due to soft SUSY breaking mass terms.

2.1 SUSY Breaking in SUSY QCD

The main new feature of our framework is a strongly-coupled superconformal sector.

The simplest nontrivial 4D superconformal theory is SU(Nc) SUSY QCD with Nf

flavors in the conformal window 3
2
Nc < Nf < 3Nc [12]. There is a dual description of

these theories in terms of an SU(Ñc) gauge theory with Ñc = Nf −Nc. The theories

with Nf ' 3Nc are weakly coupled, while the models with Nf ' 3
2
Nc have a weakly

coupled dual description. The models with Nf ' 2Nc are have no weakly coupled

description, and these are the simplest candidates for the strong sector of our model.

Conformal symmetry is broken softly by SUSY breaking terms in the strong sector.

We begin by reviewing what is known about soft SUSY breaking for SUSY QCD at a

conformal fixed point [17]. The effects of soft SUSY breaking terms are most readily

understood if we view them as F and D components of superfield couplings and flavor
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gauge fields. We write the Lagrangian in superspace as

L =

∫
d2θ τ tr(WαWα) + h.c.

+

∫
d4θ Z

[
Q†ie

V (eX)ije
YQj + Q̃†ie

−V T (eX̃)ije
−Y Q̃

]
.

(2.1)

Here V and Wα are the SU(Nc) gauge field and field strength, Q and Q̃ are the funda-

mental and antifundamental “quark” fields; τ is the holomorphic gauge coupling, Z

is a real superfield wavefunction renormalization factor; X, X̃, and Y are background

gauge superfields for the anomaly-free SU(Nf )× SU(Nf )× U(1) flavor symmetry.

A flavor-universal mass-squared term can be parameterized by a D term for Z,

and a gaugino mass can be parameterized by an F term for τ . The physical gauge

coupling is the lowest component of a real superfield R that is a function of τ and Z

[18], so these SUSY breaking terms perturb R away from its fixed point value. Since

the fixed point is IR attractive, the SUSY breaking perturbations scale away in the IR.

On the other hand, D terms for the gauge superfields X, X̃ and Y are unsuppressed in

the IR because the coupling of gauge fields in the IR is simply determined by group

theory. Scalar mass-squared terms proportional to symmetry generators therefore

scale in the IR just like in a free field theory. Detailed elaboration of these arguments

can be found in Ref. [17].

This means that the only soft SUSY breaking in the strong sector that is naturally

at the TeV scale is scalar mass-squared terms proportional to anomaly-free flavor

generators. There are always directions in field space where the energy due to such

mass-squared terms is negative. The ground state will then have a large VEV along

such a direction, in which case conformal symmetry in the strong sector is broken

well above the TeV scale.4 For example a soft mass proportional to “baryon number”

(B(Q) = −B(Q̃) = 1) will result in a runaway direction with either Q 6= 0, Q̃ = 0 or

Q = 0, Q̃ 6= 0 depending on the sign of the mass-squared term.

Generalizing from SUSY QCD, we see that what we would like is a strong con-

formal theory with an anomaly-free flavor generator X such all of the flat directions

have the same sign of the X charge. A scalar mass-squared term proportional to X

can then stabilize the the vacuum at small field values. Note that this condition is

never satisfied in theories with a charge conjugation invariance (such as SUSY QCD).

4SUSY breaking may be communicated to the visible sector at a scale as low as 10 TeV. If we

assume that the soft masses at 10 TeV are the same order of magnitude in the MSSM and the

strong sector, and that the anomalous dimensions that suppress the soft terms in the strong sector

are numerically small, we may get a viable model. We will not pursue this possibility here.
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In such theories the best we can hope for is that all flat directions have X = 0, in

which case a more subtle analysis is required to determine whether the ground state

is near the origin of field space.

We can lift dangerous flat directions by introducing additional perturbative cou-

plings. For example, we can lift the B 6= 0 flat directions in the example above by

gauging U(1)B. However, as long as the U(1)B gauge coupling is weak, this will sta-

bilize the VEV at a large value because the VEV goes to infinity as the U(1)B gauge

coupling goes to zero. Such a model will have more than one scale, and will not give

a strongly-coupled model with a single scale that we are seeking.

2.2 A Viable Model

We now construct a working model in which the runaway directions in the strong

sector are lifted. The detailed model will be described below, but we start by briefly

outlining the basic mechanism. The strong sector us a SU(2) gauge theory with 4

flavors, with superpotential couplings to elementary Higgs fields H and additional

singlet fields S of the from

W ∼ (λHH + λSS)ΨΨ. (2.2)

The effect of these terms is that the flat directions of the strong sector are replaced by

flat directions of the H and S fields, so the problem is now to lift these flat directions.

The “meson” operator ΨΨ has dimension 3
2
, so the λ couplings have dimension +1

2
.

We will want all of the λ couplings to become strong near the TeV scale where SUSY

is broken in the strong sector. This is a coincidence problem precisely analogous to the

“µ problem” of the MSSM. We will show below (in Section 2.4) that we can explain

this coincidence using a generalization of the Giudice-Masiero mechanism for the µ

term. Now the idea is that the couplings λS become strong at a scale Λ′ somewhat

above the weak scale, while the coupling λH is still weak. Below this scale, the theory

quickly flows to a new fixed point where S is a strong operator. In this new CFT, a

universal positive soft mass for S is suppressed by a large anomalous dimension, but

if the scale Λ′ is not too far from the TeV scale this effect can be small, and there

can be a positive soft mass at the TeV scale to stabilize the strong sector.

We now give a detailed description of the model. It is based on a strong SU(2)SC

gauge theory with 4 flavors, which has a strong conformal fixed point as discussed

above. The anomaly-free global symmetry group is

SU(2)1 × SU(2)2 × SU(2)3 × SU(2)4 × U(1)R. (2.3)
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The embedding of the electroweak gauge group in this global symmetry will be de-

scribed below. The strongly-interacting fields transform as

Ψ1 ∼ (2, 2, 1, 1, 1) 1
2
,

Ψ2 ∼ (2, 1, 2, 1, 1) 1
2
,

Ψ3 ∼ (2, 1, 1, 2, 1) 1
2
,

Ψ4 ∼ (2, 1, 1, 1, 2) 1
2
.

(2.4)

The electroweak gauge group is embedded in the global symmetry by taking the

SU(2)W × U(1)Y generators acting on the fields Ψi to be

Ta = 1
2


τa

0

0

0

 , Y = 1
2


0

−τ3

τ3

−τ3

 . (2.5)

The fields Ψ3,4 will not play a role in breaking electroweak symmetry. We could define

e.g. Y = diag(0,−τ3, 0, 0), but then the model has physical states with fractional

charge that we want to avoid.

The fields transform as

Ψi 7→ UΨiV
T
i , i = 1, . . . , 4, (2.6)

where U ∈ SU(2)SC, Vi ∈ SU(2)i. The SU(2)SC gauge invariant holomorphic opera-

tors are the “meson” fields

Mij = ΨT
i εΨj. (2.7)

These are 2× 2 matrices, transforming under SU(2)i × SU(2)j as

Mij ∼
{

(2, 2) for i 6= j,

1 for i = j.
(2.8)

In addition to the techniquarks Eq. (2.4), the model contains SU(2)SC singlet

fields Sij transforming under the global symmetries like the meson fields Mij above.

