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I. INTRODUCTION

The increasing lower experimental bound on the Higgs boson mass has called into ques-

tion the viability of the minimal supersymmetric standard model (MSSM) where the mass

remains bounded from above by about 130 GeV even after the inclusion of radiative cor-

rections. Augmenting the MSSM by the inclusion of an additional singlet superfield (the

NMSSM) [1] provides a means to raise the Higgs boson mass [2, 3]. Requiring the NMSSM

to remain perturbative up to the unification scale results in a Higgs mass limit of about 150

GeV [4], while permitting the singlet-Higgs doublet Yukawa coupling to reach its Landau

singularity before the unification scale allows the Higgs mass to be raised even further [5–8].

Taken to the extreme, the large mass limit is described by a nonlinear or chiral MSSM [9].

This particular nonlinear realization has been experimentally excluded by the chargino mass

limits [10]. Alternatively, a wider range of allowed tree level masses can also be achieved

by the addition of families of Higgs doublets. In this case, the major model restrictions

arise from the need to suppress excessive flavor changing neutral currents (FCNC). This

leads to model restrictions on the Yukawa couplings to matter superfields. The requisite

safe conditions needed for the sufficient suppression of the FCNC, as well as for agreement

with precision electroweak tests and anomalous magnetic moment measurements, all with

perturbative Yukawa couplings, have been extensively studied [11–17] in such extensions of

the standard model and the MSSM.

The motivation for introducing additional Higgs doublet fields goes beyond the desire to

alter tree level mass spectra. For example, it could be that some novel strong gauge field

dynamics may be the source of the electroweak symmetry breakdown (and possibly even the

supersymmetry breaking) [18–21], but this dynamics is not directly responsible for giving the

quarks and leptons their nontrivial masses. A model independent means of characterizing

the electroweak symmetry breakdown is via a nonlinear realization of the SU(2)L × U(1).

For a consistent SUSY model, this can be achieved using a constrained pair of Higgs doublet

fields, where the imposition of the constraint breaks the electroweak symmetry. On the other

hand, the quark and lepton superfields acquire their masses through their Yukawa coupling

to an additional pair of MSSM-like Higgs doublets whose nontrivial vacuum expectation

values are catalyzed by their supersymmetric coupling to the constrained Higgs doublet

pairs. Thus a consistent supersymmetric version of such a picture requires the introduction
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of four pairs of doublets with the additional nonlinear constraint among two of the Higgs

doublet chiral superfields. Note that in such a model, the electroweak symmetry breaking

is no longer tied to the supersymmetry breaking as is the case in the MSSM.

In this paper, we focus on such a supersymmetric model where the source for electroweak

symmetry breakdown is independent of the SUSY breaking. This is accomplished through

a nonlinear realization of the SU(2)L × U(1) symmetry. In addition, the coupling of this

sector to that of the usual MSSM, including the soft SUSY breaking terms, provides a rich

spectrum of particle masses. The simplest realization of the model can be expressed in terms

of an additional pair of constrained doublet chiral superfields denoted H ′u and H ′d having

the form

H ′u =

H+′
u

H0′
u

 =

 iΠ+

Σ− iΠ0

 , H ′d =

H0′
d

H−′d

 =

Σ + iΠ0

iΠ−

 , (1)

with the vacuum expectation values

< 0|H ′u|0 >=

 0

v′u/
√

2

 , < 0|H ′d|0 >=

v′d/√2

0

 . (2)

These σ-model coordinates are given by the chiral superfields Π± ≡ Π1 ∓ iΠ2 and Π0 = Π3

while the superfield constraint, H ′dεH
′
u = v′uv

′
d/2, takes the form

Σ =

√
v′uv

′
d

2
− ~Π · ~Π . (3)

which allows the Σ superfield to be eliminated in favor of the ~Π superfields. The model

action Γ is thus given by

Γ = ΓMSSM +

∫
dV
{
H̄ ′ue

−2g2W−g1BH ′u + H̄ ′de
−2g2W+g1BH ′d

}
+

∫
dSWMix +

∫
dS̄W̄Mix, (4)

where ΓMSSM is the action for the MSSM including soft SUSY breaking. The electroweak

gauge fields are the SU(2)L vector superfield W = ~σ
2
· ~W and the U(1) weak hypercharge

vector superfield B. The superpotential WMix involves the mixing of the MSSM Higgs

doublets, denoted by Hu and Hd, with the constrained coordinates H ′u and H ′d

WMix = µ12HuεH
′
d + µ21H

′
uεHd. (5)

Note that even though the Σ superfield is constrained, the theory remains anomaly free after

its elimination. The linear part of the Πi-inos coupling to the SU(2)L gauge fields is in the
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adjoint representation and only the π±-inos have a linear coupling to the U(1) hypercharge

gauge field. Hence their potential contributions to the anomalies vanish.

In the MSSM, the electroweak symmetry breakdown is tied to the SUSY breaking so

that without SUSY breaking there is no electroweak breaking. On the other hand, the

multi-doublet sigma model can be realized in the broken electroweak symmetry phase even

if SUSY remains unbroken. In this unbroken SUSY limit, and with the global custodial

SU(2)V symmetry broken only by gauging the U(1) hypercharge, the model parameters

simplify to v′u = v′d ≡ v′ while tan β = 1 (vu = vd) and µ12 = µ21. Parametrizing the MSSM

Higgs field doublets as

Hu =

H+
u

H0
u

 =

 iχ+

H0 − iχ0

 , Hd =

H0
d

H−d

 =

H0 + iχ0

iχ−

 , (6)

the massless Nambu-Goldstone bosons lie in an SU(2)V triplet

~ΠNG = ~Π cos θ + ~χ sin θ, (7)

while one of the neutral and the two charged massive Higgs chiral superfields together lie in

the orthogonal SU(2)V triplet

~H = −~Π sin θ + ~χ cos θ, (8)

with the other neutral Higgs chiral superfield being the SU(2)V singlet H0. The potential is

minimized at µ12 = −µ11 tan θ, with µ11 = µ the MSSM Higgs doublet superpotential mass

parameter. The SUSY Higgs mechanism becomes operational with the Z and W± vector

superfields absorbing the neutral and charged Nambu-Goldstone chiral superfields to become

massive with MZ =

√
g21+g2

2
v = MW/ cos θW , with v2 = v2

u + v2
d + v′2u + v′2d , while the photon

vector superfield (photon and photino) remains massless. There are four additional Higgs

superfields; two neutral and two charged. The neutral chiral superfields have masses 4µ11

and 4µ11 sec2 θ while the charged SU(2)V partner chiral superfields have masses 4µ11 sec2 θ.

When the SUSY breaking parameters are included and the mixing masses are chosen to be

different for up and down Higgs fields, the mixing involved in forming the mass eigenstates

becomes quite complicated and necessitates a numerical determination. All told, there are

two neutral pseudoscalars, three neutral Higgs scalars and three charged scalars. In addition,

the gaugino and Higgsino fields mix to yield three charginos and five neutralinos.

4



In section II, the model is expressed in terms of its component fields with the auxiliary

F− and D− fields eliminated. The electroweak breaking minimum of the potential is found.

The mass spectrum is extracted in section III for various choices of the parameters of the

model. For simplicity, the nonlinear realization of the electroweak symmetry has been taken

to exhibit the custodial SU(2)V global symmetry, hence the corresponding vacuum values are

chosen to satisfy: v′u = v′d ≡ v′. Consequently, after fixing the values of MZ and gaugino soft

SUSY breaking masses M1 and M2, the model spectrum depends on five parameters: tan β =

vu/vd, tan θ =
√

(v2
u + v2

d)/2v
′2, the MSSM µ = µ11 parameter, the µ11B SUSY breaking

parameter, and a mixing mass parameter µ12 between the MSSM Higgs and the constrained

Higgs multiplets. The Kähler SUSY breaking term parameters m2
u, m

2
d and the mixing mass

parameter µ21 are fixed by the three electroweak symmetry breaking minimum conditions.

As usual, the µ−problem still exists as a µ11-µ12 stability region of parameter space which

must be determined in order to prevent D-flat direction runaway field values. There is

no additional µ-problem tuning since the origin of field space is not an extremum of the

potential as the nonlinear realization of the electroweak symmetry imposes its breakdown.

Since the quark and lepton superfield Yukawa couplings only involve the MSSM Higgs

fields, the isssue of flavor changing neutral currents (FCNC) is the same as that of the

MSSM. Note that, since the W and Z masses are now given by the vacuum expectation

value v2 = v2
u+v2

d +v′2u +v′2d = v2
u+v2

d +2v′2, with MZ =

√
g21+g22
2

v = MW/ cos θW , generating

the same matter masses requires that the Yukawa coupling constants be larger than in

the MSSM. The perturbative bounds, (≤ 4π), for the top and bottom quarks and τ lepton

provide a further restriction on the parameter space. In section IV, we discuss the constraints

imposed by the electroweak precision tests. In addition, we consider the modifications to

Higgs production and decay due to the extra vacuum expectation values and Higgs field

mixing. Finally, note that the model has an unbroken R-parity which dictates the stability

of the lightest supersymmetric particle (LSP) which for various regions of parameter space

is the lightest neutralino and hence it is a dark matter candidate.

