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We investigate the contribution of inelastic and elastic processes to single inclusive hadron pro-
duction in proton-proton and proton (deuteron)-nucleus collisions at RHIC and the LHC. Using the
hybrid formulation which includes both elastic and inelastic contributions, supplemented with the
running-coupling Balitsky-Kovchegov equation, we get a good description of RHIC data. It is shown
that inclusion of the inelastic terms makes the transverse momentum dependence of the production
cross section steeper in the mid-rapidity region but does not affect the cross section in the very
forward region. The inelastic processes also lead to a sharper increase of the nuclear modification
factor RpA with increasing pT . We also make predictions for the nuclear modification factor in
proton-nucleus collisions at the LHC (

√
s = 4.4 and 8.8 TeV) at various rapidities using the Color

Glass Condensate framework.

I. INTRODUCTION

The Color Glass Condensate (CGC) formalism [1] is a self-consistent, effective theory approach to QCD interactions
at high energy (or equivalently small x). Even though it is a weak coupling approach, it is different from the collinear
factorization based approach of pQCD in two important aspects; first, it re-sums quantum corrections which are
enhanced by large logarithms of 1/x as opposed to large logarithms of Q2 in pQCD and second, it includes high gluon
density effects which are important at small x and/or for large nuclei where the physics of gluon saturation may be
the dominant.
The CGC formalism has successfully been applied to many QCD processes, from fully inclusive ones such as structure

functions in DIS to single and double inclusive particle production in proton-proton and proton-nucleus collisions at
high energy, see Ref. [1] and references therein. The CGC formalism has been also quite successful in providing
predictions for particle multiplicities at the LHC [2–4] and may provide a first-principle way of understanding of
isotropization and thermalization of QCD matter produced in high energy heavy ion collisions at RHIC and the LHC
[5].
The observed suppression of single inclusive hadron production and the disappearance of the away side peak in

double hadron production in the forward rapidity region of deuteron-nucleus (dA) collisions at RHIC [6, 7] are perhaps
the strongest evidence for the importance and possibly dominance of saturation effects at RHIC. This will soon be
further tested at the LHC where one will be able to probe CGC dynamics in a much larger kinematic region due to
the larger energy of the collisions at the LHC. Single inclusive hadron production in proton-nucleus (pA) collisions
at RHIC and the LHC has been investigated by many authors [8–13] in the CGC formalism using varying degrees
of approximations and models (for an alternative description, see for example Refs. [14, 15]). The most important
ingredient of the single inclusive hadron production cross section which captures the saturation dynamics is the
fundamental (or adjoint) dipole cross section, the imaginary part of the quark anti-quark scattering amplitude on a
proton or nucleus target. This dipole cross section satisfies the JIMWLK/BK evolution equations [16, 17] and re-sums
the small x as well as high gluon density effects. The evolution equation for the dipole cross section is now known
with next-to-leading-order (NLO) accuracy [18], see also Ref. [19].
There are two distinct but related approaches to hadron production in high energy asymmetric (such as proton-

nucleus or very forward proton-proton and nucleus-nucleus) collisions. One is the well-known kT factorized approach
[20, 21] where partons in both the projectile and target are assumed to be at very small x (x < 0.01) so that the
CGC formalism is applicable to both the projectile and target. This approach is valid as long as one stays away from
the projectile fragmentation region. An alternative approach was developed in [9] where one treats the projectile
wave-function perturbatively, i. e. using the standard DGLAP picture while treating the target by CGC methods.
This approach is better suited for the projectile fragmentation region. Very recently this approach has been improved
by keeping the inelastic pieces of the cross section which may be important at high transverse momentum [22]. Here
we numerically investigate the contribution of theses inelastic contributions to single inclusive hadron production in
proton-nucleus and proton-proton collisions at RHIC and the LHC and show that inclusion of these terms improves
the high pT behavior of the cross section. The nuclear modification factor is also shown to increase faster with
increasing pT than the case where these inelastic contributions are ignored.
The paper is organized as follows: In the next section, we introduce our formalism for the inclusive hadron production
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in pA collisions, namely the hybrid formulation which includes both elastic and inelastic contributions, supplemented
with the running-coupling Balitsky-Kovchegov equation. Section III is devoted to comparison with the experimental
data and to a discussion of various predictions for the LHC energies. We conclude in Sec. IV.

