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We consider the perturbative (weak field) limit of the small x QCD evolution equation for
quadrupole, the normalized trace of four Wilson lines in the fundamental representation, which
appears in di-hadron angular correlation in high energy collisions. We linearize the quadrupole
evolution equation and then expand the Wilson lines in powers of g Aµ where Aµ is the gauge field.
The quadratic terms in the expansion (∼ g2 A2) satisfy the BFKL equation as has been recently
shown. We then consider the quartic terms (∼ g4 A4) in the expansion and show that the linearized
quadrupole evolution equation, written in terms of color charge density ρ, reduces to the well-known
BJKP equation for the imaginary part of four-reggeized gluon exchange amplitude. We comment
on the possibility that the BJKP equation for the evolution of a n-reggeized gluon state can be
obtained from the JIMWLK evolution equation for the normalized trace of n fundamental Wilson
lines when non-linear (recombination) terms are neglected.

PACS numbers:

I. INTRODUCTION

The recent experimental observation of disappearance of the away side peak in di-hadron angular correlation in
the forward rapidity region in deuteron-gold collisions at RHIC [1] has generated a lot of interest in multi-parton
correlations at high energy (small x). Unlike structure functions in DIS and single inclusive particle production in
hadronic collisions which are sensitive to dipoles (normalized trace of two Wilson lines), di-hadron correlations probe
correlators of higher number of Wilson lines [2, 3]. Therefore one has the opportunity, for the first time, to investigate
these higher correlators experimentally through studies of angular and rapidity correlations in di-hadron production
cross section in high energy hadronic collisions. Such studies can teach us much about the intrinsic correlations in
the hadronic or nuclear wave functions which are not accessible in single inclusive particle production or in studies of
structure function in DIS.
Higher correlators of Wilson lines appear in two-hadron production cross section in any dilute-dense collision at high

energy where analytic calculations are possible. Classic examples of such asymmetric collisions are proton-nucleus
collisions (see [4] for a review) in the fragmentation region of the proton, and in DIS close to the virtual photon
remnants 1. Two-gluon production cross section in DIS has been considered in [2] while two-parton production cross
section in proton-nucleus collisions has been investigated in [2, 5–8]. In all cases, the cross section involves correlators
of higher (more than two) number of Wilson lines, the most important being the quadrupole operator. Evolution
equations for these higher point correlators have been derived [2, 9, 10] and approximate analytic expressions for them
have been developed using a Gaussian model [11] and approximate analytic solutions have been proposed [12]. Very
recently, powerful lattice gauge theory techniques have been applied to solve the JIMWLK evolution equation which
then allows a systematic and detailed numerical study of the properties of these higher point correlators [13].
Here we study the evolution equation for the quadrupole operator in the weak field limit. A first study of this

has already been performed in [10] where it is shown that the quadrupole evolution equation reduces to a sum of
BFKL equations for the dipole operator in the limit where the dipole is expanded in powers of the gluon field and
quadratic terms in gluon field are kept. Here, we go beyond the quadratic expansion and show that the quartic terms
in the expansion of the linearized quadrupole evolution equation satisfy an equation which is identical to the BJKP
equation [14, 15] for the imaginary part of the four-reggeized gluon exchange amplitude. This should be very useful
since there is an extensive literature on the properties of the BJKP equation which may give us further insight on the
properties of the JIMWLK equation in the limit where one may ignore non-linear terms.

1 Particle production in the very forward rapidity region in proton-proton collisions at very high energy falls into this category also.
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II. QUADRUPOLE EVOLUTION EQUATION

We start by defining the quadrupole operator Q as

Q(r, r̄, s̄, s) ≡
1

Nc

trVr V
†
r̄ Vs̄ V

†
s (1)

where Vr ≡ V (rt) is a Wilson line in the fundamental representation in the covariant gauge

V (rt) ≡ P̂ e−ig
∫
dx− A+

(2)

and Aµ(x−, rt) = δµ+ δ(x−)α(rt). The gauge field α(rt) is related to the color charge density via ∂2
t α

a(rt) ∼
g ρa(rt) and r, r̄, s̄, s etc. denote two-dimensional coordinates on the transverse plane. The evolution equation for
the quadrupole was derived in [2] in the large Nc limit and using Feynman diagram techniques. It has been recently
re-derived [10] using the JIMWLK equation where it was shown that there are no Nc suppressed corrections. Here we
outline the derivation using the JIMWLK formalism [16] where the evolution (y = log1/x) of any operator is given
by

d

dy
〈O〉 =

1

2

〈
∫

d2x d2y
δ

δαb
x

ηbdxy
δ

δαd
y

O

〉

, (3)

with

ηbdxy =
1

π

∫

d2z

(2π)2
(x− z) · (y − z)

