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We present an infinite class of 2+1 dimensional field theories which, after coupling to semi-
holographic fermions, exhibit strange metallic behavior in a suitable large N limit. These theo-
ries describe lattices of hypermultiplet defects interacting with parity-preserving supersymmetric
Chern-Simons theories with U(N)×U(N) gauge groups at levels ±k. They have dual gravitational
descriptions in terms of lattices of probe M2 branes in AdS4×S7/Zk (for N ≫ 1, N ≫ k5) or probe
D2 branes in AdS4 × CP 3 (for N ≫ k ≫ 1, N ≪ k5). We discuss several challenges one faces in
maintaining the success of these models at finite N , including backreaction of the probes in the
gravity solutions and radiative corrections in the weakly coupled field theory limit.

a. Introduction Local quantum criticality, an invari-
ance under rescaling of energies that leaves the spatial
momenta fixed, has been invoked as a potential explana-
tion of interesting phases seen in a variety of condensed
matter systems [1]. One leading approach for explaining
the anomalous transport properties of the strange metal-
lic phase, the marginal Fermi liquid (MFL) [2], involves
a locally critical sector of spin and charge fluctuations,
coupled to a Fermi sea.
In general, the theory of non-Fermi liquids is still in

its infancy. One recently developed method of obtaining
controlled models of non-Fermi liquids uses holography.
The study of fermion probes in black brane backgrounds
with AdS2 ×R2 near-horizon geometries [3–6], or equiv-
alently the semi-holographic prescription of [7], readily
gives rise to non-Fermi liquid behavior. In the latter ap-
proach, free fermions are mixed with fermionic operators
from a large-N locally critical sector, dual to fermions
living in AdS2. A distinct holographic mechanism realiz-
ing non-Fermi liquid transport arises on probe branes in
Lifshitz backgrounds [8].
Much of the work on the holographic approach to non-

Fermi liquids has so far been at the level of 4d effective
AdS gravity theories, with the scaling dimensions of oper-
ators in the dual field theory appearing as free parameters
(masses of bulk fields). It would be useful to have micro-
scopic dual pairs where the field theory dynamics giving
rise to local criticality is visible in a conventional field the-
oretic Lagrangian, and the scaling properties of the non-
Fermi liquid can be predicted by the concrete dual field
theory instead of being parameterized as unknowns.[28]
One goal of our work is to provide an infinite class of such
theories where it is natural to obtain precisely the scaling
dimensions required for marginal Fermi liquid behavior.
A second goal has been to remedy one of the resid-

ual defects in the models of [4]; there, the precise na-
ture of the non-Fermi liquid depends sensitively on the
Fermi momentum kF (since the dimensions of the rele-
vant fermionic operators depend on kF). In the models
we describe here, the relevant scaling dimension ∆ which
(with the right value) gives rise to marginal Fermi liquid
behavior, is independent of kF. This allows an arbitrary

shape of the Fermi surface, a useful feature since this is
not protected from renormalization group flow.
A third goal has been to clarify when and how lo-

cally critical behavior can occur in a higher-dimensional
(D ≥ 2 dimensional) quantum field theory. Local criti-
cality is a rather exotic property, which needs to be better
understood. By definition, it entails quantum mechani-
cal degrees of freedom propagating independently at ev-
ery point in space, not suppressed by gradient terms.
On the other hand, in higher-dimensional quantum field
theories, the ultraviolet physics contains itinerant fields
which propagate in all directions, with gradient terms in
their Lagrangian. Even if one begins with a sector of
localized degrees of freedom (like the defects we study),
which in itself exhibits local criticality, this sector gener-
ically mixes with the itinerant fields through interaction
terms. These can, and generally would be expected to,
induce gradients. Yet surprisingly, among holographic
gravity systems dual to very strongly coupled field theo-
ries, one often finds solutions with AdS2 symmetry (using
either the AdS-Reissner-Nordström (RN) black brane, or
the world-volumes of appropriate probe branes [11] as
we shall do here). These solutions are common because
they are not terribly hard to obtain, whether by the rel-
atively prosaic matter of stabilizing the extra dimensions
of string theory or by stably embedding a probe brane
along anAdS2 slice. However even in the large-N approx-
imation of a gauge theory with N colors, strong effects
of the itinerant fields are included, so this is a nontrivial
result of gauge/gravity duality.
Therefore, we wish to begin an analysis of whether this

emergence of local criticality is only an artifact of the ex-
treme strongly coupled limit where the gravity descrip-
tion is appropriate, or whether instead a similar mecha-
nism exists also at weaker coupling and finite N . In the
second part of this note we discuss the interaction be-
tween impurities, which is a finite N effect but becomes
important at low energies. In some cases this spoils the
local criticality, but in others this may survive to the IR.
b. The brane system Instead of obtaining AdS2 in

