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Abstract

The D3/D7 holographic model aims at a better approximation to QCD by adding
to N = 4 SYM theory Nf of N = 2 supersymmetric hypermultiplets in the fun-
damental representation of SU(Nc) – the “flavor fields” representing the quarks.
Motivated by a recent observation of the importance of the Wess-Zumino-like (WZ)
term for realizing the chiral magnetic effect within this model, we revisit the phase
diagram of the finite temperature, massless D3/D7 model in the presence of ex-
ternal electric/magnetic fields and at finite chemical potential. We point out that
the A-V-V triangle anomaly represented by the WZ term in the D7 brane probe
action implies the existence of new phases that have been overlooked in the previous
studies. In the case of an external magnetic field and at finite chemical potential,
we find a “chiral helix” phase in which the U(1)A angle of D7 brane embedding
increases monotonically along the direction of the magnetic field – this is a geo-
metric realization of the chiral spiral phase in QCD. We also show that in the case
of parallel electric and magnetic fields (E,B) there exists a phase in which the D7
brane spontaneously begins to rotate, so that the U(1)A angle changes as a function
of time – this may be called the “spontaneous rotation” phase; it is a geometrical
realization of a phase with non-zero chiral chemical potential. Our results call for
a more thorough study of the (T,B,E, µ) phase diagram of the massless D3/D7
model taking a complete account of the WZ term. We also speculate about the
possible phase diagram in the massive case.
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1 Introduction

This work is motivated in part by a recent realization of the chiral magnetic effect (CME)

[1, 2] in the D3/D7 model via the Wess-Zumino-like (WZ) term in the D7 probe brane

action [3]∗. The field theory dual to the D3/D7 holographic model is the N=4 super-

symmetric Yang-Mills (SYM) theory with Nf of N=2 hypermultiplets in the fundamental

representation of the color group SU(Nc) – the “flavor fields” representing the quarks. In

this dual field theory, the axial phase of a Dirac quark in the hypermultiplet is tied to a

U(1)R subgroup of the SO(6)R symmetry of the N=4 SYM sector. The hypermultiplet

also has its own flavor U(1)V symmetry which is vector-like to the hypermultiplet quarks.

These ingredients are sufficient to give rise to the U(1)2V U(1)R flavor anomaly through

the triangle one-loop diagram involving the hypermultiplet quarks. In the holographic

picture of D7 probe brane in the large Nc D3 brane background, this triangle anomaly is

captured by a WZ–like coupling in the D7 probe brane action. A peculiar feature in this

set-up is that U(1)R (we will also call it U(1)A interchangeably) is geometrically realized

as a U(1) angle in the 5-sphere of AdS5 × S5 geometry, whereas the dynamics of U(1)V

is as usual described by the gauge field on the D7 brane – therefore the triangle anomaly

is no longer represented by a 5D Chern-Simons term.

Because U(1)R is shared by other adjoint matter fields in N=4 SYM, the U(1)R charges

in the hypermultiplet can be lost to the adjoint sector, and the axial chemical potential

can be meaningful only in a quasi-equilibrium sense. A novel idea in Ref.[3] is to introduce

an external time-dependent axial phase into the system that simulates an axial chemical

potential. As U(1)A is geometrically realized as an angle in the 5-sphere, this can be

achieved by externally rotating the D7 brane along the U(1)A angle. Considering that

the axial charge can be lost to the adjoint sector, it is a nice way of maintaining a chiral

imbalance in an otherwise equilibrated system [3]. This is in fact similar to the true axial

U(1)A symmetry of real QCD where at finite temperature the sphalerons can create or

annihilate the axial charge. Indeed, a time-dependent QCD θ-angle which is equivalent to

a time-dependent axial phase by anomaly was one way of effectively describing the axial

chemical potential, with µA = θ̇ [9]. Since in the θ-vacuum picture θ can be interpreted

as a quasi-momentum (in analogy to the Bloch crystal), θ̇ may be interpreted as an

∗Closely related phenomena have been discussed in the physics of neutrino emission [4], primordial
electroweak plasma [5] and quantum wires [6]; the separation of electric charge in QCD plasma induced
by the chirality imbalance in the presence of magnetic field and/or angular momentum was first discussed
in [7, 8].
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external “force” that maintains an imbalance between the left and right fermions. This

can also be realized holographically, for example in the Sakai-Sugimoto model, through a

time-dependent C1
RR holographic dual to θQCD which could clarify the treatment of the

holographic chiral magnetic effect [10, 11, 12, 13, 14, 15, 16].

Indeed, one issue with the holographic description of the CME is that in Minkowski

signature black hole space-time, the temporal component of the vector potential Aµ at

the UV boundary is not quite equivalent to the chemical potential even in the case of

non-anomalous global symmetries [14, 17]. The thermal Green’s functions in Minkowski

signature black hole space-time have the structure

Trensemble (O(t)O(t′))time ordering , (1.1)

where O(t) is an operator that evolves as

O(t) = e+iĤtO(0)e−iĤt , (1.2)

while the ensemble trace can be either grand canonical or (micro) canonical,

Trensemble = Tr
(

e−β(Ĥ−µN̂)
)

or Tr
(

e−βĤ
)