(x− z)2(y − z)2
[

1 + U †
xUy − U †

xUz − U †
zUy

]bd
. (4)

and U is a Wilson line in the adjoint representation. The derivation of the quadrupole evolution equation is straight-
forward but tedious. It involves functional differentiation of the Wilson lines and repeated use of the identity
[U(r)]ab tb = V †(r) ta V (r). The result is

d

dy
〈Q(r, r̄, s̄, s)〉 =

Nc αs

(2π)2

∫

d2z

{〈

[

(r − r̄)2

(r − z)2(r̄ − z)2
+

(r − s)2

(r − z)2(s− z)2
−

(r̄ − s)2

(r̄ − z)2(s− z)2

]

Q(z, r̄, s̄, s)S(r, z)

+

[

(r − r̄)2

(r − z)2(r̄ − z)2
+

(r̄ − s̄)2

(r̄ − z)2(s̄− z)2
−

(r − s̄)2

(r − z)2(s̄− z)2

]

Q(r, z, s̄, s)S(z, r̄)

+

[

(r̄ − s̄)2

(r̄ − z)2(s̄− z)2
+

(s− s̄)2

(s− z)2(s̄− z)2
−

(r̄ − s)2

(s− z)2(r̄ − z)2

]

Q(r, r̄, z, s)S(s̄, z)

+

[

(r − s)2

(r − z)2(s− z)2
+

(s− s̄)2

(s− z)2(s̄− z)2
−

(r − s̄)2

(r − z)2(s̄− z)2

]

Q(r, r̄, s̄, z)S(z, s)

−

[

(r − r̄)2

(r − z)2(r̄ − z)2
+

(s− s̄)2

(s− z)2(s̄− z)2
+

(r − s)2

(r − z)2(s− z)2
+

(r̄ − s̄)2

(r̄ − z)2(s̄− z)2

]

Q(r, r̄, s̄, s)

−

[

(r − s)2

(r − z)2(s− z)2
+

(r̄ − s̄)2

(r̄ − z)2(s̄− z)2
−

(r̄ − s)2

(r̄ − z)2(s− z)2
−

(r − s̄)2

(r − z)2(s̄− z)2

]

S(r, s)S(r̄, s̄)

−

[

(r − r̄)2

(r − z)2(r̄ − z)2
+

(s− s̄)2

(s− z)2(s̄− z)2
−

(r − s̄)2

(r − z)2(s̄− z)2
−

(r̄ − s)2

(r̄ − z)2(s− z)2

]

S(r, r̄)S(s̄, s)

〉}

(5)

where the S matrix is defined as

S(r, r̄) ≡
1

Nc

trVr V
†
r̄ (6)

We will refer to the first four lines in this equation as ”real” and the last three terms as ”virtual” terms in coordinate
space. This is to distinguish them from the real and virtual terms in momentum space after we Fourier transform the
equation since there is no one to one correspondence between the real and virtual terms in coordinate and momentum
spaces. We have also verified that this equation is exact in the sense that there are no Nc suppressed terms in the
equation itself (note that models used to evaluate the color averaging denoted by < · · · > may introduce sub-leading
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Nc terms). It also agrees with the previous results for the quadrupole evolution equation [2, 10]. The S matrix
satisfies the BK evolution equation [17] given by

d

dy
〈S(r − s)〉 =

Nc αs

2π2

∫

d2z
(r − s)2

(r − z)2(s− z)2

[

〈S(r − z)〉 〈S(z − s)〉 − 〈S(r − s)〉

]

(7)

Unlike the dipole kernel in the BK equation which allows a probabilistic interpretation in coordinate space, the same
is not true in the quadrupole evolution equation due to terms with negative signs. Even though the individual kernels
in eq. (5) are just the standard dipole kernels [18], it is still perhaps useful to explain in a more intuitive way, the
various terms that appear in eq. (5). The first four lines in eq. (5) are the ”real” corrections and come from the
third and fourth terms in eq. (4). One can rewrite any kernel in eq. (5) in a way which may look more familiar and
facilitates the comparison with the standard dipole emission kernel. For example, the kernel in the first line on the
right hand side of eq. (5) can be written as as

