This is the accepted manuscript made available via CHORUS. The article has been published as:

Search for new phenomena in events with two Z bosons and missing transverse momentum in pp[over ${ }^{-}$] collisions at sqrt[s]=1.96 TeV
T. Aaltonen et al. (CDF Collaboration)

Phys. Rev. D 85, 011104 - Published 26 January 2012
DOI: 10.1103/PhysRevD.85.011104

Search for new phenomena in events with two Z bosons and missing transverse momentum in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

T. Aaltonen, ${ }^{22}$ B. Álvarez González ${ }^{z},{ }^{10}$ S. Amerio, ${ }^{41}$ D. Amidei, ${ }^{33}$ A. Anastassov ${ }^{x},{ }^{16}$ A. Annovi, ${ }^{18}$ J. Antos, ${ }^{13}$ G. Apollinari,,16 J.A. Appel, ${ }^{16}$ T. Arisawa, ${ }^{55}$ A. Artikov, ${ }^{14}$ J. Asaadi, ${ }^{50}$ W. Ashmanskas, ${ }^{16}$ B. Auerbach, ${ }^{58}$ A. Aurisano,,${ }^{50}$ F. Azfar, ${ }^{40}$ W. Badgett, ${ }^{16}$ T. Bae, ${ }^{26}$ A. Barbaro-Galtieri, ${ }^{27}$ V.E. Barnes, ${ }^{45}$ B.A. Barnett,,${ }^{24}$ P. Barria ${ }^{h h},{ }^{43}$ P. Bartos, ${ }^{13}$ M. Bauce ${ }^{f f}$, ${ }^{41}$ F. Bedeschi, ${ }^{43}$ S. Behari, ${ }^{24}$ G. Bellettini ${ }^{g g},{ }^{43}$ J. Bellinger, ${ }^{57}$
D. Benjamin, ${ }^{15}$ A. Beretvas, ${ }^{16}$ A. Bhatti, ${ }^{47}$ D. Bisello ${ }^{\text {ff }},{ }^{41}$ I. Bizjak, ${ }^{29}$ K.R. Bland, ${ }^{5}$ B. Blumenfeld, ${ }^{24}$ A. Bocci, ${ }^{15}$ A. Bodek, ${ }^{46}$ D. Bortoletto, ${ }^{45}$ J. Boudreau, ${ }^{44}$ A. Boveia, ${ }^{12}$ L. Brigliadoriee, ${ }^{6}$ C. Bromberg, ${ }^{34}$ E. Brucken, ${ }^{22}$ J. Budagov, ${ }^{14}$ H.S. Budd,,$^{46} \mathrm{~K}$. Burkett,,${ }^{16}$ G. Busetto ${ }^{\text {ff, }}{ }^{41}$ P. Bussey, ${ }^{20}$ A. Buzatu, ${ }^{32}$ A. Calamba, ${ }^{11}$ C. Calancha, ${ }^{30}$ S. Camarda, ${ }^{4}$ M. Campanelli, ${ }^{29}$ M. Campbell, ${ }^{33}$ F. Canelli $11,{ }^{16}$ B. Carls,,${ }^{23}$ D. Carlsmith, ${ }^{57}$ R. Carosi, ${ }^{43}$ S. Carrillo ${ }^{m},{ }^{17}$ S. Carron, ${ }^{16}$ B. Casal ${ }^{k},{ }^{10}$ M. Casarsa, ${ }^{51}$ A. Castroee ${ }^{6}$ P. Catastini, ${ }^{21}$ D. Cauz, ${ }^{51}$ V. Cavaliere, ${ }^{23}$ M. Cavalli-Sforza, ${ }^{4}$ A. Cerri ${ }^{f},{ }^{27}$ L. Cerritos ${ }^{s},{ }^{29}$ Y.C. Chen, ${ }^{1}$ M. Chertok, ${ }^{7}$ G. Chiarelli, ${ }^{43}$ G. Chlachidze, ${ }^{16}$ F. Chlebana, ${ }^{16}$ K. Cho, ${ }^{26}$ D. Chokheli, ${ }^{14}$ W.H. Chung, ${ }^{57}$ Y.S. Chung, ${ }^{46}$ M.A. Ciocci ${ }^{h h},{ }^{43}$ A. Clark, ${ }^{19}$ C. Clarke, ${ }^{56}$ G. Compostella ${ }^{f f},{ }^{41}$ M.E. Convery, ${ }^{16}$ J. Conway, ${ }^{7}$ M.Corbo, ${ }^{16}$ M. Cordelli, ${ }^{18}$ C.A. Cox, ${ }^{7}$ D.J. Cox, ${ }^{7}$ F. Crescioli ${ }^{g g},{ }^{43}$ J. Cuevas ${ }^{z},^{10}$ R. Culbertson, ${ }^{16}$ D. Dagenhart, ${ }^{16}$ N. d'Ascenzow, ${ }^{16}$ M. Datta, ${ }^{16}$ P. de Barbaro, ${ }^{46}$ M. Dell'Orso ${ }^{g g},{ }^{43}$ L. Demortier, ${ }^{47}$ M. Deninno, ${ }^{6}$ F. Devoto, ${ }^{22}$ M. d'Errico ${ }^{f f},{ }^{41}$ A. Di Canto ${ }^{g g},{ }^{43}$ B. Di Ruzza, ${ }^{16}$ J.R. Dittmann, ${ }^{5}$ M. D'Onofrio, ${ }^{28}$ S. Donati ${ }^{g g},{ }^{43}$ P. Dong, ${ }^{16}$ M. Dorigo, ${ }^{51}$ T. Dorigo, ${ }^{41}$ K. Ebina, ${ }^{55}$ A. Elagin, ${ }^{50}$ A. Eppig, ${ }^{33}$ R. Erbacher, ${ }^{7}$ S. Errede, ${ }^{23}$ N. Ershaidat ${ }^{d d},{ }^{16}$ R. Eusebi, ${ }^{50}$ S. Farrington, ${ }^{40}$ M. Feindt,,${ }^{25}$ J.P. Fernandez, ${ }^{30}$
R. Field, ${ }^{17}$ G. Flanagan ${ }^{u},{ }^{16}$ R. Forrest, ${ }^{7}$ M.J. Frank, ${ }^{5}$ M. Franklin, ${ }^{21}$ J.C. Freeman, ${ }^{16}$ Y. Funakoshi, ${ }^{55}$ I. Furic, ${ }^{17}$ M. Gallinaro, ${ }^{47}$ J.E. Garcia, ${ }^{19}$ A.F. Garfinkel,,${ }^{45}$ P. Garosi ${ }^{\text {hh }},{ }^{43}$ H. Gerberich, ${ }^{23}$ E. Gerchtein, ${ }^{16}$ S. Giagu, ${ }^{48}$
V. Giakoumopoulou, ${ }^{3}$ P. Giannetti, ${ }^{43}$ K. Gibson, ${ }^{44}$ C.M. Ginsburg, ${ }^{16}$ N. Giokaris, ${ }^{3}$ P. Giromini, ${ }^{18}$ G. Giurgiu, ${ }^{24}$ V. Glagolev, ${ }^{14}$ D. Glenzinski, ${ }^{16}$ M. Gold, ${ }^{36}$ D. Goldin,,${ }^{50}$ N. Goldschmidt, ${ }^{17}$ A. Golossanov, ${ }^{16}$ G. Gomez,,${ }^{10}$ G. Gomez-Ceballos, ${ }^{31}$ M. Goncharov, ${ }^{31}$ O. González, ${ }^{30}$ I. Gorelov, ${ }^{36}$ A.T. Goshaw, ${ }^{15}$ K. Goulianos, ${ }^{47}$ S. Grinstein, ${ }^{4}$
