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We introduce a new kludge scheme to model the dynamics of generic extreme mass-ratio inspirals
(stellar compact objects spiraling into a spinning super-massive black hole) and to produce the gravi-
tational waveforms that describe the gravitational wave emission of these systems. This scheme com-
bines tools from different techniques in General Relativity: It uses a a multipolar, post-Minkowskian
expansion for the far-zone metric perturbation (which provides the gravitational waveforms, here
taken up to mass hexadecapole and current octopole order) and for the local prescription of the
self-force (since we are lacking a general precription for it); a post-Newtonian expansion for the
computation of the multipole moments in terms of the trajectories; and a BH perturbation theory
expansion when treating the trajectories as a sequence of self-adjusting Kerr geodesics. The orbital
evolution is thus equivalent to solving the geodesic equations with time-dependent orbital elements,
as dictated by the multipolar post-Minkowskian radiation-reaction prescription. To complete the
scheme, both the orbital evolution and wave generation require to map the Boyer-Lindquist coordi-
nates of the orbits to the harmonic coordinates in which the different multipolar post-Minkowskian
quantities have been derived, a mapping that we provide explicitly in this paper. This new kludge
scheme is thus a combination of approximations that can be used to model generic inspirals of sys-
tems with extreme mass ratios to systems with more moderate mass ratios, and hence can provide
valuable information for future space-based gravitational-wave observatories like the Laser Interfer-
ometer Space Antenna and even for advanced ground detectors. Finally, due to the local character
in time of our multipolar post-Minkowskian self-force, this scheme can be used to perform studies
of the possible appearance of transient resonances in generic inspirals.

PACS numbers: 04.30.-w,04.50.Kd,04.25.-g,04.25.Nx

I. INTRODUCTION

Gravitational waves (GWs) hold the promise to pro-
vide detailed information about astrophysical bodies that
are obscure in the electromagnetic spectrum, such as bi-
nary black hole (BH) systems. Moreover, such waves
will allow for the first studies of the nature of the grav-
itational interaction and of the validity of General Rel-
ativity (GR) in the strongest regimes [1, 2]. An accu-
rate modeling of such GWs is essential for the extraction
and characterization of weak signals buried in detector
noise. This is because waveform templates act as an op-
timal linear filter that maximizes the signal-to-noise ratio
(SNR) in the presence of stochastic noise. The absence of
such templates for certain GW sources renders subopti-
mal any GW search strategy. Therefore, the construction
and modeling of GWs to construct accurate templates for
data analysis is of paramount importance in the blossom-
ing of GW astrophysics.

One of the staple GW sources of the planned space-
based observatory Laser Interferometer Space Antenna
(LISA) [3, 4] that require accurate templates for their
detection and analysis are extreme-mass-ratio inspirals
(EMRIs) [5]. These events consist of a small compact
object (SCO), such as a stellar-mass BH or neutron star
(NS), spiraling in a generic orbit into a spinning, (su-

per)massive black hole (MBH), whose evolution is GW
dominated. In such inspirals, the SCO spends up to mil-
lions of cycles in close orbits around the MBH, possibly
with large pericenter velocities and eccentricities, sam-
pling the strong gravitational field of the MBH.

Many astrophysical scenarios predict the existence of
such EMRIs. One such scenario postulates that the SCO
exchanges energy and angular momentum with other
stars in a stellar core/cusp near a MBH at a galactic cen-
ter, via two-body relaxation and dynamical friction [5]. If
so, the SCO can be swung sufficiently close to the MBH
to be gravitationally captured [5, 6], at which point it
would slowly inspiral until being swallowed by the MBH.
Of course, such a scenario is complicated by mass seg-
regation [7], triaxial density profiles [8], resonant relax-
ation [9], etc. Other channels of EMRI formation include
binary tidal separation [10] (where a binary is disrupted
with one component captured by the MBH) and mas-
sive star capture or production in accretion discs [11],
where the stellar-mass BH is directly formed in the ac-
cretion disk of the MBH. It turns out that the EMRI
GWs produced by EMRIs in each astrophysical mech-
anism have distinct characteristic that may be use to
distinguish them from EMRI observations [12].

