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Abstract

The amplitude for Higgs decay to two photons is calculated in renormalizable and unitary gauges using dimen-

sional regularization at intermediate steps. The result is finite, gauge independent, and in agreement with previously

published results. The large Higgs mass limit is examined using the Goldstone-boson equivalence theorem as a check

on the use of dimensional regularization and to explain the absence of decoupling.



1 Introduction

One of the primary ways to search for the Higgs boson at the CERN Large Hadron Collider is via its decay to two
photons. That decay is induced by quantum loop corrections involving the W boson and fermions, primarily the top
quark. The gauge invariant decay amplitude is given by

M =
e2g

(4π)2mW
F (k1 · k2gµν − kµ2 k

ν
1 )ǫµ(k1)ǫν(k2) (1)

where F includes contributions from W loops and fermion loops:

F = FW (βW ) +
∑

f

NcQ
2
fFf (βf ) (2)

and Nc is a color factor (Nc = 1 for leptons, Nc = 3 for quarks),

βW =
4m2

W

m2
H

, βf =
4m2

f

m2
H

. (3)

with

FW (β) = 2 + 3β + 3β(2− β)f(β) (4)

Ff (β) = −2β [1 + (1− β)f(β)] (5)

where

f(β) =

{

arcsin2(β− 1

2 ) for β ≥ 1

− 1
4

[

ln 1+
√
1−β

1−
√
1−β

− iπ
]2

for β < 1
. (6)

The value of FW in the limit of small Higgs mass was first calculated by Ellis et al. [1] and found to have a
numerical value of 7. The general result for arbitrary mH was later calculated by Shifman et al. in ’t Hooft-Feynman
linear and non-linear gauges [2]. This result agrees with Ref. [1] in the small Higgs mass limit. It leads to the predicted
decay rate:

Γ(H → γγ) = |F |2
( α

4π

)2 GFm
3
H

8
√
2π

(7)

That prediction not only tests the Standard Model, but also provides a test of additional “New Physics” effects that
might contribute at the loop level and modify the decay rate.

A recent pair of papers [3, 4] has questioned the correctness of the W loop contribution to H → γγ and the validity
of dimensional regularization. These papers disagree with the results in Refs. [1, 2]. For this reason it is timely to
revisit the calculation of this process and to settle the issue of the correct expression for the decay amplitude. We also
discuss the use of dimensional regularization, and the behavior of the amplitude in the limit that the Higgs boson is
much heavier than the loop particles.

2 Unitary gauge

We begin by calculating the diagrams in Fig. 1 in unitary gauge [5] using dimensional regularization [6]. To the best
of our knowledge, this is a new calculation; we present the details in Appendix A. Although the unitary gauge is often
avoided in W boson loop calculations because of the large amount of algebra and high degree of ultraviolet divergences
encountered, the use of modern computing algorithms and dimensional regularization make such calculations relatively
straightforward. The advantage of the unitary gauge is that it involves only physical particles and avoids ghost and
Goldstone boson loops. Hence the number of Feynman diagrams is minimal. We find the standard result (given in
Eq. (4)),

M =
e2g

(4π)2mW
[2 + 3β + 3β(2− β)f(β)] (k1 · k2gµν − kµ2 k

ν
1 )ǫµ(k1)ǫν(k2) (8)

where β = 4m2
W /m2

H . This result agrees with Refs. [1, 2]. The use of dimensional regularization ensures a result
that respects electromagnetic gauge invariance; that is, the amplitude vanishes if either photon polarization vector is
replaced by its four-momentum.

1



Figure 1: Feynman diagrams for H → γγ in unitary gauge.

3 Renormalizable gauge

We repeat the calculation, this time in renormalizable gauges [7] (Rξ gauge, for arbitrary ξ), again using dimensional
regularization. There are many more diagrams than in unitary gauge, as shown in Fig. 2. To the best of our knowledge,
this calculation has been performed previously only in ’t Hooft-Feynman gauge (ξ = 1), first in Ref. [1] in the limit of
a light Higgs boson (see also Ref. [8] for non-linear gauge), and later in Ref. [2] for arbitrary Higgs mass.

Figure 2: Feynman diagrams for H → γγ in the Rξ gauge. Diagrams that can be obtained by exchanging the two
photons and by charge conjugation are omitted. Instead, we include a factor of 2 in diagrams (a,f,g,h) and a factor
of 4 in diagrams (c,d,e,j) to include the contributions from these diagrams. Diagram (j) also contains a factor of −1
from the ghost loop.

