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Abstract

The kinematic edges of invariant mass distributions provide an important tool for the possible

measurements of superpartner masses in supersymmetric models with a neutralino LSP. We ex-

amine the effect of lepton flavor dependence on the kinematic endpoints of the di-lepton invariant

mass distribution, with the leptons being electrons and muons. In the presence of slepton mass

splitting and mixing, each of these distributions exhibits multiple edges, which are likely to be

close. Furthermore, flavor subtraction, which is usually employed to eliminate backgrounds, di-

lutes the signal. We propose to extract the endpoints from the flavor-added distribution, which is

insensitive to the slepton mixing. We also discuss the extraction of the slepton flavor parameters in

such scenarios. To demonstrate our results, we use an example with a small slepton mass splitting

of 3 GeV leading to a 6 GeV edge splitting, at both small mixing and large mixing.

PACS numbers: 11.30.Pb, 12.60.Jv, 14.80.Ly
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I. INTRODUCTION

Kinematic edges provide one of the main tools for extracting superpartner masses [1–

8]. If supersymmetry, or other types of new physics, gives rise to events with cascade

decays ending in a final state with invisible massive particles, then the events cannot be

fully reconstructed, but various invariant-mass distributions exhibit edges whose locations

depend on the superpartner masses. Given sufficient measurements of these edges, the

masses can in principle be inferred [2].

The best studied kinematic edge is the endpoint in the invariant-mass distribution of

opposite sign (OS) electrons and muons from the decay of a heavy neutralino χ̃0
2 to a slepton

l̃, followed by the subsequent slepton decay to the lightest neutralino χ0
1,

χ̃0
2 → l̃±l∓j → χ̃0

1l
∓
j l

±
i . (1)

The endpoint in this case depends on the neutralino and slepton masses through,

m2
ll|endpoint =

(m2
χ̃0
2
−m2

l̃
)(m2

l̃
−m2

χ̃0
1
)

m2

l̃

. (2)

Most studies of kinematic edges have assumed universal slepton masses, such that the selec-

tron and smuon are degenerate with no flavor mixing. The leptons li and lj in Eq. (1) are

then either both electrons or both muons, and each of the same-flavor distributions exhibits

a single endpoint: the e±e∓ (µ±µ∓) distribution is only sensitive to the selectron (smuon)

mass. Furthermore, since the selectron and smuon are degenerate, the two endpoints coin-

cide. These features have been used to eliminate backgrounds from uncorrelated leptons by

considering the flavor-subtracted invariant mass distribution [1]

Ne+e− +Nµ+µ− −Ne±µ∓ . (3)

Scalar masses, however, need not be universal. Many examples of models with non-

universal slepton masses are known (see for example [9–13]). The collider signatures of flavor-

violating models have been discussed in [14–32]. At low-energies, such models generically

give rise to slepton mass splittings and some degree of slepton flavor mixing. The reason

is that theories that predict different slepton masses typically involve some new slepton

quantum number, which determines the slepton masses. There is then some new slepton

interaction basis in addition to the flavor basis, and the slepton masses are not necessarily

diagonal in the flavor basis.
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In the presence of both mass-splitting and mixings, each di-lepton invariant mass dis-

tribution, with l = e, µ, exhibits two or more edges, associated with the different slepton

states. Since the selectron-smuon mass splitting is likely to be small, the corresponding edges

may be quite close. Compared to the usual scenario of universal slepton masses, the edge

structure in this case is therefore less sharp. Furthermore, the same multiple edges appear

in the flavor-subtracted distribution of Eq. (3). While this distribution still eliminates the

background, it dilutes the signal as well, since the signal contributes to both the same-flavor

and different-flavor decays.

The observation of kinematic edges in the presence of flavor mixing and splitting is thus

more challenging. Even if an edge structure is observed, one would like to determine whether

it is a single edge or a multiple edge, corresponding to two or more new particles with small

mass splittings. Finally, if multiple edges are observed, one would like to extract the flavor

parameters from them. A measurement of these parameters may provide information both on

the origin of the new physics, such as the mediation mechanism of supersymmetry breaking,

and on the underlying theory of flavor.