The inspiral is by far the dominant GW phase for
EMRI data analysis purposes. This can be understood
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rather easily (see, e.g. [13, 14]). The number of cycles
accumulated in the inspiral scales with the inverse of the
mass ratio m?/M•, while in the plunge and merger it
scales with the MBH mass M• only. Since the mass ratio
for EMRIs is in the range O(10−4)-O(10−6), the charac-
teristic duration and cycle accumulation during the in-
spiral phase is several orders of magnitude larger than
during plunge and merger. In turn, the SNR is in the
range O(10)-O(102) for EMRIs at realistic distances and
it scales linearly with the total number of cycles. Thus,
the contribution of the plunge and merger to the SNR
is reduced by a factor of O(m?/M•) relative to the in-
spiral contribution. In addition, there is no detectable
ringdown for EMRIs, as the SCO barely perturbs the
background geometry as it crosses the MBH’s event hori-
zon. Since the SCO is not disrupted in EMRI plunges,
the SCOs internal structure is erased or effaced almost
completely, without affecting the inspiral signal.

A positive consequence of the large number of EMRI
GW cycles is that these waves carry a detailed map of
the MBH geometry, so that we expect to determine the
EMRI physical parameters with high precision [15]. This
information will be very useful, in particular to test the
spacetime geometry of MBHs [16, 17] and even alter-
native theories of gravity (see, e.g. [17–20]). Moreover,
given that the expected even rate is in the range 10−103

EMRIs/yr [7, 21], EMRI observations will allow us to un-
derstand better the stellar dynamics near galactic nuclei,
populations of stellar BHs, etc. (for a review see [5]), and
it also possible that they will tell us about cosmology [22].

Although one is left to model the inspiral phase of EM-
RIs, this task remains a gargantuan endeavor for several
reasons. First, the accuracy requirements for EMRI tem-
plates are much more stringent than for comparable-mass
binaries. For detection and parameter estimation one
usually demands an absolute accuracy of better than 1
and SNR−1 radians in the GW phase respectively over
the entire time of observation. In a one year inspiral, a
typical EMRI can have 105 cycles in-band, which then
translates into a relative radian accuracy of O(10−6) and
O(10−8) for detection and parameter estimation respec-
tively. It is important to note that these precision re-
quirements are just simple estimates that do not take
into account data analysis strategies that may relax them
(see, e.g. [21]). In contrast, the above relative measure
becomes of O(10−2/SNR) for ground-based data anal-
ysis of comparable-mass plunge-merger-ringdowns with
current numerical relativity simulations, because these
accumulate only O(10) GW cycles in these phases. In
between EMRIs and comparable mass inspirals, there are
Intermediate-Mass-Ratio Inspirals (IMRIs), which can be
potential sources for both space-based detectors (where
an Intermediate-Mass BH (IMBH) inspirals into a MBH)
and advanced ground-based detectors (where a SCO in-
spirals into an IMBH).

The extreme mass ratios involved in the problem also
lead to the appearance of two different spatial and time
scales. The two different spatial scales are represented

by the very different sizes of the MBH and the SCO,
m?/M• � 1, whereas the different time scales are the or-
bital one and the one associated with the radiation reac-
tion effects, TOrbital/TRR ∼ m?/M• � 1. An illustration
of how this complicates the EMRI problem is the recent
work of Lousto and Zlochower [23], who evolved the first
1 : 100 mass-ratio binary over the last two orbits before
merger and plunge; this simulation took approximately
100 days of computational time using full numerical rel-
ativity. This means that with present numerical relativ-
ity techniques, full numerical simulations are out of the
question for EMRI modeling.

Another key reason for the difficulty of EMRI mod-
eling is their intrinsic strong-relativistic nature. In the
interesting part of the EMRI dynamics, the SCO is mov-
ing around the strong-field region of the MBH, acquiring
large pericenter velocities and even sampling regions in-
side the ergosphere, leading to large relativistic Γ-factors
over tens of thousands of GW cycles. Approximate tech-
niques employed in the comparable-mass regime, such as
low-velocity expansions in the post-Newtonian (PN) ap-
proximation, are then ill-suited for EMRIs. So neither
numerical relativity nor PN theory are, for very different
reasons, suitable schemes to model EMRIs.