We present the details in Appendix B. The contribution from loops of Goldstone bosons is

MGB =
e2g

(4π)2mW

[

2− 8
ξm2

W

m2
H

f

(

4ξm2
W

m2
H

)]

(k1 · k2gµν − kµ2 k
ν
1 )ǫµ(k1)ǫν(k2) (9)
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The ξ-dependent term is cancelled by contributions from other diagrams. The first term in the brackets is responsible
for the first term in Eq. (8) of the complete result. This term, which survives in the limit β → 0, will be discussed in a
later section. The remaining diagrams in Fig. 2, together with the Goldstone boson loop diagrams, yield the standard
result given in Eq. (8).

4 Dimensional Regularization

Our calculations confirm the standard result for the amplitude for Higgs decay to two photons via a W boson loop
given in Eq. (8). The difference between the standard result and the result in Refs. [3, 4] is traced back to a certain
integral,

Iµν(n) =

∫

dnℓ
ℓ2gµν − 4ℓµℓν
(ℓ2 −M2 + iǫ)3

. (10)

Refs. [3, 4] shun dimensional regularization, and therefore set n = 4 throughout their calculation. They argue
that symmetric integration implies that the numerator of the above integral vanishes, and, therefore, conclude that
Iµν(4) = 0.

The flaw in this argument is that there is a cancellation between two integrals, each of which is ultraviolet divergent,
so a regulator is needed to make sense of the calculation. Dimensional regularization provides a regulator which respects
gauge invariance [6], so it is ideal for such a calculation. Evaluating the integral using dimensional regularization yields

Iµν(n) = − iπn/2

2
Γ
(

3− n

2

)

(

1

M2

)2−n/2

gµν (11)

which is finite and unambiguous for n = 4,

Iµν(4) = − iπ2

2
gµν (12)

Refs. [3, 4] state that the integral is defined only for n < 4, but Eq. (11) shows that it is defined in the neighborhood
of n = 4. There are poles at n = 6, 8, ..., but the integral is finite and unambiguous in the neighborhood of n = 4.

It is incorrect to set this integral to zero for n = 4 as is done in Refs. [3, 4]. This is the reason electromagnetic
gauge invariance is lost at intermediate steps in that calculation.

5 Decoupling

The standard electroweak theory has only one fundamental mass scale, the Higgs vacuum expectation value v ≈ 246
GeV (or, equivalently, GF = 1/(

√
2v2)). In addition, there are a variety of dimensionless couplings, such as the weak

gauge coupling g, Yukawa couplings y, and the Higgs self-interaction λ. The various particles acquire their mass via
their coupling to the Higgs vacuum expectation value: mW ∼ gv, mf ∼ yv, mH ∼

√
λv. An amplitude may vanish

if one of these dimensionless couplings is set to zero. This is sometimes called decoupling, although decoupling has
another, deeper meaning in quantum field theory, as we discuss below.

For example, consider the amplitude for the Higgs boson to decay to a pair of heavy fermions at tree level via the
coupling shown in Fig. 3. The amplitude for this process is proportional to ymf . Consider the limit of a Higgs boson

much heavier than the fermion, mf/mH → 0. This limit corresponds to y/
√
λ → 0, that is, the limit of vanishing

Yukawa coupling. The decay amplitude clearly vanishes in this limit. The decay of a Higgs to two photons via a heavy
fermion loop inherits this decoupling behavior from the tree-level process, as evidenced by the vanishing of Eq. (5) in
the limit β → 0.

In contrast, consider the amplitude for the Higgs boson to decay to a pair of W bosons via the coupling shown
in Fig. 3. Consider the limit of a Higgs boson much heavier than the W boson, mW /mH ∼ g/

√
λ → 0. This is the

limit of vanishing gauge coupling. One might expect the Higgs to decouple from the W bosons in this limit. However,
the polarization vector of a longitudinal (zero helicity) W boson in this limit is approximately ǫµ(p) ∼ pµ/mW , so
the amplitude for Higgs decay to a pair of longitudinal W bosons is proportional to gmW p1 · p2/m2

W ∼ m2
H/v. This

amplitude does not decouple. Hence the decay of a Higgs to two photons via a W loop also does not decouple, as
evidenced by the first term in brackets in Eq. (8).

The discussion above has nothing to do with the Appelquist-Carazzone decoupling theorem [9], which is deeper
than taking the limit of vanishing coupling. This theorem states that the effects of heavy particles on light particles is
contained in an unobservable renormalization of the light-particle couplings, plus observable effects that decrease like
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Figure 3: Feynman rules for the Higgs coupling to fermions and W bosons.

an inverse power of the heavy particle mass. The heavy particle does not have vanishing coupling to the light particles
as its mass is taken to infinity. Refs. [3, 4] misconstrue the Appelquist-Carazzone decoupling theorem.