In this paper, we study these questions using a toy model in which the lightest two sleptons

are selectron-smuon mixtures. Since we are mainly interested in the ability to resolve a small

edge splitting, we take the mass splitting to be roughly 3 GeV, leading to edges that are

6 GeV apart, and consider both small mixing and large mixing. The small mixing and large

mixing cases are somewhat complimentary. In the former, it should probably be possible to

observe the edges in the ee and µµ distributions, since each one of them is dominated by a

single edge. Indeed, the zero mixing case was studied in [33], where it was argued that the

slepton mass splitting can be measured down to ∆ml̃/ml̃ ∼ 10−4 (where ∆ml̃ is the slepton

mass splitting) in a 14 TeV LHC with 30fb−1 integrated luminosity1. If the existence of

different edge locations in the ee and µµ distributions can be established, it would signal

flavor dependence and provide motivation for looking for flavor mixing in the eµ distribution.

On the other hand, for large mixing, the edges in the same-flavor distributions would be

harder to measure, but the eµ distribution should exhibit some edge structure, which would

indicate flavor mixing, and provide motivation for looking for edge splitting. In either case,

1 This conclusion depends however on the values of the slepton masses relative to the neutralino masses [33]

(see discussion in Section II).
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as explained above, the precise determination of the edges would be non-trivial, because the

edges are “divided” between the four distributions Nl+
i
l−
j
with li, lj = e, µ.

To overcome this problem, we propose to consider the flavor-added distribution

Ne+e− +Nµ+µ− +Ne+µ− +Ne−µ+ . (4)

This is useful because: a. the edge locations are identical in all the four distributions ap-

pearing in Eq. (4) since they only depend on the slepton masses, b. the mixing, which

affects each of the individual flavor distributions drops out of the flavor added distribu-

tion, and c. if a small edge splitting is the result of a small mass splitting, the two slep-

tons make roughly equal contributions to the flavor added distribution. While the flavor

added-distribution Eq. (4) does not get rid of the background, it does not dilute the signal

contributing to the edges, and could therefore exhibit a clearer edge structure than each of

the separate flavor combinations. Once the edge locations are measured from Eq. (4), one

can proceed to determine the mixing from the separate invariant mass-distributions Nl+
i
l−
j
.

In order to see the effect of flavor dependence on kinematic edges, it is useful to compare

the edge structures with flavor-dependence and without it. We therefore chose as our toy

model the SU3 benchmark point [34] for which the selectron-smuon kinematic edge was

carefully studied, and deformed it slightly by introducing a small selectron-smuon mass

splitting and mixing by hand2.

Throughout our discussion, we assume that the slepton widths are much smaller than the

mass splitting, so that slepton flavor oscillations can be neglected [14]. The effect of such

oscillation on the edge structure is examined in [37].

The outline of this paper is as follows. In Sec. II we discuss the locations of the edges,

and the relative numbers of different flavor lepton pairs. In Sec. III we present the di-lepton

invariant mass distributions for our toy model, and extract the end-points from the flavor-

added distribution. We discuss the extraction of the remaining flavor parameters in Sec. IV.

The spectrum of our toy model is given in Appendix A and the fitting functions we use in

Appendix B.

2 The SU3 benchmark point may be ruled out already by ATLAS [35] and CMS [36], but we are only

interested in it as a toy example for assessing the effects of flavor dependence on the dilepton edge.
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II. THE DI-LEPTON INVARIANT MASS DISTRIBUTIONS WITH MASS

SPLITTING AND MIXING

We consider models in which two of the lightest sleptons, (typically the superpartners of

the Right-Handed leptons) are selectron-smuon combinations, with

l̃1 = cos θ ẽ− sin θ µ̃

l̃2 = sin θ ẽ + cos θ µ̃ , (5)

with masses

ml̃1
= ml̃ , ml̃2

= ml̃ +∆ml̃ . (6)

We also assume that these slepton masses are between the two lightest neutralino masses,

so that some of the heavier neutralinos χ̃2 decay via Eq. (1). Neutralino decays via slepton

i result in a di-lepton mass distribution which ends at

m2
ll|edge,i =

(m2
χ0
2
−m2

l̃i
)(m2

l̃i
−m2

χ0
1
)

m2

l̃i

. (7)

For small slepton mass splitting, the difference between the endpoints can be approximated

by [33]