∼ 2

[

1

(r − z)2
−

(r − z) · (r̄ − z)

(r − z)2(r̄ − z)2
−

(r − z) · (s− z)

(r − z)2(s− z)2
+

(r̄ − z) · (s− z)

(r̄ − z)2(s− z)2

]

(8)

with a similar form for all the other kernels. Here the first term corresponds to a gluon being radiated by a quark line
represented by V (r). If it is absorbed by the same quark line in the amplitude, it leaves the quadrupole unchanged
and will correspond to a ”virtual” correction. On the other hand if it is absorbed by the same quark line but in the
complex conjugate amplitude (so the gluon line crosses the cut), it will multiply the quadrupole with the coordinate
r replaced by z and a dipole with coordinates r, z. This will be part of the ”real” corrections. The second term above
corresponds to the case when the quark line, represented by V (r), in the quark anti-quark system represented by
V (r) and V (r̄) radiates a gluon with transverse coordinate z. If the radiated gluon does not cross the cut line and is
absorbed by the anti-quark line at r̄ it becomes part of the ”virtual” corrections. On the other hand if the radiated
gluon at z crosses the cut and is then absorbed by an anti-quark line in the complex conjugate amplitude, it breaks
the original quadrupole into a quadrupole with coordinate r replaced by z and a dipole at r, z. This is part of the
”real corrections. All other terms have a similar interpretation.
To investigate the weak field limit of this evolution and to make our approximations more transparent, it is more

useful to work with the T matrices, defined as TQ ≡ 1−Q and T ≡ 1−S. It is easy to see that all kernels multiplying
1 (when we switch from Q,S to TQ, T ) add up to zero. Therefore, eq. (5) is re-written as

d

dy
〈TQ(r, r̄, s̄, s)〉 =

Nc αs

(2π)2

∫

d2z

{〈

[

(r − r̄)2

(r − z)2(r̄ − z)2
+

(r − s)2

(r − z)2(s− z)2
−

(r̄ − s)2

(r̄ − z)2(s− z)2

][

TQ(z, r̄, s̄, s) + T (r, z)− TQ(z, r̄, s̄, s)T (r, z)

]

+

[

(r − r̄)2

(r − z)2(r̄ − z)2
+

(r̄ − s̄)2

(r̄ − z)2(s̄− z)2
−

(r − s̄)2

(r − z)2(s̄− z)2

][

TQ(r, z, s̄, s) + T (z, r̄)− TQ(r, z, s̄, s)T (z, r̄)

]

+

[

(r̄ − s̄)2

(r̄ − z)2(s̄− z)2
+

(s− s̄)2

(s− z)2(s̄− z)2
−

(s− r̄)2

(s− z)2(r̄ − z)2

][

TQ(r, r̄, z, s) + T (s̄, z)− TQ(r, r̄, z, s)T (s̄, z)

]

+

[

(r − s)2

(r − z)2(s− z)2
+

(s− s̄)2

(s− z)2(s̄− z)2
−

(r − s̄)2

(r − z)2(s̄− z)2

][

TQ(r, r̄, s̄, z) + T (z, s)− TQ(r, r̄, s̄, z)T (z, s)

]

−

[

(r − r̄)2

(r − z)2(r̄ − z)2
+

(s− s̄)2

(s− z)2(s̄− z)2
+

(r − s)2

(r − z)2(s− z)2
+

(r̄ − s̄)2

(r̄ − z)2(s̄− z)2

]

TQ(r, r̄, s̄, s)

−

[

(r − s)2

(r − z)2(s− z)2
+

(r̄ − s̄)2

(r̄ − z)2(s̄− z)2
−

(r̄ − s)2

(r̄ − z)2(s− z)2
−

(r − s̄)2

(r − z)2(s̄− z)2

][

T (r, s) + T (r̄, s̄)− T (r, s)T (r̄, s̄)

]

−

[

(r − r̄)2

(r − z)2(r̄ − z)2
+

(s− s̄)2

(s− z)2(s̄− z)2
−

(r − s̄)2

(r − z)2(s̄− z)2
−

(r̄ − s)2

(r̄ − z)2(s− z)2

][

T (r, r̄) + T (s̄, s)− T (r, r̄)T (s̄, s)