II. THE HIGGS-GAUGE SECTOR ACTION

The relevant Higgs and gauge terms in the action of Eq. (4) have the form

ΓH−G = ΓYM + ΓK + ΓW + Γ/S, (9)
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where the SU(2)L × U(1) field strength terms are

ΓYM =
1

4g2
2

∫
dSTr[W2W2]+

1

4g2
1

∫
dSW1W1 +

1

4g2
2

∫
dS̄Tr[W̄2W̄2]+

1

4g2
1

∫
dS̄W̄1W̄1 (10)

and the two pairs of Higgs doublets have a Kähler potential action given by

ΓK =

∫
dV
{
H̄ue

−2g2W−g1BHu + H̄de
−2g2W+g1BHd + H̄ ′ue

−2g2W−g1BH ′u + H̄ ′de
−2g2W+g1BH ′d

}
.

(11)

The Higgs doublet portion of the superpotential includes the mixing terms among the con-

strained and MSSM Higgs multiplets as well as the MSSM µ11-term so that

ΓW =

∫
dSW +

∫
dS̄W̄ (12)

with

W = µ11HuεHd +WMix = µ11HuεHd + µ12HuεH
′
d + µ21H

′
uεHd. (13)

Finally the soft SUSY breaking terms for the gauginos and MSSM Higgs doublets are denoted

as

Γ/S =

∫
d4xL/S (14)

while, for simplicity, we take the Kähler-like and µ11B term type breaking to appear only

for the MSSM Higgs fields so that

L/S =
1

2
M1

(
λλ+ λ̄λ̄

)
+

1

2
M2

(
λiλi + λ̄iλ̄i

)
−m2

uH
†
uHu −m2

dH
†
dHd − µ11BHuεHd − µ11BH

†
uεH

†
d. (15)

where λi(λ) are the gaugino fields.

In the Wess-Zumino gauge, the component Lagrangian takes the corresponding form

L = LYM + LK + LW + L/S. (16)

Here LYM = LSYM + LDYM, where the individual contributions to the gauge and gaugino

Lagrangian are

LSYM = −1

4
F i
µνF

i µν − 1

4
BµνB

µν + iλ̄iσ̄µDµλ
i + iλ̄σ̄µ∂µλ (17)

while the D-term contribution to the Lagrangian is simply

LDYM =
1

2
DiDi +

1

2
DD. (18)
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The field strength tensors are as usual

Bµν = ∂µBν − ∂νBµ

F i
µν = ∂µW

i
ν − ∂νW i

µ + g2εijkW
j
µW

k
ν , (19)

while the SU(2)L adjoint representation gaugino covariant derivative is

(Dµλα)i = ∂µλ
i
α + g2εijkW

j
µλ

k
α. (20)

Expanding the Kähler potential, the kinetic, auxiliary and gaugino-Higgsino Yukawa terms

are obtained as

LK = F †uFu + F †dFd + F ′†u F
′
u + F ′†d F

′
d

−g1

2
D
[
H†uHu −H†dHd +H ′†uH

′
u −H

′†
d H

′
d

]
−g2

2
Di
[
H†uσ

iHu +H†dσ
iHd +H ′†u σ

iH ′u +H ′†d σ
iH ′d

]
+ (DµHu)

† (DµHu) + (DµHd)
† (DµHd) + (DµH ′u)

†
(DµH

′
u) + (DµH ′d)

†
(DµH

′
d)

+i ¯̃Huσ̄
µDµH̃u + i ¯̃Hdσ̄

µDµH̃d + i ¯̃H ′uσ̄
µDµH̃

′
u + i ¯̃H ′dσ̄

µDµH̃
′
d

+
g1√

2

[
H†uλH̃u + ¯̃Huλ̄Hu −H†dλH̃d − ¯̃Hdλ̄Hd +H ′†u λH̃

′
u + ¯̃H ′uλ̄H

′
u −H

′†
d λH̃

′
d −

¯̃H ′dλ̄H
′
d

]
+
g2√

2

[
H†u(λ

iσi)H̃u + ¯̃Hu(λ̄
iσi)Hu +H†d(λ

iσi)H̃d − ¯̃Hd(λ̄
iσi)Hd

+H ′†u (λiσi)H̃ ′u + ¯̃H ′u(λ̄
iσi)H ′u −H

′†
d (λiσi)H̃ ′d −

¯̃H ′d(λ̄
iσi)H ′d

]
, (21)

with the covariant derivatives

DµHu =

[
∂µ −

ig2

2
~σ · ~Wµ −

ig1

2
Bµ

]
Hu

DµHd =

[
∂µ −

ig2

2
~σ · ~Wµ +

ig1

2
Bµ

]
Hd, (22)

and likewise for H ′u and H ′d and the associated Higgsino partners H̃u, H̃
′
u, H̃d and H̃ ′d. The

superpotential contribution to the Lagrangian takes its familiar doublet auxiliary field and

Higgsino mass term form

LW = −4F a ∂W

∂Aa
+ 2λa

∂2W

∂Aa∂Ab
λb + h.c.

= −4µ11FuεHd − 4µ12FuεH
′
d − 4µ11HuεFd − 4µ21H

′
uεFd − 4µ12HuεF

′
d − 4µ21F

′
uεHd

+4µ11H̃uεH̃d + 4µ12H̃uεH̃
′
d + 4µ21H̃

′
uεH̃d + h.c.. (23)

The soft SUSY breaking Lagrangian is given by Eq. (15).
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The chiral superfields have the component expansion

Σ(x, θ, θ̄) = e−iθ/∂θ̄
[
σ(x) +

√
2θασ̃α(x) + θ2Fσ(x)

]
Πi(x, θ, θ̄) = e−iθ/∂θ̄

[
πi(x) +

√
2θαπ̃iα(x) + θ2F i

π(x)
]
. (24)

Applying the constraint to the H ′u and H ′d doublets, H ′dεH
′
u = v′uv

′
d/2, the component fields

take the form

σ =

√
v′uv

′
d

2
− ~π2

σ̃α = − ~π · ~̃πα√
v′uv
′
d

2
− ~π2

Fσ =
− ~Fπ · ~π + 1

2
~̃π · ~̃π√

v′uv
′
d

2
− ~π2

. (25)

The auxiliary fields can now be eliminated through field equations. Focusing on the relevant

D- and F -terms, the Lagrangian for D-terms has contributions from LDYM and LK and is

given by

LD =
1

2
DiDi +

1

2
DD − 1

2

[
H ′†u

(
2g2

σi

2
Di + 2g1

1

2
D

)
H ′u +H ′†d

(
2g2

σi

2
Di − 2g1

1

2
D

)
H ′d

+H†u

(
2g2

σi

2
Di + 2g1

1

2
D

)
Hu +H†d

(
2g2

σi

2
Di − 2g1

1

2
D

)
Hd

]
≡ 1

2
DAZABD

B − 1

2
DAJA, (26)

with

Z−1 AB =

(2g2)2δij 0

0 (2g1)2


AB

(27)

and where DA = (2g2D
i , 2g1D), with A = 1, 2, 3, 4. The D-term contribution is given by

the Killing potentials

JA = JA +H†uT
A
u Hu +H†dT

A
d Hd (28)

which are the θ-θ̄ independent components of the gauge superfield Noether currents. Here

the representation matrices are combined according to TAu = (~σ, 1)/2 and TAd = (~σ,−1)/2

while the nonlinear sigma model Killing potential [22] is found to be

JA = H ′†u T
A
u H

′
u +H ′†d T

A
d H

′
d

=
i

2
H ′†u

∂H ′u
∂πi

AiA −
i

2

∂H ′†u
∂π ī†

Aī†AH
′
u +

i

2
H ′†d

∂H ′d
∂πi

AiA −
i

2

∂H ′†d
∂π ī†

Aī†AH
′
d
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=
i

2

∂K

∂πi
AiA −

i

2

∂K

∂π ī†
Aī†A, (29)

with

K = H ′†uH
′
u +H ′†d H

′
d = 2(σ†σ + ~π† · ~π). (30)

The (anti-)chiral Killing vectors (Aī†A(π†)) AiA(π) are given according to the σ-model real-

ization through the variation of the constrained doublets H ′u and H ′d. They are secured as

the θ − θ̄ independent components of the defining superfield relations

δ(Λ)H ′u = −iΛATAu H
′
u =

∂H ′u
∂Πi

δ(Λ)Πi =
∂H ′u
∂πi

ΛAAiA(Π)

δ(Λ)H ′d = −iΛATAd H
′
d =

∂H ′d
∂Πi

δ(Λ)Πi =
∂H ′d
∂πi

ΛAAiA(Π), (31)

where, analogously to the gauge fields, V A = (2g2
~W, 2g1B), the four chiral gauge trans-

formation parameters are defined as ΛA = (2g2
~Λ2, 2g1Λ1). Recalling the expression for the

constrained doublets in terms of the σ-model coordinates, equation (1), the Killing vectors

are obtained

AiA =

1
2
εikjΠj − 1

2
δikΣ , A = k

1
2
εi3jΠj + 1

2
δi3Σ , A = 4

, (32)

with the constraint Σ =
√
v′uv

′
d/2− ~Π2 . The superfield Killing vectors are given in terms

of the derivative of the Killing potentials. As seen from above

∂

∂π̄ī
JA = iAiAgīi

∂

∂πi
JA = −iĀīAgīi (33)

with

gīi =
∂H̄ ′u
∂Π̄ī

∂H ′u
∂Πi

+
∂H̄ ′d
∂Π̄ī

∂H ′d
∂Πi

. (34)

Expanding Eqs. (31)-(34) in powers of θ and θ̄ allows for the extraction of the various

component relations.