∆mll = mll|edge,2 −mll|edge,1 ∼
mll

ml̃

m2
χ0
2
m2

χ0
1
−m4

l̃

(m2
χ0
2
−m2

l̃
)(m2

l̃
−m2

χ0
1
)
∆ml̃ . (8)

When the slepton mass ml̃ coincides with the geometric mean of the neutralino masses,

the edge splitting vanishes3. This has an important effect on the ability to resolve different

endpoints. For fixed neutralino masses, it would be easiest to observe the decay Eq. (1) for

a slepton that is close to the geometric mean of the two neutralino masses, since then the

phase space available for the two emitted leptons is large, so that the leptons are relatively

hard. However, for such slepton masses, the edge splitting would be smaller than the slepton

mass splitting. On the other hand, for slepton masses far from this geometric mean, the edge

splitting can be larger than the slepton mass splittings, but since the sleptons are closer to

one of the neutralinos, the phase space left for either the first or the second emitted leptons

is diminished, so that this lepton is softer and therefore harder to detect.

3 The reason is that the maximum of the edge Eq. (7) as a function of the slepton mass occurs at m2

l̃
=

mχ0

1

mχ0

2

, so around this point the sensitivity of the edge location to the precise value of the slepton mass

is small (see Fig. 1).
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FIG. 1: The endpoint location, mll|edge, as a function of the slepton mass, ml̃, with the neutralino

masses kept fixed at their SU3 values of mχ0
2
= 222 GeV and mχ0

1
= 118 GeV.

Indeed, for the SU3 benchmark point, which was chosen partly in order to study kinematic

edges assuming selectron-smuon universality, the slepton mass was taken to be 157 GeV,

very close to
√
mχ0

2
mχ0

1
∼ 163 GeV [34]. Around this mass, a small splitting between the

sleptons could go unobserved in the edge structure. For example, for slepton masses varying

between 140 GeV and 185 GeV the edge splitting is at most 5 GeV as can be seen in Fig. 1.

The numbers of events in the different di-lepton flavor contributions are related by,

N(e±µ∓)

N(e+e−)
=

2(1 +R) cos2 θ sin2 θ

cos4 θ +R sin4 θ
(9)

N(µ+µ−)

N(e+e−)
=

R cos4 θ + sin4 θ

cos4 θ +R sin4 θ
,

where R is the ratio of phase space factors in decays involving different sleptons:

R ≡
(

m2
χ0
2
−m2

l̃2

m2
χ0
2
−m2

l̃1

)2

, (10)

which is close to one for near-degenerate sleptons.

As mentioned in the Introduction, in the presence of mixing, the flavor subtracted dis-

tribution dilutes the signal. In Figure 2 we plot the ratio of the flavor-subtracted distribu-

tion Eq. (3) to the total distribution,

η ≡ N(e+e−)/β + βN(µ+µ−)−N(e±µ∓)

N(e+e−)/β + βN(µ+µ−) +N(e±µ∓)

= 1− β sin2 2θ
(

β + sin2 θ(1− β)
)2

+
(

1−β2

1+R

)

cos 2θ
(11)
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FIG. 2: η (of Eq. (11)) as a function of the mixing angle θ, for several values of R = 0.3, 0.5, 0.7, 0.9,

with β = 0.86.

as a function of the mixing for different values of R. Here β is the ratio of electron efficiency

to muon efficiency in the experiment. The weak R-dependence in Figure 2 is a result of the

fact that we took the ATLAS value, β = 0.86 which is close to one. As expected, η vanishes

for maximal mixing, but even for a mixing of sin θ ≃ 0.3 η drops to ∼ 0.6.

III. TOY MODELS AND RESULTS

A. Model parameters and simulation

As mentioned above, we use two toy models based on the SU3 benchmark point, and

modify the right-handed selectron and smuon states. The two lightest neutralino masses are

118 GeV and 222 GeV. The remaining masses are given in Table II of Appendix A. Based on

the discussion of the previous section, we want the slepton masses to be sufficiently far from

the geometric mean of the two neutralino masses ∼ 160 GeV, so that the effect of a small

slepton mass splitting is not suppressed in the edge splitting, but at the same time, not too

close to the neutralino masses, so that the resulting leptons are not too soft. We also exclude

slepton masses in the ranges 135 GeV ≤ ml̃ ≤ 147 GeV and 180 GeV ≤ ml̃ ≤ 196 GeV in

order for the edge to be separated by at least 7 GeV from the Z resonance.