II. SINGLE INCLUSIVE HADRON PRODUCTION; MAIN FORMULATION

The cross section for single inclusive hadron production in asymmetric collisions (scattering of a dilute system of
parton with a dense one) at high energy is given by [22]

dNpA→hX

d2pTdη
=

K

(2π)2

[

∫ 1

xF

dz

z2

[

x1fg(x1, Q
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pT
z
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z
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]

+

∫ 1
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∫
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T
<Q2
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2
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∫ 1

x1

dξ

ξ
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ξ
,Q)Dh/i(z,Q)

]

,(1)

where fj(x,Q
2) is the parton distribution functions (PDF) of the incoming proton which depends on the light-cone

momentum fractions x and the hard scale Q. The function Dh/i(z,Q) is the hadron fragmentation function (FF) of
i‘th parton to the final hadron h with a momentum fraction z. The variables η and pT are the pseudo-rapidity and
transverse momentum of the produced hadron. The longitudinal momentum fractions x1 and x2 are defined as follows

xF ≈ pT√
s
eη; x1 =

xF

z
; x2 = x1e

−2η, (2)

where
√
s is the collision energy per nucleon. Here we neglect hadron masses since we are only interested in light

hadron production at high-pT (thereby rapidity and pseudo-rapidity are equal).
It is perhaps useful to remind the reader of the derivation of Eq. (1). The first line of Eq. (1) was first derived

in Ref. [9]. The result of [9] has been recently improved in [22] by keeping the inelastic pieces which lead to the
second line in Eq. (1). Our main goal in this paper is to consider the effect of this new term in the inclusive hadron
production at both RHIC and the LHC. Let us first focus on the first line of Eq. (1), the DHJ term [9]. We refer
the reader to Ref. [9] for technical details and just outline the derivation of the DHJ term. One starts by calculating
two particle production cross section in proton-nucleus scattering. The simplest process is when a quark from the
projectile scatters on the target and radiates a gluon either before or after the scattering (see Fig. (12) in [23]). The
incoming quark as well as the outgoing quark and the radiated gluon can all multiply scatter on the target. However,
if one is interested in single inclusive production, one needs to integrate over one of the final state partons. Some of
the Feynman diagrams will have collinear divergences whereas others do not. There is a collinear divergence in the
final state which happens when the outgoing quark and the radiated gluon are nearly parallel and only the initial state
quark multiply scatters on the target. This divergent term is absorbed into quark-hadron fragmentation function and
lead to its evolution with Q2 according to the LO DGLAP evolution equation. The finite (non-collinear divergent)
pieces are ignored as they are part of the NLO corrections.
There is also a collinear divergence in the initial state which happens when the incoming quark and the radiated

gluon are nearly parallel and only the final state quark multiply scatters on the target. This sort of collinear divergence
is absorbed into the incoming parton distribution function and leads to its evolution according to the standard DGLAP
evolution equation. Again, the finite parts of these terms were ignored in [9] since they correspond to higher order
(in αs) corrections. It was pointed out in [22] that the finite pieces which are ignored in [9] may be important at high
pT and therefore can lead to a modification of the production cross section. Keeping the finite diagrams (which do
not have a collinear divergence) and making the high pT approximation (gradient expansion of the quadrupole cross
section) leads to Eq. (1). While the above argument is for an incoming quark scattering on the target, inclusion of
other processes such as an incoming gluon scattering on the target is straightforward [24] where a similar analysis of
the collinear divergences can be made.
Now that the origin of these inelastic terms is made more clear, we comment on the relative significance of the two

contributions. The first piece of eq. (1), dubbed the elastic part, corresponds to an incoming parton in the proton wave
function scattering elastically on the target. This incoming parton initially has zero transverse momentum but picks
up transverse momentum of order Qs after multiply scattering on the target. This term should be most important
when the transverse momentum of the produced hadron is of order Qs or perhaps even a bit larger. The second term
in eq. (1), dubbed the inelastic piece, corresponds to a high transverse momentum parton radiated from the incoming
parton in the projectile wave function. This radiated parton is already at high transverse momentum and interacts
with the target only once (higher number of scatterings will be power suppressed). This term is therefore important
only when the produced hadron is at transverse momenta much higher that the saturation scale of the target Qs.
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In Eq. (1), we have introduced a K-factor to mimic the effect of higher order corrections. The inelastic weight
functions wi/j are given by

wg/g(ξ) = 2
N2

c

N2
c − 1

(1− ξ + ξ2), (3)

wg/q(ξ) = wg/q̄(ξ) =
N2

c

N2
c − 1

[

1 + (1− ξ)2 − ξ2

N2
c

]