6 Goldstone-Boson Equivalence Theorem

A nice check of the large Higgs mass limit of the W loop contribution to H → γγ is provided by the Goldstone-
boson equivalence theorem [10, 11, 12]. This theorem states that at high energies (s ≫ m2

W ) S-matrix amplitudes
involving external longitudinal components of W± and Z bosons are equivalent up to O(mW /

√
s) to the corresponding

amplitudes in the Higgs-Goldstone scalar theory with Goldstone bosons replacing W±
L and ZL. A nice feature of

replacing longitudinal gauge bosons with scalar Goldstone bosons is the ease of calculations.
Application of the Goldstone boson equivalence theorem to quantum loops was initiated in Ref. [13] where the

radiative corrections to H → W+W− and H → ZZ were computed in the large Higgs mass limit employing the
Higgs-Goldstone scalar theory in the Landau gauge. In that gauge, gauge boson-scalar mixing is avoided and the
Goldstone boson propagators have zero mass.

For H → γγ, relatively few Feynman rules are required in the Higgs-Goldstone boson scalar theory. They are given
in Fig. 4.

µ
γ

H

s−

s−

−i
gm2

H

2mW

µ

ν

2ie2gµν

k1

k2

s−

s−

s−

s−

−ie(p1 + p2)µ

p2

p1

i
p2

p

s

Figure 4: Feynman rules for Higgs and Goldstone bosons in Landau gauge.

Employing those Feynman rules and combining the amplitudes in Fig. 5, one finds

MGB = i
e2gm2

H

mW
ǫµ(k1)ǫν(k2)

∫

d4k

(2π)4
k2gµν − 4kµkν

k2(k2 + 2k · k1)(k2 − 2k · k2)
. (13)

Although the integral is finite, it contains canceling ultraviolet divergences. To avoid any ambiguity in the finite
part, one must be certain that electromagnetic gauge invariance is preserved. To do that requires a regulator, such as
dimensional regularization, which maintains the symmetry.
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Figure 5: Feynman diagrams for H → γγ from Goldstone boson loops.

To proceed further, we combine the propagators in Eq. (13) using Feynman parameters and obtain

MGB = ie2g
m2

H

mW
ǫµ(k1)ǫν(k2)

∫ 1

0

2ydy

∫ 1

0

dx

∫

d4ℓ

(2π)4
Nµν(ℓ)

(ℓ2 −∆)3
(14)

where

Nµν(ℓ) = ℓ2gµν − 4ℓµℓν − 2k1 · k2y2x(1 − x)gµν + 4kµ2 k
ν
1y

2x(1 − x) (15)

∆ = −m2
Hy2x(1 − x) (16)

At this point, if one applies 4 dimensional symmetric integration to the first two terms in Eq. (15), they appear to
exactly cancel and one is left with an amplitude that is proportional to 1

2k1 ·k2gµν −kν1k
µ
2 rather than k1 ·k2gµν −kν1k

µ
2

as required by electromagnetic gauge invariance. Clearly, the gµν term is problematic. One could merely accept the
correctness of the kν1k

µ
2 coefficient and adjust the gµν term accordingly. That would operationally work here, but it

would not in the unitary gauge. There, because of the high degree of divergence encountered, the coefficient of both
the gµν and kν1k

µ
2 terms are ambiguous without the use of dimensional regularization. Consider, for example, the

integral M1132 (and M3132) in Ref. [4], which can be written as

M1132 =
i2e2g

mW

∫

d4ℓ

(2π)4

∫ 1

0

dα1

∫ 1−α1

0

dα2
ℓ2gαβ − 4ℓαℓβ

[ℓ2 −m2
W + 2α1α2(k1 · k2)]3

× (k1αgλµ − k1λgαµ)(k2βg
λ
ν − kλ2 gβν) (17)

This integral contributes to both the gµν and kν1k
µ
2 terms, and it is ambiguous without the use of dimensional regu-

larization. This is one of the integrals that contributes to the amplitude in the limit β → 0.
If instead of using 4 dimensional symmetric integration in Eq. (15), we employ dimensional regularization, with

d4ℓ

(2π)4
→ dnℓ

(2π)n
(18)

and

4ℓµℓν → 4

n
ℓ2gµν , (19)

we find

MGB =
e2g

(4π)2mW
ǫµ(k1)ǫν(k2)(g

µνk1 · k2 − kµ2 k
ν
1 )h(n) (20)

h(n) =
4Γ2

(

n
2 − 1

)

Γ
(

3− n
2

)

Γ(n− 1)

(−m2
H

4π

)

n
2
−2

(21)

h(4) = 2 (22)

The amplitude is gauge invariant for all n and continuous at n = 4. In the n = 4 and large Higgs mass limit (β → 0),
it confirms the result in Eq. (8) and the non-decoupling of the W loop. It also confirms the result, given in Eq. (9), for
the contribution from Goldstone boson loops in Laudau gauge (Rξ gauge for ξ = 0), as well as a similar calculation in
Ref. [14]. Dimensional regularization played a crucial role in preserving electromagnetic gauge invariance and providing
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a unique Standard Model result. This is a specific example of the general comments on dimensional regularization
made in Section 4.