Bounds on lepton flavor violation limit the possible mass splitting and mixing. For small
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mass splitting, the constrained quantity is essentially

δR12 ∼
(∆ml̃)

2

m2

l̃

sin θ . (12)

The experimental constraints on µ → eγ [38] imply, using [39, 40], δR12 ≤ 0.09.

Given the considerations above, we choose the the slepton masses to be ml̃1
= 131 GeV,

and ml̃2
= 133.8 GeV. With these masses, the mixing is not constrained. The resulting

endpoint locations are,

mll

(

ml̃1
= 131 GeV

)

|edge = 75.9 GeV

mll

(

ml̃2
= 133.8 GeV

)

|edge = 81.9 GeV (13)

with ∆mll ∼ 6 GeV. The two models we study differ only in the mixing angle. One has

small mixing with sin2 θ ≃ 0.9, and the other has large mixing with sin2 θ ≃ 0.4.

Since we are interested in a comparison of the flavor-dependent di-lepton edges to the

SU3 study, which assumed 14 TeV center-of-mass energy, we generate 1.5 · 105 SUSY strong

production events and 6 · 106 tt̄ SM events, corresponding to 10 fb−1 at a 14 TeV LHC, and

use the same cuts as those used in the SU3 study [34]:

1. Exactly two isolated opposite sign leptons (e,µ) with pT > 10 GeV and |η| < 2.5.

2. At least four jets with pT > 50 GeV, at least one of which has pT > 100 GeV.

3. /ET > 100 GeV and /ET > 0.2Meffective.

4. Transverse Sphericity ST > 0.2.

Based on the SU3 analysis, other types of SM backgrounds are omitted as they become irrel-

evant after the cuts. We note that less than 5% of the signal events survive the experimental

cuts.

The spectrum for the SU3 model is calculated using SPICE [41], which is based on

SoftSUSY [42] and SUSYHIT [43]. We then modify the selectron and smuon masses, and

introduce selectron-smuon mixing by hand at low energies. To simulate events we use

MadGraph-MadEvent (MGME) [44], with FeynRules [45]. The resulting events are decayed

using BRIDGE [46] and put back into MGME’s Pythia-PGS package [47–49] which includes

hadronization and initial and final state radiation. We use ROOT [50] to handle the results,

via MGME’s ExROOTAnalysis package [51].
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B. Resolving the Edges Using Flavor Addition

The di-lepton invariant mass distributions for the different flavor combinations for small

mixing and for large mixing are shown in Figure 3 and Figure 4 respectively. In each

case, the truth distribution (Fig. 3(a), Fig. 4(a)) contains the signal only, that is, the di-

leptons coming from the decay chain Eq. (1) at the generator level, with no background from

either supersymmetric events or from top production. The “experimental” distributions

(Fig. 3(b), Fig. 4(b)) contain both the signal and the background, after the PGS detector

simulation. Note that the background consists of all the possible lepton pairs from the

supersymmetric events, including leptons from decays of charginos, Z etc, as well as from

SM tt̄ production. As expected, for small mixing, the ee and µµ distributions are dominated

by a single slepton, and therefore exhibit a single edge to a good approximation. This edge

can be easily seen in the corresponding experimental distributions. In contrast, all the

remaining truth distributions exhibit a double edge structure, which translates to a much

fuzzier structure once background and detector effects are taken into account.

In order to obtain clearer edges we therefore exploit the fact that the edge locations

coincide in these different distributions, and consider the flavor-added dilepton invariant

mass distribution Nl+l− with l = e, µ. Using Eq. (9), it is easy to see that this distribution

is independent of the mixing, with the l̃1, l̃2 contributions differing by the phase space ratio

R. In Fig. 5, we plot the flavor-added “experimental” invariant-mass distributions. As

above, these contain both the signal and background, with the background consisting of all

the possible lepton pairs from the supersymmetric events, including leptons from decays of

charginos, Z etc, as well as from SM tt̄ production. Indeed, one can observe two distinct

edges. To determine the locations of these edges, we fit the distribution with two triangles

over a constant background, convoluted with Gaussian noise (see Eq. (B4) of Appendix B).