Hence, by the straightforward application of the auxiliary D-field equation of motion, the

D-term (component) Lagrangian becomes

LD = −1

8
JAZ−1 ABJB. (35)

where here JA denotes the θ − θ̄ independent component of the defining superfield relation

as given in Eqs. (28)-(31).
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The F -terms are contained in LK and LW. For the unconstrained MSSM doublets, they

have the combined form

LF = F †uFu + F †dFd − 4Fuε (µ11Hd + µ12H
′
d)− 4 (µ11Hu + µ21H

′
u) εFd

−4F †uε
(
µ11H

†
d + µ12H

′†
d

)
− 4

(
µ11H

†
u + µ21H

′†
u

)
εF †d . (36)

Eliminating the Fu and Fd doublet auxiliary fields yields

LF = −16|µ11Hd + µ12H
′
d|2 − 16|µ11Hu + µ21H

′
u|2. (37)

The constrained auxiliary fields couple to the scalar and fermion fields through the Kähler

potential as well as the µ-term superpotential. Their combined Lagrangian is

LF′ =

[
F ī†

π −
1

2
Γī†m̄n̄ ¯̃πm̄ ¯̃πn̄

]
gī i

[
F i
π −

1

2
Γirsπ̃

rπ̃s
]

−4

{[
µ12Huε

∂H ′d
∂πi

+ µ21
∂H ′u
∂πi

εHd

]
F i
π + h.c.

}
, (38)

where the Kähler metric is obtained from the Kähler potential to be

gīi = 2

(
δīi +

πī†πi

σ†σ

)
(39)

and the associated Christoffel symbols are

Γijk = gīigīj,k (40)

and similarly for Γī†m̄n̄. Employing the Fπ Euler-Lagrange equations then gives

LF′ = −16

[
µ12Huε

∂H ′d
∂πi

+ µ21
∂H ′u
∂πi

εHd

]
gi ī

[
µ12H

†
uε
∂H ′†d
∂π ī†

+ µ21
∂H ′†u
∂π ī†

εH†d

]
−2

[
µ12Huε

∂H ′d
∂πi

+ µ21
∂H ′u
∂πi

εHd

]
Γirsπ̃

rπ̃s

−2Γī†m̄n̄ ¯̃πm̄ ¯̃πn̄

[
µ12H

†
uε
∂H ′†d
∂π ī†

+ µ21
∂H ′†u
∂π ī†

εH†d

]
. (41)

Hence the Lagrangian with auxiliary fields eliminated has the form L = LSYM +L/S +Lσ
where the σ-model Lagrangian, Lσ, consists of all the terms coming from LD,LK and LW

and takes the form

Lσ = LD + LF + LF′

+Dµπ
ī†gī iD

µπi + i¯̃πīσ̄µgī iDµπ̃
i +

1

4
Rrm̄sn̄

¯̃πm̄ ¯̃πn̄π̃rπ̃s
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+ (DµHu)
† (DµHu) + (DµHd)

† (DµHd) + i ¯̃Huσ̄
µDµH̃u + i ¯̃Hdσ̄

µDµH̃d

+
1√
2

[
H†uλ

ATAu H̃u + ¯̃Huλ̄
ATAu Hu +H†dλ

ATAd H̃d + ¯̃Hdλ̄
ATAd Hd

−iAī†Agī iλ
Aπ̃i + i¯̃πīgī iλ̄

AAiA

]
+4µ12Huε

∂2H ′d
∂πi∂πj

π̃iπ̃j + 2µ21
∂2H ′u
∂πi∂πj

π̃iπ̃jεHd

+4µ12H
†
uε

∂2H ′†d
∂π ī†∂πj̄†

¯̃πī ¯̃πj̄ + 2µ21
∂2H ′†u
∂π ī†∂πj̄†

¯̃πī ¯̃πj̄εH†d

+4µ11H̃uεH̃d + 4µ12H̃uεH̃
′
d + 4µ21H̃

′
uεH̃d

+4µ11
¯̃Huε

¯̃Hd + 4µ12
¯̃Huε

¯̃H ′d + 4µ21
¯̃H ′uε

¯̃Hd, (42)

where the Riemann tensor is given by

Rm
rm̄s =

∂

∂πm̄†
Γmrs (43)

with

Rrm̄sn̄ = gn̄mR
m
rm̄s =

∂

∂πm̄†
Γn̄rs − Γī†m̄n̄Γīrs. (44)

The covariant derivatives are found by expressing the Kähler kinetic energy terms for the

constrained doublets in terms of the unconstrained σ-model π fields so that

|DµH
′
u|2 + |DµH

′
d|2 = Dµπ

ī†gī iD
µπi, (45)

with

Dµπ
i = ∂µπ

i +
1

2
V A
µ A

i
A(π). (46)

Similarly for the Higgsino fields

i ¯̃H ′uσ̄
µDµH̃

′
u + i ¯̃H ′dσ̄

µDµH̃
′
d = i¯̃πīσ̄µgī iDµπ̃

i, (47)

with

Dµπ̃
i = ∂µπ̃

i +
1

2
V A
µ

∂AiA
∂πj

π̃j + Γijk(Dµπ
j)π̃k. (48)

From the Lagrangian the scalar potential V can be read off as

V = m2
uH
†
uHu +m2

dH
†
dHd − µ11BHuεHd − µ11BH

†
uεH

†
d

+
1

8
JAZ−1 ABJB + 16|µ11Hd + µ12H

′
d|2 + 16|µ11Hu + µ21H

′
u|2

+16

[
µ12Huε

∂H ′d
∂πi

+ µ21
∂H ′u
∂πi

εHd

]
gi ī

[
µ12H

†
uε
∂H ′†d
∂π ī†

+ µ21
∂H ′†u
∂π ī†

εH†d

]
. (49)
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Taking the derivatives of the potential with respect to the shifted scalar fields (H0†
u + H0

u),

(H0†
d + H0

d) and (π0† − π0) and evaluating it at the vacuum expectation values yields the

three electroweak symmetry breaking minima equations

1) 0 = m2
uvu − µ11Bvd + 16µ11 (µ11vu + µ21v

′
u)

+16µ12
v′d

(v′2u + v′2d )
(µ12vuv

′
d − µ21vdv

′
u)

+
(g2

1 + g2
2)

8

(
v′2u − v′2d + v2

u − v2
d

)
vu

2) 0 = m2
dvd − µ11Bvu + 16µ11 (µ11vd + µ12v

′
d)

−16µ21
v′u

(v′2u + v′2d )
(µ12vuv

′
d − µ21vdv

′
u)

−(g2
1 + g2

2)

8

(
v′2u − v′2d + v2

u − v2
d

)
vd

3) 0 =
(g2

1 + g2
2)

8

(
v′2u − v′2d + v2

u − v2
d

)(v′2u + v′2d
v′u + v′d

)
−16µ12

(
v′d

v′u + v′d

)
(µ11vd + µ12v

′
d)

+16µ21

(
v′u

v′u + v′d

)
(µ11vu + µ21v

′
u)

−32
v′u + v′d

(v′2u v
′2
d )(v′u + v′d)

2
(µ12vu + µ21vd) (µ12vuv

′
d − µ21vdv

′
u)

−32
v′u + v′d(v

′
u − v′d)

(v′2u v
′2
d )2(v′u + v′d)

2
(µ12vuv

′
d − µ21vdv

′
u)

2
. (50)

Note that these equations admit no non-trivial solutions for vu, vd in the limit v′u = v′d = 0

and µ2
12 = µ2

21 = 0 and the good SUSY limit B = m2
u = m2

d = 0. Consequently, it is the

non-trivial vacuum expectation values of the constrained Higgs doublets which catalyze the

vacuum expectation values of the MSSM Higgs doublets through their bilinear superpotential

coupling with coefficients µ12, µ21.