the near-horizon limit of an AdS-RN black brane, a setup
which incurs various instabilities, we choose to obtain the
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AdS2 regions on the worldvolumes of lattice defects, as
in [11, 12]. A variety of field theoretic toy-models suggest
that lattices of defects interacting with itinerant electrons
could be a reasonable starting point for strange metal
phenomenology (see e.g. [13–15]).
Such lattices can be implemented in various ways, dif-

fering in their symmetries and in the quantum numbers
of the operators in the theory. The model of [11] involves
a lattice of defect fermions interacting with the 4d N = 4
supersymmetric Yang-Mills theory, and is engineered by
intersecting D3 and D5-branes (with the D5-branes wrap-
ping AdS2 × S4 regions in the near-horizon AdS5 × S5

geometry of the D3-branes). The supersymmetry pre-
served by that lattice model is somewhat unconventional
(allowing e.g. purely fermionic defect representations);
therefore we will mostly focus on a different lattice sys-
tem which is 2+1 dimensional and enjoys a more powerful
supersymmetry algebra for some values of our discrete
parameters. This, however, entails extraneous bosonic
degrees of freedom at the lattice sites, and the examples
containing only fermions on the defects can be analyzed
similarly.
In the most symmetric case, the brane configuration

we study is given, in M-theory, by M2 and M2′ branes:

0 1 2 3 4 5 6 7 8 9 10

M2 x x x

M2′ x :: :: x x

(1)

Here, an x denotes a dimension wrapped by the given
brane stack, blanks denotes dimensions where the given
branes are localized at a common point, and :: denotes
dimensions in which the given branes are individually
localized but form a lattice. In this configuration, the
two stacks intersect along a lattice in the 1-2 plane.
Our family of theories will depend on two parame-

ters: N and k. N denotes the number of M2 branes in
the stack above; the M2′ branes are equally spaced in a
square lattice, and the lattice spacing is the only scale in
the problem (so it doesn’t constitute a new parameter).
The second parameter k arises as follows. We consider
a Zk orbifold which acts as follows on the four complex
coordinates transverse to the M2s:

gk : zi = x2i+1 + ix2i+2, zi → e
i2π
k zi, i = 1...4 . (2)

The set of M2′ branes wrap the locus [16]

z1 = z2 = 0, z3 = z̄4 . (3)

and their orbifold images under (2). For k = 1 this em-
bedding is equivalent to the one in (1). We treat even
and odd k symmetrically, defining the orbifold action to
identify points on different, mirror branes (rather than

taking the g
k/2
k element to identify points on the same

brane in the case k even).
The global symmetry of the M2-brane theory is par-

tially broken by the orbifolding and the presence of the
M2′ probes; from SO(8) × SO(2) to SO(6) × U(1)× Z4

for k = 1, and down to SU(2) × U(1)2 × Z4 for k > 1.
The Z4 factor here represents the symmetry of the lat-
tice. At large k (such that k5 ≫ N ≫ 1), it follows
from the analysis in [17] that the near-horizon region of
the system of M2 and M2′ branes is described more accu-
rately using different variables in terms of type IIA string
theory with D2 and D2′ branes on a nontrivial geometry
with background 2-form gauge flux.
c. The field theory The field theory on the M2

branes in these geometries has been studied in great de-
tail [17]. A general 3d supersymmetric Chern-Simons
theory with at least N = 2 supersymmetry has an action
including the terms [18]:

S =

∫

d3x
k

4π
Tr(A∧dA+2

3
A3)+Dµφ̄iD

µφi+iψ̄iγ
µDµψi

− 16π2

k2
(φ̄iT

a
Ri
φi)(φ̄jT

b
Rjφj)(φ̄kT

a
Rk
T b
Rk
φk)

− 4π

k
(φ̄iT

a
Ri
φi)(ψ̄jT

a
Rj
ψj)−

8π

k
(ψ̄iT

a
Ri
φi)(φ̄jT

a
Rj
ψj) .

(4)

Here T a
R are the generators of the gauge group in repre-

sentation R, and the scalars φi and fermions ψi are su-
perpartners in a chiral multiplet. These terms arise from
integrating out the scalars and fermions of the massive
vector multiplet and flowing to the deep infrared limit of
the theory.
The field theory on our M2 branes is a special case of

this theory, with gauge groups U(N) × U(N) appearing
at levels ±k. The ‘t Hooft coupling of this theory is N/k
and so is large in the holographic limits. The matter
fields φi are four bi-fundamental fields A1,2 and B1,2,
in the (N, N̄) and (N̄ ,N) representations respectively.
In addition to the basic supersymmetric action written
above for these fields, we add an N = 3 superpotential

W =
2π

k
ǫabǫȧḃTr(AaBȧAbBḃ) . (5)