A better-suited framework that exploits the extreme
mass ratios involved is BH perturbation theory, where
one treats the SCO as a small perturbation of the MBH
background geometry. In this context, the inspiral can be
described as the action of a self-force. This local vector
force is made out of the regularized metric perturbations
generated by the SCO, after eliminating divergences due
to the particle description of the SCO. The SCO’s motion
is then governed by the MiSaTaQuWa equation of mo-
tion equation, derived in [24, 25] (see also Sec. II). The
MiSaTaQuWa equation is considered the foundation of a
self-consistent scheme to describe EMRIs in an adiabatic
way by coupling it to the partial differential equations
that describe the perturbations produced by the SCO.
For recent discussions on these issues see [26–28] and for
general reviews see [29–31].

At present, the gravitational self-force has been com-
puted for the case of a non-rotating MBH using time-
domain techniques [32] (see also [33–35] for the study of
the physical consequences of the self-force) and progress
is being made towards calculations for the more astro-
physically relevant case of a spinning MBH [36]. In the
meantime, a number of new techniques in the frequency
and time domains are being developed to produce ac-
curate and efficient self-force calculations [37]. In any
case, given the amount of cycles required for EMRI GWs
and the present complexity of self-force calculations, we
cannot expect to generate complete waveform template
banks by means of full self-force calculations. Instead,
the goal of these studies should be to understand all the
details of the structure of the self-force so that we can
formulate efficient and precise algorithms to create the
waveforms needed for LISA data analysis, perhaps com-
plementing some of the existent approximating schemes
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that we review below.

A. Existent EMRI Waveform Models

In parallel to the efforts to make progress in the self-
force program, there has also been some efforts to build
certain less-reliable approximation schemes to model
EMRIs. These are very useful, for instance, for param-
eter estimation studies. We compare and contrast these
in Table I, ordered by level of complexity from simplest
(top) to most complex (bottom), where we also include
the new Kludge scheme at the bottom for comparison.

The simplest model is that of Peters and Mathews [38],
in which the SCO is assumed to be moving on Ke-
plerian ellipses. The orbital elements of this ellipse
evolve according to leading-order (Newtonian), dissipa-
tive radiation-reaction, ie. the quadrupole formula for the
loss of energy and angular momentum. Waveforms are
then computed also to leading order via the quadrupole
formula [44].

A better model was introduced by Barack and Cut-
ler [15], the so-called Analytical Kludge waveform model.
This model is based on the Peters & Mathews [38] model,
but it is enhanced via different PN formulae in order to
account for all the relativistic effects, both dissipative
and conservative, present in a generic EMRI event. It
has the advantage that the orbital evolution is decoupled
from the evolution of the additional relativistic effects
(which evolve effectively in the radiation-reaction time
scale), and hence EMRI waveforms, also prescribed via
the quadrupole formula [44], can be computed very fast.
For this reason, it has become the method of choice for
many LISA parameter estimation and data analysis stud-
ies (see, e.g. [45]).

A more sophisticated approach was proposed by
Babak, et. al. [39] and is sometimes referred to as the
Numerical Kludge waveform model. In this setup, the
orbital motion is given by geodesics around a Kerr BH
and the radiative effects are prescribed via PN evolution
equations for orbital elements (from 2PN expressions for
the fluxes of energy and angular momentum) calibrated
to more accurate Teukolsky fluxes with 45 fitting param-
eters [46]. The waveforms are then modeled again via a
multipolar expansion [47], but this time taken to next-
to-leading order (quadrupole plus octopole).

Recently, a new hybrid scheme has been proposed by
Yunes, et. al. [14, 40, 41] based on effective-one-body
(EOB) techniques [48]. In this approach, the SCO-
MBH, two-body system is mapped to an effective one-
body system: a Kerr BH perturbed by a small effective
object. The orbital motion is obtained by solving the
Hamilton equations for the Hamiltonian of the effective
system. When neglecting conservative self-force correc-
tions, this reduces to solving the geodesic equations in the
Kerr background. The radiation-reaction comes from the
short-wavelength approximation of Isaacson’s [49], where
the waveform is constructed from an orbit-averaged, but

resummed PN expression [50]. This radiation-reaction
force is then enhanced through the addition of very high
PN order point-particle results [51, 52] and expressions
that account for the flux of energy and angular momen-
tum into the MBH’s horizon [52, 53]. Although shown to
be accurate for equatorial, circular orbits [40] relative to
Teukolsky waveforms, the EOB scheme has not yet been
tested for eccentric or inclined orbits.