Since the edges are clearly very close, we can try first setting R = 1, for which the two

slepton contributions are equal. This is a good approximation if the small edge splitting

is the result of a small slepton mass splitting. Expanding in ∆ml̃, it is easy to see that

the deviation of R from 1 affects the distribution only at O(∆m2

l̃
). However, as explained

in Sec. II, a small edge splitting does not necessarily imply a small mass splitting. In this

case, taking R = 1 would give a poor fit. We will return to this case in the next section.

The four fit parameters are then the two endpoints, the constant background, and the total
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FIG. 3: The opposite-sign-di-lepton invariant mass distributions from truth—signal only before de-

tector simulation (top), and “experimental”—including background and detector simulation (bot-

tom) for Model 1–small mixing.
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FIG. 4: The opposite-sign-di-lepton invariant mass distributions from truth—signal only before de-

tector simulation (top), and “experimental”—including background and detector simulation (bot-

tom) for Model 2–large mixing.
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FIG. 5: The opposite-sign-di-lepton flavor-added “experimental” invariant-mass distribution,

Ne+e− +Nµ+µ− +Ne±µ∓ , for the two models at 2 GeV per bin.

number of events4 and we find the endpoints at 75.6 GeV and 81.7 GeV (for the small mixing

4 The Gaussian noise parameter, σ = 0.57, is extracted from the opposite-sign-same-flavor di-lepton Z

resonance, which gives a reasonable approximation since it is close to the endpoint.
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model) and at 74.8 GeV and 81.6 GeV (for the large mixing model), indicating that the two

different edges can be resolved in this case.

The ability to resolve the edges depends of course on the binning, which is determined

in turn by the available statistics. For coarser bins, of width larger than 6 GeV, only a

single edge can possibly be detected for our choice of model parameters. Conversely with

much higher statistics and smaller bin sizes one can probably observe a sharper double-edge

structure. Here we wanted to focus on the trickiest scenario with the edge separation just

slightly above the statistically-significant bin size.

We note that before any fit is done, each of the distributions is scaled by the the proper

power of β (the ratio of electron to muon efficiencies). We “measure” the relevant efficiencies

in our sample to be roughly 0.47 for electrons, and 0.4 for muons, with β ∼ 1.18. These

low efficiencies are the result of the large number of jets in the events, combined with the

requirement of isolated leptons. It is quite possible that the endpoint resolution might be

improved with a different set of cuts. Thus for example, the decay chain (1) does not require

gluino pair production. If it originates from squark pair production, it could be accompanied

by only two jets. If only neutralinos, charginos and sleptons can be produced at the LHC

the event selection would be completely different. With fewer jets in the final state the

efficiency for leptons would be much higher.

Equipped with the results for the endpoints from the flavor-added distribution, one can

return to the individual flavor combinations of Figs. 3(b) and 4(b), and extract additional

information, starting with the mixing. We will discuss this in Sec. IV. If one has reason to

believe that the individual distributions of Figs. 3(b) and 4(b) exhibit double edges, one can

of course try to simultaneously fit them with a double triangle. This fit, however, is quite

sensitive to initial conditions since it involves six parameters: the total number of events,

the two endpoints, R, the mixing sin θ and the constant background.

As explained above, our anchor model was the SU3 benchmark point, with degenerate

selectron and smuon masses at 156 GeV [34]. The endpoint in this case was obtained using

flavor subtraction at mll|endpoint = 99.7±1.4|stat±0.3|sys GeV (the true value was 100.2 GeV).

The SU3 analysis considered SUSY strong production cross-sections at next to leading order

σNLO = 27.68(pb) for which 500K events were produced (the results were then normalized

to 1fb−1). Our analysis includes a more modest data sample with only leading order cross-

sections of σLO ∼ 15(pb) (we give our results for 10fb−1). The number of produced events
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and the obtained signal samples are however in proportion. Our background estimation

was rather lenient and relied on the SU3 results which indicated that the only significant

contribution is from tt̄. The most important ingredient of the detector simulation for our

analysis is the electron and muon efficiencies. As explained above, these efficiencies were very

low, because of the large number of jets in the events, with a larger efficiency for electrons5.