In order to simplify the parameter space the nonlinearly realized symmetry breakdown

is taken to respect the custodial SU(2)V symmetry hence, v′u = v′d ≡ v′. The Z and

W vector boson masses are then given by the vacuum value v2 = v2
u + v2

d + 2v′2 with

MZ =
√
g2

1 + g2
2v/2 = MW/ cos θW . The 3 potential minimum equations simplify to

1) 0 =
M2

Z

2

v2
u − v2

d

v2
vu +m2

uvu + 16µ2
11vu − µ11Bvd + 16µ11µ21v

′ + 8µ12 (µ12vu − µ21vd)

2) 0 = −M
2
Z

2

v2
u − v2

d

v2
vd +m2

dvd + 16µ2
11vd − µ11Bvu + 16µ11µ12v

′ − 8µ21 (µ12vu − µ21vd)

3) 0 =
M2

Z

2

v2
u − v2

d

v2
− 8µ2

12

(
1 +

v2
u

2v′2

)
+ 8µ2

21

(
1 +

v2
d

2v′2

)
− 8µ11

(
µ12

vd
v′
− µ21

vu
v′

)
. (51)
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Introducing spherical polar coordinates for the 3 vacuum values

√
2 v′ = v cos θ

vu = v sin θ sin β

vd = v sin θ cos β, (52)

where tan β = vu/vd and tan θ =
√

(v2
u + v2

d)/(2v
′2), the minimum conditions take the form

1) m2
u + 16µ2

11 −
M2

Z

2
sin2 θ cos 2β = µ11B cot β − 8

√
2µ11µ21 cot θ csc β − 8µ12 (µ12 − µ21 cot β)

2) m2
d + 16µ2

11 +
M2

Z

2
sin2 θ cos 2β = µ11B tan β − 8

√
2µ11µ12 cot θ sec β + 8µ21 (µ12 tan β − µ21)

3)
M2

Z

2
sin2 θ cos 2β = −8µ2

12

(
1 + tan2 θ sin2 β

)
+ 8µ2

21

(
1 + tan2 θ cos2 β

)
−8
√

2µ11 tan θ (µ12 cos β − µ21 sin β) . (53)

The first two conditions are used to eliminate m2
u and m2

d from the parameters of the model

while the third condition is used to express µ21 in terms of the remaining parameters. Thus

the five variables upon which the potential depends are the MSSM parameters tan β, µ11 and

b = −µ11B, as well as the independent electroweak symmetry breaking vacuum angle tan θ

and the Higgs doublet mixing mass coupling µ12. The tuning of the µ11 and µ12 parameters

is required as can be seen by expressing the first two minimum conditions as

16µ2
11 − 8

√
2µ11

cot θ

tan2 β − 1
[µ12 − µ21 tan β] sec β =

m2
d −m2

u tan2 β

tan2 β − 1
− M2

Z

2
sin2 θ

−8
µ2

12 tan2 β − µ2
21

tan2 β − 1

2µ11B =
[
m2
u +m2

d + 32µ2
11 + 8

(
µ2

12 + µ2
21

)
+ 8
√

2µ11 cot θ (µ12 sec β + µ21 csc β)
]

sin 2β

−16µ12µ21. (54)

III. MASS SPECTRUM

In order to determine the mass spectrum of the model, the Lagrangian must be expanded

about the non-trivial vacuum expectation values. We focus on the case v′u = v′d = v′. In

the neutral Higgs field sector, the scalar, S, and pseudoscalar, P , fields with canonically

normalized kinetic terms are introduced in terms of the shifted Higgs fields as

Pπ =
(
π0† + π0

)
, Sπ = −i

(
π0† − π0

)
13
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FIG. 1: Stability of the potential against D-flat direction runaway field values is determined in the

µ11-µ12 parameter plane. Each region of SUSY breaking parameter b = −4, 000, 4, 000, 12, 000

GeV2 is depicted by the overlapping orange, violet, blue regions, respectively. Finally, stability

region A has tanβ = 1, tan θ = 1, region B has tanβ = 1, tan θ = 2, region C has tanβ = 2,

tan θ = 2, and region D has tanβ = 10, tan θ = 2.

Pu =
i√
2

(
H0†
u −H0

u

)
, Su =

1√
2

(
H0†
u +H0

u

)
Pd =

i√
2

(
H0†
d −H

0
d

)
, Sd =

1√
2

(
H0†
d +H0

d

)
. (55)

The pseudoscalar and scalar mass squared matrices are determined from the second deriva-

tives of the potential evaluated at the minimum(
M2

PS

)
ij

=
∂2V

∂Pi∂Pj
|minimum ;

(
M2

S

)
ij

=
∂2V

∂Si∂Sj
|minimum. (56)

The pseudoscalar mass squared matrix is given in the (Pu, Pd, Pπ) basis as

M2
PS =


M2

uu M2
ud M2

uπ

M2
du M2

dd M2
dπ

M2
πu M2

πd M
2
ππ

 (57)
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with

M2
uu = (µ11B + 8µ12µ21) cot β − 8

√
2µ11µ21 cot θ csc β

M2
dd = (µ11B + 8µ12µ21) tan β − 8

√
2µ11µ12 cot θ sec β

M2
ππ = 16µ12µ21 tan2 θ sin 2β − 8

√
2µ11 tan θ (µ12 cos β + µ21 sin β)

M2
ud = µ11B − 8µ12µ21 = M2

du

M2
uπ = −8

√
2µ11µ21 + 16µ12µ21 tan θ cos β = M2

πu

M2
dπ = +8

√
2µ11µ12 − 16µ12µ21 tan θ sin β = M2

πd. (58)

In the SU(2)V limit, where µ12 = µ21 , m2
u = m2

d = m2 and tan β = 1, the potential

minimum condition reduces to [m2 + 16µ2
11 − µ11B] = −16µ11µ12 cot θ. In this case, the

mass matrix has eigenvalues corresponding to the massless Nambu-Goldstone boson which

is absorbed by the Z vector field and two physical massive pseudoscalars with values

m2
a = 2µ11B − 16µ11µ12 cot θ

m2
A =

(
16µ2

12 − 16µ11µ12 cot θ
)

sec2 θ. (59)

For D-flat direction stability of the potential, it is required that m2
a > 0. As shall be

seen, the scalar sector stability condition requires that µ11µ12 < 0. Hence, as long as

m2
A −m2

a = 16µ2
12 sec2 θ + 2b− 16µ11µ12 tan θ > 0, the mass ma corresponds to the lightest

pseudoscalar in this limit. The scalar Higgs mass squared matrix in the (Su, Sd, Sπ) basis

can be written as

M2
S = M2

PS + ∆M2
S (60)

with

∆M2
S =


∆M2

uu ∆M2
ud ∆M2

uπ

∆M2
du ∆M2

dd ∆M2
dπ

∆M2
πu ∆M2

πd ∆M2
ππ

 (61)

where

∆M2
uu = M2

Z sin2 θ sin2 β

∆M2
dd = M2

Z sin2 θ cos2 β

∆M2
ππ = M2

Z cos2 θ + 16
(
µ2

12 + µ2
21

)
+ 16
√

2µ11 tan θ (µ12 cos β + µ21 sin β)

∆M2
ud = −1

2
M2

Z sin2 θ sin 2β − 2µ11B = ∆M2
du

∆M2
uπ = −1

2
M2

Z sin 2θ sin β + 16µ12 tan θ (µ12 sin β − µ21 cos β) = ∆M2
πu
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FIG. 2: The requirement that a neutralino is the LSP further delineates the stability regions of

Fig. 1 as shown here for the same slices of parameter space. The green dots indicate the points in

parameters space associated with the detailed mass spectrum in Fig. 3. The yellow lines indicate

the value of µ11 along which the parameter µ12 is scanned in the subsequent mass spectrum plots.

For each plot the value of the gaugino SUSY breaking masses are M1 = 200 GeV and M2 = 800

GeV.

∆M2
dπ =

1

2
M2

Z sin 2θ cos β + 16µ21 tan θ (µ12 sin β − µ21 cos β) = ∆M2
πd. (62)

In the SU(2)V limit, stability requires that µ11µ12 < 0. The mass matrix becomes block

diagonal with the isolated eigenvector corresponding to an SU(2)V singlet, with eigenvalue

m2
h = −16µ11µ12 cot θ = m2

a + 2b = m2
A cos2 θ − 16µ2

12. (63)

In this limit, the singlet mass is lighter than the heaviest pseudoscalar but heavier or lighter

than the lightest pseudoscalar depending on the sign of b. For sufficiently large µ11, µ12

and SUSY breaking it corresponds to the lightest Higgs mass, m2
h = m2

0. After extracting
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the contribution of this singlet, the remainder of the scalar mass squared matrix can be

combined into a 2 × 2 matrix denoted as m2
s. Since tan β = 1 is a D-flat direction, the

stability of the potential against runaway moduli is guaranteed by the mass squared (second

derivatives of the potential) matrix having positive eigenvalues. Since the eigenvalues are

given by

m2
± =

1

2

[
Tr m2

s ±
√

(Tr m2
s)

2 − 4det m2
s

]
, (64)

their reality requires (Tr m2
s)

2 > 4det m2
s and their positivity leads to det m2

s > 0. The

expressions for the trace and determinant are readily extracted as

Tr m2
s = M2

Z − 2b+ 16µ2
12[3 + tan2 θ]− 32µ11µ12 cot 2θ

det m2
s = 16M2

Z

(
µ2

12 − µ11µ12 cot θ
)

sec2 θ + 2µ11B
[
M2

Z cos2 θ + 16
(
µ2

12 − µ11µ12 cot θ
)

tan2 θ
]

+32
(
µ2

12 + µ11µ12 tan θ
) [
M2

Z sin2 θ + 2µ11B + 16
(
µ2

12 − µ11µ12 cot θ
)]
.(65)

The region of stability can be mapped out for various parameters. If µ2
12 corresponds to

the largest mass squared parameter, for instance, then m2
h = m2

0 is the lightest Higgs mass,

which is not bounded by the Z boson mass, while the trace and determinant simplify to

Tr m2
s ≈ 16µ2

12[3 + tan2 θ]

(Tr m2
s)