]

〉}

(9)

A. The weak field limits

It is useful to consider the above equation for TQ in the weak field (dilute) limit where all sizes are much smaller
than the inverse saturation scale, i.e., |a − b| << 1

Qs

for any external coordinates a, b. In this limit the non-linear
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terms (TQ T and T T ) in eq. (9) may be dropped and we get

d

dy
〈TQ(r, r̄, s̄, s)〉 =

Nc αs

(2π)2

∫

d2z

{〈

[

(r − r̄)2

(r − z)2(r̄ − z)2
+

(r − s)2

(r − z)2(s− z)2
−

(r̄ − s)2

(r̄ − z)2(s− z)2

][

TQ(z, r̄, s̄, s) + T (r, z)

]

+

[

(r − r̄)2

(r − z)2(r̄ − z)2
+

(r̄ − s̄)2

(r̄ − z)2(s̄− z)2
−

(r − s̄)2

(r − z)2(s̄− z)2

][

TQ(r, z, s̄, s) + T (z, r̄)

]

+

[

(r̄ − s̄)2

(r̄ − z)2(s̄− z)2
+

(s− s̄)2

(s− z)2(s̄− z)2
−

(s− r̄)2

(s− z)2(r̄ − z)2

][

TQ(r, r̄, z, s) + T (s̄, z)

]

+

[

(r − s)2

(r − z)2(s− z)2
+

(s− s̄)2

(s− z)2(s̄− z)2
−

(r − s̄)2

(r − z)2(s̄− z)2

][

TQ(r, r̄, s̄, z) + T (z, s)

]

−

[

(r − r̄)2

(r − z)2(r̄ − z)2
+

(s− s̄)2

(s− z)2(s̄− z)2
+

(r − s)2

(r − z)2(s− z)2
+

(r̄ − s̄)2

(r̄ − z)2(s̄− z)2

]

TQ(r, r̄, s̄, s)−

[

(r − s)2

(r − z)2(s− z)2
+

(r̄ − s̄)2

(r̄ − z)2(s̄− z)2
−

(r̄ − s)2

(r̄ − z)2(s− z)2
−

(r − s̄)2

(r − z)2(s̄− z)2

][

T (r, s) + T (r̄, s̄)

]

−

[

(r − r̄)2

(r − z)2(r̄ − z)2
+

(s− s̄)2

(s− z)2(s̄− z)2
−

(r − s̄)2

(r − z)2(s̄− z)2
−

(r̄ − s)2

(r̄ − z)2(s− z)2

][

T (r, r̄) + T (s̄, s)

]

〉}

(10)

To proceed further, we first consider the two-gluon exchange limit, i.e., the BFKL equation [19]. Since TQ and T
include multiple gluon exchanges, we need to linearize them, i.e., take the single (reggeized) gluon exchange limit.
This corresponds to expanding each of the Wilson lines in the definition of TQ and T to first order in the gauge field
α and then keeping terms of the order α2. In this limit (note the relative sign which appears when taking both α’s
from either V ’s or V †’s rather than taking one α from a V and another α from a V †)

TQ(r, r̄, s̄, s) → T (r, r̄) + T (s̄, s)− T (r, s̄)− T (r̄, s) + T (r, s) + T (r̄, s̄) (11)

Using eq. (11) in both sides of eq. (10) we get the BFKL equation for each T of a given argument. For example,

d

dy
〈T (r, s)〉 =

Nc αs

2π2

∫

d2z
(r − s)2

(r − z)2(s− z)2

[

〈T (r, z)〉+ 〈T (z, s)〉 − 〈T (r, s)〉

]

(12)

where T in eq. (12) and right hand side of (11) stands for

T (r, r̄) → Γ(r − r̄) ∼ g2 αa(r)αa(r̄) (13)

This limit was already considered in [10] and the correspondence with BFKL was shown. We also note that this
relation still holds when the evolution equation is written in terms of the color charge density ρ rather than the gauge
field α.
The next interesting case is to consider O(α4) and see whether our evolution equation reduces to the well-known

BJKP equation governing the evolution of four reggeized-gluon state in the dilute limit. To do this, again we first
ignore the non-linear terms in the evolution equation, then we expand the Wilson lines and keep terms of the order
α4 in eq. (10). Since the BJKP equation is written in momentum space, we will start by Fourier transforming TQ