, (1.3)

where N̂ is the charge operator. A crucial point is that the hamiltonian appears here in two

places with rather different roles – the one appearing in the ensemble trace, e−β(H−µN) or

e−βĤ , is responsible for the Euclidean imaginary time evolution of period β while the one

appearing in O(t) is responsible for the evolution in Minkowski real time. In Minkowski

black hole space-time, one sees only the Minkowski evolution and the Euclidean one is

not manifest geometrically. Conversely, in the Euclidean black hole geometry, only the

Euclidean evolution is geometrically realized. To be more explicit, by turning on At(∞) at

the UV boundary in Minkowski signature black hole, one achieves a famous replacement

according to the AdS/CFT dictionary,

Ĥ → Ĥ − At(∞)N̂ ; (1.4)

the question however is which hamiltonian should we replace on the field theory side: the

one in the ensemble average or the one in O(t), or both? Since the boundary field theory

is in Minkowski signature space-time, it seems clear that the hamiltonian in O(t) has to

be replaced; however the question whether the hamiltonian in the ensemble average also

has to be replaced is more difficult to answer. To establish the identification At(∞) = µ
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in the ensemble average one should go to the Euclidean signature black hole where the

imaginary time evolution becomes geometrically realized.

It is clear from the above discussion that one should not naively associate At(∞) in

Minkowski black hole space-time with a chemical potential. This is relevant because the

ambiguities of the chiral magnetic current appear precisely due to At(∞) in Minkowski

signature space-time, and are likely related to its effect on O(t) which should not have

been the case for the true chemical potential. Without At(∞) the ambiguities of the

holographic CME disappear [14, 17]. In Minkowski black hole, the value of the chemical

potential can be obtained by the work done to a unit charge in bringing it from the UV

boundary to the black hole horizon. The issue of singularity at the horizon poses no

problem because what matters in Minkowski dynamics is only the future event horizon

and the gauge field is regular there for any choice of At(∞) [17]. This is in accord with

the fact that At(∞) in Minkowski black hole is not quite the chemical potential. One

may choose to perform a bulk gauge transformation to remove At while introducing a

time-dependent Ar instead,

Ar = −t∂rAt(r) . (1.5)

Physically, this introduces a time-dependent Wilson line stretching from the UV boundary

to the horizon,

W = e
i
∫

∞

rH

Ar

= eitµ , (1.6)

with frequency which is equal to the chemical potential. What is important here is that

there is no singularity issue with this Wilson line. In fact, the norm AMANg
MN one uses

in the singularity argument is not a gauge-invariant concept.

Although one needs an axial chemical potential to observe the CME, there are other

interesting phenomena stemming from the triangle anomaly. One example is the chiral

separation effect [18, 19]: the emergence of an axial current along the magnetic field
~B = Bx̂3 in the presence of an “ordinary” vector chemical potential µV ,

j3A =
Nc

2π2
µVB . (1.7)

The close connection between the CME and the chiral separation effect is particularly easy

to see in the case of a strong magnetic field when dimensional reduction is appropriate

[20]. In the dimensionally reduced (1+1) theory, the axial and vector currents are related

by jµ = ǫµνj
ν
A, so that the axial charge density j0A induces a vector current j1 (CME) and

the vector charge density j0 induces an axial current j1A (chiral separation).
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Contrary to the axial chemical potential, the vector chemical potential (as well as

magnetic field) is much easier to introduce in the D7 brane. Once we accept (1.7), it

is natural to look for a signal of the axial current j3A in the following way: as U(1)A is

geometrically realized the axial current will take a form of a chiral spiral [21, 22, 23, 24, 25,

20, 26] that is, the U(1)A angle of the D7 brane embedding shape should have a constant

gradient along the space direction x3 ≡ z. Even though one is working in the massless

limit, the D7 brane should develop a profile of non-zero axial phase gradient along x3 to

satisfy the constraint (1.7) dictated by the triangle anomaly. We will call this the chiral

helix phase emphasizing its geometrical realization in the holographic setup.

The phase diagram of D7 brane dynamics in the presence of both magnetic field and

ordinary chemical potential has been studied before, both at finite [27, 28] and at zero

temperature [29]. However the triangle anomaly constraint (1.7), or equivalently the effect

of the WZ term in the D7 brane action, seems to have been missed in these analyses. In

this paper, we find a significant modification of the phase diagram due to the anomaly,

and prove the emergence of the chiral helix phase through a dynamical instability. A

more thorough study of the full (B, µ) phase diagram will be presented elsewhere [30].

Another interesting and well-known effect stemming from the triangle anomaly is

the creation or annihilation of the U(1)A charge in the presence of parallel electric and

magnetic fields,

∂µj
µ
A ∼ ~E · ~B 6= 0 . (1.8)

At finite chiral chemical potential µA, (1.8) determines the power of the chiral magnetic

current in the case of the parallel electric and magnetic fields:

P =
∫

d3x ~j · ~E = µA

e2

2π2

∫

d3x ~E · ~B. (1.9)

Note that no power is dissipated in the absence of the electric field, and that depending

on the relative signs of ~E · ~B and µA, the power can be either positive or negative – in the

latter case the current is powered by the energy stored in the system due to the difference

of Fermi energies of left and right chiral charges [2, 9]. The reversibility of the sign of the

power signals the lack of dissipation that is a consequence of the time reversal invariance

of chiral magnetic conductivity and other anomalous transport coefficients – this provides

an important constraint on the anomalous hydrodynamics [31].