2 > 4 detm2
s ≈ 8(16µ2

12)2 > 0, (66)

with the heavier 2 neutral Higgs fields having mass squares (with m2
A ≈ 16µ2

12 sec2 θ)

m2
H1 ≈

1

2
m2
A cos2 θ

[
3 + tan2 θ −

√
(3 + tan2 θ)2 − 8

]
m2
H2 ≈

1

2
m2
A cos2 θ

[
3 + tan2 θ +

√
(3 + tan2 θ)2 − 8

]
. (67)

In an analogous fashion, the charged Higgs mass squared matrix, denoted M2
Ch, can also

be obtained from the potential curvature at the minimum. The matrix and its elements in

the (H+
u , H

−†
d , π+, π−†) basis are given by

M2
Ch =


M2

u+ū+ M2
u+d− M2

u+π̄+ M2
u+π−

M2
d̄−ū+

M2
d̄−d−

M2
d̄−π̄+ M2

d̄−π−

M2
π+ū+ M2

π+d− M2
π+π̄+ M2

π+π−

M2
π̄−ū+ M2

π̄−d− M2
π̄−π̄+ M2

π̄−π−

 (68)

where

M2
u+ū+ = M2

W sin2 θ cos2 β + µ11B cot β + 8µ12µ21 cot β + 8µ2
12 − 8

√
2µ11µ21 cot θ csc β
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M2
u+d− =

1

2
M2

W sin2 θ sin 2β + µ11B = M2
d̄−ū+

M2
u+π̄+ = − 1

2
√

2
M2

W sin 2θ sin β − 16iµ11µ21 + 8i
√

2µ12 tan θ (µ12 sin β + µ21 cos β) = −M2
π+ū+

M2
u+π− =

i

2
√

2
M2

W sin 2θ sin β = −M2
π̄−ū+

M2
d̄−d− = M2

W sin2 θ sin2 β + µ11B tan β + 8µ12µ21 tan β + 8µ2
21 − 8

√
2µ11µ12 cot θ sec β

M2
d̄−π̄+ = − i

2
√

2
M2

W sin 2θ cos β = −M2
π+d−

M2
d̄−π− =

i

2
√

2
M2

W sin 2θ cos β + 16iµ11µ12 − 8i
√

2µ21 tan θ (µ12 sin β + µ21 cos β) = −M2
π̄−d−

M2
π+π̄+ =

1

2
M2

W

[
cos2 θ + sin2 θ

(
1− tan2 θW

)
cos 2β

]
+ 16µ2

21 + 8 tan2 θ (µ12 sin β + µ21 cos β)2

M2
π̄−π− =

1

2
M2

W

[
cos2 θ − sin2 θ

(
1− tan2 θW

)
cos 2β

]
+ 16µ2

12 + 8 tan2 θ (µ12 sin β + µ21 cos β)2

M2
π+π− = −1

2
M2

W cos2 θ − 8
(
µ2

12 + µ2
21

)
− 8
√

2µ11 tan θ (µ12 cos β + µ21 sin β) = M2
π̄−π̄+ . (69)

The sfermion mass matrices are obtained directly from the Lagrangian, Eqs. (15), (17)

and (42). The chargino mass matrix, denoted MChino, in the (W̃+, H̃+
u , π̃

+) basis is found to

be

MChino =


MW+W− MW+d− MW+π−

Mu+W− Mu+d− Mu+π−

Mπ+W− Mπ+d− Mπ+π−

 (70)

where

MW+W− = M2 ; MW+d− = MW

√
2 sin θ cos β ; MW+π− = iMW cos θ

Mu+W− = MW

√
2 sin θ sin β ; Mu+d− = 4µ11 ; Mu+π− = 4iµ12

Mπ+W− = iMW cos θ ; Mπ+d− = 4iµ21 ; Mπ+π− = 2
√

2 tan θ (µ12 sin β + µ21 cos β) .(71)

There are five neutralino fields with their mass matrix in the (λγ, Z̃, H̃
0
u, H̃

0
d , π̃

0) basis

given by

MNino =



M̃γγ M̃γZ M̃γu M̃γd M̃γπ

M̃Zγ M̃ZZ M̃Zu M̃Zd M̃Zπ

M̃uγ M̃uZ M̃uu M̃ud M̃Tπ

M̃dγ M̃dZ M̃du M̃dd M̃dπ

M̃πγ M̃πZ M̃πu M̃πd M̃ππ


(72)

where

M̃γγ = mγγ ; M̃γZ = mγZ ; M̃γu = 0
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FIG. 3: The Higgs (pseudo-) scalars and gaugino-Higgsino mass spectrum for a point in the LSP-

stability regions indicated by the green dot in Fig. 2. The gaugino soft SUSY breaking masses are

M1 = 200 GeV and M2 = 800 GeV, and b = 4, 000 GeV2 for all regions.

M̃γB = 0 ; M̃γπ = 0 ; M̃Zγ = mZγ

M̃ZZ = mZZ ; M̃Zu = −MZ sin θ sin β ; M̃Zd = MZ sin θ cos β ; M̃Zπ = iMZ cos θ

M̃uγ = 0 ; M̃uZ = −MZ sin θ sin β ; M̃uu = 0

M̃ud = −4µ11 ; M̃Tπ = −2i
√

2µ12 ; M̃dγ = 0

M̃dZ = +MZ sin θ cos β ; M̃du = −4µ11 ; M̃dd = 0

M̃dπ = i2
√

2µ21 ; M̃πγ = 0 ; M̃πZ = iMZ cos θ

M̃πu = −2i
√

2µ12 ; M̃πd = 2i
√

2µ21 ; M̃ππ = 2
√

2 tan θ (µ12 sin β + µ21 cos β) , (73)

with the SUSY breaking gaugino masses defined as

mγγ = M1 cos2 θW +M2 sin2 θW

mZZ = M1 sin2 θW +M2 cos2 θW

mγZ = (M2 −M1) sin θW cos θW = mZγ. (74)
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FIG. 4: Masses as a function of the lightest pseudoscalar mass ma for a µ12 scan along the yellow

line across region A in Fig. 2. The parameters for the plots are tanβ = 1, tan θ = 1, b = 4, 000

GeV2 and µ11 = −12 GeV. In the top left panel green curves correspond to scalar h,H1, H2

masses, while the purple curve corresponds to the pseudoscalar A mass. In the bottom left panel,

the blue curves correspond to the charged Higgs C1, C2, C3 masses. In the top right panel, the red

curves correspond to the neutralino N1 − N5 masses, while the orange curves in the lower right

panel correspond to the chargino C̃1, C̃2, C̃3 masses.

The stability region in parameter space is determined by requiring all scalar squared

masses to be positive. Four typical stability regions, denoted as A, B, C, and D, are exhibited

in Fig. 1 in the µ11 – µ12 plane. For each panel in the figure the value of the gaugino SUSY

breaking masses are M1 = 200 GeV and M2 = 800 GeV. Stability region A has tan β = 1,

tan θ = 1, region B has tan β = 1, tan θ = 2, region C has tan β = 2, tan θ = 2, and

region D has tan β = 10, tan θ = 2. Each region is considered for three values of the SUSY

breaking parameter b = −4, 000, 4, 000, 12, 000 GeV2. Additional delineation in parameter
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FIG. 5: Masses as a function of the lightest pseudoscalar mass ma for a µ12 scan along the yellow

line across region B in Fig. 2. The parameters for the plots are tanβ = 1, tan θ = 2, b = 4, 000

GeV2 and µ11 = −16 GeV. The curves correspond to the various particles just as described in the

caption to Fig. 4.

space is obtained when a neutralino is required to be the LSP as illustrated in Fig. 2 for the

same four regions of parameter space. In general, the eigenvalues of the mass matrices must

be determined numerically. Detailed mass spectra for specific points in parameter space

indicated by green dots in Fig. 2 are displayed in Fig. 3. Note that the lightest spin zero

particle can be either the neutral pseudoscalar a (panels A,B) or the neutral scalar h (panels

C, D). The next heaviest neutral pseudoscalar is denoted by A, while the remaining neutral

scalars in order of increasing mass are denoted as H1, H2. Adapting a similar notation,

the neutralinos in order of increasing mass are denoted as N1, N2, N3, N4, N5, while the

charged scalars (charginos) are C1, C2, C3 (C̃1, C̃2, C̃3).

To further explore the mass spectra, the neutral (pseudo-)scalar, charged scalar, neu-
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FIG. 6: Masses as a function of the lightest pseudoscalar mass ma for a µ12 scan along the yellow

line across region C in Fig. 2 . The parameters for the plots are tanβ = 2, tan θ = 2, b = 4, 000

GeV2 and µ11 = −52 GeV. The curves correspond to the various particles just as described in the

caption to Fig. 4.

tralino, and chargino masses as a function of the lightest pseudoscalar mass are exhibited in

Figs. 4 – 7. The various curves in the figures follow the parameter scans from left to right

for fixed µ11 with increasing µ12 over the range indicated by the yellow lines in Fig. 2 for

each of the four regions A, B, C, and D. The left endpoint of all the curves in each of the

figures is dictated by the stability bounds as is the right endpoint of the curves in Figs. 6-7.