Here a, b = 1, 2 and the superpotential has been written
in a manifestly SU(2)× SU(2) symmetric manner. The
full symmetry of the field theory is in fact enhanced to
an SO(6) × U(1)b (with the baryonic U(1)b acting with
charge ±1 on the A and B fields), and the theory with
these choices enjoys an enhanced N = 6 supersymmetry
[17].[29]
The probe M2′ branes give rise to localized degrees of

freedom; in the type IIA string theory limit of the brane
construction these arise from strings stretching between
the D2 branes and a lattice of probe D2′ branes. In
the simplest case of k = 1, these are hypermultiplets,
with the fermions transforming as spinors in the dimen-
sions transverse to both branes (and the bosons trans-
forming as spinors along 1234). The infrared Chern-
Simons theory is more difficult to analyze directly, since
the appropriate type IIB brane construction involves non-
perturbative ingredients. However, by generalizing the
methods of [17] one can obtain a plausible hypothesis
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for the spectrum [16], in which defect hypermultiplets
are added to both gauge groups. One reason that this
is plausible is that the dual probe branes respect par-
ity, which in the field theory exchanges the gauge group
factors. The bosonic quantum mechanical degrees of free-
dom Q1,2 and Q̃1,2 at each site transform as follows. Qi

transforms in the N of the ith U(N) gauge group (and

is a singlet under the other), while Q̃i transforms in the
conjugate manner; these also transform as spinors under
the Lorentz group in the 1234 directions. Each boson is
accompanied by a fermion partner so there are also defect
fermions χ1,2, χ̃1,2; these do not transform as spinors in
the 1234 directions, but do in the remaining directions.
Starting from the ABJM theory, the defect probe branes
preserve 8 supercharges in the special case of k = 1, and
more generally they preserve 4 supercharges [16]. We ex-
pect a similar spectrum of localized degrees of freedom
on the defects for all k.
While the overall system preserves at least 4 super-

charges in all cases, the superspace structure is uncon-
ventional and we have not been able to find a packaging
in the standard superspace arising in 4dN = 1 supersym-
metry. (For instance, from the IIB brane configuration
used to obtain the N = 6 theories in [17], supplemented
by our defects as in [16], it is clear that there are no spa-
tial directions along which one could T-dualize to obtain
a higher-dimensional theory with a conventional super-
space; either the probe branes or the ABJM configura-
tion itself breaks the needed higher-dimensional transla-
tion symmetries). However, the couplings of the Ai, Bj

fields to the Qs and Q̃s can be inferred by the follow-
ing logic. Under translations of the M2 branes along the
34 directions, the Q, Q̃ degrees of freedom should remain
massless, while other motions should separate the M2s
and M2′s and give Q, Q̃ a mass. In a standard way, one
can identify motion in the transverse space to the M2
branes with (eigenvalues of) appropriate gauge-invariant
composites of the A,B fields. First, we identify motion
in the 34 directions with A1B1+A2B2. Then, we expect
component couplings localized at the defects depending
on the other bilinears in Ai, Bi; these are of the form

∆S =

∫

dt
∑

i

|(A1B1−A2B2)Qi|2+|(A1B2−A2B1)Qi|2

+ |(A1B2 +A2B1)Qi|2 (6)

with similar couplings to Q̃i. For the fermions, there are
related couplings

∆S =

∫

dt χ̃αΓM
αβX

Mχβ (7)

with XM corresponding to the real and imaginary parts
of A1B1 − A2B2, A1B2 ± A2B1 and α, β spinor indices
running over the directions transverse to both the M2s
and the M2′s.
The dimensions of the fields determined from their ki-

netic terms at weak coupling are ∆(Q) = ∆(Q̃) = − 1
2 ,

∆(χ) = ∆(χ̃) = 0, and ∆(A) = ∆(B) = 1
2 . Gauge-

invariant composite operators can be formed from these
fields. We will shortly compute the dimensions of low-
lying defect operators at strong ’t Hooft coupling and
large N using the gravity side of the correspondence, and
then comment on the field theory description of these
operators.
d. Computation of operator dimensions using holog-

raphy A standard extension of the holographic dictio-
nary relates the dimensions ∆ of scalar operators local-
ized at the lattice sites in our construction, to the masses
of scalar KK modes arising in the M2′ brane world-
volume action, via the formula

m2
localized = ∆(∆− 1) . (8)

The fermionic spectrum may be inferred by supersym-
metry.
We briefly discuss the calculation in the simplest case,

k = 1. The fluctuations of the transverse scalars to
a given M2′ brane (the xI = x5, x6, .., x10 directions
in space) are all related by an SO(6) symmetry, so we
may focus on a single scalar. The M2′ brane wraps an
AdS2 × S1 geometry. The fluctuations can be expanded
in Fourier modes on the S1. If we let r denote the radial
coordinate in AdS2 and focus on static fluctuations, then