This calculation gives us yet another way to understand the non-decoupling of the W loop contribution to H → γγ
in the limit g → 0. Due to the Higgs coupling to Goldstone bosons shown in Fig. 4, the amplitude is proportional to
λv, which does not vanish in the limit g → 0.

7 Conclusions

We have calculated the W boson loop contribution to Higgs decay into two photons in the unitary and renormalizable
(Rξ) gauges of the Standard Model. Using dimensional regularization, we were able to preserve electromagnetic gauge
invariance throughout the calculations and confirm the classic results of Refs. [1, 2]. In so doing, our results can also
be viewed as a test of dimensional regularization, a technique that has been applied to many electroweak and QCD
calculations. Its success here provides a further validation of that important prescription.

Using the Goldstone boson equivalence theorem, we were able to provide an additional check of the large Higgs
mass limit of our calculation in a computationally simple manner. That approach illustrated how and why a naive
interpretation of decoupling fails and further demonstrates the utility of dimensional regularization in maintaining
electromagnetic gauge invariance.

Having confirmed the validity of Refs. [1, 2] and its unique Standard Model prediction for the Higgs to two photon
decay rate, we anxiously await discovery of the Higgs scalar particle and experimental test of its two photon branching
ratio.

While this work was being written up, a preprint by the authors of Ref. [2] appeared [15]. It also criticizes the
claims in Refs.[3, 4] and discusses the Goldstone boson equivalence theorem and non-decoupling. In another preprint
[16], a different gauge invariant regulator is used to arrive at the same gauge invariant result as ours.

After this work was submitted for publication, a preprint by F. Jegerlehner [17] was posted, which reaches con-
clusions in agreement with ours. In addition, we received a private communication by R. Jackiw, in which he gives a
general discussion of finite loop ambiguities in quantum field theories and the need to resolve them by physics input
or symmetry considerations [18]. As we have shown, for the H → γγ amplitude under consideration, the requirement
of electromagnetic gauge invariance resolves any ambiguity and leads to a unique finite result.

Acknowledgments
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A Unitary Gauge

In the unitary gauge, ghosts and Goldstone bosons are absent. There are two W loop diagrams for the decay, shown
in Fig. 1. Another diagram can be obtained by exchanging the two photons in the first diagram. Since it gives the
same amplitude, we simply include a factor of 2 in the following calculation.

The momenta of the particles are labeled in Fig. 1; k1 and k2 are the momenta of the photons, so

k21 = k22 = 0 , (23)

and
ǫµ(k1)k

µ
1 = ǫν(k2)k

ν
2 = 0 , (24)

since we are dealing with real photons. The four momentum of the Higgs particle is k1 + k2, so

2(k1 · k2) = m2
H (25)

where mH is the mass of the Higgs boson.
It is straightforward to write down the amplitude. After some algebra, the total amplitude is

iM =

∫

dnp

(2π)n
(iM1g

µν + iM2p
µpν + iM3p

µkν1 + iM4k
µ
2 p

ν + iM5k
µ
2 k

ν
1 ) ǫµ(k1)ǫν(k2) (26)
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where

iM1 =− 2e2g

m3
W

1

(p2 −m2
W )[(p− k1)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

×
{

2(p · k1)3 − 2(p · k1)(p · k2)2 + 2(p2 − 3m2
W )(p · k1)(p · k2)

−3(p2 −m2
W )(p · k1)2 + (p2 −m2

W )(p · k2)2 +
[

(p2 −m2
W )2 + 2(1− n)m4

W

]

(p · k1)
−(p2 −m2

W )2(p · k2) +m2
W

[(

(n− 1)m2
W +m2

H

)