C. Grosso-Pilcher, ${ }^{12}$ R.C. Group ${ }^{53},{ }^{16}$ J. Guimaraes da Costa, ${ }^{21}$ S.R. Hahn, ${ }^{16}$ E. Halkiadakis, ${ }^{49}$ A. Hamaguchi, ${ }^{39}$ J.Y. Han,,46 F. Happacher, ${ }^{18}$ K. Hara, ${ }^{52}$ D. Hare, ${ }^{49}$ M. Hare,,${ }^{53}$ R.F. Harr, ${ }^{56}$ K. Hatakeyama, ${ }^{5}$ C. Hays, ${ }^{40}$ M. Heck, ${ }^{25}$ J. Heinrich,,42 M. Herndon, ${ }^{57}$ S. Hewamanage,,${ }^{5}$ A. Hocker, ${ }^{16}$ W. Hopkins ${ }^{g}{ }^{16}$ D. Horn, ${ }^{25}$ S. Hou, ${ }^{1}$ R.E. Hughes, ${ }^{37}$ M. Hurwitz, ${ }^{12}$ U. Husemann, ${ }^{58}$ N. Hussain, ${ }^{32}$ M. Hussein, ${ }^{34}$ J. Huston, ${ }^{34}$ G. Introzzi, ${ }^{43}$ M. Iori ${ }^{j 5},{ }^{48}$ A. Ivanov ${ }^{p},{ }^{7}$ E. James, ${ }^{16}$ D. Jang, ${ }^{11}$ B. Jayatilaka, ${ }^{15}$ E.J. Jeon, ${ }^{26}$ S. Jindariani, ${ }^{16}$ M. Jones, ${ }^{45}$ K.K. Joo, ${ }^{26}$ S.Y. Jun, ${ }^{11}$ T.R. Junk, ${ }^{16}$ T. Kamon ${ }^{25},{ }^{50}$ P.E. Karchin, ${ }^{56}$ A. Kasmi, ${ }^{5}$ Y. Kato ${ }^{o}{ }^{39}$ W. Ketchum, ${ }^{12}$ J. Keung, ${ }^{42}$ V. Khotilovich, ${ }^{50}$ B. Kilminster, ${ }^{16}$ D.H. Kim, ${ }^{26}$ H.S. Kim, ${ }^{26}$ J.E. Kim, ${ }^{26}$ M.J. Kim, ${ }^{18}$ S.B. Kim, ${ }^{26}$ S.H. Kim, ${ }^{52}$ Y.K. Kim, ${ }^{12}$ Y.J. Kim, ${ }^{26}$ N. Kimura, ${ }^{55}$ M. Kirby, ${ }^{16}$ S. Klimenko, ${ }^{17}$ K. Knoepfel, ${ }^{16}$ K. Kondo ${ }^{*},{ }^{55}$ D.J. Kong, ${ }^{26}$ J. Konigsberg, ${ }^{17}$ A.V. Kotwal, ${ }^{15}$ M. Kreps, ${ }^{25}$ J. Kroll, ${ }^{42}$ D. Krop, ${ }^{12}$ M. Kruse, ${ }^{15}$ V. Krutelyov ${ }^{c},{ }^{50}$ T. Kuhr, ${ }^{25}$ M. Kurata, ${ }^{52}$ S. Kwang, ${ }^{12}$ A.T. Laasanen,,45 S. Lami, ${ }^{43}$ S. Lammel, ${ }^{16}$ M. Lancaster, ${ }^{29}$ R.L. Lander, ${ }^{7}$ K. Lannon ${ }^{y},{ }^{37}$ A. Lath, ${ }^{49}$ G. Latino ${ }^{h h},{ }^{43}$ T. LeCompte, ${ }^{2}$ E. Lee, ${ }^{50}$ H.S. Lee ${ }^{q},{ }^{12}$ J.S. Lee, ${ }^{26}$ S.W. Lee ${ }^{b b},{ }^{50}$ S. Leo ${ }^{g g},{ }^{43}$ S. Leone, ${ }^{43}$ J.D. Lewis, ${ }^{16}$ A. Limosani ${ }^{t},{ }^{15}$ C.-J. Lin, ${ }^{27}$ M. Lindgren, ${ }^{16}$ E. Lipeles, ${ }^{42}$ A. Lister, ${ }^{19}$ D.O. Litvintsev, ${ }^{16}$ C. Liu, ${ }^{44}$ H. Liu, ${ }^{54}$ Q. Liu, ${ }^{45}$ T. Liu, ${ }^{16}$ S. Lockwitz, ${ }^{58}$ A. Loginov, ${ }^{58}$ D. Lucchesi ${ }^{f f}$, ${ }^{41}$ J. Lueck, ${ }^{25}$ P. Lujan, ${ }^{27}$ P. Lukens, ${ }^{16}$ G. Lungu, ${ }^{47}$ J. Lys,,${ }^{27}$ R. Lysak ${ }^{e},{ }^{13}$ R. Madrak, ${ }^{16}$ K. Maeshima, ${ }^{16}$ P. Maestro ${ }^{h h},{ }^{43}$ S. Malik, ${ }^{47}$ G. Manca ${ }^{a},{ }^{28}$ A. Manousakis-Katsikakis, ${ }^{3}$ F. Margaroli,,${ }^{48}$ C. Marino, ${ }^{25}$ M. Martínez, ${ }^{4}$ P. Mastrandrea, ${ }^{48}$ K. Matera, ${ }^{23}$ M.E. Mattson, ${ }^{56}$ A. Mazzacane, ${ }^{16}$ P. Mazzanti, ${ }^{6}$ K.S. McFarland,,${ }^{46}$ P. McIntyre, ${ }^{50}$ R. McNulty ${ }^{j},{ }^{28}$ A. Mehta, ${ }^{28}$ P. Mehtala, ${ }^{22}$ C. Mesropian, ${ }^{47}$ T. Miao, ${ }^{16}$ D. Mietlicki, ${ }^{33}$ A. Mitra, ${ }^{1}$ H. Miyake, ${ }^{52}$ S. Moed,,${ }^{16}$ N. Moggi, ${ }^{6}$ M.N. Mondragon ${ }^{m},{ }^{16}$ C.S. Moon, ${ }^{26}$ R. Moore, ${ }^{16}$ M.J. Morello ${ }^{i i}$, ${ }^{43}$ J. Morlock, ${ }^{25}$ P. Movilla Fernandez, ${ }^{16}$ A. Mukherjee, ${ }^{16}$ Th. Muller,,${ }^{25}$ P. Murat, ${ }^{16}$ M. Mussiniee, ${ }^{6}$ J. Nachtman ${ }^{n},{ }^{16}$ Y. Nagai, ${ }^{52}$ J. Naganoma, ${ }^{55}$ I. Nakano, ${ }^{38}$ A. Napier, ${ }^{53}$ J. Nett, ${ }^{50}$ C. Neu, ${ }^{54}$ M.S. Neubauer, ${ }^{23}$ J. Nielsen ${ }^{d},{ }^{27}$ L. Nodulman, ${ }^{2}$ S.Y. Noh, ${ }^{26}$ O. Norniella, ${ }^{23}$ L. Oakes, ${ }^{40}$ S.H. Oh, ${ }^{15}$ Y.D. Oh, ${ }^{26}$ I. Oksuzian, ${ }^{54}$ T. Okusawa, ${ }^{39}$ R. Orava, ${ }^{22}$ L. Ortolan, ${ }^{4}$ S. Pagan Griso ${ }^{f f}$, ${ }^{41}$ C. Pagliarone, ${ }^{51}$ E. Palencia ${ }^{f},{ }^{10}$ V. Papadimitriou, ${ }^{16}$ A.A. Paramonov, ${ }^{2}$ J. Patrick, ${ }^{16}$ G. Pauletta ${ }^{k k},{ }^{51}$ M. Paulini, ${ }^{11}$ C. Paus, ${ }^{31}$ D.E. Pellett, ${ }^{7}$ A. Penzo, ${ }^{51}$ T.J. Phillips, ${ }^{15}$ G. Piacentino, ${ }^{43}$ E. Pianori, ${ }^{42}$ J. Pilot, ${ }^{37}$ K. Pitts, ${ }^{23}$ C. Plager, ${ }^{9}$ L. Pondrom, ${ }^{57}$ S. Poprocki ${ }^{g},{ }^{16}$ K. Potamianos, ${ }^{45}$ F. Prokoshin ${ }^{c c},{ }^{14}$ A. Pranko, ${ }^{27}$ F. Ptohos ${ }^{h},{ }^{18}$ G. Punzi ${ }^{g g}$, ${ }^{43}$ A. Rahaman, ${ }^{44}$ V. Ramakrishnan, ${ }^{57}$ N. Ranjan, ${ }^{45}$ I. Redondo, ${ }^{30}$ P. Renton, ${ }^{40}$ M. Rescigno, ${ }^{48}$ T. Riddick, ${ }^{29}$ F. Rimondiee, ${ }^{6}$ L. Ristori ${ }^{42},{ }^{16}$ A. Robson, ${ }^{20}$ T. Rodrigo, ${ }^{10}$ T. Rodriguez, ${ }^{42}$ E. Rogers, ${ }^{23}$ S. Rolli ${ }^{i},{ }^{53}$ R. Roser, ${ }^{16}$ F. Ruffini ${ }^{h h},{ }^{43}$ A. Ruiz, ${ }^{10}$ J. Russ,,${ }^{11}$ V. Rusu, ${ }^{16}$ A. Safonov,,${ }^{50}$ W.K. Sakumoto, ${ }^{46}$ Y. Sakurai, ${ }^{55}$ L. Santi ${ }^{k k},{ }^{51}$ K. Sato, ${ }^{52}$ V. Saveliev ${ }^{w},{ }^{16}$ A. Savoy-Navarro ${ }^{\text {aa }},{ }^{16}$ P. Schlabach, ${ }^{16}$ A. Schmidt, ${ }^{25}$ E.E. Schmidt,,${ }^{16}$ T. Schwarz,,${ }^{16}$ L. Scodellaro, ${ }^{10}$ A. Scribano ${ }^{h h},{ }^{43}$ F. Scuri,,43 S. Seidel, ${ }^{36}$ Y. Seiya, ${ }^{39}$ A. Semenov, ${ }^{14}$ F. Sforza ${ }^{h h},{ }^{43}$ S.Z. Shalhout, ${ }^{7}$ T. Shears, ${ }^{28}$