On the other hand the right endpoints of the curves in Fig. 5 corresponds to the maximum

value for µ12 plotted in Fig. 2. Note that in regions A and B tan β = 1. In these regions

the U(1) gauge coupling forms the only breaking of the global SU(2)V symmetry, and as a

consequence some near degeneracies in the mass spectra occur. Appendix A includes the

explicit form of certain masses and eigenvectors in the SU(2)V limit. All four panels allow
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FIG. 7: Masses as a function of the lightest pseudoscalar mass ma for a µ12 scan along the yellow

line across region D in Fig. 2. The parameters for the plots are tanβ = 10, tan θ = 2, b = 4, 000

GeV2 and µ11 = −344 GeV. The curves correspond to the various particles just as described in

the caption to Fig. 4.

for a lightest Higgs boson, h, with mass greater than 130 GeV. Using the experimental

bound[10] on the lightest MSSM pseudo-scalar of ma > 93.4 GeV as the bound for the cur-

rent model, we see that region A allows a lightest Higgs boson tree level mass in the range

130 GeV < mh < 200 GeV which corresponds to the range 93.4 GeV < ma < 180 GeV,

while for region B, the lightest Higgs boson mass varies from 130 GeV < mh < 172 GeV

as ma ranges from 93.4 GeV < ma < 148 GeV over the scanned region. A lightest Higgs

scalar with a mass in the range 115 GeV < mh < 130 GeV is also allowed provided different

(SUSY breaking) parameters are employed. For the scans considered, region C admits a

lightest Higgs boson mass in a range from 182 GeV > mh > 115 GeV as ma varies from

370 GeV < ma < 475 GeV. For ma less than around 350 GeV, there is some conflict with
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FIG. 8: Lightest neutral Higgs boson, h, content as a function of the lightest pseudoscalar mass

for a µ12 scan corresponding to the yellow lines across the A, B, C, and D regions in Fig. 2. For

each plot the values of the gaugino SUSY breaking masses are M1 = 200 GeV and M2 = 800 GeV,

and b = 4, 000 GeV2. The scan through region A has tanβ = 1, tan θ = 1, and µ11 = −12 GeV,

the one through region B has tanβ = 1, tan θ = 2 and µ11 = −16 GeV, the one through region

C has tanβ = 2, tan θ = 2, and µ11 = −52 GeV, and the one through region D has tanβ = 10,

tan θ = 2, and µ11 = −344 GeV. The red curve corresponds to the Su fraction, the green curve to

the Sd fraction, and the blue curve to the Sπ fraction.

the current experimental limit on the mass of the lightest chargino. Finally region D admits

a lightest Higgs boson mass in a range from 200 GeV > mh > 115 GeV as ma varies from

3140 GeV < ma < 3180 GeV. For ma less than around 3000 GeV, there is some tension

with the current experimental limit on the mass of the lightest chargino and/or neutralino.

It is instructive to quantify the contribution of the components of the constrained Higgs

doublet multiplets to the lightest Higgs neutral (pseudo-) scalar and charged scalars as well

as the lightest neutralino and chargino fermions. The fractions of the lightest neutral Higgs
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FIG. 9: LSP-neutralino, N1, content as a function of the lightest pseudoscalar mass for a µ12

scan corresponding to the yellow lines across the A, B, C, and D regions in Fig. 2. For each plot

the values of the gaugino SUSY breaking masses are M1 = 200 GeV and M2 = 800 GeV, and

b = 4, 000 GeV2. The scan through region A has tanβ = 1, tan θ = 1, and µ11 = −12 GeV, the

one through region B has tanβ = 1, tan θ = 2 and µ11 = −16 GeV, the one through region C has

tanβ = 2, tan θ = 2, and µ11 = −52 GeV, and the one through region D has tanβ = 10, tan θ = 2,

and µ11 = −344 GeV. The black curve corresponds to the λγ fraction, the yellow curve to the λZ

fraction, the red curve to the H̃0
u fraction, the green curve to the H̃0

d fraction, and the blue curve

to the π̃0 fraction.

scalar h in a decomposition in terms of the MSSM neutral scalars Su, Sd and the scalar Sπ

arising from the constrained doublets are displayed in Fig. 8 as a function of ma. For regions

A and B, a lightest Higgs scalar is essentially devoid of the nonlinearly transforming scalar

Sπ over the entire range 93.4 GeV < ma. As such, the composition of the Higgs scalar is

thus almost identical to that of the MSSM. In region C, the Sπ fraction of is less than 6−4%

for a lightest Higgs scalar mass in the range 182 GeV > mh > 115 Gev which corresponds

to 370 GeV < ma < 475 GeV. While not completely negligible, the Higgs scalar is still
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predominately composed of the MSSM fields. Finally, for region D, the Sπ content in the

lightest Higgs scalar is about 13 − 12% for the mass range 200 GeV > mh > 115 GeV

which corresponds to 3140 GeV < ma < 3180 GeV. The modification to this lightest Higgs

production and decay due to the admixture of the non-MSSM content will be addressed in

the next section. The discontinuity in the slope appearing in the plots for regions A and B

is a consequence of the crossover in the particle content of the lightest mass eigenvalue and

the ma step size used in the numerical calculation. Note that this slope discontinuity occurs

at a value of ma which is less than 93.4 GeV and hence excluded by the current experimental

bound.

The fractions of the lightest neutralino N1, the LSP, in its decomposition in terms of the

photino λγ, zino λZ , the MSSM neutral Higgsinos H̃0
u, H̃

0
d and the neutral π-ino originating

from the constrained multiplets are displayed in Fig. 9 for these scans. For the considered

regions in parameter space, the nonlinearly transforming π−ino field composition of the

neutralino LSP is very similar to the nonlinearly transforming Higgs field composition of the

lightest neutral scalar detailed above for regions A,B,C. Consequently, its identification

with dark matter can proceed just as in the MSSM. For region D, the fraction of π−ino

is somewhat larger being of order 10 − 5% for 3100 GeV < ma < 3150 GeV. Fig. 10

displays the fractions of the lightest pseudoscalar, a, in its decomposition in terms of MSSM

pseudoscalars, Pu, Pd, and the nonlinearly transforming Pπ. The contribution of Pπ in regions

A and B is completely negligible, while for region C, Pπ contributes at roughly a 5− 10%.

On the other hand, for region D, the lightest pseudoscalar is predominately composed of

Pπ for the larger scanned ma values. The fractions of the lightest charged scalar C1 in

its decomposition in terms of the MSSM charged scalars H+
u , H

−†
d and the charged scalars

π+, π−† arising from the nonlinearly transforming Higgs multiplets is displayed in Fig. 11.

In this case, each of the nonlinearly transforming scalars contribute a fraction which is a

decreasing function of ma. This time, the largest fraction, which is still ∼ 15%, occurs

for panel A, while panels B, C, D have successively smaller nonlinear transforming field

content over the entire scanned range. Finally, the fractions of the lightest chargino C̃1

in its decomposition in terms of the wino λW+ , the MSSM charged Higgsino H̃+
u ,and the

Higgsino π̃+ originating from the constrained multiplets are displayed in Fig. 12 for these

scans. In this case, the contribution of nonlinearly transforming Higgsino π̃+ is consistently

larger than in the previously considered cases, although it is still subdominant. Detailed
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FIG. 10: Lightest Pseudoscalar, a, content as a function of the lightest pseudoscalar mass for a

µ12 scan corresponding to the yellow lines across the A, B, C, and D regions in Fig. 2. For each

plot the values of the gaugino SUSY breaking masses are M1 = 200 GeV and M2 = 800 GeV, and

b = 4, 000 GeV2. The scan through region A has tanβ = 1, tan θ = 1, and µ11 = −12 GeV, the

one through region B has tanβ = 1, tan θ = 2 and µ11 = −16 GeV, the one through region C has

tanβ = 2, tan θ = 2, and µ11 = −52 GeV, and the one through region D has tanβ = 10, tan θ = 2,

and µ11 = −344 GeV. The red curve corresponds to the Pu fraction, the green curve to the Pd

fraction, and the blue curve to the Pπ fraction..

plots of the light mass spectra including only particles with a mass less than 500 GeV are

presented in Fig. 13 for the scans through each of the four regions.
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FIG. 11: Lightest charged Higgs boson, C1, content as a function of the lightest pseudoscalar mass

for a µ12 scan corresponding to the yellow lines across the A, B, C, and D regions in Fig. 2. For

each plot the values of the gaugino SUSY breaking masses are M1 = 200 GeV and M2 = 800 GeV,

and b = 4, 000 GeV2. The scan through region A has tanβ = 1, tan θ = 1, and µ11 = −12 GeV,

the one through region B has tanβ = 1, tan θ = 2 and µ11 = −16 GeV, the one through region

C has tanβ = 2, tan θ = 2, and µ11 = −52 GeV, and the one through region D has tanβ = 10,

tan θ = 2, and µ11 = −344 GeV. The red curve corresponds to the H+
u fraction, the green curve

to the H−†d fraction, the pink curve to the π+ fraction, and the purple curve to the π−† fraction.

IV. ELECTROWEAK PRECISION TESTS AND LIGHTEST HIGGS BOSON

PRODUCTION AND DECAY

Since only the MSSM Higgs fields couple directly to the standard model matter fields,

one anticipates that the flavor physics in this model should be quite similar to that of

the MSSM. The only difference arises due to the fact that the MSSM Higgs field vacuum

expectation values only partially contribute to the electroweak vacuum value v = 246 GeV.