In the holographic setup one can easily introduce the electric/magnetic fields through

world-volume gauge field on the D7 brane. Because the U(1)A charge is simply the

angular momentum of the D7 brane along the axial angle in the 5-sphere, the above
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triangle anomaly constraint implies that the D7 brane should start rotating along this

U(1)A angle with an increasing speed. Due to the loss of axial charge (dissipation) to

the adjoint sector, one expects the system to stabilize with a finite angular momentum

afterwards. We will call this the “spontaneous rotation phase”. The existence of this

phase seems to have been missed in the previous analyses in the literature [27, 32]; we

expect that the spontaneous rotation phase leads to a significant modification of the phase

diagram. In the present work we prove the existence of the spontaneous rotation phase

by observing a dynamical instability towards it. The study of the full phase diagram of

(B,E, µ) is deferred to future.

We stress that there are no externally driven time-dependent parameters in our situ-

ations, contrary to Ref.[3]. This is because the chemical potential and electric/magnetic

fields of the baryonic U(1)V symmetry are easier and more natural to introduce through

the D7 world-volume U(1)V gauge field. Yet we observe that the existence of the U(1)2V U(1)R

triangle anomaly represented by the WZ term still leads to interesting consequences.

Although we focus only on the massless case in this paper, it is interesting to speculate

about the massive case. In the case of the chiral spiral in the chiral-symmetry broken

phase of QCD, the massive case features an inhomogeneous chiral spiral : the axial phase

jumps only in narrow periodic ranges of x3 [22]. This is due to a competition of the free

energy associated with the phase gradient and the anomaly constraint imposed by (1.7).

One naturally expects that a similar phenomenon would happen in the massive D3/D7

model, and it will be interesting to pursue this further.

2 Massless D3/D7 model with (T,B, µ)

We study the dynamics of the probe D7 brane embedded in a gravity background of large

Nc D3 branes at finite temperature T given by

ds2 =
r2

L2

(

−V (r)dt2 +
3
∑

i=1

(dxi)2
)

+
L2

r2V (r)
dr2 + L2dΩ2

5 , V (r) = 1−
(

πL2T

r

)4

,

FRR
5 =

(2πls)
4Nc

π3
ǫ5 , (2.10)

where L4 = 4πgsNcl
4
s ≡ λl4s and ǫ5 is the volume form of a unit 5-sphere; gs and ls are

the string coupling and string length. In the weak coupling limit, the D3 branes span

(t, xi), i = 1, 2, 3 and the D7 brane wraps additional four dimensions we call x4,5,6,7. The

remaining two dimensions x8,9 are transverse to both D3 and D7 branes. The six dimen-
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χ
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ρ
D7 Brane

Black Hole

Figure 1: A schematic picture of D7 brane embedding in the D3 background. The (x8, x9)
plane of our interest is shown explicitly.

sional space x4−9 is the total transverse space to the D3 brane, and the radial direction r

and the 5-sphere Ω5 in (2.10) are the radius and angles in this space. The theory of the

D3/D7 branes is N=4 SYM theory of SU(Nc) plus N=2 hypermultiplet of fundamental

representation fields. In the strong coupling regime that we are interested in, the D3

branes are replaced by the above gravity-flux background (2.10) whereas the D7 brane is

treated as a probe brane to this holographic background. On the field theory side, the

dynamics of the probe D7 branes should be dual to the dynamics of N=2 hypermultiplet

at strong coupling in the quenched approximation.

The embedding geometry of the D7 probe brane in the above background (2.10) is

explained in Fig.1. In general, the D7 brane bends in the transverse direction x8,9, and

this is all the data one has to specify for the shape assuming that the shape is invariant

under rotations in x4,5,6,7 space. Introducing the radius of x4,5,6,7 space that the D7 brane

spans

ρ =
√

(x4)2 + · · ·+ (x7)2 , (2.11)

the D7 brane wraps a 3-sphere of constant ρ for each ρ. Note that ρ = ρ(r, xµ) is in general

a non-trivial function of holographic 5-dimensions (r, xµ) depending on the bending in x8,9
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directions by the relation

ρ =
√

r2 − (X8(r, xµ))2 − (X9(r, xµ))2 , (2.12)

where X8,9(r, xµ) are functions that specify the bending shape in x8,9 space. One can con-

veniently choose the eight-dimensional D7 brane world-volume coordinates to be (xµ, r,Ω3),

and the embedding geometry is completely determined by two functions X8,9(r, xµ).

The rotational U(1) in x8,9 space is a part of SO(6)-symmetry of the total transverse

space x4−9 which is the holographic manifestation of SO(6)R R-symmetry of N=4 SYM

theory. For the hypermultiplets it also corresponds to a phase rotation of the N=2 super-

symmetric complex mass term, as the r → ∞ asymptotic value of (X8+ iX9) is precisely

such mass parameter for the hypermultiplet. Although the hypermultiplet involves scalars

too, at least for the (Dirac) fermions it is very similar to the axial U(1)A in real QCD. We

therefore call it either U(1)R or U(1)A interchangeably. The novelty here is that U(1)A

is geometrically realized as a real rotation in x8,9 internal space. Several previous stud-

ies have explored this aspect to get useful results relevant for chiral symmetry breaking

phase transitions in QCD [33, 34, 35, 36] †. More relevant to our present work, Ref.[3]

recently simulated the axial chemical potential in QCD by introducing an external time-

dependent rotation along this x8,9 U(1) angle. One drawback is that this R-symmetry

is shared by adjoint scalars and fermions in N=4 SYM theory, so that the total charge

can be lost to the background geometry [3]. However, the effective chemical potential

that they introduce by rotation can be kept stationary by continuous external inflow of

necessary charges and one can meaningfully discuss the physics of hypermultiplet sector

with a finite R-symmetry chemical potential.