The theory has a superpotential

W =
∑
i,j

λijSijΨ
T
i εΨj. (2.9)
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The couplings λij have dimension 1
2
, i.e. they are relevant couplings. We assume that

there is no large hierarchy between the λij, so they all get strong at roughly the same

scale Λ∗.

Seiberg duality tells us that below the scale Λ∗ the theory flows to a new strong

fixed point. In the “electric” description presented here, this fixed point is one where

the couplings λij flow to strong fixed point values. The dual “magnetic” description

has gauge group SU(2)S̃C and dual “quark” fields Ψ̃i ∼ (2, 2) under SU(2)S̃C×SU(2)i,

as well as the “meson” fields Mij as separate degrees of freedom. This theory has a

superpotential

W̃ =
∑
i,j

(
λijSijMij +MijΨ̃iΨ̃j

)
. (2.10)

The first term arises from Eq. (2.9) and the second is dynamically generated. In

this description the singlets get a mass with the meson fields, and we can integrate

them out to get a SU(2)S̃C gauge theory with 8 flavors and no superpotential. This

is precisely the argument used to show that the dual of a Seiberg dual is the original

theory, except that the couplings λij are here allowed to violate the flavor symmetries.

This theory has a strongly-coupled IR attractive fixed point, which shows that the

theory flows to a new fixed point below the scale where the couplings λij become

strong.

The theory below the scale Λ∗ is pure SUSY QCD, in which universal scalar

mass-squared terms are suppressed. However, above the scale Λ∗ universal soft mass-

squared terms for S are not suppressed, and are therefore unsuppressed at the scale

Λ∗. If the scale Λ∗ is not too far above the TeV scale, these soft mass terms can

break SUSY near the TeV scale in the strong sector. The effects of a universal scalar

mass-squared term in the dual description of the strong sector below the scale Λ∗ are

discussed in an Appendix.

In addition to scalar mass-squared terms, we can have A terms for the superpo-

tential couplings Eq. (2.10). In superspace these can be parameterized by terms

∆L =

∫
d4θ (Aθ2 + h.c.)S†S (2.11)

which are not suppressed by the strong dynamics above the scale Λ∗. For Λ∗ ∼ TeV

these can also be important at the TeV scale.

Having Λ∗ ∼ TeV requires a coincidence of scales between the supersymmetric

relevant couplings λij and the SUSY breaking scale. As discussed above, this is similar

to the µ problem, and we will present an explanation of it using a generalization of

the Giudice-Masiero mechanism below.
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We have thus succeeded in constructing a strong superconformal theory where

all flat directions are lifted by soft SUSY breaking. The conformal symmetry is

therefore broken by the soft SUSY breaking in the strong sector at the scale MSUSY.

SUSY breaking gives mass to all scalars, but unbroken chiral symmetries mean that

technifermions are still massless. It is therefore very plausible that this theory confines

and spontaneously breaks the chiral symmetries, like QCD or technicolor.

We discuss the symmetry breaking and vacuum alignment in this model. A useful

starting point is to choose the couplings λij and the soft SUSY breaking terms to

respect the full SU(8) global symmetry of the SU(2)SC gauge theory. We do this

by assuming universal couplings λij and a universal positive mass-squared for the

singlets in the UV. The U(1)R symmetry is broken by A terms of the same form as

the superpotential Eq. (2.10). In the dual description the dual techniquarks have

no superpotential interactions. (When we include Yukawa couplings they will have

perturbative superpotential couplings with ordinary quark and lepton superfields.)

The techniscalars all get masses, but masses for the technifermions are forbidden by

the SU(8) chiral symmetry. A technigaugino mass is allowed because U(1)R is broken.

We expect that the strong non-supersymmetric gauge dynamics generates a fermion

condensate

〈ΨAΨB〉 = −〈ΨBΨA〉, (2.12)

where A,B are SU(8) indices. This spontaneously breaks SU(8)→ Sp(8), giving rise

to 27 Nambu-Goldstone bosons (NGBs).

Now we turn on additional terms that explicitly break the SU(8) global symmetry

down to

SU(2)L × SU(2)R × U(1)Ỹ , (2.13)

with generators

TLa = 1
2


τa

0

0

0

 , TRa = 1
2


0

−τTa
0

0

 , (2.14)

and

Ỹ = 1
2


0

0

τ3

−τ3

 . (2.15)
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This explicit breaking is accomplished by non-universal couplings λij, and non-universal

soft masses for the Sij and the Ψi. We assume that this breaking is maximal, so that

there is no larger approximate global symmetry. This assumption is made just for

simplicity, and it is also natural in this framework to have additional approximate

global symmetries leading to pseudo Nambu-Goldstone bosons that can have inter-

esting phenomenological implications.

This explicit SU(8) breaking determines the alignment of the fermion condensate.

We assume that

〈ΨAΨB〉 =


0 a12

−a12 0

0 b12

−b12 0

 , (2.16)

which breaks

SU(2)L × SU(2)R → SU(2)diag, (2.17)

and preserves U(1)Ỹ . The breaks electroweak symmetry in the desired pattern, with

no pseudo Nambu-Goldstone bosons.

We now describe how this theory generates masses for quarks and leptons. Note

that S12 has the electroweak quantum numbers of 2 Higgs doublets. We can therefore

write conventional Yukawa couplings

∆W = yu(Qu
c)(S12)u + yd(Qd

c)(S12)d + ye(Le
c)(S12)d. (2.18)

Above the scale where the couplings λij become strong, S12 is a conventional weakly-

coupled field with dimension 1, so the Yukawa couplings run as in the MSSM. Below

the scale where the couplings λij become strong, we use the dual description where

we integrate out Sij and the meson fields Mij, and we obtain the superpotential

∆W =
1

λ12

[
(yu)ijQiu

c
j(Ψ̃1Ψ̃2)u + (yd)ijQid

c
j(Ψ̃1Ψ̃2)d + (ye)ijLie

c
j(Ψ̃1Ψ̃2)d

]
. (2.19)

Note that these interactions have minimal flavor violating structure inherited from

the Yukawa couplings Eq. (2.18). The operators Ψ̃Ψ̃ have dimension 3
2

in the new

fixed point, so we have e.g.

mt ∼ yt(Λ∗)v

(
TeV

Λ∗

)1/2

. (2.20)

We see that the quark masses have a mild suppression even if Λ∗ > TeV.
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2.3 A Model with a Light Higgs

As we have described it, this models has no light Higgs field below the SUSY breaking

scale. Since S12 contains the MSSM Higgs fields, it is easy to modify the theory to

have a light Higgs: we simply choose the coupling λ12 to be smaller than the others.

We assume that the other couplings λij have the same order of magnitude, and get

strong at a single scale Λ∗ >∼ TeV.

In the “electric” description of the theory, the strong Yukawa couplings λij ap-

proach a strong fixed point, while λ12 remains weak. In the dual “magnetic” descrip-

tion the strong λij turn into mass terms of order Λ∗, while λ12 is a smaller mass term.