P.F. Shepard, ${ }^{44}$ M. Shimojima ${ }^{v},{ }^{52}$ M. Shochet, ${ }^{12}$ I. Shreyber-Tecker, ${ }^{35}$ A. Simonenko, ${ }^{14}$ P. Sinervo, ${ }^{32}$ K. Sliwa, ${ }^{53}$ J.R. Smith, ${ }^{7}$ F.D. Snider, ${ }^{16}$ A. Soha, ${ }^{16}$ V. Sorin, ${ }^{4}$ H. Song, ${ }^{44}$ P. Squillacioti ${ }^{h h},{ }^{43}$ M. Stancari, ${ }^{16}$ R. St. Denis, ${ }^{20}$ B. Stelzer, ${ }^{32}$ O. Stelzer-Chilton, ${ }^{32}$ D. Stentz ${ }^{x},{ }^{16}$ J. Strologas, ${ }^{36}$ G.L. Strycker, ${ }^{33}$ Y. Sudo, ${ }^{52}$ A. Sukhanov, ${ }^{16}$ I. Suslov, ${ }^{14}$ K. Takemasa, ${ }^{52}$ Y. Takeuchi, ${ }^{52}$ J. Tang, ${ }^{12}$ M. Tecchio, ${ }^{33}$ P.K. Teng, ${ }^{1}$ J. Thom ${ }^{g},{ }^{16}$ J. Thome, ${ }^{11}$ G.A. Thompson, ${ }^{23}$ E. Thomson, ${ }^{42}$ D. Toback,,${ }^{50}$ S. Tokar, ${ }^{13}$ K. Tollefson, ${ }^{34}$ T. Tomura, ${ }^{52}$ D. Tonelli, ${ }^{16}$ S. Torre, ${ }^{18}$ D. Torretta, ${ }^{16}$ P. Totaro, ${ }^{41}$ M. Trovato ${ }^{i i},{ }^{43}$ F. Ukegawa, ${ }^{52}$ S. Uozumi, ${ }^{26}$ A. Varganov, ${ }^{33}$ F. Vázquez ${ }^{m},{ }^{17}$ J. Vasquez, ${ }^{8}$ G. Velev, ${ }^{16}$ C. Vellidis, ${ }^{16}$ M. Vidal, ${ }^{45}$ I. Vila, ${ }^{10}$ R. Vilar, ${ }^{10}$ J. Vizán, ${ }^{10}$ M. Vogel, ${ }^{36}$ G. Volpi, ${ }^{18}$ P. Wagner, ${ }^{42}$ R.L. Wagner, ${ }^{16}$ T. Wakisaka, ${ }^{39}$ R. Wallny, ${ }^{9}$ S.M. Wang, ${ }^{1}$ A. Warburton, ${ }^{32}$ D. Waters, ${ }^{29}$ W.C. Wester III, ${ }^{16}$ D. Whiteson ${ }^{b}$, ${ }^{42}$ A.B. Wicklund, ${ }^{2}$ E. Wicklund, ${ }^{16}$ S. Wilbur, ${ }^{12}$ F. Wick, ${ }^{25}$ H.H. Williams, ${ }^{42}$ J.S. Wilson, ${ }^{37}$ P. Wilson, ${ }^{16}$ B.L. Winer, ${ }^{37} \mathrm{P}$. Wittich ${ }^{g},{ }^{16} \mathrm{~S}$. Wolbers, ${ }^{16} \mathrm{H}$. Wolfe, ${ }^{37} \mathrm{~T}$. Wright, ${ }^{33} \mathrm{X}$. Wu, ${ }^{19} \mathrm{Z}$. Wu, ${ }^{5}$ K. Yamamoto, ${ }^{39}$ D. Yamato, ${ }^{39}$ T. Yang, ${ }^{16}$ U.K. Yang ${ }^{r},{ }^{12}$ Y.C. Yang, ${ }^{26}$ W.-M. Yao, ${ }^{27}$ G.P. Yeh, ${ }^{16}$ K. Yi ${ }^{n},{ }^{16}$ J. Yoh, ${ }^{16}$ K. Yorita, ${ }^{55}$ T. Yoshida ${ }^{l},{ }^{39}$ G.B. Yu, ${ }^{15}$ I. Yu, ${ }^{26}$ S.S. Yu, ${ }^{16}$ J.C. Yun, ${ }^{16}$ A. Zanetti, ${ }^{51}$ Y. Zeng, ${ }^{15}$ C. Zhou, ${ }^{15}$ and S. Zucchelliee ${ }^{e}$ (CDF Collaboration ${ }^{\dagger}$)
${ }^{1}$ Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
${ }^{2}$ Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{3}$ University of Athens, 15771 Athens, Greece
${ }^{4}$ Institut de Fisica d'Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
${ }^{5}$ Baylor University, Waco, Texas 76798, USA
${ }^{6}$ Istituto Nazionale di Fisica Nucleare Bologna, ee University of Bologna, I-40127 Bologna, Italy
${ }^{7}$ University of California, Davis, Davis, California 95616, USA
${ }^{8}$ University of California, Irvine, California 92627, USA
${ }^{9}$ University of California, Los Angeles, Los Angeles, California 90024, USA
${ }^{10}$ Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
${ }^{11}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
${ }^{12}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
${ }^{13}$ Comenius University, 84248 Bratislava, Slovakia; Institute of Experimental Physics, 04001 Kosice, Slovakia
${ }^{14}$ Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
${ }^{15}$ Duke University, Durham, North Carolina 27708, USA
${ }^{16}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
${ }^{17}$ University of Florida, Gainesville, Florida 32611, USA
${ }^{18}$ Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
${ }^{19}$ University of Geneva, CH-1211 Geneva 4, Switzerland
${ }^{20}$ Glasgow University, Glasgow G12 8QQ, United Kingdom
${ }^{21}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{22}$ Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland ${ }^{23}$ University of Illinois, Urbana, Illinois 61801, USA
${ }^{24}$ The Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{25}$ Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
${ }^{26}$ Center for High Energy Physics: Kyungpook National University,
Daegu 702-701, Korea; Seoul National University, Seoul 151-742,
Korea; Sungkyunkwan University, Suwon 440-746,
Korea; Korea Institute of Science and Technology Information,
Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea
${ }^{27}$ Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{28}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{29}$ University College London, London WC1E 6BT, United Kingdom
${ }^{30}$ Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
${ }^{31}$ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{32}$ Institute of Particle Physics: McGill University, Montréal, Québec,
Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia,
Canada V5A 1S6; University of Toronto, Toronto, Ontario,
Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2 A3
${ }^{33}$ University of Michigan, Ann Arbor, Michigan 48109, USA
${ }^{34}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{35}$ Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
${ }^{36}$ University of New Mexico, Albuquerque, New Mexico 87131, USA
${ }^{37}$ The Ohio State University, Columbus, Ohio 43210, USA
${ }^{38}$ Okayama University, Okayama 700-8530, Japan
${ }^{39}$ Osaka City University, Osaka 588, Japan