, (4)

wq/q(ξ) = wq̄/q̄(ξ) =
N2

c

N2
c − 1

[

1 + ξ2 − (1− ξ)2

N2
c

]

, (5)

wq/g(ξ) = wq̄/g(ξ) =
1

2

[

(1− ξ)2 + ξ2 − 2ξ(1− ξ)

N2
c − 1

]

, (6)

where Nc denotes the number of colors. The function Pi/j in Eq. (1) denotes the Altarelli-Parisi splitting function
that describes the probability of a given parton j splitting into two others. The leading-order splitting functions (for
Nc = 3) are given by [25],

Pq/q(ξ) =
4

3

[

1 + ξ2

(1− ξ)+

]

+ 2δ(1− ξ), (7)

Pqg(ξ) =
1

2

[

ξ2 + (1 − ξ)2
]

, (8)

Pgq(ξ) =
4

3

[

1 + (1 − ξ)2

ξ

]

, (9)

Pgg(ξ) = 6

[

1− ξ

ξ
+ ξ(1 − ξ) +

ξ

(1 − ξ)+

]

+

(

11

2
− nf

3

)

δ(1− ξ), (10)

where nf is the number of active flavor and subscript + refers to the so-called ′′+′′ prescription used to regularize
the singularities as ξ → 1 [25]. In Eq. (1), the amplitude NF (NA) is the two-dimensional Fourier transform of
the imaginary part of the forward dipole-target scattering amplitude NA(F ) in the fundamental (F) or adjoint (A)
representation,

NA(F )(x, kT ) =

∫

d2~re−i~kT .~r
(

1−NA(F )(r, Y = ln(x0/x))
)

, (11)

where r = |~r| is the dipole transverse size. In the large-Nc limit, one has the following relation between the adjoint
and fundamental dipoles,

NA(r, Y ) = 2NF (r, Y )−N 2
F (r, Y ). (12)

The amplitude NA(F ) incorporates all multi-scatterings between a projectile color-dipole and the target and encodes
the small-x dynamics. In the CGC framework, it can be obtained from the solution of JIMWLK/BK evolution
equations [16, 17], an infinite set of coupled nonlinear equations for the different Wilson line correlators which system-
atically incorporate small-x gluon emission to all orders [16]. In the large-Nc limit, the JIMWLK evolution equations
reduce to the Balitsky-Kovchegov (BK) equation [17], a closed-form equation for the evolution of the dipole amplitude.
The running coupling BK (rcBK) equation [17, 26, 27] has the following simple form :

∂NA(F )(r, x)

∂ ln(x0/x)
=

∫

d2~r1 Krun(~r, ~r1, ~r2)
[

NA(F )(r1, x) +NA(F )(r2, x)−NA(F )(r, x)−NA(F )(r1, x)NA(F )(r2, x)
]

,

(13)
where the evolution kernel Krun using Balitsky‘s prescription [27] for the running coupling is defined as,

Krun(~r, ~r1, ~r2) =
Nc αs(r

2)

2π2

[

1

r21

(

αs(r
2
1)

αs(r22)
− 1

)

+
r2

r21 r
2
2

+
1

r22

(

αs(r
2
2)

αs(r21)
− 1

)]

, (14)

with ~r2 ≡ ~r− ~r1. For the running coupling in the above equation we use the scheme proposed in Ref. [34] at one-loop
level. Notice that in the master equations (1,13), the impact-parameter dependence of the collisions was ignored.
However, for the min-bias analysis considered here this may not be important. Nevertheless, it has been shown
by several studies that impact-dependence of the BK equation is important at very large rapidities and for fixed
centralities [2–4, 28, 29], though it is very challenging to implement numerically.
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III. NUMERICAL RESULTS AND PREDICTIONS

We now evaluate the single inclusive hadron production cross section numerically. To do this, we will use the NLO
MSTW 2008 PDFs [30] and the NLO KKP FFs [31]. We have checked that AKK FFs [32] are also consistent with
our results. We assume the factorization scale in the FFs and the PDFs to be Q = pT .
The only input for the rcBK equation is the initial conditions for the evolution of the dipole amplitude which is

commonly taken to be a McLerran-Venugopalan (MV) type model [33]:

N (r, Y =0) = 1− exp

[

−
(

r2 Q2
0s

)γ

4
ln

(

1

Λ r
+ e

)

]

, (15)

where Λ = 0.241 GeV and γ = 1.119 [3, 34]. Notice that global fits to structure functions in DIS in the small-x
region show that γ > 1 is preferable and γ ≃ 1.119 provides a good fit to the DIS data [34]. The onset of small-x
evolution is taken at x0 = 0.01. Then the only free parameter is the initial value of the saturation scale Q0s (probed
by quarks) for proton and nucleus at x0 = 0.01. The value of Q0s can be also fixed via a fit to the structure functions
in electron-proton and electron-nucleus scatterings in the small-x region. In order to investigate the sensitivity of our
results to the choice of the parameter sets, we take Q0s as a free parameter and let it be determined by the RHIC
data in proton-proton (pp) and deuteron-gold (dAu) collisions. In this way, we will also examine whether a universal
description of various low-x data can be achieved by the rcBK evolution equation.
In order to facilitate a comparison of the solution to rcBK dipole evolution equation, we also employ the DHJ dipole

parametrization [10] for NA(F ) which has been used to describe the forward rapidity data in dAu collisions at RHIC.
We refer the reader to Ref. [10] for the details of the DHJ dipole model. The dipole scattering amplitude in the DHJ
model is simply given by

NDHJ
A (kT , x) =

∫

d2~re−i~kT .~r

(

1− exp

[

−1

4

(

r2 Q2
s(x)

)γDHJ(QT ,x)
])

, (16)

where the anomalous dimension γDHJ in the DHJ model is parameterized as,

γDHJ(QT , x) = γs + (1− γs)
log

(

Q2
T /Q

2
s(x)

)

λy + d
√
y + log (Q2

T /Q
2
s(x))

, (17)

with y = log(1/x) and the scale QT in the anomalous dimension is related to the inverse transverse size of the dipole

Q2
T ≈ 1/r2. Saturation scale Qs(x) is defined as Q2

s(x) = A
1/3
eff (xs0/x)

λ with Aeff = 18.5 for the minimum bias

dAu collisions. Here we are interested in investigating whether the new inelastic contribution, second line in Eq. (1),
will affect the description of the RHIC data [10]. To this end, we take the same parameters for the DHJ dipole
parametrization as employed in Ref. [10] which provides a good description of the RHIC data without the presence of
the inelastic contribution namely αs = 0. The parameters λ = 0.3 and xs0 = 10−4 were extracted from a fit to HERA
data, and parameter d was fitted to the RHIC data and set to d = 1.2 [10]. The anomalous dimension in Eq. (17)
runs from the LO BFKL value γs = 0.628 at small x to the DGLAP value γDHJ → 1. This model incorporates the
geometric scaling window as expected from the BK equation [35] consistently.
Here our aim is not to fit the data but to use the best theoretical tools available in low-x physics to highlight

the uncertainties involved in making robust predictions from the CGC formalism for the upcoming proton-nucleus
collisions at the LHC. Therefore, we take K = 1 throughout this paper.
In Fig. 1 we show the single inclusive hadron production yields in pp and dAu collisions at RHIC

√
s = 0.2 TeV

at different rapidities using the DHJ parametrization of the dipole cross section as well as the rcBK dipole solution.
In order to investigate the contribution of the inelastic term to single inclusive hadron production, we also show the
results without this term, namely αs = 0 in Eq. (1), denoted as DHJ in Fig. 1 (left). The inelastic contribution term in
Eq. (1) is explicitly proportional to αs. Notice that in the derivation of this formula at the leading-twist order, αs was
assumed to be a fixed parameter. It is not a priori obvious whether the running-coupling corrections to Eq. (1) can
be simply incorporated by replacing αs to a running αs(Q). It has been shown for example that in kT -factorization
formulation, the running coupling effect changes the equation [36]. We have checked that αs ≈ 0.05÷ 0.15 in Eq. (1)
gives a reasonable description of RHIC data for both pp and dAu collisions. It is clear that inclusion of the inelastic
terms improves the pT dependence of the cross section closer to mid-rapidity while there is no visible contribution at
the most forward rapidity considered. This is more clearly seen in Fig. 1 at the upper-left panel, where the inelastic
contribution is seen to significantly improve the description of the data for more central collisions at η = 1 and makes
the pT -spectra steeper in agreement with the data. For more forward collisions, the available phase space is limited
and inelastic contributions are consequently negligible independent of the value of the strong coupling αs.
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FIG. 1: Single inclusive hadron production in proton-proton (upper panel) and deuteron-gold (lower panel) collisions at different
pseudo-rapidities at RHIC obtained by the solution of the running-coupling BK equation, the so-called rcBK (right) and the
DHJ (left) dipole model. Right: dashed and full lines refer to the results coming from the rcBK equation corresponding to two
different initial values for the saturation scale at x0 = 0.01. We have taken αs = 0.1 in Eq. (1) for all curves. Left: dashed and
full lines refers to the results when αs = 0 (the DHJ term or the elastic contribution) and αs = 0.1 (for the inelastic term),
respectively. We have taken K = 1 in all panels. The experimental data are from Ref. [6].