After integrating out the masses of order Λ∗, the dual superpotential is

W̃ = λ12S12M12 +M12Ψ̃1Ψ̃2. (2.21)

In this description there is an additional light SU(2)SC singlet field M12, but it has a

strong superpotential coupling to the dual techniquarks, and should be viewed as part

of the strong sector. In either description, assuming that λ12 is small at the SUSY

breaking scale, it will give rise to a weak coupling of the elementary Higgs fields

in S12 to the strong dynamics. This strong dynamics can still have the symmetry

structure described above, and it is equally plausible that it is spontaneously broken

in the same pattern. This is all we need for the low-energy dynamics we are trying

to achieve.

2.4 Coincidence Problem

We now discuss the coincidence between the SUSY breaking scale and the scale where

the couplings λij become strong. We describe how this can happen in an extension

of the Giudice-Masiero mechanism [6]. We assume that SUSY is broken in a hidden

sector at high scales, and is communicated to the visible sector by higher-dimension

operators. The hidden sector contains a gauge singlet superfield X with 〈FX〉 6= 0,

and higher dimension interactions that connect the hidden and the visible sector

are suppressed by a scale M . We then write all possible higher-dimension operators

coupling X to the visible sector fields, e.g.

∆Leff ∼
∫
d2θ

1

M
XWαWα + h.c.

+

∫
d4θ

[
1

M
(X +X†)Q†Q+

1

M2
X†XQ†Q

]
+

∫
d4θ

[
1

M
X†HuHd +

1

M2
X†XHuHd + h.c.

]
.

(2.22)
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These terms generate respectively gaugino masses, A terms, scalar mass terms, the µ

term, and the Bµ term, all of order

MSUSY ∼
〈FX〉
M

. (2.23)

Note also that the soft terms in the MSSM and the strong sector are generated at the

same scale in this mechanism. One well-motivated choice is to take M of order the

Planck scale, in which case one must also take into account supergravity corrections,

but they do not change this result [13]. The main shortcoming of this mechanism is

that it does not address the SUSY flavor problem, which is why the soft masses are

flavor diagonal. On the other hand, models that address the SUSY flavor problem

require significant complications to solve the µ problem, and it is not obvious which

is preferred.

In the model above, the couplings λij have mass dimension 1
2
, so the problem is to

naturally generate λij ∼ M
1/2
SUSY. This occurs naturally if the hidden sector contains

a field Y with

〈Y 〉 ∼ 〈FX〉1/2, 〈FY 〉 <∼ 〈FX〉
1/2MSUSY. (2.24)

The couplings λij can then be generated by

∆W =
cij
M1/2

Y SijΨiΨj. (2.25)

The second condition in Eq. (2.24) is required to ensure that this does not generate

large A terms. For example, Ref. [6] shows that a hidden sector with superpotential

W = κX +
1

M
Y 4 (2.26)

has the desired features, even if supergravity effects are included. In this model κ

sets the scale of the VEVs. The fact that Y and not X couples to the operator

SijΨiΨj can be enforced by symmetries, e.g. discrete R symmetries. This requires

only a modest generalization of the hidden sector, and we believe it is natural in the

aesthetic as well as the technical sense.

2.5 Discrete Symmetries

We now discuss the discrete symmetries of the strong sector described above. Because

the theory is based on a SU(2) gauge group, there is no spacetime parity symmetry.

CP is still a good symmetry (assuming that the soft SUSY breaking parameters are
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real). As discussed above, the theory has a SU(8) flavor group that is explicitly broken

down to SU(2)L × SU(2)R × U(1)Ỹ . The SU(8) symmetry includes transformations

that interchange the techniquarks charged under SU(2)L and SU(2)R, but these are

broken by (for example) different soft masses for the L and R techniscalars. The

scale of confinement and chiral symmetry breaking is given by these same SUSY

breaking masses (assuming there is no hierarchy among them), so in general there is

no approximate symmetry that interchanges SU(2)L and SU(2)R.

This means that the hadronic states of the strong sector are classified by their

quantum numbers under the custodial SU(2) (“isospin”) and CP only. This has

phenomenological implications for the heavy resonances at the TeV scale. The 3

Nambu-Goldstone bosons π that arise from the symmetry breaking pattern SU(2)L×
SU(2)R → SU(2) have scattering amplitudes that grow with energy, and on general

grounds we expect this to be unitarized by strong resonances at the TeV scale. Be-

cause there is no parity symmetry, these resonances can decay to πππ as well as ππ.

When we couple this theory to the standard model, the longitudinal W will have an

admixture of the π fields, and so the strong resonances can decay to WWW as well as

WW . This can provide an interesting signal of this class of models that distinguish

it from conventional technicolor models.

The absence of a parity symmetry is very general in the class of theories we are

considering. In any gauge theory, scalars belonging to different irreducible multiplets

will in general have different masses, and there will be no discrete symmetry inter-

changing them. In a non-SUSY technicolor theory, the only relevant terms that can

break symmetries of this kind are mass terms. Mass terms for SU(2)L and SU(2)R
fermions are allowed only in theories based on the Sp(2Nc) strong gauge groups (in-

cluding SU(2)). A non-SUSY example without parity is therefore minimal conformal

technicolor based on an SU(2) strong gauge group with fermion mass terms at the

TeV scale [19].

3 Induced Electroweak Symmetry Breaking

We now consider the effective theory below the scale of confinement and chiral sym-

metry breaking in the strong sector. This theory controls the most prominent features

of the phenomenology of these models, and depends only on a few qualitative features

of the strong sector. We start with the case where the elementary Higgs fields are

weakly coupled to the strong sector and are therefore present as light fields in the

effective theory.
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3.1 Low Energy Effective Theory of the Strong Sector

We first enumerate the assumptions about the strong sector that define the low-energy

theory that describes the phenomenology. We assume that the strong sector has a

SU(2)L × SU(2)R global symmetry that is spontaneously broken down to SU(2)V
with order parameter f . The SU(2)L × SU(2)R symmetry is then weakly gauged by

SU(2)W × U(1)Y in the standard way (see previous section), so that the electroweak

gauge group is broken down to U(1)EM with an approximate custodial symmmetry.

The low-energy theory of the strong sector then has 3 Nambu-Goldstone bosons with

decay constant f . The effective theory breaks down at the scale Λ ∼ 4πf , which we

identify with the scale of confinement and chiral symmetry breaking in the strong

sector [14]. We assume that f is somewhat smaller than what is required to explain

the W and Z masses, e.g. f ' 100 GeV. In this case, the scale Λ ∼ TeV is still

larger than the W and Z masses, so it makes sense to describe electroweak symmetry

breaking within the effective theory below the scale Λ.

We assume that the strong sector is coupled to the Higgs fields of the MSSM by

Yukawa couplings of the form

∆L = λuHuΩ
†
u + λdHdΩ

†
d, (3.1)

where Ωu,d are scalar operators with the same electroweak quantum numbers as Hu,d.

To keep track of the custodial symmetry in the strong sector, we define the 2 × 2

matrices

Ω = ( Ωd Ωu ) , (3.2)

transforming as

Ω 7→ LΩR†. (3.3)

We assume that Ω is an order parameter for electroweak symmetry breaking, i.e.