δxI(r, φ) =
∑

l

δxI,l(r)eilφ (9)

with φ the angular coordinate on the wrapped S1. The
resulting Laplace equation for δxI,l(r) reveals that

m2
l = −1

4
+
l2

4
(10)

which corresponds to scalar operators of dimension

∆l =
1

2
+
l

2
. (11)

The lowest operator in the tower, with l = 0, gives a
sextet of scalar primaries with ∆ = 1/2; its Fermi partner
is a quartet of ∆ = 1 fermionic defect operators. We will
see in the next subsection that this ∆ = 1 multiplet of
fermionic operators plays an important role in obtaining
semi-holographic descriptions of marginal Fermi liquids.
There is also a second tower of operators, arising from

fluctuations of the M2′ branes along the two transverse
spatial directions to their worldvolume in AdS4, i.e. the
x1,2 directions in (1). The tower arising from these fluc-
tuations is distinguished from the tower above by global
quantum numbers. For example, the fluctuations in the
AdS directions transform under the SO(2) rotation sym-
metry of the x1,2 plane (which is broken to Z4 by the
lattice), and are singlets under the SO(6) global symme-
try discussed above, while the fluctuations in the x5,···10

directions transform non-trivially under SO(6) but are
Z4 invariant. While this second tower contains some
fermionic operators of ∆ = 1/2 which would be dan-
gerous if they coupled to the semi-holographic fermions,
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such couplings can be forbidden by the SO(6)×Z4 sym-
metry in a “natural” way (in the sense of the renormal-
ization group).

The spectrum for higher k may be most easily inferred
from the k = 1 case by the following logic. We can ob-
tain the higher k brane configurations by Zk orbifolds
of appropriate lattice configurations on AdS4 × S7. The
orbifold action is free on the S7 (the fixed point at zi = 0
in C4 is removed in the near-horizon limit), and there-
fore, all of the low-lying modes in the orbifold theory are
Zk invariant modes in the original k = 1 theory. Cor-
relation functions of the dual operators will enjoy large
N inheritance from the parent k = 1 theory, similarly to
the theories discussed in [19]. (New degrees of freedom
that might be introduced by the orbifolding, analogous
to twisted states in string theory, are very massive in the
supergravity regime, due to the free orbifold action). A
simple analysis following this logic implies that the spec-
trum is the same for all k > 1; so in particular, ∆ = 1
fermionic operators arise in these theories (and any lower
∆ fermionic operators from the second tower can ren-
dered safe as above, by using global quantum numbers).
A careful discussion of the KK spectra of these theories,
and the matching with operators in the dual defect field
theories, will appear in [20].

e. Coupling to semi-holographic fermions The the-
ory we have constructed above is locally critical in the
large N limit. That is, because the probe M2′ branes
wrap AdS2 slices of the AdS4 geometry, the excitations of
the bulk fields localized on the probe branes can be clas-
sified by the quantum numbers of a locally critical quan-
tum theory, and the correlation functions of the opera-
tors dual to localized bulk excitations (computed using
the standard AdS/CFT dictionary) obey the constraints
following from local criticality. These are precisely cor-
relation functions of operators involving defect fields in
the dual field theory.

Now, we couple the defect field theory we have con-
structed to semi-holographic fermions, following [7].
Namely, if we call the full action of the lattice system
above (including both the bulk gauge theory and the de-
fect fields) SLC , we consider the theory with

Stotal = SLC(A,B,Q, Q̃)+
∑

J,J′

∫

dt c†J (iδJ,J′∂t + µδJ,J′ + tJ,J′)cJ′

+ g
∑

J

∫

dt (c†JOF
J +Hermitian conjugate) . (12)

In (12), we are coupling a normal theory of a weakly
coupled Fermi surface (governing the excitations of the
c fermion) to the strongly coupled locally critical sector,
through the coupling constant g mixing c with (in any
natural theory) the lowest dimension fermionic operator
OF that has the right quantum numbers to couple to c.

Using large N factorization, it is then easy to show

that the g = 0 Green’s function of the c fermion

G0(k, ω) ∼
1

ω − v|k− kF(k)|
(13)

is modified to

Gg(k, ω) ∼
1

ω − v|k − kF(k)| − g2G(k, ω) , (14)

where

G(ω) =
∫

dt eiωt〈OF
J (t)OF†

J (0)〉 . (15)

This two-point function is fixed by the scaling symmetry
of the LC theory to be G(ω) = c∆ω

2∆−1 where ∆ is the
dimension of OF (and, importantly, G(ω) ∼ c ω log(ω)
in the degenerate case ∆ = 1).
The correction term in the denominator of Gg will

dominate the low-frequency behavior if ∆ ≤ 1. Uni-
tarity allows any ∆ ≥ 1

2 and this scaling dimension is a
free parameter in the general approaches of [4, 7]. The
marginal Fermi liquid behavior of [2] appears in the case
that the dimension of OF is precisely 1. Therefore, the
question is, are there natural circumstances in which the
theory SLC(A,B,Q, Q̃) has a leading fermionic operator
of ∆ = 1 which can couple to c?
The theories we have constructed above naturally come

with defect operators of ∆ = 1, as indicated by our cal-
culation of the KK spectrum on the probe M2′ branes. It
is interesting to consider where these come from in field
theory language. The field theory has gauge-invariant
operators of the form