Another approach is the Teukolsky-based scheme of
Hughes and others [42, 43, 54–63] have developed. In
this model, one prescribes the inspiral as a sequence of
slowly-changing geodesics. The mapping between them is
given by the orbit-averaged evolution of orbital elements,
which in turn is obtained by a balance law relating av-
eraged fluxes at the boundaries of spacetime and at the
location of the SCO. These averaged fluxes at a given
geodesic or point in orbital phase space are computed
by solving the Teukolsky equation at that point. There-
fore, the construction of any single waveform requires the
mapping of the entire orbital phase space, which in turn
is computationally prohibitive for truly generic EMRIs.
Moreover, this scheme has numerical (and conceptual)
difficulties when modeling EMRIs in regimes of space-
time where the evolution deviates from adiabaticity, such
as in or close to plunge, around rapidly spinning MBHs
(a/M• > 0.9), or highly eccentric inspirals.

B. The New Kludge Scheme

In this paper, we devise a new kludge approxima-
tion scheme (relative to numerical kludge) that combines
seemingly disparate ingredients from BH perturbation
theory and the multipolar post-Minkowskian formalism
of Blanchet and Damour [64]. We shall here combine two
different approximation schemes, BH perturbation the-
ory (which assumes only that the mass-ratio is small) and
the multipolar post-Minkowskian formalism (which as-
sumes the gravitational field strength is small), together
with other ingredients related to the choice of coordinate
system and waveform construction method.

In the new kludge scheme, the orbital motion is
prescribed as a spacetime trajectory that is piecewise
geodesic (with respect to the MBH geometry) and such
that the different geodesic intervals are connected via the
SCO’s local, self-acceleration (due to its own gravity in
the presence of the MBH). In this sense, each geodesic
interval can be chosen arbitrarily small. This is in con-
trast to the Teukolsky approach (see, e.g. [42]) where
the mapping between sequences is given by the averaged
(over several orbits) GW energy-momentum fluxes and
balance laws. This fact, that the mapping is given purely
in terms of quantities local to the SCO’s worldline and
not by non-local balance laws, is a distinctive feature
of the new kludge scheme. The implementation of this
idea uses the evolution of geodesics with varying orbital
elements; the energy, angular momentum in the spin di-
rection, and Carter constants are then functions of time
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Scheme Name Orbital Motion Radiation-Reaction Waveform Generation
Peters & Mathews [38] Keplerian Ellipses Newtonian Order Multipolar decomposition (l = 2)
Analytic Kludge [15] Keplerian Ellipses Low-Order PN Multipolar decomposition (l = 2)

Numerical Kludge [39] Kerr Geodesics Calibrated Low-Order PN Multipolar decomposition (l ≤ 3)
EOB [14, 40, 41] Kerr Geodesics Calibrated, Resummed 5.5PN Resummed 5.5PN (l ≤ 8)

Teukolsky-based [42, 43] Kerr Geodesics Averaged Teukolsky Adiabatic Teukolsky (l . 60)
This work Kerr Geodesics Local Multipolar Post-Minkowskian Multipolar decomposition (l ≤ 4)

TABLE I. Comparison of existent modeling schemes.

governed by the self-force.
Such an evolution scheme is a direct implementation

of the osculating orbits method, proposed by Pound and
Poisson [65] and Pound [27]. This method professes that
at each point of the SCO’s non-geodesic worldline there
is a unique geodesic that lies tangent to it. Therefore, the
worldline is simply an interpolation between these tan-
gent geodesics. Such a scheme hinges on a fundamental
assumption of EMRI modeling: the adiabatic approxima-
tion, which assumes the deviation vector between adja-
cent tangent geodesics is small, ie. the radiation-reaction
time scale is much longer than all other timescales, par-
ticularly the orbital one. As Gralla and Wald [26] ex-
plained, the adiabatic approximation only holds quasi-
locally around some small neighborhood of proper time
at each point of the SCO’s worldline. This problem can
be circumvented, however, if at each point on the world-
line the deviation vector is recomputed, which is exactly
the basis of the method of osculating orbits [27, 65].