Consequently, the matter field Yukawa couplings must be proportionately larger in order to
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FIG. 12: Lightest Chargino, C̃1, content as a function of the lightest pseudoscalar mass for a µ12

scan corresponding to the yellow lines across the A, B, C, and D regions in Fig. 2. For each plot

the values of the gaugino SUSY breaking masses are M1 = 200 GeV and M2 = 800 GeV, and

b = 4, 000 GeV2. The scan through region A has tanβ = 1, tan θ = 1, and µ11 = −12 GeV, the

one through region B has tanβ = 1, tan θ = 2 and µ11 = −16 GeV, the one through region C has

tanβ = 2, tan θ = 2, and µ11 = −52 GeV, and the one through region D has tanβ = 10, tan θ = 2,

and µ11 = −344 GeV. The orange curve corresponds to the W̃+ fraction, the red curve to the H̃+
u

fraction, and the pink curve to the π̃+ fraction.

compensate for the smaller vu and vd values. For the top and bottom quarks and tau lepton

the masses are related to the Yukawa coupings as

mt

v
=

1√
2
yt sin θ sin β

mb

v
=

1√
2
yb sin θ cos β

mτ

v
=

1√
2
yτ sin θ cos β. (75)
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FIG. 13: Detailed light spectra as a function of the lightest pseudoscalar mass for a µ12 scan

corresponding to the yellow lines across the A, B, C, and D regions in Fig. 2. For each plot the

values of the gaugino SUSY breaking masses are M1 = 200 GeV and M2 = 800 GeV, and b = 4, 000

GeV2. The scan through region A has tanβ = 1, tan θ = 1, and µ11 = −12 GeV, the one through

region B has tanβ = 1, tan θ = 2 and µ11 = −16 GeV, the one through region C has tanβ = 2,

tan θ = 2, and µ11 = −52 GeV, and the one through region D has tanβ = 10, tan θ = 2, and

µ11 = −344 GeV. Green curves correspond to neutral scalar masses, blue curves to charged scalar

masses, red curves to neutralino masses, and orange curves to chargino masses.

Comparing with the MSSM values, we have the effective replacements yMSSM = y sin θ.

Thus the Yukawa couplings will differ significantly from their MSSM values for small tan θ.

Placing a perturbative bound on the size of the Yukawa coupling constants so that y < 4π

translates to bounds on tan β and tan θ given by[
1 +

1

tan2 θ

] [
1 +

1

tan2 β

]
=

y2
t v

2

2m2
t

≤ 8π2v2

m2
t

≈ 160
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[
1 +

1

tan2 θ

] [
1 + tan2 β

]
=

y2
bv

2

2m2
b

≤ 8π2v2

m2
b

≈ 2× 105[
1 +

1

tan2 θ

] [
1 + tan2 β

]
=

y2
τv

2

2m2
τ

≤ 8π2v2

m2
τ

≈ 1.5× 106. (76)

In addition to the very small tan θ values, this also excludes regions corresponding to frac-

tionally small values of tan θ and tan β (e.g. tan θ = 0.1 and tan β = 1) as well as excessively

large values of tan β.

The W and Z masses satisfy the ρ = M2
W/M

2
Z cos θW = 1 relation at tree level. The

effects of radiative corrections to the gauge field vacuum polarizations can be encapsulated

in the electroweak precision parameters S and T . One source of contributions to S and T

can arise from loop effects in the effective model under consideration here. The precise form

of their 1-loop contribution is beyond the scope of this paper. However, one anticipates a

contribution of the form

∆S =
c

16π2
ln

Λ

MZ

, ∆T =
d

16π2
ln

Λ

MZ

, (77)

where Λ is the mass scale above which the effective theory no longer accurately describes the

dynamics and c, d are the specific values obtained from the 1-loop Feynman diagrams. In

addition, there are contributions to S and T arising from the underlying theory responsible

for the electroweak symmetry breaking and the resulting nonlinear sigma model. Although

we do not specify a particular theory, we can parametrize its effects by the inclusion of

additional supersymmetric higher dimensional operators, albeit suppressed by powers of the

effective action cutoff Λ. There are four lowest dimension effective operators contributing

to the electroweak precision parameter S. The action for each is given by

ΓS11 =
−s11

128g1g2Λ2

(∫
dSHuεW2W1Hd +

∫
dS̄H̄uεW̄2W̄1H̄d

)
=

s11vuvd
8Λ2

∫
d4x [sin 2θW (ZµνZ

µν − AµνAµν)− 2 cos 2θWZµνAµν + · · · ]

ΓS12 =
−s12

128g1g2Λ2

(∫
dSHuεW2W1H

′
d +

∫
dS̄H̄uεW̄2W̄1H̄

′
d

)
=

s12vuv
′

8Λ2

∫
d4x [sin 2θW (ZµνZ

µν − AµνAµν)− 2 cos 2θWZµνAµν + · · · ]

ΓS21 =
−s21

128g1g2Λ2

(∫
dSH ′uεW2W1Hd +

∫
dS̄H̄ ′uεW̄2W̄1H̄d

)
=

s21vdv
′

8Λ2

∫
d4x [sin 2θW (ZµνZ

µν − AµνAµν)− 2 cos 2θWZµνAµν + · · · ]

ΓS22 =
−s22

128g1g2Λ2

(∫
dSH ′uεW2W1H

′
d +

∫
dS̄H̄ ′uεW̄2W̄1H̄ ′d

)
31



=
s22v

′2

8Λ2

∫
d4x [sin 2θW (ZµνZ

µν − AµνAµν)− 2 cos 2θWZµνAµν + · · · ] ,

(78)

with the ellipses denoting the higher dimensional terms. The contribution of these operators

to S is given by

αS/ sin 2θW =
(s11vuvd + s12vuv

′ + s21vdv
′ + s22w

2)

Λ2
, (79)

while they do not contribute to T .

Likewise their are several effective operators that contribute to T but not to S. These

are higher dimensional contributions to the Kähler potential The simplest such example is

Y = H̄ ′ue
−2g2W−g1BH ′u − H̄ ′de−2g2W+g1BH ′d

=
w2

2

[
1 + gZ + g2

2W
+W− +

1

2
g2Z2 + · · ·

]
− w2

2

[
1− gZ + g2

2W
+W− +

1

2
g2Z2 + · · ·

]
= gv′2Z + · · · . (80)

The effective action for this term takes the form

Γu =
−M2

Zt

16g2v′4Λ2

∫
dV Y 2

=
−M2

Zt

16Λ2

∫
dV
[
Z2 + · · ·

]
=
−M2

Zt

16Λ2

∫
d4x

[
1

2
ZµZ

µ + · · ·
]

(81)

and provides a contribution to T given by

αT =
t

Λ2
, (82)

with no contribution to S. Fitting to S and T can determine the allowed range of values

for the coupling constants s11, s12, s21, s22, t and the dynamical scale Λ and thus provides a

potent constraint on model building.

As a final topic, we briefly address the modifications to Higgs boson production and

decay. For moderate tan β values, the top quark loop gives the dominant contribution to

gluon fusion Higgs production at the LHC provided the squark masses are sufficiently high

[23]. The lightest Higgs boson can be written as a linear combination of the MSSM scalars

Su, Sd and nonlinearly transforming scalar Sπ as

h = auSu + adSd + aπSπ. (83)
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FIG. 14: Ratio of gluon fusion Higgs scalar production cross-section to the standard model result.

The modulus squares of various amplitudes are presented in Fig. 8 for the four regions of

parameter space numerically probed in this paper. Since the top quark interacts only with

the Su component with the enhanced Yukawa coupling
√

2mt/(v sin θ sin β), the tree level

gluon fusion production cross section is equal to that of the standard model times an overall

factor so that

σ = |au|2
(

1 +
1

tan2 θ

)(
1 +

1

tan2 β

)
σSM. (84)

Note that the production rate depends on the details of the MSSM Higgs scalar Su content

for the chosen values of parameter space. It is clear from Fig. 8 that since Su comprises

at least one-half the Higgs scalar, there will be an enhanced gluon fusion production rate

relative to the standard model as seen in Fig. IV. Modifications to other Higgs production

processes such as Higgsstrahlung off a vector boson or top quark, or in the decay of a heavy

charged Higgs boson, can also be considered.

When considering the decay of the Higgs scalar, h, differences from the standard model

can arise from both the presence of the mixing angles, β, θ, in the vacuum expectation values

as well as the various particle content of h mentioned above. Since v′u = v′d, the coupling of
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FIG. 15: Ratio of two W -boson partial decay width of the Higgs scalar, h to that of the standard

model. The dashed line shows the enhancement (suppression) factor over the entire scanned region

while solid line corresponds to the region where the Higgs scalar is sufficiently heavy for the decay

to be kinematically allowed.