This bears some similarity to real QCD where axial charges may be lost due to QCD

sphalerons, and indeed a time-dependent external θQCD-angle (which is equivalent to the

axial phase by anomaly) was one of the ways to introduce an effective axial chemical

potential [9]. It is perhaps relevant to point out that one can do a similar thing even

in the Sakai-Sugimoto model. The U(1)A suffers non-conservation due to coupling to

the CRR
1 which is dual to θQCD-angle. This is a holographic manifestation of U(1)A

anomaly with QCD gluons. Although this effect has been neglected based on large Nc-

suppression, one can go on to introduce a time-dependent CRR
1 to introduce an effective

axial chemical potential; this procedure would bypass the issues regarding the holographic

chiral magnetic effect discussed in the Introduction.

†As in QCD, U(1)A is not a true symmetry due to the anomaly involving gluons. A typical justification
for discussing chiral symmetry breaking with it is a large Nc suppression of this anomaly.
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The D7 brane dynamics also includes a baryonic U(1) symmetry by a U(1) gauge field

residing on its world-volume. The situation we are going to study is the one having a

constant magnetic field along, say x3 ≡ z direction,

F12 = B , (2.13)

and a finite chemical potential µ, both of which are with respect to this baryonic symmetry.

Note that B which is constant everywhere is a trivial solution of equations of motion. We

will focus on the massless case which means

(X8, X9) → 0 , r → ∞ , (2.14)

and we will discuss what might be happening in the massive case in the last section. The

phase diagram of the system in (T,B, µ) has been studied previously in Ref.[28], but as

discussed in the Introduction an interesting role played by U(1)2U(1)R triangle anomaly

represented by a Wess-Zumino term was overlooked. Given (B, µ), the triangle anomaly

dictates an existence of the chiral separation effect:

j3R =
Nc

2π2
µB , (2.15)

and in our case of U(1)R geometrically realized as a rotation in x8,9 space, a finite j3R

current would take a form of a helix, i.e. a non-zero spatial z-gradient of the U(1)R angle

of the D7 brane embedding, see Fig.2 for an illustration. This is an analog of the chiral

spiral of pion gradient in low-energy QCD with electromagnetic B and µB [22], except

that the axial phase and the spiral in our case are realized geometrically and are easily

visualized.

This implies that a sizeable fraction of the phase diagram with (B, µ) should in fact be

the chiral helix phase. To establish its location in the (T,B, µ) phase diagram, one should

compare the grand canonical free energies (including the effects from the WZ term) of the

phases with and without the chiral helix. This interesting task will be pursued elsewhere

[30], but in this paper we will prove the existence of this phase by showing a dynamical

instability towards it from the phase which does not possess the chiral helix. Fig.3 is a

rough picture of the phase diagram of (T,B, µ) in Ref.[28] without considering the WZ

term. Due to conformal symmetry, the only meaningful parameters are ( µ√
B
, T√

B
) and one

sets B = 1 ‡. The vertical axis is related to T by

rH√
2
=

π√
2
T . (2.16)

‡Precisely speaking there is also a rescaling (2πl2s)F → F and we choose ls to have L4 = λl4s ≡ 1
before setting B = 1. We also will use this convention later.
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Figure 2: The D7 brane embedding in the chiral helix phase. The U(1)R angle φ in (x8, x9)
plane is monotonically increasing along x3 = z direction. In the space of (x8, x9, z) the
shape indeed looks like a helix.

The region III in the upper-right part is the so-called supersymmetric embedding phase

where the D7 brane embedding is straight in x8,9 space without bending all the way to

the black hole horizon, (X8(r), X9(r)) ≡ (0, 0). We are going to study the dynamical

instability of this phase towards forming the chiral helix, and as an exemplar case we will

pick one point – the point A in Fig.3 – which has ( rH√
2
, µ) = (0.25, 1) and is well inside

the region III without any ambiguity. We will indeed find that this point is unstable to

linearized chiral helix modes.

The action of D7 brane is

SD7 = −µ7

∫

d8ξ e−φ
√

det(g∗ + 2πl2sF ) + µ7
(2πl2s)

2

2!

∫

CRR
4 ∧ F ∧ F , (2.17)

where µ7 = (2π)−7l−8
s , eφ = gs, and F is the field strength of the baryonic U(1) gauge

field. Note that the embedding dynamics of X8,9(r, xµ) enters through the induced world-
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µ

r
H/sqrt{2}

0.4 0.8

0.25
A

I II

III

Figure 3: A schematic picture of (T,B, µ) phase diagram without considering triangle
anomaly (WZ term) from Ref.[28, 32]. B has been set to 1. The region I corresponds to
the phase where the chiral symmetry is spontaneously broken, and the meson is stable
(the “Minkowski embedding phase”). In the region II, the chiral symmetry is still spon-
taneously broken, but the meson is unstable. Finally, the region III contains the chirally
symmetric phase. The point A has ( rH√

2
, µ) = (0.25, 1) and has an instability toward chiral

helix phase.