In the new kludge scheme, the evolution of orbital el-
ements is prescribed by the SCO’s self-acceleration, but
this quantity is not known exactly (numerically or other-
wise) for generic orbits around a spinning MBH. In view
of this, we model the self-force via a radiative approx-
imation, ie., through the time-asymmetric part of the
radiation field, given by the “half-retarded minus half-
advanced” Green function [66]. This can be implemented
with a high-order multipolar, post-Minkowskian expan-
sion, which assumes gravitational radiation is small rel-
ative to the gravitational field of the background, ie. an
expansion in powers of Newton’s gravitational constant
G.

The new kludge, local self-force prescription is com-
pleted once we say how the multipole moments depend on
the orbital trajectories. This can be achieved by asymp-
totically matching a PN and a post-Minkowskian solu-
tion [67–72]. In this paper, we use only the leading-order
expressions for these multipoles, although in the future it
would be trivial to including higher PN corrections. As
such, we are not consistently keeping a given PN order,
but instead using leading-order expressions for the mul-
tipole moments, while keeping several such moments in
the expansions.

The use of the radiative, multipolar post-Minkowskian
expansion is only because of the lack of a more precise
self-force. Clearly, this radiative approximation neglects
the conservative part of the self-force, which could be
important in GW modeling [65]. Once the full self-force

becomes available, however, one could easily employ it
instead of its post-Minkowskian expansion. Our set-up
is general and easily adaptable to other, more precise
expressions for the self-force.

Once the orbital evolution has been prescribed, one
can construct the GWs again through multipolar, post-
Minkowskian expressions in terms of a sum over mul-
tipole moments. Since the mapping between Boyer-
Lindquist and harmonic coordinates is known, there are
no coordinate issues to relate the trajectories obtained
from the orbital evolution to the trajectories that enter
the definition of the multipole moments. We here employ
an expansion to second-order in the multipole moments,
including both the mass hexadecapole and the current oc-
topole, thus keeping contributions one order higher than
traditional kludge waveforms.

Let us emphasize that the new kludge waveforms are
only approximate gravitational wave solutions, meant to
be used for qualitative descoping studies and investi-
gations of resonant behavior. That is, the waveforms
constructed could be used to determine the accuracy to
which parameters could be extracted given a detection
with new space-based gravitational wave observatories as
a function of the detector. Moreover, one could also study
how the resonances found by Flanagan and Hinderer [73]
affect such parameter estimation and detection. Having
said that, improvements would have to be implemented
before our kludge waveforms can be used as realistic tem-
plates in data analysis. As we will see, the new kludge
scheme is amenable to such improvements, which will be
the focus of future work.

C. Comparison to Standard Kludge Waveforms

The main advantage of the new kludge scheme is
the fact that the radiation-reaction effects are described
in terms of a local self-force. This means that the
inspiral description does not need to average certain
gravitational-wave fluxes over a number of periods/orbits
like is traditionally done in kludge implementations. In-
stead, the self-force is prescribed through a multipolar,
post-Minkowskian expansion (e.g. the quantity ARR men-
tioned above) that contains time-derivatives of the sys-
tem multipole moments in a non-averaged form.

When implementing such a non-averaged and local
scheme, it is critical to use an exact mapping between
Boyer-Lindquist coordinates, used in the integration of
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the geodesic equations of motion, and harmonic coor-
dinates, employed in the calculation of the multipolar,
post-Minkowskian self-force. This eliminates gauge is-
sues that plague kludge waveforms due to the neglect of
such a mapping (ie. kludge schemes simply use Boyer-
Lindquist like Cartesian coordinates in the multipolar
decomposition of the GWs).

The use of a local self-force provides the freedom to
choose how often to apply radiation reaction effects in the
numerical implementation of the dynamics (trajectory
and waveform construction) of the new kludge scheme.
The two extremes are: (i) We can apply the self-force
at every single time step, which corresponds to the case
of a continuous local self-force, or (ii) we can store the
information about the self-force and apply it after a cer-
tain period of time, mimicking the averaging procedure
of other schemes.

These two extreme ways of using the new kludge
scheme are in correspondence with two very relevant po-
tential applications. Whereas the type of application (ii)
can be used to try to generate efficiently EMRI gravita-
tional wave templates for parameter estimation and data
analysis development purposes, the type of application
(i) seems to be very well fitted for studying local phe-
nomena in the dynamics of EMRIs. In this sense, an
important application of our scheme would be to study
the transient resonances that Flanagan and Hinderer [73]
have recently reported in generic EMRI orbits (eccentric
and inclined) when the fundamental orbital frequencies
become commensurate. The new kludge scheme can be
in principle used to study such behavior and shed some
light on the relevance that it may have for future EMRI
detection with LISA-like detectors.