As we have already pointed out, the value of Q0s at x0 = 0.01 is the only free-parameter left to be fixed for a given
solution of the rcBK equation. In Fig. 1 (right), we also show the effect of various choices for the initial saturation
scale Q0s. In the case of pp RHIC data, we found that values in Q2

0s = 0.168÷ 0.336 GeV2 range give a consistent
description of data. However, a smaller value of Q2

0s = 0.168 GeV2 may be more preferable, specially at very forward
rapidities. This is understandable since the available phase space for multiple re-scattering is limited at very forward
rapidity. Therefore, a lower initial saturation scale is required to describe the cross-section. We note that HERA
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FIG. 2: Right: nuclear modification factor RpA for inclusive charged hadrons h+ + h− production at the LHC
√
s = 4.4 TeV

and η = 4 coming from the solutions of the rcBK with different initial values for the saturation scale (at x0 = 0.01) for proton
and nucleus. The dashed and full lines refer to the cases when the cross-section in both pp and pA collisions was obtained via
Eq. (1) by taking αs = 0 (only elastic contribution) and αs = 0.1 respectively. Left: the scaled unintegrated gluon distribution
NA(x, pT ) × p4T as a function of transverse momentum pT at a fixed x = 10−5 obtained from the rcBK equation with two
different initial values for the saturation scale Q0s(x0 = 0.01).

data on proton structure functions prefer a lower value for the proton initial saturation scale1 Q2
0s = 0.168 GeV2[34].

In the case of mini-bias dAu collisions, the initial nuclear (gold) saturation scale within Q2
0s = 0.5 ÷ 0.67 GeV2 is

consistent with the RHIC data within the error bars. Unfortunately the available DIS data for nuclear targets are
limited and have large experimental uncertainties. It is therefore difficult to pin down the exact value of Q0s for nuclei
based on only DIS data, see also Ref. [37]. In the case of proton-nucleus collisions, due to theoretical uncertainties
and rather large experimental data errors, it is also not possible to uniquely fix the initial value of Q0s. Nevertheless,
the extracted values of initial nuclear saturation scale here are compatible with values extracted in other studies, see
Refs. [3, 12] and reference therein.
It is seen from Fig. 1 that for the description of π0 production in both pp and dAu collisions at very forward rapidity

(η = 4) at RHIC, a K-factor of ∼ 0.4 ÷ 0.6 may be needed. The necessity of such a small K-factor at very forward
rapidity at RHIC

√
s = 200 GeV was also shown in Ref. [12] where the inelastic contribution was ignored. Notice

that as we have already pointed out, the effect of inelastic contribution at very forward rapidities at RHIC energy√
s = 200 GeV is negligible numerically, see Fig. 1. It is possible that at very forward rapidities at RHIC energy,

other mechanisms also partially contribute to the hadron production, see for example Refs. [38, 39].
Next, we present our predictions for single inclusive hadron production at the LHC in terms of the nuclear modifi-

cation factor RpA hoping that some of the theoretical uncertainties, such as sensitivity to K factors, will be reduced.
The Nuclear modification factor RpA is defined as

RpA =
1

Ncoll

dNpA→hX

d2pT dη
/
dNpp→hX

d2pTdη
, (18)

where Ncoll is the number of binary proton-nucleus collisions. We take Ncoll = 6.5, 7.4 at
√
s = 4.4 and 8.8 TeV,

respectively2 [40].