(ignoring T at the moment) to momentum space and disregard any contribution which leads to a vanishing external
momentum. We define 2

T4(l1, l2, l3, l4) ≡

∫

d2r d2r̄ d2s̄ d2s ei(l1·r+ l2·r̄+ l3·s̄+ l4·s) T4(r, r̄, s̄, s) (14)

where l1, l2, l3, l4 are two-dimensional external transverse momenta satisfying overall transverse momentum conserva-
tion so that there are only three independent momenta. This corresponds to having a choice in picking the origin of
the coordinate space on the transverse plane. One can then right away see that the last term in (8) convoluted with

2 We will use the notation T4 here to denote the ∼ O(α4) terms in the expansion of TQ so that T4 ≡
1

Nc

Tr [αααα].
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T4(z, r̄, s̄, s) will give a δ2(l1) since it does not depend on coordinate r. A similar argument shows that the last term
in each kernel in the first 4 lines in eq. (10) (the ”real” terms) will lead to a delta function which sets one of the
external momenta to zero. Since the external momenta of the reggeized-gluons are assumed to be finite (non-zero),
all these terms can be safely ignored. We now consider the contribution of the ”virtual” terms, line 5 in eq. (10).
Upon Fourier transforming, we get

−8
Nc αs

(2π)2

∫

d2pt
p2t

T4(l1, l2, l3, l4) + 4
Nc αs

(2π)2

∫

d2pt
p2t

T4(pt + l1, l2 − pt, l3, l4) + · · · (15)

with a cyclic permutation of the external momenta in the second term understood. The first term is part of the
virtual corrections while the second term is part of the real corrections in momentum space. Let us consider now the
contribution of ”real” terms. Fourier transforming the non-zero terms in the first line of eq. (10) gives

2
Nc αs

(2π)2

∫

d2pt

[

pt · (pt − l1)

p2t (pt − l1)2
T4(l1, l2, l3, l4) + 2

pt · l1
p2t l

2
1

T4(pt + l1, l2 − pt, l3, l4)

]

(16)

The first term in eq. (16) is part of the virtual corrections (in momentum space) while the second term is part of the
real corrections. With a slight rearrangement of the first term one can rewrite the contribution of the first line in eq.
(10) as

2
Nc αs

(2π)2

∫

d2pt

{[

1

p2t
−

l21
2 p2t (pt − l1)2

]

T4(l1, l2, l3, l4) + 2
pt · l1
p2t l

2
1

T4(pt + l1, l2 − pt, l3, l4)

}

(17)

It is clear that the first term in the square bracket in eq. (17) partially cancels the first term in eq. (15). This
cancellation becomes complete when we include the similar contributions from the lines 2− 4 in eq. (10) so that the
only virtual correction left so far is the second term in the square bracket in (17). Including the contribution of the
second line to the real part (only the terms which lead to T4 with the same argument, at the moment) gives

d

dy
T4(l1, l2, l3, l4) =

Nc αs

π2

∫

d2pt

[

1

p2t
+

pt · l1
p2t l

2
1

−
pt · l2
p2t l

2
2

−
l1 · l2
l21l

2
2

]

T4(pt + l1, l2 − pt, l3, l4) + · · ·

−
Nc αs

(2π)2

∫

d2pt

[

l21
p2t (l1 − pt)2

+ {l1 → l2, l3, l4}

]

T4(l1, l2, l3, l4) (18)

where · · · stands for real contributions obtained by appropriate permutation of the external momenta. Finally we
note that the term proportional to l1 · l2 comes from keeping O(∼ α2) in the expansion of Vz and setting one of the
other V ’s to unity, for example, taking Vr̄ = 1 and α2(z) in the first line of eq. (10). It is clear that the virtual
terms in eq. (18) are already in exact agreement with one gets from BJKP equation [14, 15] but the real terms look
different. To show agreement of the real terms with the BJKP equation, we rewrite this equation for color charge
density ρ rather than the gauge field α (this does not affect the virtual corrections). To this end, we note that the
square bracket in the real term in eq. (18) can be rewritten as

[

1

p2t
+

pt · l1
p2t l

2
1

−
pt · l2
p2t l

2
2

−
l1 · l2
l21l

2
2

]