(p2 −m2
W ) + 4m2

Wm2
H

]}

(27)

iM2 =
4e2g

mW

m2
H + 2(n− 1)m2

W

(p2 −m2
W )[(p− k1)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

(28)

iM3 =
e2g

m3
W

1

(p2 −m2
W )[(p− k1)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

×
[

(p2)2 − 3(p2 − 3m2
W )(p · k1)− (p2 + 7m2

W )(p · k2)− 5p2m2
W

+2(p · k1)(p · k2) + 2(p · k1)2 − 4(2n− 3)m4
W

]

(29)

iM4 =− e2g

m3
W

1

(p2 −m2
W )[(p− k1)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

×
[

(p2 −m2
W )(p2 − 4m2

W )− (3p2 − 17m2
W )(p · k1)− (p2 −m2

W )(p · k2)
+2(p · k1)(p · k2) + 2(p · k1)2

]

(30)

iM5 =
4e2g

mW

p2 + 3m2
W

(p2 −m2
W )[(p− k1)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

(31)

We rewrite M1, M3 and M4 as:

iM1 =
2e2g

m3
W

[

−2p · (k1 − k2) +m2
H

4(p2 −m2
W )

− m2
W

(p− k1)2 −m2
W

− 2p · (k1 − k2)−m2
H − 4m2

W

4 [(p− k1 − k2)2 −m2
W ]

−4(m2
H + 2m2

W )(p · k2)− 4(1− n)m4
W −m4

H

4(p2 −m2
W ) [(p− k1 − k2)2 −m2

W ]

− 4m2
Hm4

W

(p2 −m2
W ) [(p− k1)2 −m2

W ] [(p− k1 − k2)2 −m2
W ]

]

(32)

iM3 =
e2g

m3
W

[

1

2(p2 −m2
W )

+
1

2 [(p− k1 − k2)2 −m2
W ]

+
4m2

W

(p2 −m2
W ) [(p− k1)2 −m2

W ]

−
1
2m

2
H + 7m2

W

(p2 −m2
W ) [(p− k1 − k2)2 −m2

W ]
+

4m2
W

[

2(1− n)m2
W −m2

H

]

(p2 −m2
W ) [(p− k1)2 −m2

W ] [(p− k1 − k2)2 −m2
W ]

]

(33)

iM4 =
e2g

m3
W

[

− 1

2(p2 −m2
W )

− 1

2 [(p− k1 − k2)2 −m2
W ]

− 4m2
W

[(p− k1)2 −m2
W ] [(p− k1 − k2)2 −m2

W ]

+
1
2m

2
H + 7m2

W

(p2 −m2
W ) [(p− k1 − k2)2 −m2

W ]

]

(34)

The integralM1−M5 can be expanded using Passarino-Veltman integrals [19]. These integrals can further be reduced
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to the scalar integrals A0, B0 and C0. The results are

∫

dnp

(2π)n
M1g

µν =
e2g

(4π)2mW

[

4m2
W (1− 2m2

HC0(m
2
H , 0, 0,m2

W ,m2
W ,m2

W ))

−(m2
H + 6m2

W )B0(m
2
H ,m2

W ,m2
W )

]

gµν (35)
∫

dnp

(2π)n
M2p

µpν =
e2g

(4π)2mWm2
H

[

(m2
H + 6m2

W )
(

1 +B0(m
2
H ,m2

W ,m2
W )

+2m2
WC0(m

2
H , 0, 0,m2

W ,m2
W ,m2

W )
)

(m2
Hgµν − 2kµ2 k

ν
1 )− 4m2

Wm2
Hgµν

+2(m2
H + 6m2

W )
(

2B0(0,m
2
W ,m2

W )−B0(m
2
H ,m2

W ,m2
W )

)

kµ2 k
ν
1

]

(36)
∫

dnp

(2π)n
M3p

µkν1 =
e2g

(4π)24m3
Wm2

H

[

16m2
W (m2

H + 6m2
W )− 2(7m2

H + 48m2
W )A0(m

2
W )

+
(

96m4
W + 2m2

Wm2
H −m4

H

)

B0(m
2
H ,m2

W ,m2
W )

]

kµ2 k
ν
1 (37)

∫

dnp

(2π)n
M4k

ν
2p

ν =
e2g

(4π)24m3
W

[

16m2
W − 18A0(m

2
W ) + (m2

H + 14m2
W )B0(m

2
H ,m2

W ,m2
W )

]

kµ2 k
ν
1

(38)
∫

dnp

(2π)n
M5k

µ
2 k

ν
1 =

e2g

(4π)2mW

[

4B0(0,m
2
W ,m2

W ) + 16m2
WC0(m

2
H , 0, 0,m2

W ,m2
W ,m2

W )
]

kµ2 k
ν
1

(39)