Let us clearly state, however, that the new kludges
presented here are not intended to model comparable
mass systems, for which the effective-one-body frame-
work has proven the most successful [48]. Instead, we
here focus on EMRIs only and we are interested in study-
ing local phenomena that no other kludge scheme can
currently handle. Perhaps in the future, one could also
use effective-one-body tools for such studies, but this
would require a tested framework capable of handling
completely generic orbits. Work along this lines is cur-
rently underway [14, 40, 41].

D. Executive Summary of Main Results

In this paper we present the new kludge scheme, intro-
ducing one by one each of its ingredients, from the form
of the equations of motion for the inspiral to the GW
construction, including the details of the approximations
that we use to construct the local self-force that drives
the inspiral. From a technical point of view, one of the
main challenges of the numerical implementation of our
scheme is the computation of high-order time derivatives
(of the mass and current multipole moments), which are
crucial for the estimation of the radiation reaction effects

(the multipolar post-Minkowskian self-force involves up
to eight-order time derivatives of the trajectory in har-
monic coordinates) and the GW construction (since we
are using up to the mass hexadecapole and current oc-
topole multipoles in the calculation, we require up to
fourth-order time derivates of the trajectory in harmonic
coordinates). The computation of these time derivatives
is very challenging, forcing us to implement numerical
techniques adapted to the properties of EMRIs dynam-
ics. The key point is to use the fact that geodesic orbits
have, in the generic case of eccentric and inclined tra-
jectories, three fundamental frequencies. This then al-
lows us to fit any quantity that needs differentiating to
a multiple Fourier series, using a standard least-squares
technique. Numerical derivatives of such quantities can
then be obtained simply by analytically differentiating
the Fourier expansion. Numerical experimentation has
shown that this technique works remarkably well, even
for the highest-order time derivatives that the new kludge
requires.

To illustrate the capabilities of our scheme we show
in this paper results from evolutions for different types
of orbits: circular equatorial, eccentric equatorial, cir-
cular inclined, and the generic eccentric inclined orbits.
Using these evolutions we study different aspects of the
new kludge scheme. First, we consider the impact of
harmonic coordinates in the trajectories and waveform
observables in comparison with using other coordinate
systems. We find that not properly accounting for this
transformation can lead to huge errors in the amplitude
and phase of the waveform, eg. up to errors of order a
factor of 2 in the total accumulated cycles after a one
year evolution. Second, we study the impact of the dif-
ferent radiation reaction potentials in the resulting wave-
forms. Although these corrections have a smaller impact
than the proper use of coordinates, they are still large for
strong-field EMRIs. For example, including higher-order
terms to the Burke-Thorne potential leads to corrections
of order 104 radians in a two month evolution. Third,
we investigate the use of a quadrupole waveform pre-
scription versus a more accurate hexadecapole-octopole
prescription. We find no change in the resulting wave-
form phases, but an amplitude correction of less than 5%.
Fourth, we consider the time-evolution of different orbital
parameters when we apply radiation-reaction effects lo-
cally in time through our multipolar, post-Minkowskian
self-force. Although there are some orbital parameters
whose time evolution is not affected, other parameters
like the inclination angle can acquire small oscillations
with period equal to the orbital period. Such small oscil-
lations are not captured if the self-force is orbit-averaged.

Finally, we perform some tests and comparisons with
results in the literature to validate the new kludge numer-
ical implementation. In particular we test the prediction
that the inclination angle remains almost constant during
the evolution, a test that our scheme successfully passes.
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E. Notation and Organization of the Paper

Throughout this paper we use the metric signature
(−,+,+,+) and geometric units in which G = c = 1.
The MBH geometry, whose metric we denote by gK

αβ , is

determined by its mass M• and (magnitude of the) spin
angular momentum S• = M•a, with dimensionless, Kerr
spin parameter a/M• (−1 ≤ a/M• ≤ 1). The SCO is
parameterized only in terms of its mass m? since we ne-
glect its spin and other internal properties. The binary
system’s parameters are the mass ratio q ≡ m?/M• and
the total mass MTot = m? + M•. The reduced mass of
the system is therefore µ ≡ m?M•/MTot, while the sym-
metric mass ratio is η ≡ µ/MTot = q/(1 + q)2.