${ }^{40}$ University of Oxford, Oxford OX1 3RH, United Kingdom
${ }^{41}$ Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, ${ }^{\text {ff }}$ University of Padova, I-35131 Padova, Italy
${ }^{42}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{43}$ Istituto Nazionale di Fisica Nucleare Pisa, ${ }^{g g}$ University of Pisa,
${ }^{h h}$ University of Siena and ${ }^{i i}$ Scuola Normale Superiore, I-56127 Pisa, Italy
${ }^{44}$ University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
${ }^{45}$ Purdue University, West Lafayette, Indiana 47907, USA
${ }^{46}$ University of Rochester, Rochester, New York 14627, USA
${ }^{47}$ The Rockefeller University, New York, New York 10065, USA
${ }^{48}$ Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, ${ }^{j j}$ Sapienza Università di Roma, I-00185 Roma, Italy
${ }^{49}$ Rutgers University, Piscataway, New Jersey 08855, USA
${ }^{50}$ Texas A $\mathfrak{G M}$ University, College Station, Texas 77843, USA
${ }^{51}$ Istituto Nazionale di Fisica Nucleare Trieste/Udine,
I-34100 Trieste, ${ }^{k k}$ University of Udine, I-33100 Udine, Italy
${ }^{52}$ University of Tsukuba, Tsukuba, Ibaraki 305, Japan
${ }^{53}$ Tufts University, Medford, Massachusetts 02155, USA
${ }^{54}$ University of Virginia, Charlottesville, Virginia 22906, USA
${ }^{55}$ Waseda University, Tokyo 169, Japan
${ }^{56}$ Wayne State University, Detroit, Michigan 48201, USA
${ }^{57}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{58}$ Yale University, New Haven, Connecticut 06520, USA