〈Ω〉 ∝ 12. (3.4)

Similarly, we define

H = (Hd Hu ) , λ =

(
λd 0

0 λu

)
, (3.5)

transforming as

H 7→ LHR̃†, λ 7→ R̃λR†. (3.6)
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where R̃ is a SU(2)R̃ transformation. Gauged U(1)Y transformations correspond to

R = R̃ = e−iθτ3/2. (3.7)

In particular, the spurion λ is gauge invariant. This implies that

Hλ 7→ L(Hλ)R†, λ†λ 7→ R(λ†λ)R† (3.8)

are spurions that can break custodial symmetry of the strong sector in the effective

theory.

The SU(2)L × SU(2)R symmetry is nonlinearly realized by fields Σ(x) ∈ SU(2)

transforming as

Σ = e2iΠ/f 7→ LΣR†. (3.9)

The kinetic term and leading interaction term for these fields are contained in the

effective coupling

∆Leff =
f 2

4
tr(DµΣ†DµΣ) + h.c. (3.10)

To define the terms arising from the couplings Eq. (3.1) to the elementary Higgs

fields we define the normalization of the couplings λu,d. As discussed in the previous

section, these are relevant interactions above the scale Λ, and are therefore naturally

viewed as dimensionful. In order to discuss their effects in the low-energy theory, we

find it most convenient to make them dimensionless by multiplying by appropriate

powers of Λ. This is a measure of the dimensionless strength of these couplings at

the scale Λ where we match onto the low-energy effective theory. We then scale these

couplings so that that λu,d ∼ 4π corresponds to strong coupling at the scale Λ. This

is the normalization appropriate to dimensionless Yukawa couplings.

We now consider the terms with no derivatives, i.e. the potential terms. Expand-

ing in powers of the elementary Higgs fields, we have

Veff =
Λ4

16π2

[
c1

Λ
tr(HλΣ†) + h.c.+O

(
(Hλ/Λ)2

)]
. (3.11)

The size of these terms can be understood from the fact that they become strong

at the scale Λ in the limit H → f , λ → 4π. This implies that the dimensionless

couplings in Eq. (3.11) are order 1.

We focus on the predictive scenario where Hλ/Λ � 1. The expansion is then in

powers of

ε =
vλ

Λ
=

1

Λ

(
λuvu 0

0 λdvd

)
. (3.12)
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In order to stabilize the Higgs VEV at this value, we need the soft masses for the

Higgs fields to satisfy

m2
H �

λ2

16π2
Λ2. (3.13)

We assume that m2
Hu
,m2

Hd
> 0 so that the VEVs for the Higgs fields are induced by

the linear term in Eq. (3.11). Neglecting quartic terms and the Bµ terms in the Higgs

potential, minimizing the potential gives

m2
H ∼

λ

4π

f

v
Λ2 ∼ ε

f 2

v2
Λ. (3.14)

This is consistent with Eq. (3.13) provided ε � 1. The parameter space of this sce-

nario will be explored in detail below, including the boundary of the region where the

expansion is under theoretical control. An example of a viable choice of parameters

to keep in mind is

f = 100 GeV, tan β = 10, mh = 120 GeV, (3.15)

which corresponds to vu = 224 GeV, vd = 22 GeV, and λu/4π ∼ 0.03.

3.2 The Scalar Sector

We now consider the scalar sector of the effective theory, including all mixing effects.

This sector depends on 6 couplings: the soft masses m2
Hu
,m2

Hd
, Bµ, the scale f , and

the effective couplings in Eq. (3.11)

κu,d =
c1Λ3

16π2
λu,d. (3.16)

We can redefine the fields to make κu,d > 0. The sign of Bµ is then physically

meaningful. Because the VEV v is measured, the scalar sector has 5 parameters,

which we can take to be e.g.

tan β, f, m2
Hu , m

2
Hd
, Bµ. (3.17)

We parameterize the scalar fields as

Hu =

(
H+
u

1√
2

(vu + h0
u − iA0

u)

)
, Hd =

( 1√
2

(vd + h0
d + iA0

d)

H−d

)
, (3.18)

and

Π =
1√
2

(
π0/
√

2 π+

π− −π0/
√

2

)
. (3.19)
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We define fields perpendicular to the eaten Goldstones byA0
d

A0
u

π0

 = U

A0
h

A0
π

G0

 ,

H±d
H±u
π±

 = U

H±h
H±π
G±

 , (3.20)

where

U =

 sβ −cγcβ −sγcβ
cβ cγsβ sγsβ
0 sγ −cγ

 , (3.21)

with

tan β =
vu
vd
, tan γ =

vh
f
, vh =

√
v2
u + v2

d. (3.22)

The Goldstone modes G0, G± are massless eigenstates orthogonal to the other modes,

so we have 2×2 mass matrices for the CP even, CP odd neutral, and CP odd charged

scalars. For the CP even scalars, the mass matrix is

M2
h0u,h

0
u

= m2
Hu − 2m2

Z(s2
β − 1

4
)s2
γ, (3.23)

M2
h0u,h

0
d

= −Bµ−m2
Zsβcβs

2
γ, (3.24)

M2
h0d,h

0
d

= m2
Hd
− 2m2

Z(4s2
β − 3)s2

γ. (3.25)

For the CP odd neutral scalars, we have

M2
Ah,Ah

= m2
Huc

2
β +m2

Hd
s2
β + 2Bµsβcβ − 1

2
m2
Z(s2

β − c2
β)2s2

γ, (3.26)

M2
Ah,Aπ

=
1

cγ

[
(m2

Hu −m
2
Hd

)sβcβ +Bµ(s2
β − c2

β)−m2
Z(s2

β − c2
β)s2

γ)
]
, (3.27)

M2
Aπ ,Aπ =

1

c2
γ

[
m2
Hus

2
β +m2

Hd
c2
β − 2Bµsβcβ + 1

2
m2
Z(s2

β − c2
β)s2

γ

]
. (3.28)

For the charged scalars we have

M2
H±h ,H

∓
π

= M2
Ah,Ah

, (3.29)

M2
H±h ,H

∓
π

=
1

cγ

[
(m2

Hu −m
2
Hd

)sβcβ +Bµ(s2
β − c2

β) +m2
Zsβcβ(s2

β − c2
β)s2

γ)
]
, (3.30)

M2
H±π ,H

∓
π

= M2
Aπ ,Aπ . (3.31)
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We define the mass eigenstates by(
h0

H0

)
=

(
cosα sinα

− sinα cosα

)(
hu
hd

)
, (3.32)(

A0
1

A0
2

)
=

(
cosαA sinαA
− sinαA cosαA

)(
A0
h

A0
π

)
, (3.33)(

H±1
H±2

)
=

(
cosαH sinαH
− sinαH cosαH

)(
H±h
H±π

)
, (3.34)

where

tan 2α =
2M2

h0uh
0
d

M2
h0uh

0
u
−M2

h0dh
0
d

, (3.35)

etc.