∂tQ̃1Aχ2, ∂tQ̃2Bχ1, ∂tQ1Bχ̃2, ∂tQ2Aχ̃1 . (16)

(as well as related quartets of operators of the schematic
form χ̃1ψAχ2, · · · and χ̃1A∂tQ2, · · · ). These have ∆ = 1
at weak coupling, and are good candidates for the duals
of the probe defect operators we computed on the grav-
ity side (arising in the tower of fluctutations of the M2′

branes along x5,··· ,10). Suppose that upon extrapolating
to strong coupling (at large N), the weak-coupling dimen-
sions of these operators are indeed protected, i.e. that the
weak-coupling engineering dimensions of the fields corre-
spond to their scaling dimensions under the locally criti-
cal scaling governing the defect sector in the probe limit.
Then, assigning appropriate global quantum numbers to
c, one can choose one of these as the lowest dimension
fermionic operator that c can couple to in the localized
sector.
Returning to the dual gravitational description, we can

see that the idea above does work at least in the probe
approximation. By appropriate choice of global quan-
tum numbers (under the Z4 lattice symmetry and the
(subgroup of) SO(6) preserved by the brane configura-
tion), one can guarantee that no lower ∆ operators from
the second tower of fluctuations in the previous subsec-
tion infect the leading-order c-fermion correlators (14)
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after coupling to the large N sector. We conclude that
we can work directly in the probe limit and obtain a
marginal Fermi liquid by identifying OF with the lowest
fermionic operator in the first tower of defect fields com-
puted above. This has ∆ = 1, and as emphasized in the
introduction, this dimension is independent of momen-
tum.
f. Backreaction Up until now we have ignored the

backreaction of the impurities on the itinerant fields, and
therefore on each other. Thus we have been studying the
dynamics of a single impurity interacting strongly with
itinerant fields. The gravity side exhibits the successes
it does because the probe branes each wrap an AdS2

region, and the symmetries of local quantum criticality
are manifest, even including the highly nontrivial field
theory interactions that are re-summed by the tree-level
gravity solution.
At scales of order the lattice spacing the backreaction

is a 1/N effect, but at lower energies it must become
important. The scale symmetry of the itinerant fields,
which the impurity system inherits, acts on the spatial
coordinates. At energies of order N−1/2 times the funda-
mental scale the number of impurities in a scaling volume
is of order N , and the effect of the impurities on the itin-
erant fields and on each other can no longer be neglected.
Do these effects inevitably generate corrections to the ac-
tion which destroy the locally critical behavior — is the
behavior seen in the gravity regime a peculiarity of very
strongly coupled large N theories, which would not ex-
trapolate to any more realistic systems — or can it be
robust in some circumstances? And, if locally critical
behavior survives to the far IR, how do the operator di-
mensions there relate to those we have found at higher
energy?
Staying in the limit of strong ’t Hooft coupling,

gauge/gravity duality transforms this field theory ques-
tion into the problem of finding the supergravity solu-
tion with backreaction. This can still be a challenging
problem, but one can get insight from a simple ener-
getics argument. We start with the M theory brane
configuration (1). We are looking for an IR geometry
AdS2 ×R2 ×X , which we will for convenience compact-
ify to AdS2 × T 2 × X . We study this with the Ansatz
X = S7, averaging the energy density of the impurity 2′

branes over the compact dimensions. Let A, T , and S be
the respective radii of the three factors AdS2 × T 2 × S7.
The effective action dimensionally reduced to 1+1 dimen-
sions is of the form

S =

∫

d2x

(

−T 2S7 +A2T 2S5 −N ′
2A

2S − N2
2A

2T 2

S7

)

.

(17)
We work in units where the M theory scale is one, and
ignore order one coefficients. The respective terms come
from the curvatures of AdS2 and S7, the 2′-brane ten-
sions, and the 7-form flux from the 2-branes. In other
situations it would be natural to Weyl transform to an
effective potential, but this is not possible for AdS2; in-
stead we directly extremize with respect to A in addition

to T and S.
One finds that there is an extremum (with physically

acceptable positive values for the moduli) such that

A ∼ S ∼ N
1/6
2 , T ∼ N

′1/2
2 /N

1/3
2 . (18)

The radius S is parametrically the same as for the pure

M2 system. The density of defects is N ′
2/T

2 = N
2/3
2 .