Furthermore, the SU3 analysis used an optimized set of cuts in order to obtain the precise

endpoint locations quoted above, which we have not attempted. Clearly then, a much better

precision can be achieved for the model we discussed here. A careful estimate of the possible

sensitivity to double edges is certainly beyond the scope of this paper (and our ability as

theorists). Our main objective here is to examine whether edges can be detected at all in

the presence of both splitting and mixing, and if that is the case, whether double edges can

be resolved. As we saw above, for the models we considered here, with a ∼ 6 GeV edge

splitting, the edge structure of the separate flavor distributions was hard to detect, but the

flavor-added distribution indeed allowed for resolving the endpoints.

IV. UNDERSTANDING THE FLAVOR OF SLEPTONS

If an edge structure is discovered in the di-lepton invariant mass distribution, it would hint

at new particles that couple to electrons and muons, such as the slepton(s) and neutralinos

of supersymmetry. The first “flavor question” one would be faced with then is whether

there is a single “slepton” or multiple sleptons with similar masses. The observation of two

different edges in Nlilj would be a clear indication of the latter. However, this may not be

possible if the two sleptons are almost degenerate, or, if their masses are close to
√
mχ0

2
mχ0

1

so that the edge splitting is suppressed as explained in Sec. II.

In this latter case, the appearance of R in Eq. (9) provides complementary information

on the slepton masses, since it involves different combinations of the slepton and neutralino

masses. As long as the slepton mass splitting is not too small, the different ratios in Eq. (9)

may provide a measurement of R 6= 1, and therefore establish the existence of two slepton

states with different couplings to electrons and muons.

As we argued in Sec. III, the flavor added distribution is very useful for measuring the

5 Our overall efficiency was roughly similar to the SU3 study [34].
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endpoints, because it does not dilute the signal, and is independent of the mixing. Once

the endpoints are measured from this distribution, one can turn to the individual flavor

combinations and simultaneously fit them using Eq. (9) (see Appendix B 4) with the values

found for the two endpoints as input. The fit depends on four parameters: the number of

signal events, R, the mixing sin θ and the constant background. Performing this fit for our

two toy models, we extract the mixing reasonably well, with sin2θ = 0.8 (compared to the

true value of 0.9) for the small mixing model, and sin2θ = 0.5 (compared to 0.6) for the

large mixing model. The results are collected in Table I.

(a)Model 1–small mixing

Parameter Truth “Measured” Error

EP1 75.86 75.57 0.76

EP2 81.87 81.68 0.55

R 0.95 1.19 0.13

sin2 θ 0.91 0.79 0.02

(b)Model 2 - large mixing

Parameter Truth “Measured” Error

EP1 75.86 74.75 0.39

EP2 81.87 81.61 0.60

R 0.95 1.79 0.69

sin2 θ 0.585 0.534 0.043

TABLE I: Fit results for the endpoints and flavor parameters for Model 1–small mixing and

Model 2–large mixing. The errors are only the fit errors.

With the value of R and the two endpoints measured, one has three different combinations

of the two slepton masses and the two neutralino masses, and can therefore extract three

relations between these soft masses.

V. CONCLUSIONS

Existing tools for the measurement of superpartner masses often rely on the assumption

of scalar mass degeneracy. Here we studied the effect of flavor dependence on the kinematic

edges in the di-lepton mass distribution. It would be interesting to extend this study to

distributions involving quarks as well.

If new physics is discovered at the LHC, one would eventually like to understand whether

it exhibits any flavor dependence. Are the new states single states, with universal couplings

to different standard model generations? Are they single states with generation-dependent

couplings? Are there three copies of new states with different or equal masses and with dif-
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ferent couplings to the standard model generations? In [9], these questions were studied for

the case of supersymmetry with a meta-stable slepton, which allows for full reconstruction of

supersymmetric events. In this paper, we explored these questions in the more difficult sce-

nario of supersymmetry with a neutralino LSP, focusing on the measurements of kinematic

edges in di-lepton mass distributions. We discussed methods for resolving double edges,

and for extracting the mixing. In particular, measurements of both the end-points and the

relative rates of the ee, µµ, and eµ distributions can yield complementary information on

the slepton flavor parameters.