We can understand the qualitative features of the scalar spectrum by considering

a simplified limit where Bµ = 0 and we neglect the quartic interactions which give

rise to the terms proportional to m2
Z in the mass matrices. In this limit, h0

u,d are mass

eigenstates with mass mHu,d , and the masses of the CP -odd scalars are (for f � v)

m2
A0

1
= mH±1

=
m2
Hu
m2
Hd

m2
Hu
s2
β +m2

Hd
c2
β

, (3.36)

m2
A0

2
= mH±2

=
1

c2
γ

(m2
Hus

2
β +m2

Hd
c2
β), (3.37)

with mixing angle

αA,H = −
m2
Hu
−m2

Hd

m2
Hu
s2
β +m2

Hd
c2
β

sβcβcγ ∼
f

v
. (3.38)

We see that for cγ = f/v � 1 the CP odd mass eigenstates A0
1 and H±1 are dominantly

elementary Higgs particles. The states A0
2, H±2 have masses ∼ v/f times larger and

are dominantly PNGBs from the strong sector. The mixing between these two sets of

states is of order f/v. Using cγ ∼ f/v and the equation for v (see Eq. (3.14)), we see

that the condition that the heavy fields have masses below the scale Λ is equivalent

to the condition ε� 1.

Some spectra including the full potential effects are illustrated in Figs. 1, 2. The

low-energy expansion breaks down when the heavy scalars have mass of order Λ,

indicated by the upper grey shaded region. For light charged Higgs scalars, there is a

constraint from b→ sγ that is indicated by the lower pink shaded region (see e.g. [20]).
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Fig. 1. Left panel: Masses (in GeV) for the light CP even Higgs h0. Right panel:

Masses for the heavy CP even Higgs H0. The model has f = 100 GeV, tan β = 5, and

Bµ = 0, so all masses are a function of λu,d normalized so that c1 = 1 in Eq. (3.11).

The upper grey shaded region is where the perturbative expansion breaks down, and

the lower pink region is where the charged Higgs contribution to b → sγ comes into

tension with experiment.

Here we have neglected possible destructive interference from Higgsino contributions

that may weaken the bound. We see that this constraint prefers somewhat heavier

h0 masses, but does not rule out much of the parameter space.

The couplings of these fields to standard model states are straightforward to work

out using the formulas above. The qualitative features are that the new heavy states

A0
2 and H±2 mix with the light Higgs fields at order f/v. These fields will therefore

couple most strongly to the heaviest standard model particles, but with a strength

suppressed by O(f/v) compared to the lighter MSSM Higgs fields with the same

quantum numbers.

3.3 Precision Electroweak Fit

We now discuss the precision fit for the case of induced EWSB. The only couplings

of the strong sector to the MSSM are via electroweak gauge couplings and Higgs

couplings. The most important electroweak corrections are therefore the oblique
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Fig. 2. Left panel: Masses (in GeV) for light CP odd Higgs particles. Solid lines

denote A0
1, dotted lines denote H±1 . Right panel: Likewise for A0

2 and H±2 . The

shaded regions are as in Fig. 1.

corrections parameterized by the electroweak parameters S and T , and the corrections

to the Zb̄b vertex.

We begin with the S parameter. The physics above the confinement scale Λ in

the strong sector gives rise to a UV contribution to the S parameter that can be

parameterized by the effective Lagrangian coupling

∆Leff =
gg′

16π
SUV tr(Σ†W 3

µνΣB
µν). (3.39)

The first point to make is that the strong sector need not have either a large number

of technicolors NTC or technidoublets NTD, which would enhance the S parameter.

Traditional technicolor models generally require both NTC and NTD to be large to

be embedded into extended technicolor. Since the quark and lepton masses arise

from elementary Higgs fields, there is no reason for these parameters to be large. For

example, the theory in Section 2 has NTC = 2 and NTD = 1.

The size of the UV contribution to the S parameter is very uncertain. Näıve

dimensional analysis (NDA) [14] tells us that

SUV ∼
1

π
. (3.40)
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This is the same estimate as in technicolor theories, even though f < v in this

theory. There is no suppression by powers of f/v because we are in the regime where

Λ ∼ 4πf � mW . In the effective theory below the scale Λ, S is a dimensionless

quantity that is independent of the scale f . In terms of a resonance saturation

picture, SUV ∼ f 2/m2
ρ where mρ is the resonance mass; since mρ ∼ f , the result is

independent of f .

The S parameter in traditional technicolor theories can be estimated by scaling

from QCD. Using large-Nc scaling, one obtains [21]

SUV(QCD) ' 0.25
NTC

3
NTD. (3.41)

Note that this is consistent with the NDA estimate Eq. (3.40). But Eq. (3.41) is

better than an order of magnitude estimate only if the spectrum and couplings at the

strong scale Λ are similar to QCD. However, the present theory is supersymmetric

and conformal above the scale Λ, and there is no reason to believe that this is the

case. In fact, it has been argued that theories that are conformal above the scale

Λ have a significantly reduced S parameter [22]. There is also some support for a

smaller S parameter from lattice simulations. A recent lattice simulation with Nc = 3,

Nf = 6 found that the S parameter per electroweak doublet is reduced compared to

QCD by a factor between 0.3 and 0.6 [23]. This theory is not conformal, but this

at least emphasizes the large uncertainty in the S parameter from strongly coupled

electroweak symmetry breaking sectors.

Our theoretical understanding of the S parameter in strongly coupled theories is

very poor. For example, there is no rigorous theoretical understanding of even the

sign of the S parameter in QCD, where many rigorous inequalities are known [24].

Data tells us that S > 0 in QCD, and Weinberg sum rules relate this to basic features

of the hadron spectrum. In QCD, the S parameter can be well approximated by the

contributions from the ρ and a1 vector resonances, and the positivity of S follows

from the fact that ma1 > mρ. However, the present theory has no parity symmetry

and there is no symmetry distinction between the analogs of the ρ and a1. If vector

meson dominance holds in the present theory, the sign of S will depend on whether

the couplings of the lightest resonance are more like the ρ or the a1. The breaking

of parity symmetry depends on the SUSY breaking masses, so the UV contribution

to S will change by O(100%) as these parameters are varied. It is very plausible

that there are choices of parameters where it is significantly reduced, perhaps even

negative. On the other hand, 5D AdS models can be interpreted as “holographic”

descriptions of large-N conformal field theories, and in these theories S is positive

whenever it is calculable [25]. In perturbation theory, S is generally positive unless
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special representations and couplings are chosen [26]. Perhaps these are hints that

nature prefers S > 0.

In this paper, we will us the QCD value for the UV contribution to the S param-

eter as a benchmark, allowing us to make plots and gauge the impact of precision

electroweak data on this model. As argued above, this is a conservative benchmark.

We will see that we can get a good precision electroweak fit even with these assump-

tions, which means that precision electroweak data is not a strong constraint on this

class of models.