What is happening is that the lattice defects provide
a force acting against the contraction of the two spatial
dimensions, hence helping to drive the system towards
a fixed point where the bulk modes are locally critical.
In the probe approximation, the itinerant fields retained
their relativistic scaling, and each independent impurity
was invariant under a scale transformation leaving its
position fixed. Here there is a common locally critical
scaling of the whole geometry.
This result is encouraging, but we should improve the

Ansatz. We have averaged the action of the 2′ branes over
the S7, but in fact they are wrapped on a circle and we
should consider moduli corresponding to the contraction
of this circle. Thus we represent S7 as a circle over CP 3,
with radius F for the fiber circle and B for the base. The
action becomes

S =

∫

d2x

(

−T 2FB6 +A2T 2FB4 −A2T 2F 3B2

−N ′
2A

2F − N2
2A

2T 2

FB6

)

. (19)

One now finds that there is no physical extremum; the
contraction of the fiber is not stabilized.
Nevertheless, there are brane systems that realize the

solution (18). Consider a system with several kinds of
impurity brane, with different orientations in the trans-
verse spacetime. These will be dual to field theories with
an action similar to that in eqns. (6) and (7), but with
couplings of the defect fields to the bulk fields given
by suitable SO(8) rotations of those appearing in (6),
(7). If the configuration of M2′ branes is sufficiently
uniform and isotropic, the spherical Ansatz will be a
good approximation.[30] Such a configuration will nec-
essarily break supersymmetry (for supersymmetric con-
figurations, at least with N ≥ 2, there will always be
an unstable fiber circle). It is also necessary to stabi-
lize the angular configuration, for example by taking a
sufficiently symmetric configuration, and by keeping rel-
atively nonsupersymmetric branes far enough apart to
avoid tachyons. With the scaling (18) the typical trans-
verse distance between the branes is larger than the M
theory scale, so one expects that the latter difficulty
may be avoided. Although with a symmetric distribu-
tion there should be a solution of the equations of mo-
tion, it may be an unstable saddle point; with the lack
of supersymmetry there is no a priori guarantee against
disallowed tachyons. Without having addressed all the
possible instabilities, something that might benefit from
further model building, we simply take from this con-
struction the lesson already noted that lattice flavors con-
tribute to producing local criticality on the gravity side.
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As an aside, the absence of supersymmetric solutions
could also be anticipated from another point of view. We
are looking for solutions where the color branes remain lo-
calized in the 3-4 directions in which the impurity branes
are extended. In Refs. [22] it is shown that these do not
exist for brane intersections of spatial dimension 0 (as
here) or 1. The interpretation was that the scalar fields Q
on the intersection are spread out on their moduli space
due to low-dimensional quantum effects, which implies
that the brane intersection delocalizes and the AdS IR re-
gion disappears. In nonsupersymmetric systems, masses
will generically be generated for these scalars. In the ap-
pendix we analyze an impurity system that has no such
impurity scalars.
Orbifolding by Zk does not affect the energetics, and

so the discussion above can be applied with N2 → Nk,
giving in M theory units

A ∼ S ∼ N1/6k1/6 , R11 ∼ N1/6/k5/6 ,

T ∼ N
′1/2
2 /N1/3k1/3 (20)

and in string units

A ∼ S ∼ N1/4k1/4 , gs ∼ N1/4/k5/4 ,

T ∼ N
′1/2
2 /N1/4k1/4 . (21)

The same applies if the orbifold action (2) is replaced by
one acting only on two complex coordinates z3,4, gener-
ating the brane configuration

0 1 2 3 4 5 6 7 8 9

D2 x x x

D6 x x x x x x x

D2′ x :: :: x x

(22)

with N color D2-branes and k D6-branes. This is a nice
example, having a weakly coupled conformal point for
N2 ≪ N6 (as in Refs. [23]) and an AdS4 dual description
for N2 ≫ N6 [24]. The radius S and coupling gs are
parametrically the same as for the pure D2-D6 system.
In particular one sees that the condition that the radius
be large (in string units) is N2 ≫ N6, and that there
then is a weakly coupled IIA dual for N2 ≪ N5

6 and an
M-theory dual for N2 ≫ N5

6 . The density of defects is

N ′
2/T

2 = N
1/2
2 N

1/2
6 .