volume metric g∗. Because ls drops in any field theory observables, one can conveniently

choose it such that L4 = λl4s ≡ 1, and we also rescale (2πl2s)F → F for simplicity. We are

going to study linearized fluctuations from the configuration of point A in Fig.3 which

has X8,9(r, xµ) ≡ 0. The chemical potential, or equivalently the background solution of

Ftr is obtained from the action

SD7 = − λNc

16π4

∫

d5x

{

r
√
r4 +B2

√

1− (Ftr)
2
}

, (2.18)

which gives one in Ar = 0 gauge,

F
(0)
tr = −∂rA

(0)
t = − Q

√

Q2 + r2(r4 + B2)
, (2.19)

where a constant of motion Q is determined from µ by the condition

µ = A
(0)
t (∞) =

∫ ∞

rH

dr
Q

√

Q2 + r2(r4 +B2)
. (2.20)

It is tedious but straightforward to expand the action (2.17) quadratically from the back-

ground solution in terms of small linearized perturbations of the modes (X8,9, At, Az) (we
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omit δ-symbol for simplicity) assuming the dependence only on (t, z, r) that are poten-

tially relevant for the chiral helix instability. We have verified the consistency of this

ansatz. We find that gauge field perturbations decouple from those of X8,9 so from now

on we keep only X8,9 perturbations that are of interest for us. One subtlety regarding

CRR
4 should be mentioned: writing the 5-sphere metric as

dΩ2
5 = dχ2 + sin2 χdφ2 + cos2 χdΩ2

3 , (2.21)

where 0 ≤ χ ≤ π
2
is the angle from the ρ axis such that (see Fig.1)

cosχ =
ρ

r
, sinχ =

R

r
, R ≡

√

(x8)2 + (x9)2 , (2.22)

and φ is the U(1)R angle in x8,9-plane, the volume form takes a form

ǫ5 = sinχ cos3 χ dχ ∧ dφ ∧ ǫ3 = d

[

−1

4
cos4 χ ∧ dφ ∧ ǫ3

]

, (2.23)

where ǫ3 is the volume form of unit 3-sphere. From this one obtains CRR
4 as

CRR
4 =

(2πls)
4Nc

π3

1

4

(

C − cos4 χ
)

∧ dφ ∧ ǫ3 , (2.24)

where a constant C is a freedom of sigular gauge transformations. Since the background

D7 brane shape X8,9(r) ≡ 0 corresponds to χ = 0 and we are looking at small fluctuations

around it, we need to choose C such that CRR
4 is regular around χ = 0. At χ = 0, the

angle φ becomes singular, and CRR
4 should vanish to be regular, which fixes C = 1. (The

other choice C = 0 would make CRR
4 regular at χ = π

2
instead where the 3-sphere vanishes.

This will be suitable when discussing fluctuations around Minkowski embeddings.) This

finally gives us an expression for the WZ term:

SWZ =
λNc

128π4

∫

d5x

(

2r2 − (X8)2 − (X9)2

r4

)

ǫMNPQR
(

X8∂MX9 −X9∂MX8
)

FNPFQR ,

(2.25)

where ǫMNPQR is purely numerical.

After a sizable amount of algebra, the quadratic action for the fluctuations one gets is

S(2) =
λNc

16π4

∫

d5x

{

1

2
A(r)

(

∂tX
8
)2 − 1

2
B(r)

(

∂zX
8
)2 − 1

2
C(r)

(

(

∂rX
8
)2 − ∂r

(

(X8)2

r

))

+
1

2
D(r)(X8)2 + (same with X8 ↔ X9)− 1

2
E(r)

(

X8∂zX
9 −X9∂zX

8
)

}

, (2.26)
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where the coefficient functions are given by

A(r) = r
√
r4 +B2

1

r4V (r)

1
√

1−
(

F
(0)
tr

)2
, B(r) = r

√
r4 +B2

1

r4

√

1−
(

F
(0)
tr

)2
,

C(r) = r
√
r4 +B2

V (r)
√

1−
(

F
(0)
tr

)2
, D(r) = r

√
r4 +B2

3

r2

√

1−
(

F
(0)
tr

)2
,

E(r) =
4B

r2
F

(0)
tr . (2.27)

The last term results from the WZ term which plays an essential role in our discussion.

It is a straightforward exercise to derive the equations of motion from the above and

to study the linearized stability of the system. As one has a black hole horizon located at

r = rH , one needs to impose a physically relevant in-coming boundary condition at the

horizon, and for this purpose it is more convenient to work in the Eddington-Finkelstein

coordinate (t∗, r∗),

t∗ = t +
∫ r

∞

dr′

(r′)2V (r′)
, r∗ = r , (2.28)

upon which one has

∂t = ∂t∗ , ∂r = ∂r∗ +
1

r2V (r)
∂t∗ ,

∫

dtdr =
∫

dt∗dr∗ . (2.29)

The quadratic action (2.26) then takes a form in Eddington-Finkelstein coordinate (we

omit subscript ∗ for simplicity),

S
(2)
EF =

λNc

16π4

∫

d5x

{

− 1

2
B(r)

(

∂zX
8
)2 − 1

2
C(r)

(

∂rX
8
)2 − C(r)

r2V (r)
(∂tX

8)(∂rX
8)

− 1

2

(

1

r
(∂rC(r))−D(r)

)

(X8)2 + (same with X8 ↔ X9)

− 1

2
E(r)

(

X8∂zX
9 −X9∂zX

8
)

}

, (2.30)

Note that (∂tX
8,9)2 terms disappear completely due to the identity

A(r) =
C(r)

r4(V (r))2
, (2.31)

and all the coefficient functions that appear in the above, especially C(r)
r2V (r)

, are regular at

the horizon r = rH .