There is an additional contribution to the S parameter coming from states below

the scale Λ, the Nambu-Goldstone bosons in the strong sector and the elementary

Higgs fields. These mix at order f/v, but given the large uncertainties in UV contri-

bution, we will give the result neglecting these effects. For large tan β, electroweak

symmetry breaking is dominated by Hu, while Hd is decoupled, and we obtain

SIR '
1

12π

[
ln

m2
h

m2
h,ref

+ ln
Λ2

m2
π

]
. (3.42)

The first term is the standard model Higgs contribution, while the second is the con-

tribution from the composite pseudo Nambu-Goldstone bosons in the strong sector.

The first contribution is suppressed for light Higgs masses as usual, while the sec-

ond is suppressed compared to conventional technicolor theories because the π fields

are heavy. This means that the IR contribution to the S parameter is significantly

reduced compared to ordinary technicolor.

We now turn to the T parameter. The couplings λu,d in Eq. (3.1) violate custo-

dial SU(2) for λuvu 6= λdvd, so the T parameter depends on adjustable parameters

parameters. This can help give a good precision electroweak fit, as we will see.

In order to contribute to the T parameter, we need a spurion transforming as an

isospin 2 representation of custodial SU(2). The spurions λ†λ andHλ are both isospin

1 (see Eq. (3.6)), so the leading contribution to the T parameter is quadratic in these

spurions. The spurion λ†λ always comes from diagrams with a loop of elementary

Higgs fields, so we have

Leff ∼
Λ4

16π2
F
(
Dµ

Λ
,
λ†λ

16π2
,
Hλ
Λ

)
, (3.43)

where F is an order-1 function of dimensionless arguments. From this we see that the

largest contribution to the T parameter from the couplings λu,d comes from couplings

such as

∆Leff =
cT

16π2

[
tr(HλDµΣ†)

]2
, (3.44)
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where cT ∼ 1. This gives

∆m2
W = ∆m2

W± −∆m2
W3
∼ g2f 2

4
(εu − εd)2, (3.45)

or

∆TUV = α−1 ∆m2
W

m2
W

∼ α−1(εu − εd)2, (3.46)

where the expansion parameters εu,d are defined in Eq. (3.12). For the values used

above, we find ∆T ∼ 0.3, which is just the right size to get a good precision elec-

troweak fit (see below).

There is another UV contribution to the T parameter in the strong sector coming

from U(1)Y loops that is of order ∆T ∼ ±1/4π. This should be regarded as an addi-

tional uncertainty on the size of the T parameter in these models. This contribution

is sufficiently small that it does not affect our conclusions below.

There are also IR contributions to the T parameter from states below the scale Λ.

The largest contribution comes from the light Higgs. For large tan β this is mainly

the excitation from Hu and we have simply

∆TIR = − 3

16π cos2 θW
ln

m2
h

m2
h,ref

. (3.47)

The mass eigenstates (A0
1, H

±
1 ) and (A0

2, H
±
2 ) form approximately degenerate custodial

SU(2) multiplets, and we will neglect their contribution to the T parameter. Note

that there is already a large uncertainty in the T parameter because we only know

the order of magnitude of the effective coupling cT in Eq. (3.44).

To give some idea of the prospects for a precision electroweak fit, we plot these

estimates in Fig. 3. We assume that the UV contribution to the S parameter is given

by the QCD value Eq. (3.41) and the UV contribution to the T parameter is given

by the right-hand side of Eq. (3.46). We assume that the UV contribution to the T

parameter is positive, as suggested by perturbation theory. With these assumptions,

the plot shows the values of S and T for light Higgs masses of 120 GeV and 350 GeV.

For each Higgs mass there is a line of values corresponding to different values of

custodial SU(2) violation from the couplings λu,d. The curves are not entirely in the

T direction because the masses of the heavy PNGB fields depend on these couplings,

so changing these couplings gives a contribution to S as well as T . For values of

the light Higgs mass above 350 GeV the expansion is not under theoretical control

because λu becomes too large. The net result is that a positive contribution to the

T parameter can give a good precision electroweak fit under these assumptions, in
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Fig. 3. Electroweak fit for f = 100 GeV, tan β = 5, Bµ = 0. The inner (outer)

ellipse is the 95% (99%) confidence level allowed region for a reference Higgs mass of

120 GeV [27]. The dotted blue (dashed red) line corresponds to a light Higgs mass

of 120 (350) GeV in the model of Section 3. The dot-dashed black line corresponds

to the model of Section 4. As discussed in the text, there are large uncertainties in

these curves; in particular it is plausible that the S parameter is significantly smaller.

The assumptions that go into these curves are described in the text.

the region where the theory is under theoretical control. There is a large theoretical

uncertainty in the predictions for S and T , so the plots cannot be taken too literally,

and our conclusion is that precision electroweak data does not strongly constrain

these models given our present knowledge. In fact, the only scenarios we can envision

that precision electroweak can rule out these models is if either the S parameter is

much larger than expected, or the UV contributions to the T parameter are negative.

Neither of these is expected.

Finally, we consider Z → b̄b. the strong sector couples weakly to the elementary

Higgs fields, which have the Yukawa couplings to the top and bottom quarks. This

means that any correction to gZb̄b from the strong sector must be suppressed by y2
t

as well as λ2
u,d. We write the third generation Yukawa couplings as

∆L = QT
LεHyQc

R + h.c., (3.48)
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where H is defined in Eq. (3.5) and

QL =

(
tL
bL

)
, Qc

R =

(
bcR
tcR

)
, y =

(
yb 0

0 yt

)
. (3.49)

The leading correction to Z → b̄b comes from effective interactions of the form

∆Leff ∼
1

(4π)4
Q†Lσ̄

µQL tr(iDµΣλy†yλ†Σ†). (3.50)

This gives a correction

∆gZb̄b
gZb̄b

∼ y2
t

16π2

λ2
u

16π2
∼ y2

t

16π2

(mh

4πv

)4
(
v

f

)6

. (3.51)

The standard model agrees with the measured value at the level of 0.25%, which gives

the constraint (for mh ' 120 GeV)

v < 5.6f. (3.52)

This is easily satisfied given the other constraints we have already considered above.

3.4 Collider Phenomenology

We now discuss the collider phenomenology of this model, focusing on the LHC. This

theory has SUSY broken at the TeV scale, so it has the standard SUSY signals re-

sulting from pair production of strongly interacting superpartners followed by cascade

decays. This work focuses on electroweak symmetry breaking, and does not prefer

any particular pattern of masses for the MSSM superpartners.

In addition to the standard SUSY signals, this model extends the MSSM Higgs

sector with a custodial SU(2) triplet of PNGBs, which mix with the CP odd Higgs

fields of the MSSM. The heavy mass eigenstates A0
2 and H±2 are dominantly from the

strong sector, with O(f/v) mixing with the light MSSM Higgs fields. The A0
2 can

be directly produced via gluon-gluon fusion through a top quark loop, with a cross

section of order f 2/v2 times the standard model cross section. For mA0
2

= 500 GeV

this cross section is of order 10 fb at the LHC. The A0
2 has potential decay modes

A0
2 → h0Z and A0

2 → A0
1h

0 followed by either A0
1 → t̄t or Zh0. As we have seen above,

we can get a good precision electroweak fit for large values of the h0 mass, so we can

have either h0 → b̄b or WW/ZZ. There are many possible final states to investigate,

but the common feature is a high multiplicity of heavy standard model particles.