=
1

2

[

(pt + l1)
2

p2t l
2
1

+
(pt − l2)

2

p2t l
2
2

−
(l1 + l2)

2

l21l
2
2

]

Recalling the relation between gauge field α and color charge density ρ,

α(pt) ∼
ρ(pt)

p2t
(19)

and defining T̂4(l1, l2, l3, l4) = 1
Nc

Tr ρ(l1)ρ(l2)ρ(l3)ρ(l4), we multiply both sides of eq. (18) with l21 l
2
2 l

2
3 l

2
4 which

effectively removes the external legs. Eq. (18) can then be written as

d

dy
T̂4(l1, l2, l3, l4) =

Nc αs

π2

∫

d2pt

[

pi

p2t
−

(pi − li1)

(pt + l1)2

]

·

[

pi

p2t
−

(pi − li2)

(pt + l2)2

]

T̂4(pt + l1, l2 − pt, l3, l4) + · · ·

−
Nc αs

(2π)2

∫

d2pt

[

l21
p2t (l1 − pt)2

+ {l1 → l2, l3, l4}

]

T̂4(l1, l2, l3, l4) (20)

This is our final result and corresponds to the evolution of T̂4 after one step in rapidity y as depicted (the real part)
in Fig. (1). We have checked that it agrees with the expressions given in [14, 15].
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p + l1

l1 l3 l2 l4

pp

l2 − p

FIG. 1: Evolution of the four-point function T̂4 after one step in rapidity as given by eq. (20). Shown is one of the real diagrams
only and the dashed line represents a cut.

There are several points that need to be clarified; first, we have completely disregarded the dipole terms (∼ T ) here
even though they also contain O(α4) terms. Since T (r, s) depends only on two external transverse coordinates r, s,
O(α4) terms will necessarily involve two pairs of gauge fields at the same point. Assuming rotational invariance on
the transverse coordinate plane, this leads to setting two of the external momenta equal to each other which takes
one back to the BFKL ladders. Therefore, these terms are not relevant for our purpose. A second point is the color
averaging denoted by < · · · >. We have not made any assumptions about the color averaging [20] and the evolution
equation derived is independent of how one performs this averaging. Furthermore, the overall color structure of the
equation seems to be more general than the BJKP equation since here one has a trace of four color matrices in the
fundamental representation on both sides of the equation. This trace could be written in terms of products of the
group structure constants δab, fabc, dabc whereas the BJKP equation is for the exchange of four reggeized-gluon state
in a symmetric color singlet state. One expects that δ δ terms would lead to a topology which is equivalent to exchange
of two independent BFKL pomerons which would then be disregarded. Therefore, one would only consider the color
symmetric structures involving d’s.
In summary, we have shown in this preliminary study that the JIMWLK evolution equation for the quadrupole

operator can be reduced to the BJKP equation for the real part of the four reggeized-gluon exchange amplitude.
To do this, we first ignore the non-linear (recombination) terms in quadrupole evolution equation, and then expand
the Wilson lines in terms of the gauge field (or equivalently, the color charge density). This approximation should
be valid when the external momenta are larger that the saturation scale, i.e., in the dilute region. The quadrupole
evolution equation reduces to a sum of independent BFKL equations in O(ρ2) and to the BJKP equation when
one looks at the terms of order ∼ ρ4. This suggests that the JIMWLK evolution equation for the n-pole operator
1
Nc

< Tr V (x1)V
†(x2) · · ·V

†(xn) > in the linear limit (dilute region) may be equivalent to the BJKP heirarchy for
the imaginary part of the n reggeized-gluon exchange amplitude. This would be very useful since there is much that
is known about the BJKP equation and its properties but not much is known about the properties of the JIMWLK
equation in analytic form. Proving the equivalence between linearized JIMWLK and BJKP equations may not be so
difficult since the JIMWLK evolution equation for 1

Nc

< Tr V (x1)V
†(x2) · · ·V

†(xn) > can almost be written down

by inspection in analogy with the pattern seen in eq. (5). The problem reduces to keeping track of which quark line
radiates a gluon and counting all the possibilities since all emission kernels are just the standard dipole kernel. It
would also be interesting to investigate the connection between the non-linear terms in the JIMWLK equation and
multi-pomeron vertices employed in reggeized-gluon approach to high energy scattering. These issues are beyond the
scope of this preliminary work and will be reported elsewhere.
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