12



Recall that the usefulness of the Eddington-Finkelstein coordinate is that simple regu-

larity at the horizon r = rH automatically guarantees the in-coming boundary condition,

while out-going modes look singular in the coordinate. An easier way to see this is to

consider a wave oscillating in time t∗ in the Eddington-Finkelstein coordinate

e−iωt∗ = e−iωte
−iω

∫

r

∞

dr
′

(r′)2V (r′) , (2.32)

which automatically contains the necessary in-coming radial phase part in terms of the

original Schwarzschild coordinate, so that any regular wave in Eddington-Finkelstein co-

ordinate is in-coming at the horizon.

Equations of motion from (2.30) are

B(r)∂2
zX

8,9 + ∂r(C(r)∂rX
8,9) +

C(r)

r2V (r)
∂t∂rX

8,9 + ∂t∂r

(

C(r)

r2V (r)
X8,9

)

−
(

1

r
(∂rC(r))−D(r)

)

X8,9 ∓ E(r)∂zX
9,8 = 0 , (2.33)

where the last term mixes X8 and X9 in such a way that the correct diagonal basis is in

fact a helical basis X(±) = X8 ± iX9, which is also tied to the z-direction flipping as one

expects. One can easily see that the modes at hand indeed correspond to the chiral helix

modes with finite z-momentum. One needs to consider only X(+) ≡ X in the analysis as

the equations are invariant under X(±) → X(∓) and z → −z.

To study instability associated with a finite z-momentum one goes to frequency-

momentum space by assuming e−iωt+ikz, after which one has

C(r)∂2
rX +

(

(∂rC(r))− 2iω
C(r)

r2V (r)

)

∂rX

−
(

1

r
(∂rC(r))−D(r) + k2B(r) + kE(r) + iω∂r

(

C(r)

r2V (r)

))

X = 0 . (2.34)

As mentioned before, one imposes regularity at the horizon r = rH for in-coming boundary

condition. Note that C(rH) = 0 and the boundary condition is not trivial. On the UV

boundary r → ∞, one can have two possible modes from the above equation as usual in

AdS/CFT,

X ∼ X0 − iω
X0

r
+

X1

r2
+ · · · , (2.35)

where X0 corresponds to the bare mass of the hypermultiplet and the normalizability con-

dition puts the constraint X0 = 0 in our massless case. These two boundary conditions

13



give a discrete spectrum of ω for a given k, which is an example of quasi-normal mode

problem. If the lowest ω(k) → 0 in the limit k → 0, this is sometimes called hydrody-

namic dispersion relation for an obvious reason, but here we are interested in the finite k

spectrum. An inspection of our master equation (2.34) shows that ω is purely imaginary,

so that one can write

ω = iIm[ω] . (2.36)

Considering e−iωt dependence, any positive Im[ω] > 0 signals an exponentially growing

amplitude and hence an instability, while one expects Im[ω] < 0 for typical dissipative

relaxations.

Before delving into numerical searches for instability that will be described shortly,

one can qualitatively understand from (2.34) how the unstable modes of Im[ω] > 0 can

possibly appear. Consider first a fictitious situation where there was no WZ term, or

equivalently let E(r) be absent in (2.34). This would be a typical situation of D7 brane

world-volume fluctuations along transverse X8,9 directions, and one can expect that the

modes would simply be dissipating in the presence of black hole. The dependence on k

should obviously be that the larger k2 is the faster the mode decays, so that the quasi-

normal spectrum would be

Im[ω] = −m2
eff − αk2 + · · · , α > 0 , (2.37)

for a reasonable range of k. Then, in (2.34) the effect of having WZ contribution is simply

replacing B(reff)k
2 with B(reff )k

2 + E(reff)k where reff is the most relevant value of r

for the mode wave function. Therefore the quasi-normal mode spectrum including WZ

contribution should qualitatively look like

Im[ω] = −m2
eff − αk2 − βk + · · · , α > 0 , (2.38)

where β is roughly proportional to E(reff). Completing square of the expression, one

arrives at

Im[ω] = −α

(

k +
β

2α

)2

+
β2

4α
−m2

eff = −α(k − k0)
2 +

β2

4α
−m2

eff , (2.39)

so that when β2

4α
− m2

eff > 0, Im[ω] can be positive for a range of non-zero k centered

around k = k0. This qualitative picture is confirmed in our numerical studies.

In our numerical simulation, we solve (2.34) from r = rH + ε to a UV cutoff r = rmax

given (k, Im[ω]) using a Mathematica package NDSolve. Note that regularity at r = rH

14
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Figure 4: Our numerical result of Im[ω] as a function of z-momentum k. We set B = 1
and ( rH√

2
, µ) = (0.25, 1). This shows that Im[ω] > 0 for a range of k and indicates an

instability.

from (2.34) fixes the ratios (∂rX)
X

and (∂2
rX)
X

at r = rH unambiguously, which allows one

to start from r = rH + ε with a small number ε. As the equation is linear we are free

to choose the normalization X(rH) = 1. We then impose a condition of normalizability

|X(rmax)| < ε′ with another small number ε′. We choose the parameters

ε = 0.001 , rmax = 10 , ε′ = 0.05 , (2.40)

in our numerical result in Fig.4, which clearly shows a range of k with positive Im[ω].