We can also produce heavy hadrons from the strong sector. These are expected

to be at the scale 4πf ∼ TeV. They can be produced via vector boson fusion (for
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resonances of spin 0, 1, or 2), or by mixing with the W and Z (for spin 1). NDA tells

us that the couplings of such a resonance ρ are

Leff ∼ (∂ρ)2 + Λ2ρ2 +
g

4π
Λ2ρW +

g2

4π
ΛρWW + · · · . (3.53)

This is the same coupling as in traditional technicolor theories, but with a reduced

strong scale Λ. The mixing of spin-1 resonances with the W and Z is therefore of

order g/4π, so we have production of neutral spin-1 resonances with a cross section

suppressed by g2/16π2 compared to a sequential Z ′ of the same mass. Production via

vector boson fusion is also possible.

These heavy resonances will generally decay to 2-body final states involving strong

particles, i.e. they will pair-produce A0
2 and H±2 . The decays of the A0

2 have been

discussed above. The dominant decays of the heavy charged Higgs fields are expected

to be H±2 → W±h0 and H±2 → A0
1W

±. The light charged Higgs fields can decay via

H+
1 → b̄t or W+h0. We see that this opens up even more final states with even higher

multiplicity of heavy standard model particles.

It should be clear from this discussion that the phenomenology is very rich and

exciting. We will leave detailed investigation of LHC signals to future work.

4 Strong Electroweak Symmetry Breaking

We now consider another scenario for electroweak symmetry breaking where there are

no elementary Higgs fields below the TeV scale. The theory at the TeV scale consists

of the MSSM without the Higgs fields, plus a strong conformal sector. SUSY breaking

at the TeV scale gives masses to the MSSM superpartners, and triggers confinement

and chiral symmetry breaking in the strong sector, breaking electroweak symmetry.

Quark and lepton masses arise from interactions between the strong sector and the

quarks and leptons.

As described above, this scenario is very similar to conformal technicolor. The

main difficulties in constructing a realistic model of conformal technicolor are con-

structing a mechanism to generate the top quark mass without flavor-changing neutral

currents, and the precision electroweak tests. The presence of SUSY broken at the

TeV scale greatly alleviates both of these problems, as we will discuss below. The

absence of a light Higgs of course means that the SUSY Higgs mass problem is absent,

which is the main motivation for this model.
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4.1 Flavor

We first discuss the origin of the quark and lepton masses. The strong sector is as-

sumed to contain chiral superfield operators Ou,d with the quantum numbers of the

MSSM Higgs fields. These have Yukawa-type couplings with the quark and leptons

superfields that generate fermion masses. In any interacting conformal theory the

operators Ou,d have dimension d > 1, so the Yukawa interactions are irrelevant in-

teractions. (In the model described in Section 2, d = 3
2
.) The general danger in

conformal technicolor is that O†u,dOu,d has dimension < 4, so that there is a relevant

singlet operator. But this operator is not invariant under SUSY, and is therefore

protected from large UV contributions. This is just a restatement of the well-known

fact that scalar mass terms are forbidden by SUSY, even for fields with d = 1.

The Yukawa coupling responsible for the top quark mass gets strong at a scale

Λt that is quite low, even for for small values of d. (For d = 3
2
, Λt ∼ 600 TeV.)

At or below the scale Λt we need a theory that generates these interactions without

generating additional interactions that lead to large flavor-changing neutral currents.

These can be generated by exchange of elementary scalars with the quantum numbers

of Higgs doublets [5]. These scalar fields have ordinary Yukawa couplings with quarks

and leptons, and therefore have minimal flavor violation. (Of course, because the

theory is supersymmetric at the TeV scale we still have to address the SUSY flavor

problem associated with squark and slepton masses and A terms.) For Λt � TeV,

getting a sufficiently large top mass requires that these scalars have large couplings

to the top quark, the strong sector, or both [6].

An alternative is to have Λt ∼ TeV. This is very natural in the present class of

models: the elementary Higgs scalars can have positive mass-squared terms of order

the TeV scale, and generate the required couplings at this scale. The couplings of the

elementary Higgs fields to the strong sector are generally relevant interactions, and so

one must explain why these interactions are important at the SUSY breaking scale.

This is similar to the problem of explaining why the µ term of the MSSM is of order

the SUSY breaking scale, and in the model of Section 2 we give a solution based on a

generalization of the Giudice-Masiero mechanism. If we normalize the Higgs coupling

to the strong sector at the TeV scale like a dimensionless Yukawa coupling yTC, we

have

mt ∼ ytyTCv. (4.1)

We see that this requires neither the top quark Yukawa coupling nor the coupling of

the Higgs to the strong sector to be strong.
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4.2 Precision Electroweak Fit

We now turn to the precision electroweak fit. Many of the comments made in Sec-

tion 3.3 apply to this case as well, so we will be brief.

We begin with the S parameter. The strong sector need not have large N , and so

the contributions to the S parameter from this sector is not large to begin with. In

addition, there are good reasons to think that the UV contribution to the S parameter

may be significantly reduced compared to the QCD value. This is suggested by

recent lattice calculations [23], and there are theoretical arguments that this occurs

in theories that are conformal above the TeV scale [22]. The IR contribution to the

S parameter is as in technicolor:

SIR =
1

12π
ln

Λ2

m2
h,ref

, (4.2)

where Λ ∼ 4πv ∼ 3 TeV.

We now discuss the T parameter. The couplings of the elementary scalars to

the strong sector that generate quark and lepton masses in general violate custodial

symmetry, and give an additional contribution to the T parameter. We assume that

this contribution is positive (as suggested by perturbation theory), in which case it can

help with the precision electroweak fit. There is no limit to how large this contribution

can be, since the couplings of the Higgs fields to the strong sector can naturally be

strong at the TeV scale. This requires a reduced value for the top quark Yukawa

coupling; see Eq. (4.1). On the other hand, it is natural for custodial symmetry to be

an approximate symmetry of this sector, so these contributions to the T parameter

need not be large.

The upshot is that the T parameter is an adjustable parameter in this model.

This is illustrated in Fig. 3. Here we have simply assumed the QCD value for the UV

contribution to the S parameter together with an arbitrary positive T contribution.

To get a good precision electroweak fit, the UV contribution to S must be reduced

compared to the QCD value, but a factor of 2 is more than sufficient. This is clearly

within the uncertainties (see the discussion in Section 3.3), and we conclude that

precision electroweak is not a strong constraint on these models given our present

state of knowledge.

Finally, we discuss Z → b̄b. In this model, the strong sector couples directly to

the top and bottom quarks, so the leading correction to Z → b̄b comes from effective

interactions of the form

∆Leff ∼
1

Λ2
tr(DµΣyy†Σ†)Q†Lσ

µQL + h.c. (4.3)
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where y is defined in Eq. (3.49). This gives

∆gZb̄b
gZb̄b

∼ y2
t

16π2
. (4.4)

The standard model agrees with the measured value at the level of 0.25%, and this

contribution is about the same size. We conclude that this correction is at the level

of the measured precision, but there is no direct conflict.