Using B0(0, x, x) = A0(x)/x− 1, these add up to

M =
e2g

(4π)2
1

m2
HmW

[

m2
H + 6m2

W − 6m2
W (m2

H − 2m2
W )C0(m

2
H , 0, 0,m2

W ,m2
W ,m2

W )
]

×
(

m2
Hgµν − 2kµ2 k

ν
1

)

ǫµ(k1)ǫν(k2) (40)

The expression for the C0 function is known to be

C0(m
2
H , 0, 0,m2

W ,m2
W ,m2

W ) =
−2

m2
H

f

(

4m2
W

m2
H

)

(41)

where

f(β) =

{

arcsin2(β− 1

2 ) for β ≥ 1

− 1
4

[

ln 1+
√
1−β

1−
√
1−β

− iπ
]2

for β < 1
. (42)

The final result is

M =
e2g

(4π)2mW

[

2 + 3β + 3(2β − β2)f(β)
]

[(k1 · k2)gµν − kµ2 k
ν
1 ] ǫµ(k1)ǫν(k2) (43)

where

β =
4m2

W

m2
H

(44)

B Rξ Gauge

In the Rξ gauge, the number of diagrams increases, because Goldstone bosons and ghosts enter at one loop. We show
the diagrams in Fig. 2.

To simplify the calculation, we divide the W boson propagator into two parts

−i

q2 −m2
W

(

gµν − (1− ξ)
qµqν

q2 − ξm2
W

)

=
−i

q2 −m2
W

(

gµν − qµqν

m2
W

)

+
−i

q2 − ξm2
W

qµqν

m2
W

(45)

The first term on the right-hand side is a propagator in the unitary gauge. The second term has a q2 − ξm2
W in the

denominator, and thus can be combined with Goldstone boson and ghost propagators that appear in other diagrams,
to simplify the calculation.
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Using this method, the diagrams with W propagators are divided into several parts. For example, the diagram in
Fig. 2(a) has 8 pieces. We denote them by Mijk where i, j, k = 1, 2 according to which term on the right-hand side of
Eq. (45) the W -propagator takes.

Ma = M111 +M112 +M121 +M211 +M122 +M212 +M221 +M222 (46)

with

M111 =

∫

dnp

(2π)n
2V αβγδλρµν

gαγ − pαpγ

m2

W

p2 −m2
W

gλρ − (p−k1)λ(p−k1)ρ
m2

W

(p− k1)2 −m2
W

gδβ − (p−k1−k2)δ(p−k1−k2)β
m2

W

(p− k1 − k2)2 −m2
W

ǫµ(k1)ǫν(k2) (47)

M112 =

∫

dnp

(2π)n
2V αβγδλρµν

gαγ − pαpγ

m2

W

p2 −m2
W

gλρ − (p−k1)λ(p−k1)ρ
m2

W

(p− k1)2 −m2
W

(p−k1−k2)δ(p−k1−k2)β
m2

W

(p− k1 − k2)2 − ξm2
W

ǫµ(k1)ǫν(k2) (48)

M121 =

∫

dnp

(2π)n
2V αβγδλρµν

gαγ − pαpγ

m2

W

p2 −m2
W

(p−k1)λ(p−k1)ρ
m2

W

(p− k1)2 − ξm2
W

gδβ − (p−k1−k2)δ(p−k1−k2)β
m2

W

(p− k1 − k2)2 −m2
W

ǫµ(k1)ǫν(k2) (49)

M211 =

∫

dnp

(2π)n
2V αβγδλρµν

pαpγ

m2

W

p2 − ξm2
W

gλρ − (p−k1)λ(p−k1)ρ
m2

W

(p− k1)2 −m2
W

gδβ − (p−k1−k2)δ(p−k1−k2)β
m2

W

(p− k1 − k2)2 −m2
W

ǫµ(k1)ǫν(k2) (50)

· · ·

M222 =

∫

dnp

(2π)n
2V αβγδλρµν

pαpγ

m2

W

p2 − ξm2
W

(p−k1)λ(p−k1)ρ
m2

W

(p− k1)2 − ξm2
W

(p−k1−k2)δ(p−k1−k2)β
m2

W

(p− k1 − k2)2 − ξm2
W

ǫµ(k1)ǫν(k2) (51)

where

V αβγδλρµν = −ie2gmW gαβ
[

(2p− k1)
µgγλ − (p+ k1)

λgµγ − (p− 2k1)
γgµλ

]

×
[

−(p− k1 + k2)
δgνρ − (p− k1 − 2k2)

ρgνδ + (2p− 2k1 − k2)
νgρδ

]

(52)

denotes the contribution from the vertices. A factor of 2 is included to take into account the diagram with the two
photons exchanged. This diagram can be obtained by k1 ↔ k2 and µ ↔ ν. Since we are only interested in terms that
are proportional to either gµν or kµ2 k

ν
1 , the contribution from this diagram is the same.