Even if we find a supergravity solution, there is a gen-
eral argument that suggests that the local critical scaling
cannot persist indefinitely into the IR. The scaling would
imply a density of states

ρ(E) = Aδ(E) +B/E (23)

per energy (and exponential in the volume). The first
term is the widely noted zero-temperature entropy. If
only this term is present, the Hamiltonian in the critical
sector is zero: there is no dynamics (e.g. a dimension 1
operator would have a correlator δ′(t) rather than 1/t2).
So the B term is necessary, but its integral diverges, so

local criticality must always break down at sufficiently
low energy. In the gravity description, the density B
comes from bulk states, and so is of order 1/N2. Thus
the breakdown takes place at exponentially small scales,
which seems more promising than the N−1/2 breakdown
scale of the probe approximation.
Ref. [8] identified a specific breakdown mechanism,

whereby the scaling exponents of the spatial directions
were shifted (at all scales) from 0 to O(1/N), thus ren-
dering the density of states convergent. This is a rather
special property of the system studied there. More gener-
ally, local criticality might persist until the finite density
of states per volume forces it to break down.
g. Backreaction at weak coupling It is encouraging

that we have found possible stable systems with the de-
sired IR properties, but the gravity methods are still only
controlled in a peculiar limit, from the field theory per-
spective. Here we discuss some related issues in direct
analysis of the dual field theory. We start with the field
theory corresponding to the brane system (22). This is an
N = 8 supersymmetric 3d Yang-Mills theory, with defect
hypermultiplets. In such theories, with a Maxwell action,
the conformal symmetry that will emerge in the IR is far
from manifest. A second approach, via the Chern-Simons
theories of [17], has been the one we’ve followed in the
bulk of the paper. The IR conformal behavior of the
bulk theory is much clearer here, as the gauge fields do
not appear with a dimensionful coupling, and the start-
ing (bulk) Lagrangian has no dimensionful parameters.
It is interesting to contrast our expectations for radiative
corrections arising from the two approaches.
Starting from the 3d N = 8 Yang-Mills theory with

hypermultiplet defects, and following the techniques of
[25], it is easy to write a superspace Lagrangian. The
problems with finding a 4d N = 1 superspace do not
arise in this perspective; the additional complications of
the ABJM brane construction [17] are not present, and
one can straightforwardly T-dualize to find an N = 1
presentation. In terms of the brane construction with
D2 branes wrapping x1,2 and D2′ branes wrapping x3,4,
it is convenient to perform the T-duality is along the
7, 8, 9 directions and to treat those as the spatial direc-
tions of the N = 1 field theory, with x1,2 being internal
dimensions. The bulk action is

S =
1

g23

∫

dtd2x Tr[

∫

d2θ
1

2
WαWα

+ ǫijkφi(∂jφk − [φj , φk]/3
√
2) + h.c.

+ 2

∫

d4θ(
√
2∂̄i + φ̄i)e−V (−

√
2∂i + φi)e

V + ∂̄ie−V ∂ie
V ]

+WZW term . (24)

Here, ∂1 = ∂x1 + i∂x2 , while ∂2,3 → 0, and (φi)† = φ̄i.
Wα is an SU(N) gauge field strength superfield, while
V is the vector superfield. In 3d N = 4 language, one
should think of φ1,2 as the scalars in a hypermultiplet and
φ3 as the complex adjoint scalar in the vector multiplet.
In Wess-Zumino gauge, the WZW term vanishes. The
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fields in the above action can be interpreted as follows:
D2 gauge field Wilson lines along x1,2 and D2 motions
along x3,4 are packaged in φ1,2; D2 motions along x5,6

are contained in φ3; and the vector multiplet V has θθ̄
components consisting of A0 and x7,8,9.
The hypermultiplets H , which transform in the funda-

mental of SU(N), have localized actions

∑

n

∫

dt

∫

d4θ (Hc
ne

VnH̄c
n + H̄ne

−VnHn)

−
∫

d2θ Hc
nφ3,nHn − h.c. . (25)

The index n runs over the lattice sites, and n subscripts
on a bulk field simply indicate that the field is to be
evaluated at position of the nth site. This has the in-
tuitively expected features; for instance, motions of the
D2 branes along x5,6,7,8,9, given the correspondence with
fields above, can be seen to mass up the defect hyper-
multiplets.
Integrating out the auxiliary D-field in the gauge mul-

tiplet generates inter-defect interactions. For simplicity
we focus on the Abelian (N = 1) case; defect hypermul-
tiplet scalars are denoted by η. Then the couplings of
the auxiliary field are:

SD =
1

g23

∫

dt d2x (
1

2
D2 − 2

√
2(φ1∂̄

1D + φ̄1∂1D)

+ φ̇1φ̇1) +
1

2

∑

n

Dn(|ηcn|2 − |ηn|2) . (26)

Integrating out D, the action becomes:

SD =
1

g23

∫

dt d2x (−2[∂̄1Z1+∂1Z̄1]2+ |Ż1− ζ̇|2) (27)

where we’ve defined

ζ(z1) =
1

8π
√
2

∑

n

(|ηcn|2 − |ηn|2)
z1 − z1n

(28)

and

φ1 = Z1 − ζ . (29)