1 The parameter set Q2
0s = 0.168 GeV2 and γ = 1.119 that we used in Fig. 1 also gives excellent description of the structure function

data in e+p collisions with χ2/d.o.f. = 1.104 [34].
2 In order to compare our RpA predictions with experimental data, one may need to rescale RpA by matching the normalization Ncoll to
the experimental value.
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FIG. 3: Nuclear modification factor RpA for h+ + h− production in proton-nucleus collisions at the LHC (
√
s = 4.4 TeV) at

different rapidities (from top to bottom: η = 4, 6, 7) obtained from the solution of rcBK equation assuming two different initial
nuclear saturation scales Q2

0s = 0.5 GeV2 (left) and Q2
0s = 0.67 GeV2 (right). In both panels the initial saturation scale for

proton was taken Q2
0s = 0.168 GeV2. The effect of different value for the strong coupling αs in Eq. (1) is also shown.

In Fig. 2 (right), we show the nuclear modification factor RpA for inclusive charged hadrons h++ h− production at√
s = 4.4 TeV and η = 4 obtained from different solutions of the rcBK equation corresponding to different values of

Q0s(x0 = 0.01) extracted from RHIC data (see description of Fig. 1). We also show the contribution of the inelastic
term by showing the results due to only the DHJ term (αs = 0). The value of the strong-coupling in the inelastic
term in Eq. (1) is set to αs = 0.1 (the same value was taken in Fig. 1). It is obvious that taking different values
for the saturation scale Q0s(x0 = 0.01) for proton and nuclear targets significantly changes the nuclear modification
factor. Therefore, the measurement of RpA provides vital information about the initial saturation scale of target and
small-x evolution dynamics. Inclusion of the inelastic term changes RpA and makes it increase faster at high-pT , see
also Fig. 3. Notice that rcBK solutions taken here approximately reproduce the perturbative power-law behavior of
the dipole-amplitude NA(F ) ∼ 1/p4T at high-pT , see Fig. 2 (left). We recall that the parameters of rcBK solutions

used here were obtained from a fit to HERA data for virtuality Q2 ∈ [0.25, 45] GeV2 [34]. Therefore, our results at
very high-pT may be less reliable.
In Fig. 3, we show our predictions for RpA for h++h− production at

√
s = 4.4 TeV and η = 4−7 using the solution

of the rcBK dipole evolution equation, Eq. (13), assuming initial nuclear saturation scales of Q2
0s = 0.67 GeV2 (right

panel) and Q2
0s = 0.5 GeV2 (left panel). In both panels we have assumed the initial saturation scale of proton to

be Q2
0s = 0.168 GeV2. We note that a larger initial saturation scale for the nucleus leads to a faster rise of RpA

with transverse momentum . For comparison, in Fig. 4 (right panel) we show the corresponding RpA obtained using
the DHJ dipole model, defined in Eq. (16). It is seen that both approaches lead to a suppression of RpA at forward
rapidities at the LHC and that the DHJ parameterization leads to a flatter transverse momentum dependence. We
recall that both the rcBK solution and the DHJ model provide a reasonable description of RHIC data.
In order to highlight the uncertainties associated with the different choices of the strong-coupling constant in Eq. (1)

more clearly, in Fig. 4 (left) we show RpA for three different values of αs namely, αs = 0 corresponding to the elastic
term only, and αs = 0.1, 0.15 for the inelastic contribution. It is seen from Figs. 2, 3, 4 that at rapidities close to
mid-rapidity, increasing αs reduces RpA while at very forward rapidities and high-pT the opposite happens.
In Fig. 5 (right), we show our predictions for RpA for inclusive charged hadron production at

√
s = 8.8 TeV and at

different rapidities obtained from the rcBK equation (13) with different values of the strong coupling in the master
equation (1). It is seen that the energy-dependence of RpA from

√
s = 4.4 to 8.8 TeV is rather weak3. From Figs. 3,

3 Note that our results for RpA at the LHC without inclusion of the inelastic term is different from Ref. [12] mainly due to the fact that
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FIG. 4: Right: RpA for inclusive charged hadron production at different rapidities at the LHC obtained from the DHJ
parameterization of the dipole profile Eq. (16), with different values for the strong coupling in Eq. (1). RpA for inclusive
charged hadron production for various values of the strong coupling constant αs in Eq. (1) at the LHC (

√
s = 4.4 TeV and

η = 5) obtained by the rcBK equation Eq. (13).