There are also diagrams with both W and Goldstone boson propagators. We use the same notation, but with the
subscript 0 to denote a Goldstone boson propagator:

Mc = M110 +M120 +M210 +M220 (53)

Me = M100 +M200 (54)

Mf = M101 +M102 +M201 +M202 (55)

Mg = M010 +M020 (56)

Mh = M000 (57)

For Mc, we have

M110 =

∫

dnp

(2π)n
(−4)V ′αγλρµν

gαγ − pαpγ

m2

W

p2 −m2
W

gλρ − (p−k1)λ(p−k1)ρ
m2

W

(p− k1)2 −m2
W

1

(p− k1 − k2)2 − ξm2
W

ǫµ(k1)ǫν(k2) (58)

M120 =

∫

dnp

(2π)n
(−4)V ′αγλρµν

gαγ − pαpγ

m2

W

p2 −m2
W

(p−k1)λ(p−k1)ρ
m2

W

(p− k1)2 − ξm2
W

1

(p− k1 − k2)2 − ξm2
W

ǫµ(k1)ǫν(k2) (59)

M210 =

∫

dnp

(2π)n
(−4)V ′αγλρµν

pαpγ

m2

W

p2 − ξm2
W

gλρ − (p−k1)λ(p−k1)ρ
m2

W

(p− k1)2 −m2
W

1

(p− k1 − k2)2 − ξm2
W

ǫµ(k1)ǫν(k2) (60)

M220 =

∫

dnp

(2π)n
(−4)V ′αγλρµν

pαpγ

m2

W

p2 − ξm2
W

(p−k1)λ(p−k1)ρ
m2

W

(p− k1)2 − ξm2
W

1

(p− k1 − k2)2 − ξm2
W

ǫµ(k1)ǫν(k2) (61)

and

V ′αγλρµν = i
1

2
e2gmW (p− 2k1 − 2k2)

α
[

(2p− k1)
µgγλ − (p+ k1)

λgµγ − (p− 2k1)
γgµλ

]

gνρ (62)
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Similarly for Me,f,g,h. These terms all include a factor of 2 from exchanging the external photons. Diagrams (c) and
(e) have another factor of 2, due to contributions from diagrams with opposite charge in the loop.

Diagrams in Fig. 3 (b, d, i) only have two propagators. We denote them by

Mb = M11 +M12 +M21 +M22 (63)

Md = M10 +M20 (64)

Mi = M00 (65)

The notation is similar to before. For example,

M11 =

∫

dnp

(2π)n
ie2gmW gαβSµν,γδ

gαγ − pαpγ

m2

W

p2 −m2
W

gδβ − (p−k1−k2)δ(p−k1−k2)β
m2

W

(p− k1 − k2)2 −m2
W

ǫµ(k1)ǫν(k2) (66)

M12 =

∫

dnp

(2π)n
ie2gmW gαβSµν,γδ

gαγ − pαpγ

m2

W

p2 −m2
W

(p−k1−k2)δ(p−k1−k2)β
m2

W

(p− k1 − k2)2 − ξm2
W

ǫµ(k1)ǫν(k2) (67)

M21 =

∫

dnp

(2π)n
ie2gmW gαβSµν,γδ

pαpγ

m2

W

p2 − ξm2
W

gδβ − (p−k1−k2)δ(p−k1−k2)β
m2

W

(p− k1 − k2)2 −m2
W

ǫµ(k1)ǫν(k2) (68)

M22 =

∫

dnp

(2π)n
ie2gmW gαβSµν,γδ

pαpγ

m2

W

p2 − ξm2
W

(p−k1−k2)δ(p−k1−k2)β
m2

W

(p− k1 − k2)2 − ξm2
W

ǫµ(k1)ǫν(k2) (69)

and Sµν,γδ = 2gµνgγδ − gµγgνδ − gµδgνγ . Similarly for Md and Mi.
Lastly, there is a ghost loop diagram:

Mj =

∫

dnp

(2π)n
2ie2gmW ξ

(p− k1)
µ(p− k1 − k2)

ν

(p2 − ξm2
W )[(p− k1)2 − ξm2

W ][(p− k1 − k2)2 − ξm2
W ]

ǫµ(k1)ǫν(k2) (70)

Mj has a factor of −1 from the ghost loop. Diagrams (d) and (j) contain a factor of 4 from exchanging the external
photons and from charge conjugation.