The |ζ̇|2 term in (27) exhibits cross-couplings between
the η hypermultiplet fields that would naively ruin local
criticality. One would also get similar terms by integrat-
ing out A0 and φ3. The generation of inter-defect in-
teractions is not tied to supersymmetry, but these terms
sum to a cross-coupling term in the Kähler potential for
the defect hypermultiplets. [31] This makes it seem un-
likely that the local criticality of the gravity regime can
survive to finite N and coupling, where a field theory
analysis should be reliable. However, it is important to
remember that our starting point here has been the 3d
N = 8 Yang-Mills theory, and this UV Lagrangian is
valid only far from the IR fixed point which we know

governs the physics on the N M2 branes (even at finite
N).
To get an alternate perspective, we can also try to com-

pute the inter-defect corrections arising from coupling the
defect hypermultiplets to the doubled Chern-Simons the-
ory which captures the fixed-point physics. In fact, a sim-
ple toy-model already illustrates the important difference
between the Chern-Simons defect theories and the Yang-
Mills defect theories. An Abelian Chern-Simons gauge
field coupled to defect fermions χn would be governed by
an action

S =

∫

dt d2z [A0(∂zAz̄ − ∂z̄Az)−Az(∂0Az̄ − ∂z̄A0)

+Az̄(∂0Az − ∂zA0) +
∑

n

δ(2)(z − zn)χ
†
nA0χn] . (30)

One can see directly that integrating out A0 will not
generate a dangerous inter-defect coupling here, as it is a
non-propagating field. The A and B fields do propagate,
but these couple to the defect fields only quadratically as
in Eqs. (6, 7) and so do not generate tree level corrections.
A full field-theoretic analysis of the radiative correc-

tions to the ABJM theory coupled to hypermultiplet de-
fects is beyond the scope of our work. It will be in-
teresting to see to what extent the absence of induced
inter-defect couplings applies in the full model; the sim-
ple computation above suggests that at least the most
obvious dangerous cross-couplings visible from the Yang-
Mills perspective, do not characterize the physics of the
IR fixed point theory coupled to hypermultiplet defects.
Especially in the cases k = 1, 2, where the full model en-
joys enhanced supersymmetry, non-renormalization the-
orems strongly constrain the possible generation of four-
fermion cross-coupling terms (see for instance [26]); con-
straints on higher multi-fermion terms are less obvious.
It would be most interesting to push this analysis further,
and construct systems of defect fermions interacting with
itinerant fields where local criticality can be seen robustly
directly from field theoretic arguments.
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Appendix: The 3.5 system

To begin let us consider a variant of the construction
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of [11], who studied the brane configuration

0 1 2 3 4 5 6 7 8 9

D3 x x x x

D5(5̄) x :: :: :: x x x x x

(31)

As before, an x indicates a direction in which the given
branes are extended, and a :: indicates a direction in
which they are in a lattice configuration. The 3-5 in-
tersections are 0+ 1 dimensional, representing defects in
the dual gauge theory. For this system, with 8 ND di-
rections, only fermions live on the intersections, which is
very natural for the intended applications.
In the limit that the 5-branes are probes, the D3-branes

generate an AdS5 × S5 spacetime, with each 5-brane
wrapped on an AdS2 × S4 subspace. However, the spa-
tial directions contract in the IR of the AdS5 geometry, so
the 5-brane density diverges there and their backreaction
cannot be neglected. At large N , the backreaction be-
comes a large effect at energies which are parametrically
small compared to the lattice scale (as noted in [11]). [32]
We are looking for an IR geometry AdS2 × R3 × X ,

which we will for convenience compactify to AdS2×T 3×
X . We study this with the Ansatz X = S5, averaging
the energy density of the 5-branes over the compact di-
mensions. Let A, T , and S be the respective radii of
the three factors AdS2 × T 3 × S5. The effective action

dimensionally reduced to 1+1 dimensions is of the form

S =

∫

d2x

(

−T
3S5

g2s
+
A2T 3S3

g2s
− N5A

2S4

gs
− N2

3A
2T 3

S5

)

.

(32)
We work in units where the string length is one, and ig-
nore order one coefficients. The respective terms come
from the curvatures of AdS2 and S5, the 5-brane ten-
sions, and the RR 5-form flux, and do not distinguish
between pure D5-branes and a mix of D5s and D5s. In
other situations it would be natural to Weyl transform to
an effective potential, but this is not possible for AdS2;
instead we directly extremize with respect to A. One
readily verifies that the action has no stationary points
for finite values of the moduli A, T, S, gs. This analysis
precludes an AdS2 × T 3 × S5 solution in the case that
the 5-branes are oriented in many directions on the S5,
averaging to a symmetric source.

One way of understanding the absence of an AdS2 so-
lution in the infrared in this case is that the N = 4 super
Yang-Mills sector has a line of fixed points, parameterized
by the string coupling gs. The additional lattice branes
source this mode and altogether there are not enough
independent forces to fix gs, T, S, and A. If we include
electric and magnetic flavors, these can fix gs. Having
done this, an AdS2 solution fixing the other moduli does
arise.
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