Sπ to the W+W− pair identically cancels. Consequently, the process h→ W+W− proceeds

only through the Su and Sd field components and the tree level decay rate of a heavy Higgs

boson to W+W− is the standard model rate modified by a suppression factor

ΓW+W− =

(
tan2 θ

1 + tan2 θ

)(
1

1 + tan2 β

)
|au tan β + ad |2 ΓSM

W+W− . (85)

Likewise, the decay to b̄b quarks also depends on the b-Yukawa enhancement and the con-

stituent fraction of the Sd content of the Higgs field. This leads to the modified tree level

rate given by

Γbb̄ = |ad|2
(

1 +
1

tan2 θ

)(
1 + tan2 β

)
ΓSM
bb̄ . (86)

and displayed in Fig. 16 using the parameter scans appropriate to the four regions. For

regions A and B, the b-pair partial rate is enhanced relative to that of the standard model,

while for regions C and D, the rate is suppressed. This suppression is a consequence of the
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FIG. 16: Ratio of partial width for the decay of the Higgs scalar, h, to two b quarks to that of the

standard model.

very small admixture of Sd in h for these regions.

V. DISCUSSION

A model consisting of a supersymmetric nonlinear sigma model incorporating the low

energy effects of an unspecified electroweak symmetry breaking sector and coupled to a

supersymmetric version of the standard model was constructed and analyzed. The superpo-

tential coupling of the constrained pair of Higgs doublets to the MSSM Higgs doublet pair

catalyzes a nontrivial vacuum expectation value in the later thus producing an additional

contribution to the electroweak symmetry breaking which is in turn communicated to the

MSSM matter fields. Supersymmetry breaking was assumed to be a perturbation that does

not effect the strong dynamics and was added to the model by the introducing explicit soft

supersymmetry breaking parameters. The tree level particle spectrum of the model was

obtained for a variety of model parameters. The MSSM upper limit on the mass of the

lightest Higgs scalar was obviated. Throughout the region of the explored parameter space,
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the lightest Higgs scalar and the neutralino LSP, which can be identified as a dark matter

candidate, was primarily composed of the MSSM fields with only a small admixture of the

nonlinear transforming components. Since quarks and leptons were assumed to have direct

couplings only to the linearly transforming MSSM Higgs doublets and not to the non-linearly

transforming Higgs fields, the Yukawa couplings in the model tend to be larger than in the

MSSM and standard model. An initial survey of phenomenological constraints on the Higgs

scalar was performed. The main difference from the standard model predictions in both

Higgs boson production from gluon fusion and Higgs scalar decay to either W+W− or b̄b

resulted from the constituent nature of the Higgs scalar and the variant Yukawa couplings.

Depending on the process and region of parameter space, these differences could lead to

either an enhancement or a suppression. Further phenomenological studies of the model

including consequences of radiative corrections are left for future study as is the possible

form of the ultraviolet completion to the nonlinear sigma model supersymetric effective

Lagrangian.
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Appendix: Standard Coordinates and SU(2)V Symmetry

In this appendix, we address the model limit in which m2
u = m2

d and µ12 = µ21 so that the

model exhibits an approximate global SU(2)L × SU(2)R symmetry which is spontaneously

broken to the diagonal SU(2)V subgroup with explicit breaking only by the hypercharge

gauge coupling g1. This approximate symmetry is the source of the degeneracies and near

degeneracies in the spectrum plots presented for tan β = 1 in the main text. In order to

make this approximate symmetry more manifest, it proves convenient to embed the Higgs

doublets in covariantly transforming matrix chiral superfields U and V containing the MSSM

Higgs superfields and the constrained Higgs superfields, respectively. So doing leads to the
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parameterization

U =

 H0
d H+

u

H−d H0
u

 =
1√
2

 η + iζ3 iζ1 + ζ2

iζ1 − ζ2 η − iζ3


=

1√
2

(
η1 + i~ζ · ~σ

)
, (A.1)

and

V =

 H0′
d H+′

u

H−′d H0′
u


=

1√
2
v′ei

~ξ·~σ
v′ =

1√
2
v′

cos

√
~ξ · ~ξ
v′2

1 + i
~ξ · ~σ√
~ξ · ~ξ

sin

√
~ξ · ~ξ
v′2

 . (A.2)

The relevant supersymmetric part of the action then takes the form

ΓS = ΓK + ΓW , (A.3)

with

ΓK =

∫
dV
{
Ūe−2g2WUe−g1Bσ

3

+ V̄ e−2g2WV e−g1Bσ
3
}
, (A.4)

and

ΓW =

∫
dSW +

∫
dS̄W̄ , (A.5)

where the superpotential is given by

W = 2µ11UUεε+ 4µ12UV εε, (A.6)

while the constraint reads

V V εε = ViaVjbεijεab = 2 detV = v′2. (A.7)

The supersymmetry breaking part of the action takes the form

Γ/S =

∫
d4x
{1

2
M1

(
λλ+ λ̄λ̄

)
+

1

2
M2

(
λiλi + λ̄iλ̄i

)
−m2

uŪU +
1

2
µ11BUUεε+

1

2
µ11BŪŪεε

}
. (A.8)
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Since in the SU(2)V limit considered here vu = vd ( tan β = 1), the vacuum expectation

values of U and V reduce to

< 0|U |0 > =
1√
2

 vu 0

0 vu

 , (A.9)

and

< 0|V |0 > =
1√
2

 v′ 0

0 v′

 , (A.10)

. Defining v2 = 2v2
u + 2v′2, the potential minimization condition takes the form m2

u =

−16µ2
11 − 16µ11µ12 cot θ, where tan θ = vu/v

′.

It is convenient to split the complex scalar components of the chiral superfields into their

real and imaginary parts as

~Pξ = 1√
2
(~ξ + ~̄ξ), ~Sξ = i√

2
(~ξ − ~̄ξ)

~Pζ = 1√
2
(~ζ + ~̄ζ), ~Sζ = i√

2
(~ζ − ~̄ζ)

Pη = i√
2
(η − η̄), Sη = 1√

2
(η + η̄).

(A.11)

The mass terms in the scalar potential then take the form

Vmass = −8µ11µ12 cot θS2
η − (8µ11µ12 cot θ − µ11B)P 2

η

+16(µ11µ12 tan θ + µ2
12)~S2

ξ + µ11B~S
2
ζ

− 8

cos2 θ
(µ11µ12 cot θ − µ2

12)(cos θ~Sζ − sin θ~Sξ)
2

− 8

cos2 θ
(µ11µ12 cot θ − µ2

12)(cos θ ~Pζ − sin θ ~Pξ)
2

+
1

2
M2

W (sin θ~Sζ + cos θ~Sξ)
2

+
1

2
sin2 θWM

2
Z(sin θS3

ζ + cos θS3
ξ )

2. (A.12)

Only the last term in Eq.(A.12) breaks the SU(2)V symmetry into its U(1)EM subgroup.

The exact and approximate degeneracies of the tree level mass spectrum appearing in the

spectrum plots in the main text are a consequence of the relatively small value of MZ sin θW .

The mass matrix in this basis has some diagonal blocks. The scalar Sη (labeled h in Fig.

3) has mass-squared −16µ11µ12 cot θ while the pseudoscalar Pη (labeled a in Fig. 3)has

mass-squared −16µ11µ12 cot θ + 2µ11B. One massive pseudoscalar (labeled A in Fig. 3)

and a charged scalar (labeled C2 in Fig. 3)) lie in the triplet (cos θ ~Pζ − sin θ ~Pξ) and have
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degenerate mass-squared −16(µ11µ12 cot θ−µ2
12) sec2 θ. The three Nambu-Goldstone bosons

lie in the triplet sin θ ~Pζ + cos θ ~Pξ. Two remaining triplets each contain a massive scalar and

a charged scalar ((H1,C1) and (H2,C3) in Fig. 3) and are mixed. The mass degeneracy

within these triplets is slightly lifted by the breaking term and the tree level masses can be

calculated by diagonalizing two by two matrices. The expressions for the eigenvalues are

not very illuminating and therefore are not presented here. The supersymmetric limit of the

model is recovered by taking B = 0 and tan θ = −µ12/µ11.

The mass terms for the fermions in the Lagrangian are

Lmass = −2µ11η̃η̃ − 2µ11ζ̃iζ̃i − 4µ12ζ̃iξ̃i + 2µ12 tan θξ̃iξ̃i
1

2
M1λλ+

1

2
M2λiλi + iMWλi

(
sin θζ̃i + cos θξ̃i

)
−iMZ sin θWλ

(
sin θζ̃3 + cos θξ̃3

)
+ h.c. (A.13)

Only the last term in Eq.(A.13) breaks the SU(2)V symmetry. Since MZ sin θW is paramet-

rically small, the fermion mass spectrum also shows a large number of near degeneracies.

The singlet (neutral) fermion η̃ (labeled by N1 in Fig. 3) has mass-squared 16µ2
11. The

remaining fermions fall into an singlet and three triplets that are mixed, each containing a

neutral fermion and a charged fermion. The degeneracies of the masses of the fermions in

each triplet is slightly lifted by the breaking term. In the limit that the explicit breaking

can be neglected, the singlet λ (labeled N3 in Fig. 3) has mass-squared M2
1 , while the

masses of each of the triplets ((N2,C1), (N4,C2) and (N5,C3) in Fig. 3) can be obtained by

diagonalizing a three by three matrix. The supersymmetric limit of the model is recovered

by taking M1 = M2 = 0 and tan θ = −µ12/µ11.
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