Abstract

We present a search for new phenomena in events with two reconstructed Z bosons and large missing transverse momentum, sensitive to processes $p \bar{p} \rightarrow X_{2} X_{2} \rightarrow Z Z X_{1} X_{1}$, where X_{2} is an unstable particle decaying as $X_{2} \rightarrow Z X_{1}$ and X_{1} is undetected. The particles X_{1} and X_{2} may be, among other possibilities, fourth generation neutrinos or supersymmetric particles. We study the final state in which one Z boson decays to two charged leptons and the second decays hadronically. In data corresponding to an integrated luminosity of $4.2 \mathrm{fb}^{-1}$ from proton-antiproton collisions recorded by the CDF II detector at the Tevatron, with center-of-mass energy of 1.96 TeV , we find agreement between data and standard-model backgrounds. We calculate 95% confidence level upper limits on the cross section of the process $p \bar{p} \rightarrow X_{2} X_{2} \rightarrow Z Z X_{1} X_{1}$ ranging from 50 fb to 1 pb , depending on the masses of X_{1} and X_{2}.

PACS numbers: $12.60 .-\mathrm{i}, 13.85 . \mathrm{Rm}, 14.65 .-\mathrm{q}, 14.80 .-\mathrm{j}$

[^0]A natural extension to the standard model of particle physics is a fourth generation of quarks and leptons. The inclusion of a fourth generation provides a source of $C P$ violation in B_{s} decays and can accommodate a heavy Higgs boson [1, 2]. Searches for fourth generation quarks at the Fermilab Tevatron have constrained the mass of up-type quarks $\left(u_{4}\right)$, that decay as $u_{4} \rightarrow W q$, where q is a generic down-type quark, to be $m_{u_{4}}>340 \mathrm{GeV} / c^{2}$ at 95% confidence level (CL) [3], while limits on the mass of down-type quarks $\left(d_{4}\right)$ decaying via $d_{4} \rightarrow W t$ are $m_{d 4}>$ $372 \mathrm{GeV} / c^{2}$ at 95% CL [4].