4.3 Phenomenology

Below the scale Λ ∼ 4πv ∼ 3 TeV the light states in this model include the usual

MSSM superpartners, minus the Higgs and Higgsino fields. The absence of the Hig-

gsino fields simplifies the chargino and neutralino sectors of the theory. In particular

the lightest neutralino is a mixture of the Bino and the Wino. Their mixing is sup-

pressed because the Higgs fields are heavy, so the only neutralino thermal dark matter

candidate is a light Bino, requiring slepton masses right near the experimental limits

[28]. There are of course many other possibilities for dark matter in supersymmetric

theories.

We now turn to the LHC phenomenology of this model. In addition to the stan-

dard SUSY signals, this theory has a strong electroweak symmetry breaking sector at

the TeV scale. The minimal model has a strong sector with a SU(2)L×SU(2)R sym-

metry broken down to the diagonal SU(2). Non-minimal symmetry breaking patterns

with additional PNGBs are also possible, but are not discussed here. An important

difference from traditional technicolor models is that the strong sector generally does

not have an approximate parity symmetry that interchanges SU(2)L×SU(2)R. This

arises because the technisquarks charged under SU(2)L and SU(2)R need not have

the same masses. Since these masses determine the confinement scale, this breaking

of parity is unsuppressed at this scale. This implies that the resonances that unitarize

WW scattering can generally decay to WWW as well as WW .

5 Conclusions

This work has begun the exploration of models in which SUSY breaking triggers

confinement and chiral symmetry breaking in a strong sector at the TeV scale. This

is very generic in SUSY gauge theories with a strong conformal fixed point, since

soft SUSY breaking in the strong sector also breaks conformal invariance softly. This

generates masses for all scalars in the strong sector, while fermion masses are generally

protected by chiral symmetries. Since the gauge coupling is strong at all scales,
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this very plausibly leads to confinement and chiral symmetry breaking at the SUSY

breaking scale.

We have considered models in which the strong dynamics breaks electroweak sym-

metry, in two different limits. In one limit the strong sector induces large VEVs in

elementary Higgs fields, while in the other the strong dynamics is solely responsible

for electroweak symmetry breaking. Both of these scenarios can have a good preci-

sion electroweak fit thanks to an adjustable T parameter arising from the elementary

Higgs couplings to the strong sector. Both have no problems generating the large top

quark mass without additional flavor-changing interactions. Both scenarios share the

usual SUSY flavor problem with the MSSM, which which may be solved using one

of the many mechanisms in the literature. The important point is that the presence

of the strong dynamics does not give rise to any additional flavor problem. Unlike

the MSSM, gauge coupling unification is no longer a prediction of the models de-

scribed here, since the strong sector affects the evolution of the SU(2)W × U(1)Y
gauge couplings but not SU(3)C . Unification can be accommodated with additional

matter fields, which however have no other apparent motivation in this framework.

The phenomenology of these scenarios is rich and deserves further study. We also

believe that further theoretical investigation of the combination of SUSY breaking

and strong dynamics will be fruitful.
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Appendix: Singlet Soft Masses

We now discuss the effect of a universal soft SUSY breaking mass for the singlets Sij
in the model of Section 2.2. The terms in the UV Lagrangian involving S can be

written

L =

∫
d4θ ZSS

†
ijSij +

(∫
d2θ λijSijΨiΨj + h.c.

)
. (A.1)

The universal soft mass can be parameterized by a nonzero D component for ZS:

ZS ∼ 1 +DSθ
4, (A.2)
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where DS ∼ M2
SUSY � Λ2

∗. We can think of ZS as a gauge field for a U(1)S gauge

symmetry under which

Sij 7→ eiΩSij,

λ 7→ e−iΩλ,

ZS 7→ ei(Ω−Ω†)ZS,

(A.3)

where Ω is a chiral superfield gauge transformation parameter. The fact that λ 6= 0

breaks the U(1) gauge symmetry explicitly, but this breaking is soft in the UV theory.

Another important symmetry is a U(1)R symmetry with charges

R(Ψ) = 1
2
, R(S) = 1. (A.4)

Now consider this theory below the scale Λ∗ where the couplings λ become strong.

The question is then how does the spurion ZS appear in the low-energy effective

theory? The low-energy degrees of freedom are the dual techniquarks Ψ̃ which carry

no U(1)S charge. The dependence on ZS is therefore via the U(1)S gauge invariant

quantities

ξ =
λ†λ

ZS
, (A.5)

Sα = D̄2Dα lnZS. (A.6)

ξ is proportional to the physically normalized superpotential coupling strength, while

Sα is the U(1)S gauge field strength. These contain SUSY breaking

ξ ∼ λ2(1 + θ4DS), (A.7)

Sα ∼ θαDS, (A.8)

and therefore parameterize the SUSY breaking arising from the S soft mass in the

low-energy theory. For example, the effective theory contains the terms

∆Leff ∼
∫
d4θ ξΨ̃†Ψ̃. (A.9)

This gives a universal soft mass for the dual techniquarks. Since the operator Ψ̃†Ψ̃

has dimension > 2, this operator becomes important at a scale parametrically below

MSUSY.

There can be terms in the effective Lagrangian proportional to strong operators

that are not singlets, which are not required to be irrelevant operators. These all
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involve the spurion Sα since ξ is a singlet under all symmetries. It is easily checked

that there are no allowed F terms involving Sα allowed by U(1)R symmetry. We can

systematically enumerate all D terms involving Sα. An example is∫
d4θ SαOα = DS × D̄2DαOα|θ=0. (A.10)

Unitarity requires dim(Oα) > 3
2
, so the operator on the right-hand side must have

dimension > 3
2
+ 3

2
= 3. Since the theory is strongly coupled, we expect this inequality

to be violated by O(1). Matching at the scale Λ∗ and running down, we see that

dimensionless strength of this SUSY breaking is

δ �
(
DS

Λ2
∗

)2(
E

Λ∗

)−2

. (A.11)

This gets strong at a scale

E � M2
SUSY

Λ∗
�MSUSY. (A.12)

Similarly, we have ∫
d4θ DαSαO = DS ×D2D̄2O|θ=0 ⇒ dim > 3, (A.13)∫

d4θ SαSαO = D2
S × D̄2O|θ=0 ⇒ dim > 2, (A.14)∫

d4θ Sα(S†)α̇Oαα̇ = D2
S ×DαD̄α̇Oαα̇|θ=0 ⇒ dim > 4, (A.15)∫

d4θ SαSα(S†)α̇Oα̇ = D3
S × D̄α̇Oα̇|θ=0 ⇒ dim > 2, (A.16)∫

d4θ |SαSα|2O = D4
SO|θ=0 ⇒ dim > 2. (A.17)

In Eqs. (A.13)–(A.16) we used the unitarity constraint on the dimension of operators,

while in Eq. (A.17) we used the fact that O is a R = 0 operator, and therefore the

operator
∫
d4θO is an allowed term in the Lagrangian, so O must have dimension > 2.

All of these terms become important at scales parametrically below MSUSY. Terms

with additional derivatives are even more suppressed. We conclude that all possible

SUSY breaking terms in the low-energy theory are suppressed compared to MSUSY.
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