4, we also note that at very forward rapidities the uncertainty associated with the choice of αs is reduced. This is
in accordance with the fact that the effect of inelastic contribution at very forward rapidities is negligible, see also
Fig. 1.
Our prediction for η = 0 at the LHC energy 4.4 TeV is shown in Fig. 5 (left), using the solution to the rcBK

evolution equation and assuming two different initial nuclear saturation scales of Q2
0s = 0.5, 0.67GeV2 (extracted

from RHIC data). In Fig. 5, we assumed the initial saturation scale for proton to be Q2
0s = 0.168 GeV2 (extracted

from RHIC and HERA data). The theoretical error bars in Fig. 5 show the uncertainties mainly associated with
the choice of αs in Eq. (1). The observed suppression of RpA at midrapidity and high pT for the case of lower

initial nuclear saturation scale Q2
0s = 0.5GeV2 is larger compared to the results obtained within the gluon saturation

approach with quasi-classical (Glauber) approximation [13]. We note that there are large uncertainties in RpA in
midrapidity at the LHC due to the choice of the initial saturation scale for the rcBK evolution equation (13), and the
value of strong-coupling constant in Eq. (1). More importantly, large sensitivity of RpA to the value of αs in Eq. (1)
in midrapidity at the LHC indicates that higher order corrections in Eq. (1) should be important in midrapidity at
the LHC energy. Therefore, we believe that our predictions for RpA at midrapidity may be less reliable compared to
our results for the very forward rapidity collisions.
It should be noted that the particle production cross-section given by Eq. (1) is intrinsically asymmetric, namely it

treats the projectile proton approximately in the collinear factorization framework while treating the target proton (or
nucleus) in the CGC framework. Strictly speaking, this may be justified only for particle production in the collision
of a dilute system on a dense system, such as particle production in mid or forward rapidity in pA collisions or
in particle production in the very forward rapidity region in symmetric collisions, such as proton-proton or nucleus-
nucleus collisions. Therefore, our formalism can not be reliable for particle production in midrapidity in proton-proton
collisions. Unfortunately, this is also what one needs in order to calculate the nuclear modification factor RpA in
midrapidity. A better approach to particle production in midrapidity in symmetric collisions where both projectile
and target are dilute (for pt >> Qs) might be to use the kt factorization formalism, proven to LO accuracy for single
inclusive hadron production [41]. This is beyond the scope of the present work and we leave it for a future study.

we have used a different parameter set for the rcBK solution with γ = 1.119 which was recently suggested in Refs. [3, 34]. For the
sensitivity of RpA to the various allowed solutions of the rcBK equation, see Fig. 2 and related discussions.
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FIG. 5: Right: nuclear modification factor RpA for h+ + h− production in proton-nucleus collisions at the LHC (
√
s = 8.8

TeV) at different rapidities obtained from the solution of rcBK dipole evolution equation (13) with different values for the
strong coupling constant in Eq. (1). Left: RpA for h+ + h− production in proton-nucleus collisions at the LHC in midrapidity
(
√
s = 4.4 TeV, η = 0) for two different initial nuclear saturation scales of Q2

0s = 0.5, 0.67GeV2 extracted from RHIC data. The
initial saturation scale for proton is taken to be Q2

0s = 0.168 GeV2. The theoretical error bars mainly show the uncertainties
associated with the choice of αs.

IV. SUMMARY

We have quantitatively studied, for the first time, the contribution of both elastic and inelastic processes to single
inclusive hadron production cross section at RHIC and the LHC using the CGC formalism. We observe that inelastic
contributions to single inclusive hadron production are significant at high transverse momentum and close to mid-
rapidity. On the other hand, their contribution is very small in the forward rapidity region. Furthermore, we note that
inclusion of these inelastic terms makes the nuclear modification factor RpA grow faster with increasing transverse
momentum. We make detailed predictions for RpA at the LHC using the numerical solution of the running-coupling
BK equation. We have studied various theoretical uncertainties associated with the choice of the initial saturation
scale Q2

0s for a proton and nucleus. We have shown that the nuclear modification factor RpA measured at the LHC in
the forward rapidity region is a sensitive probe of the low-x dynamics and can help constrain Q2

0s further. We have
shown that various theoretical uncertainties in our formalism are minimized at very forward rapidities at the LHC.
Therefore, measuring the nuclear modification factor RpA in the very forward region in proton-nucleus collisions at
the LHC will be a robust test of gluon saturation dynamics and the Color Glass Condensate formalism.
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