Following the trend of mass hierarchy in the standard model, the least massive and therefore most accessible particle of this fourth generation may be the neutrino. Such a neutrino need not be solely a Dirac or Majorana state, but may be a mixture of the two [5]. This leads to two mass eigenstates N_{1} and N_{2}, where N_{2} is the unstable heavy eigenstate and N_{1} is the stable and least massive eigenstate of the fourth generation neutrinos. These particles would partially evade the neutrino mass constraints

Maria, 110v Valparaiso, Chile, ${ }^{d d}$ Yarmouk University, Irbid 211-63, Jordan,
from Z width studies at LEP [6].
The dominant production mechanism of N_{1} would be via a Drell-Yan process, $p \bar{p} \rightarrow Z / \gamma^{*} \rightarrow N_{2} N_{2} \rightarrow$ $N_{1} Z N_{1} Z$, giving a final state of two Z bosons and large missing transverse momentum. This signature is shared by several other interesting new physics processes, most notably supersymmetric production, $\chi_{2}^{0} \chi_{2}^{0} \rightarrow Z \chi_{1}^{0} Z \chi_{1}^{0}$, where χ_{1}^{0} and χ_{2}^{0} are neutralinos. We consider the mode in which one Z decays hadronically and the other decays leptonically, giving a detector signature of two charged leptons, two jets and large missing transverse momentum. For this search we use $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ corresponding to $4.2 \mathrm{fb}^{-1}$ of integrated luminosity collected by the CDF II detector.

Events were recorded by CDF II [7, 8], a generalpurpose detector designed to study collisions at the Fermilab Tevatron $p \bar{p}$ collider. The CDF II detector is composed of a charged-particle tracking system immersed in a 1.4 T magnetic field consisting of a silicon microstrip tracker and a drift chamber. Electromagnetic and hadronic calorimeters surround the tracking system and measure particle energies. Drift chambers located outside the calorimeters detect muons.

The data acquisition system is triggered by e or μ candidates with transverse momentum p_{T}, greater than 18 GeV / c. We retain electron and muon candidates with pseudorapidity [8] $|\eta|<1.1, p_{T} \geq 20 \mathrm{GeV} / c$ and that satisfy the standard CDF identification requirements [9]. For muons, the track fit χ^{2} per degree of freedom is used to reject poorly fit tracks likely resulting from charged pion and kaon decays in flight. Electrons from photon conversions are suppressed by rejecting electron candidates with a nearly collinear intersecting reconstructed track. Jets are reconstructed in the calorimeter using the JETCLU [10] algorithm with a clustering radius of 0.4 in azimuth-pseudorapidity space. Measured jet energies are corrected to account for η-dependent variations in detector response, calorimeter coverage, and the expected contribution from additional $p \bar{p}$ interactions in the same event [11]. Jets are selected if they have $p_{T} \geq 15$ GeV / c and $|\eta|<2.4$. Missing transverse energy [12], E_{T}, is reconstructed using calorimeter and muon information including the corrections described above.

To isolate the $Z Z$ signature, we require two oppositecharge, same-flavor lepton candidates (e or μ) with $p_{T}>$ $20 \mathrm{GeV} / c$ for which the lepton-pair invariant mass is consistent with decay from a Z boson: $m_{\ell \ell} \in[76,106]$ GeV / c^{2}. Additionally, we require at least two jets, each with $p_{T}>15 \mathrm{GeV} / c$ and $|\eta|<2.4$, and without identified secondary vertices resulting from b-hadron decay [13]. The $Z Z+E_{T}$ signature has the further requirement of large E_{T}, varying with hypothetical N_{1} and N_{2} masses, as shown in Table II.

The dominant background in the resulting sample is production of a Z boson in association with two jets from initial state radiation. We model this background using ALPGEN [14] to describe the hard process and PYTHIA [15] for the showering and hadronization. This background is
strongly suppressed in events with large missing transverse momentum, as shown in Figure 1 and Table I, and is distinguished from the signal by the lack of a resonance in the dijet mass, $m_{j j}$.

The second largest expected background is due to W boson production in association with three jets from initial state radiation, where one jet is wrongly reconstructed as a lepton. We model this using an independent sample of events containing jets likely to mimic leptons, following Ref. [16]. Additional backgrounds result from standard-model production of two gauge bosons, includ$\operatorname{ing} Z Z, W W$, and $W Z$, as well as $t \bar{t} \rightarrow W b W b$, which are all modeled using PYTHIA.

FIG. 1: Distribution of missing transverse momentum in events with the $Z Z$ signature, for expected backgrounds and observed data.

TABLE I: Expected number of events for each source of background to the $Z Z \rightarrow \ell^{+} \ell^{-} j j$ and $Z Z+X_{1} X_{1} \rightarrow \ell^{+} \ell^{-} j j+E_{T}$ signatures, as well as the observed event yield in data with $4.2 \mathrm{fb}^{-1}$ of integrated luminosity. The threshold in E_{T} is optimized as a function of the N_{1}, N_{2} masses; one example ($N_{1}=125 \mathrm{GeV} / c^{2}, N_{2}=225 \mathrm{GeV} / c^{2}$) is shown here. Uncertainties shown include both systematic and statistical uncertainty added in quadrature.