Finally, we note that we focused here on supersymmetric extensions of the standard

model, assuming that the supersymmetric nature of the new particles is already established

by other means. In fact, the invariant mass distributions of dileptons from cascade decays

of new particles may provide important information on the spins of these new particles, and

thus allow for distinguishing between various types of new physics, such as supersymmetry

and extra dimensions [52]. As is well known, if the intermediate particles involved in the

decay have nonzero spin, the resulting invariant mass distribution is no longer a triangle (see,

e.g. [53] and references therein). The smeared double edge structure that we have discussed

here could be hard to differentiate from a distribution arising in the case of, e.g., universal

extra dimensions. Thus, the “inverse problem” [54] of distinguishing between different new

physics scenarios is exacerbated by flavor dependence. It would be interesting to explore

these questions further.
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Appendix A: The SU3 Spectrum

SU3 is an mSUGRA model defined by the following boundary conditions:

m0 = 100 GeV m1/2 = 300 GeV A0 = −300 GeV tan β = 6 µ > 0. (A1)

The resulting spectrum appears in Table II.

Particles Mass [GeV] Particles Mass [GeV]

ν̃1 216 χ̃+
2 477

ν̃2 217 χ̃+
1 222

ν̃3 217 g̃ 718

χ̃0
4 477 l̃3 151

χ̃0
3 462 l̃4 231

χ̃0
2 222 l̃5 231

χ̃0
1 118 l̃6 232

ũ1 451 d̃1 602

ũ2 643 d̃2 639

ũ3 643 d̃3 642

ũ4 664 d̃4 642

ũ5 664 d̃5 668

ũ6 664 d̃6 668

h0 110 H0 513

A0 512 H+ 518

TABLE II: Spectrum of the SU3 Model, calculated using SPICE.
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Appendix B: Functions Describing Triangular Distributions

1. A Single Triangle Function

For the triangle fit we use

T1(x, [E, S]) =























0 x < 0

2
(

S
E2

)

x 0 ≤ x ≤ E

0 x > E

(B1)

Here E is the endpoint and S is the area of the triangle proportional to the total number of

events in the distribution.

2. A Double Triangle Function

We describe the sum of two triangles based at zero with two different endpoints and

slopes by:

T2(x, [E1, S1, E2, Ratio]) = T1(x, [E1, S1]) + T1(x, [E2, S2]) (B2)

where

S2 = S1 × Ratio (B3)

and Ratio is the ratio of the triangle areas.

3. A Double Triangle Convoluted With A Gaussian Function

To account for the noise in the measurement of particle momenta one must convolute the

distributions with a Gaussian. The smearing parameter for our detector is measured from

Z → l+l− and is σ = 0.568. We use:

N2T (x, [σ, E1, S1, E2, Ratio]) =
1√
2πσ2

∫ ∞

−∞

dx′e−
(x−x′)2

2σ2 T2(x
′, [E1, S1, E2, Ratio]) (B4)
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4. Simultaneous Fit Function

Our “measured” data set consists of the 3 di-lepton invariant mass distributions

e+e−, µ+µ−, e±µ∓. To fit them simultaneously we use:

Simultaneous(x,
[

σ, E1, E2, sin
2 θ, R, See, Bee, Bµµ

]

) =























fee for ee histogram

fµµ for mumu histogram

feµ for emu histogram

(B5)

here σ is the smearing parameter, E1, E2 are the two endpoints, See is the combined area of

the two triangles in the ee distribution, Bll is the constant background in the ll distribution.

In addition,

fee = N2T (x,

[

σ, E1, See
cos4 θ

cos4 θ +R sin4 θ
, E2, R

sin4 θ

cos4 θ

]

) +Bee

fµµ = N2T (x,

[

σ, E1, Sµµ
sin4 θ

sin4 θ +R cos4 θ
, E2, R

cos4 θ

sin4 θ

]

) +Bµµ

feµ = N2T (x,

[

σ, E1, Seµ
1

1 +R
,E2, R

]

) +Bee +Bµµ

(B6)

where we have defined:

Sµµ = See ×
sin4 θ +R cos4 θ

cos4 θ +R sin4 θ
(B7)

Seµ = See × 2
(1 +R) sin2 θ cos2 θ

cos4 θ +R sin4 θ
(B8)

so that Sµµ (Seµ) is the total area of the two triangles in the µµ (eµ) distribution.
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