This is a numerical proof of the existence of the chiral helix phase.

3 Massless D3/D7 model with (T,B,E)

In this section, we study another case of interest that should also be affected by the

triangle anomaly, or equivalently the WZ term: the case when both electric and magnetic

fields are present, and parallel to each other. The triangle anomaly dictates that the axial

U(1)R current is not conserved under this situation

∂µj
µ
R ∼ ~E · ~B , (3.41)

and one expects a continuous creation (or annihilation) of U(1)R charges in the system.

Noting that the U(1)R charge at hand should correspond to the angular momentum of the

D7 brane along the x8,9-plane, the only way to satisfy this anomaly constraint is to have a
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r
H/sqrt{2}

0.25

I II

Ε

A

III

0.20.1

Figure 5: A rough picture of phase diagram of (T,B,E) without considering triangle
anomaly in Ref.[32]. B is set to 1. For the description of the phases I, II and III see
the caption of Fig. 3. The point A has ( rH√

2
, E) = (0.25, 1), which will be shown to be

unstable toward spontaneous rotation phase.

spontaneous rotation of D7 brane in x8,9 plane. Initially, the D7 brane angular momentum

would increase; then, due to the existence of black hole horizon, the dissipation of the

created U(1)R angular momentum to the background geometry (or adjoint sector) turns

on, and one can imagine a stationary situation of a constant angular momentum carried

by the rotating D7 brane. We will call this a “spontaneous rotation phase”. Previous

studies on the system [27, 32] seem to have missed this possibility, and a more complete

study is certainly desirable [30]. In this section, we will prove the existence of this phase

by showing a dynamical instability toward it from the configuration that does not possess

rotation.

The phase diagram of (T,B,E) from Ref.[32] is sketched in Fig.5. We focus only on

the zero chemical potential case for simplicity, but the essential feature of the analysis

in this section is independent of the presence of chemical potential. Using conformal

symmetry, B has been set to unity, and the conventions are as explained in the previous

section. The region III in the far right is again the supersymmetric embedding phase

where the D7 brane is straight with X8,9(r) ≡ 0. We will study the spontaneous axial

rotation instability of the point A with ( rH√
2
, E) = (0.25, 1) which is well inside this region.

To find the zeroth order background solution with constant (B,E) in supersymmetric

16



embedding phase, one starts with the relevant action component

SD7 = − λNc

16π4

∫

d5x

{

r
√
r4 +B2

√

1 + V (r)(Fzr)2 −
1

r4V (r)
E2

}

, (3.42)

where one turns on external magnetic F12 = B and electric Ftz = E fields along z = x3

direction. One can check that the constant B and E solve full equations of motion

consistently, and one only needs to solve for Fzr, or Az in Ar = 0 gauge. Solving it from

the action, one obtains

F (0)
zr =

J

V (r)

√

√

√

√

√

1− 1
r4V (r)

E2

r2(r4 +B2)− J2

V (r)

, (3.43)

where J is an integration constant which is directly proportional to the induced baryonic

current along z direction. One notices that the expression inside the square root in (3.43)

can change signs if J is not suitably chosen [37]. The on-shell action itself also involves

similar factors

Son−shell = − λNc

16π4

∫

d5x











r2(r4 +B2)

√

√

√

√

√

1− 1
r4V (r)

E2

r2(r4 +B2)− J2

V (r)











, (3.44)

and one should make sure that the total expression inside square root remains positive

for a meaningful solution. The numerator changes sign at r = r∗ where

r4∗ = r4H + E2 , (3.45)

and this should also be the point where the denominator changes sign, which determines

J as [37]

J2 = E2

(

r2∗ +
B2

r2∗

)

= E2





√

r4H + E2 +
B2

√

r4H + E2



 . (3.46)

The point r = r∗ will play an important role when we discuss linearized fluctuations from

this background solution.

Our task is to expand the D7 brane action quadratically for linearized fluctuations

from this background solution. After some algebra, one finally arrives at

S(2) =
λNc

16π4

∫

d5x

{

1

2
A(r)

(

∂tX
8
)2

+B(r)
(

∂tX
8
) (

∂rX
8
)

− 1

2
C(r)

(

∂rX
8
)2

− 1

2

(

1

r
(∂rC(r))−D(r)

)

(X8)2 + (same with X8 ↔ X9)

+
1

2
E(r)

(

X8∂rX
9 −X9∂rX

8
)

+
1

2
F (r)

(

X8∂tX
9 −X9∂tX

8
)

}

, (3.47)
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where the last line is from the WZ term. The coefficient functions are

A(r) = r
√
r4 +B2

1

r4

(

1

V (r)
+
(

F (0)
zr

)2
)

1
√

1 + V (r)
(

F
(0)
zr

)2
− 1

r4V (r)
E2

,

B(r) = r
√
r4 +B2

E

r4
F (0)
zr

1
√

1 + V (r)
(

F
(0)
zr

)2
− 1

r4V (r)
E2

,

C(r) = r
√
r4 +B2

1

r4

(

r4V (r)−E2
) 1
√

1 + V (r)
(

F
(0)
zr

)2 − 1
r4V (r)

E2

,

D(r) = r
√
r4 +B2

3

r2

√

1 + V (r)
(

F
(0)
zr

)2
− 1

r4V (r)
E2 ,

E(r) =
4B

r2
E , F (r) =

4B

r2
F (0)
zr . (3.48)

One should note that the expression

√

1 + V (r)
(

F
(0)
zr

)2 − 1

r4V (r)
E2 = r

√
r4 +B2

√

√

√

√

√

1− 1
r4V (r)

E2

r2(r4 + B2)− J2

V (r)

(3.49)

is regular and non-vanishing at r = r∗ precisely because of the choice of J above, so that

all coefficient functions are regular at r = r∗.