		$\ell^{+} \ell^{-} j j$ and
Process	$\ell^{+} \ell^{-} j j$	$E_{T}>36 \mathrm{GeV}$
$W W$	4.4 ± 1.3	2.7 ± 0.8
$t \bar{t}$	14.8 ± 3.0	11.6 ± 2.3
$W+$ jets	36.1 ± 16.7	21.7 ± 12.6
$Z Z$	99.4 ± 20.5	4.2 ± 0.9
$W Z$	105.6 ± 22.1	5.2 ± 1.1
$Z+$ jets	10171 ± 4422	94.6 ± 38.5
Total	10432 ± 4485	140.0 ± 40.6
Data	10199	152

To isolate the double-resonance nature of the $Z Z+E_{T}$ signature, we calculate the distance from the Z boson reconstructed mass in the $m_{\ell \ell}-m_{j j}$ mass plane, accounting
for the relative difference in the resolutions between the leptons and jets as well as the observed bias in reconstructed $m_{j j}$, using the variable

$$
\begin{equation*}
\Delta m=\sqrt{\left(\frac{m_{\ell \ell}-m_{Z \rightarrow \ell \ell}}{g_{\ell \ell}}\right)^{2}+\left(\frac{m_{j j}-m_{Z \rightarrow j j}}{g_{j j}}\right)^{2}} \tag{1}
\end{equation*}
$$

where $m_{\ell \ell}\left(m_{j j}\right)$ is the reconstructed lepton (jet) pair mass, compared to the reference $m_{Z \rightarrow \ell \ell}=91.6 \mathrm{GeV} / c^{2}$ $\left(m_{Z \rightarrow j j}=85.3 \mathrm{GeV} / c^{2}\right)$ found in simulated events. To account for the superior lepton resolution, the dilepton and dijet mass differences are scaled by factors related to the resolutions: $g_{\ell \ell}=10 \mathrm{GeV} / c^{2}, g_{j j}=15 \mathrm{GeV} / c^{2}$. The uncertainties of these reference values are small, and may be neglected. The distribution of Δm for data and simulated background and signal is shown in Figure 2.

We model the production of the N_{2} signal and its subsequent decay into N_{1} over a grid of masses in the $\left(M_{N 1}, M_{N 2}\right)$ plane using MADGRAPH [17] with the CTEQ5L [18] parton distribution fuctions; PYTHIA [15] is used for the showering and hadronization. To suppress the large backgrounds expected from standardmodel sources we require large E_{T}; as the expected magnitude of missing transverse momentum depends strongly on $M_{N 1}$ and $M_{N 2}$, we vary the selection threshold of E_{T} to optimize for sensitivity at each $\left(M_{N 1}, M_{N 2}\right)$ pair considered, as seen in Table II. The acceptance for each mass point can be seen in Figure 3. For each point in the mass grid, we form template histograms as a function of Δm for the expected signal and background, as displayed in Figure 2.

FIG. 2: Distribution of the variable Δm, defined in the text, for expected background, observed data and an example signal (scaled by 10^{4}) in data with $4.2 \mathrm{fb}^{-1}$ of integrated luminosity. This example uses a missing transverse momentum threshold of $E_{T}>36 \mathrm{GeV}$, optimized for this ($M_{N 1}, M_{N 2}$) mass point; see Table II. Background uncertainties are statistical and systematic added in quadrature.

In addition to the templates formed for the nominal expectation, we form alternate templates that incorporate the effects of systematic uncertainties under $\pm 1 \sigma$

FIG. 3: Acceptance of the $Z Z+E_{T}$ signature, including $\mathrm{BR}(Z Z \rightarrow \ell \ell q q)$, as a function of the masses of the fourth generation neutrinos, N_{1} and N_{2}. The threshold in \mathbb{E}_{T} is optimized at each point on a grid in this plane. Linear interpolation is performed between the grid points. The apparent structure in the plot results from statistical fluctuation.
variation. Fitting to these templates using the maximum likelihood method, we extract the best-fit signal cross section, $\sigma_{N 2}$. Systematic uncertainties affecting the shapes of templates, including uncertainty in the jet energy scale [11], QCD radiation, PDFs, Q^{2} (square of momentum transfer in the interaction) and uncertainty in lepton energy resolution, are accounted for as nuisance parameters in our likelihood. The dominant source of systematic uncertainty in this analysis is uncertainty in the jet energy scale (40%), which can significantly modify the number of jets in background processes that pass the p_{T} threshold, the location of the $m_{j j}$ resonance in the signal process, and the measured E_{T} in an event. The second largest systematic uncertainty is due to uncertainty on the theoretical normalization of the background rates (10%). Finally, we apply the unified ordering principle [19] for the Neyman construction to create confidence intervals in the true value of $\sigma_{N 2}$ for each N_{2}, N_{1} mass point.

We find the candidate events in the data to be consistent with expected standard-model backgrounds and thus set upper limits at 95% CL on the cross section for $p \bar{p} \rightarrow N_{2} N_{2} \rightarrow N_{1} Z N_{1} Z$. Theoretical cross sections for each mass point are presented in Table II, along with their respective expected and observed limits in our data sample. The expected and observed cross section limits can be seen in Figure 4 and Table II.

In summary, we have performed the first search for new phenomena in events with two reconstructed Z bosons and large missing transverse momentum. This signature is sensitive to processes $p \bar{p} \rightarrow X_{2} X_{2} \rightarrow Z Z X_{1} X_{1}$, where X_{2} is an unstable particle decaying as $X_{2} \rightarrow Z X_{1}$ and X_{1} being undetected. The particles X_{1} and X_{2} may be, among other possibilities, fourth generation neutrinos or supersymmetric particles. A specific model in which X_{2}

TABLE II: Acceptance of the $Z Z+E_{T}$ selection for varying thresholds in E_{T} optimized for each point in the $M_{N 1}$, $M_{N 2}$ mass plane. Also shown are the median expected and observed 95% CL upper limits on the cross section $\left(\sigma_{N 2}\right)$ in data with $4.2 \mathrm{fb}^{-1}$ of integrated luminosity, as well as the theoretical prediction [17, 20].