Some of these terms vanish:
M122 = M221 = M222 = M220 = 0 (71)

Now we can start to combine these terms. First of all, the sum of M111 and M11 should reproduce the full result
in Eq. (40), because the first term in the W propagator is the same as a propagator in the unitary gauge. Since the
result must be ξ-independent, we expect all the other terms cancel.

In the remaining terms, certain combinations will give simple results. For example, the contribution from pure
Goldstone boson loops is gauge invariant:

M000 +M00 = Mh +Mi

=− i
e2gm2

H

mW

∫

dnp

(2π)n

[

4pµ(p− k1)
ν

(p2 − ξm2
W )[(p− k1)2 − ξm2

W ][(p− k1 − k2)2 − ξm2
W ]

− gµν

(p2 − ξm2
W )[(p− k1 − k2)2 − ξm2

W ]

]

ǫµ(k1)ǫν(k2)

=
2e2g

(4π)2mW

[

1 + 2ξm2
WC0(m

2
H , 0, 0, ξm2

W , ξm2
W , ξm2

W )
]

[(k1 · k2)gµν − kµ2 k
ν
1 ]ǫµ(k1)ǫν(k2) (72)

All the remaining terms with no 1 in the subscript should be combined. We find

M20 +M200 +M202 +M020 +Mj

=i
e2g

mW

∫

dnp

(2π)n

[

4m2
Hpµ(p− k1)

ν

(p2 − ξm2
W )[(p− k1)2 − ξm2

W ][(p− k1 − k2)2 − ξm2
W ]

+
3pµ(p− k1)

ν

[(p− k1)2 − ξm2
W ][(p− k1 − k2)2 − ξm2

W ]
− 3pµ(p− k1)

ν

(p2 − ξm2
W )[(p− k1)2 − ξm2

W ]

]

ǫµ(k1)ǫν(k2) (73)
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The last two terms cancel each other under p1 ↔ p2, µ ↔ ν and momentum shifting. The first term then gives

M20 +M200 +M202 +M020 +Mj

=− e2g

(4π)2mW

{

2
[

1 + 2ξm2
WC0(m

2
H , 0, 0, ξm2

W , ξm2
W , ξm2

W )
]

[(k1 · k2)gµν − kµ2 k
ν
1 ]

+m2
HB0(m

2
H , ξm2

W , ξm2
W )gµν

}

ǫµ(k1)ǫν(k2) (74)

The first term on the right-hand side cancels the contribution from M000 and M00. The second term with a B0

function is cancelled by M22 +M212 +M210 +M010. In fact,

M22 +M212 +M210 +M010

=− i
e2g

m3
W

∫

dnp

(2π)n

[

1

2
(pµkν1 − kµ2 p

ν)

(

1

p2 − ξm2
W

+
1

(p− k1 − k2)2 − ξm2
W

)

− (pµkν1 − pµpν)
m2

W

(p− k1)−m2
W

(

1

p2 − ξm2
W

− 1

(p− k1 − k2)2 − ξm2
W

)

+

(

ξm2
W − 1

2m
2
H

)

(pµkν1 − kµ2 p
ν)

(p2 − ξm2
W )[(p− k1 − k2)2 − ξm2

W ]
− p · (k1 − k2)g

µν

(

1

p2 − ξm2
W

+
1

(p− k1 − k2)2 − ξm2
W

)

−
(

(1− ξ)m2
W +

1

2
m2

H

)

gµν
(

1

p2 − ξm2
W

− 1

(p− k1 − k2)2 − ξm2
W

)

− m4
W gµν

(p− k1)−m2
W

(

1

p2 − ξm2
W

− 1

(p− k1 − k2)2 − ξm2
W

)

+
m2

H

(

(1− ξ)m2
W + 1

2m
2
H

)

+ (4ξm2
W − 2m2

H)p · k2
(p2 − ξm2

W )[(p− k1 − k2)2 − ξm2
W ]

gµν

]

ǫµ(k1)ǫν(k2) (75)

It’s not hard to see that under k1 ↔ k2, µ ↔ ν and momentum shifting, all terms except the last term cancel out.
We have

M22 +M212 +M210 +M010 =
e2g

(4π)2mW
m2

HB0(m
2
H , ξm2

W , ξm2
W )gµνǫµ(k1)ǫν(k2) (76)

All the remaining M′s should cancel. We find

M12 +M21 +M112 +M211 +M110 +M10 = −(M121 +M101) (77)

and
M120 +M100 = −2M102 = −2M201 (78)

These all add up to zero, as expected. Thus we see that all terms except M11 +M111 are cancelled. We then obtain
the same result as in Eq. (40).
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