It is an important fact however that C(r∗) = 0, which implies that the regularity

boundary condition at r = r∗ is a non-trivial one. Combined with the UV normalizabil-

ity boundary condition, these two boundary conditions give us a discrete quasi-normal

spectrum of the fluctuations. Therefore r = r∗ (recall r∗ > rH), instead of the black

hole horizon, seems to play a role of the IR boundary for linearized fluctuations on the

D7 brane [38]. Because A(r) remains finite at r = r∗, one does not need to work in the

Eddington-Finkelstein-like coordinate around r = r∗, and a regular wave at r = r∗ is not

necessarily in-coming.

The equations of motion are

−A(r)∂2
tX

8,9 −B(r)∂t∂rX
8,9 − ∂r

(

B(r)∂tX
8,9
)

+ ∂r
(

C(r)∂rX
8,9
)

(3.50)

−
(

1

r
(∂rC(r))−D(r)

)

X8,9 ± 1

2
E(r)∂rX

9,8 ± 1

2
∂r
(

E(r)X9,8
)

± F (r)∂tX
9,8 = 0 ,

and in terms of helicity basis X(±) ≡ X8± iX9, the equations of motion become diagonal.

This indicates that the D7 brane shape will be helical in the radial r direction, while

rotating in time, see Fig.6. To study the instability, we go to the frequency space assuming
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x8
x9

ρ
Rotating in timeD7 brane

Figure 6: The shape of the D7 brane in the spontaneous rotation phase. The shape is
helical along the radial direction while the system rotates in time.

e−iωt, and find that under X(+) ↔ X(−) the frequency maps to ω ↔ −ω so that the

imaginary part of ω is the same for both X(±). Since the instability is signaled by a

positive imaginary part Im[ω] > 0, one needs to study X(+) ≡ X mode only. The

equation to solve in frequency space is then

C(r)∂2
rX +

(

(∂rC(r)) + 2iωB(r)− iE(r)

)

∂rX (3.51)

+
(

ω2A(r) + iω (∂rB(r))− 1

r
(∂rC(r)) +D(r)− i

2
(∂rE(r))− ωF (r)

)

X = 0 .

We solve (3.51) numerically from r = r∗+ ε until a UV cutoff rmax given a complex ω.

One can normalize X(r∗) = 1 and the regularity at r = r∗ fixes the initial conditions. We

then test a UV normalizability condition |X(rmax)| < ε′, and if the solution satisfies it we

let the program put a dot in the complex ω-plane. Fig.7 is our result using parameters

ε = 0.001 , rmax = 10 , ε′ = 0.05 , (3.52)

which clearly proves that the quasi normal spectrum ω has a positive imaginary part, and

hence instability.
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Figure 7: Numerical result for the lowest complex frequency of a linearized spontaneous
rotation mode. The background has ( rH√

2
, E, B) = (0.25, 1, 1) in the supersymmetric

embedding phase. This is a numerical proof of the existence of spontaneous rotation
phase.

4 Summary

To summarize, we have studied the phase diagram of the D3/D7 holographic model in two

cases: 1) at finite (vector) chemical potential and in the presence of an external magnetic

field, and 2) in the presence of external parallel electric and magnetic fields. We have

found that the triangle anomaly represented by the Wess-Zumino-like term in the D7

brane probe action implies the existence of previously overlooked new phases.

In the case 1), we have found a “chiral helix” phase in which the U(1)A angle of D7

brane embedding increases monotonically along the direction of the magnetic field. We

consider this as a holographic realization of the chiral spiral phase in QCD. We have

found an axial current propagating in this phase, corresponding to the chiral separation

effect. Previously, the existence of the chiral magnetic current at finite axial chemical

potential has been established within the same D3/D7 model [3]. It was argued in Ref.

[39, 40] that the coupling between the axial and vector charge oscillations induced by

the anomaly should lead to the emergence of a gapless excitation – the chiral magnetic

wave. It would be interesting to establish the presence of this excitation and to study its

properties within the D3/D7 holographic model.

In the case 2), we have identified the “spontaneous rotation” phase in which the D7

brane spontaneously begins to rotate, so that the U(1)A angle changes as a function of

time. This phase is a geometrical realization of a phase with non-zero chiral chemical
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potential – indeed, the parallel external electric and magnetic fields generate chirality

through the triangle anomaly. In the D3/D7 model the U(1)A symmetry is shared by

other adjoint matter fields, so the U(1)A charges in the hypermultiplet can be lost to the

adjoint sector. This loss of chirality eventually leads to a stationary rotation frequency

of the D7 brane, corresponding to some limiting value of the chiral chemical potential

that can be maintained in the system. In real QCD plasma, the axial charge can be lost

due to the sphaleron transitions; it would be interesting to establish whether or not there

exists a corresponding limiting value of the chiral chemical potential similar to the one

we observe in the D3/D7 model. In general, our study indicates an important role played

by the anomaly in the phase diagram of gauge theories.
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