$M_{N 1}, M_{N 2}$ $\left[\mathrm{GeV} / c^{2}\right]$	E_{T} Cut $[\mathrm{GeV}]$	Acceptance $[\%]$	$\sigma_{N 2}[\mathrm{fb}]$	
Theory	Exp. /Obs. Limit			

and X_{1} are fourth-generation neutrinos is used without loss of generality. In the final state in which one Z boson decays to two charged leptons and the second decays hadronically, we find agreement between the data and the standard-model expectation using data from protonantiproton collisions with $4.2 \mathrm{fb}^{-1}$ of integrated luminosity. Based on the results in Table II, we report 95% CL upper limits on the cross section of the process $p \bar{p} \rightarrow X_{2} X_{2} \rightarrow Z Z X_{1} X_{1}$ ranging from 50 fb to 1 pb depending on the masses of X_{1} and X_{2}.

FIG. 4: Upper limit at $95 \% \mathrm{CL}$ on the cross section of $p \bar{p} \rightarrow N_{2} N_{2} \rightarrow N_{1} Z N_{1} Z$ in data with $4.2 \mathrm{fb}^{-1}$ of integrated luminosity as a function of the masses of N_{1} and N_{2}. Top shows median expected limits; bottom shows observed limits; see Table II.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa ConsoliderIngenio 2010, Spain; the Slovak R\&D Agency; and the Academy of Finland.
[1] B. Holdom, W. S. Hou, T. Hurth, M. L. Mangano, S. Sultansoy, and G. Unel, PMC Physics A 3, 4 (2009).
[2] A. K. Alok, A. Dighe, and D. London, Phys. Rev. D 83, 073008 (2011).
[3] T. Aaltonen et al., (CDF Collaboration), Submitted to Phys. Rev. Lett. [arXiv:1107. 3875 [hep-ex]]
[4] T. Aaltonen et al., (CDF Collaboration), Phys. Rev. Lett. 106, 141803 (2011).
[5] L. Carpenter, "Fourth generation lepton sectors with stable Majorana neutrinos: from LEP to LHC," [arXiv: 1010.5502v1].
[6] P. Achard et al., (L3 Collaboration), Phys. Lett. B 517, 75 (2001).
[7] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[8] CDF uses a cylindrical coordinate system with the z axis along the proton beam axis. Pseudorapidity is $\eta \equiv$ $-\ln (\tan (\theta / 2))$, where θ is the polar angle relative to the proton beam direction, and ϕ is the azimuthal angle while $p_{T}=|p| \sin \theta, E_{T}=E \sin \theta$.
[9] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 082004 (2006); D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 94, 091803 (2005).
[10] F. Abe et al. (CDF Collaboration), Phys. Rev. D 45, 001448 (1992).
[11] A. Bhatti et al., Nucl. Instrum. Methods 566, 375 (2006).
[12] Missing transverse momentum, E_{T}, is defined as the vector $-\sum_{i} E_{T}^{i} \vec{n}_{i}$ where E_{T}^{i} are the magnitudes of transverse momentum contained in each calorimeter tower i, and \vec{n}_{i} is the unit vector from the interaction vertex to the tower in the transverse (x, y) plane.
[13] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 052003 (2005).
[14] M. Mangano et al., J. High Energy Phys. 01, 0307 (2007).
[15] T. Sjostrand, S. Mrenna, P. Skands, J. High Energy Phys. 05, 026 (2006).
[16] T. Aaltonen et al., (CDF Collaboration), Phys. Rev. Lett. 105, 251802 (2010).
[17] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, J. High Energy Phys. 1106, 128 (2011).
[18] J. Pumplin et al. (CTEQ Collaboration), J. High Energy Phys. 07, 012 (2002).
[19] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
[20] L. Carpenter, private communication

[^0]: * Deceased
 ${ }^{\dagger}$ With visitors from ${ }^{a}$ Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, ${ }^{b}$ University of CA Irvine, Irvine, CA 92697, USA, ${ }^{c}$ University of CA Santa Barbara, Santa Barbara, CA 93106, USA, ${ }^{d}$ University of CA Santa Cruz, Santa Cruz, CA 95064, USA, ${ }^{e}$ Institute of Physics, Academy of Sciences of the Czech Republic, Czech Republic, ${ }^{f}$ CERN, CH-1211 Geneva, Switzerland, ${ }^{g}$ Cornell University, Ithaca, NY 14853, USA, ${ }^{h}$ University of Cyprus, Nicosia CY-1678, Cyprus, ${ }^{i}$ Office of Science, U.S. Department of Energy, Washington, DC 20585, USA, ${ }^{j}$ University College Dublin, Dublin 4, Ireland, ${ }^{k}$ ETH, 8092 Zurich, Switzerland, ${ }^{l}$ University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017, ${ }^{m}$ Universidad Iberoamericana, Mexico D.F., Mexico, ${ }^{n}$ University of Iowa, Iowa City, IA 52242, USA, ${ }^{o}$ Kinki University, Higashi-Osaka City, Japan 577-8502, ${ }^{p}$ Kansas State University, Manhattan, KS 66506, USA, ${ }^{q}$ Korea University, Seoul, 136-713, Korea, ${ }^{r}$ University of Manchester, Manchester M13 9PL, United Kingdom, ${ }^{s}$ Queen Mary, University of London, London, E1 4NS, United Kingdom, ${ }^{t}$ University of Melbourne, Victoria 3010, Australia, ${ }^{u}$ Muons, Inc., Batavia, IL 60510, USA, ${ }^{v}$ Nagasaki Institute of Applied Science, Nagasaki, Japan, ${ }^{w}$ National Research Nuclear University, Moscow, Russia, ${ }^{x}$ Northwestern University, Evanston, IL 60208, USA, ${ }^{y}$ University of Notre Dame, Notre Dame, IN 46556, USA, ${ }^{z}$ Universidad de Oviedo, E-33007 Oviedo, Spain, ${ }^{a a}$ CNRS-IN2P3, Paris, F-75205 France, ${ }^{b b}$ Texas Tech University, Lubbock, TX 79609, USA, ${ }^{c c}$ Universidad Tecnica Federico Santa