The SCO orbit can be parameterized in terms of the
constants of geodesic motion IA = (E,Lz, Q/C), which
stand for the SCO’s energy normalized with respect to
m?, the z-component of the angular momentum normal-
ized to m2

?, and the Carter constant also normalized to
m2
? (C and Q stand for two definitions of the Carter con-

stant that we use in this paper). Alternatively, we will
also parameterize the SCO orbit in terms of the orbital
elements OA = (e, p, ι/θinc), which are also constants of
the geodesic motion, where e is the orbit eccentricity, p
is the semi-latus rectum, and ι and θinc are two mea-
sures of the orbit inclination. We present the mappings
between IA and OA in Appendix E. The SCO space-
time trajectory is denoted via zµ(τ), where τ is proper
time and thus, its four-velocity is the unit timelike vector
uµ ≡ dzµ/dτ .

Post-Newtonian orders always refer to a relative or-
dering scheme (instead of an absolute one), such that
the N -th PN order term refers to one of the form A =
ANewtonian[1+ . . .+O(v2N/c2N )], where ANewtonian is the
leading order contribution. We shall commonly drop the
factor of 1/c when referring to PN expansions.

Greek letters in index lists are used to denote indices
on the 4-dimensional spacetime, while Latin letters in
the middle of the alphabet i, j, k, . . . denote spatial in-
dices only. Covariant differentiation is denoted using the
symbol ∇µ, while partial derivatives with respect to the
coordinate xµ are denoted as ∂µBν or Bν,µ. We denote
symmetrization and antisymmetrization with parenthesis
and square brackets around the indices respectively, such
as A(µν) ≡ [Aµν +Aνµ]/2 and A[µν] ≡ [Aµν −Aνµ]/2.

We use two main sets of coordinate systems: Boyer-
Lindquist coordinates xµBL and harmonic coordinates
xµH. Other systems of coordinates that we also consider
are asymptotic-Cartesian mass-centered (ACMC) coor-
dinates, xµACMC, and approximate harmonic coordinates,
xµAH. Retarded time is denoted in harmonic coordinates
via tr ≡ tH − rH, where rH ≡ (x2

H + y2
H + z2

H)1/2. When
we refer to the Kerr metric, we sometimes use the label

K, e.g. gK

αβ and gαβK . In some situations, it is crucial to
specify in which coordinate system the metric has to be
written in a certain equation, like in a coordinate trans-
formation. In those situations, we also incorporate in
the metric (or related objects) a label associated with

the coordinate system, e.g. gK,H
αβ or gK,BL

αβ . As for an-
gular coordinates, we shall find it convenient to some-
times perform multipolar decompositions as in [47], with
spin-weighted spherical harmonics −2Y

`m and symmet-

ric and trace-free spherical harmonic tensors Y`mL , where
L = (i1, i2, . . . , in) is a multi-index (see [47] for details
on the multi-index notation).

The organization of this paper is as follows. Section II
introduces the self-force approach to EMRI modeling and
some basic details of the method of osculating orbits.
Section III describes in detail the new kludge scheme,
including the MBH geometry and the properties of the
geodesic orbits, the application to them of the method of
osculating orbits, the multipolar post-Minkowskian ap-
proximation to the self-force we use and the radiation-
reaction potentials from which it can be obtained, the
mapping between Boyer-Lindquist and harmonic coordi-
nates, and the multipolar post-Minkowskian waveform
generation formalism that we use in our scheme. Sec-
tion IV explains the numerical implementation of the new
kludge approach and the main numerical techniques that
we use. This includes the algorithms for the integration
of the ODEs governing the local geodesic motion and
the accurate estimation of time derivatives of several or-
ders of the multipole moments. Section V summarizes
the different ways in which our scheme can be used and
presents several numerical results that illustrate its main
features, using from circular equatorial orbits to eccentric
inclined orbits. Section VI concludes and discusses sev-
eral avenues for future research applying the new kludge
scheme.

We have attempted to present the main ingredients
of our approach in the main body of the paper, rel-
egating some details to the Appendices. Appendix A
gives explicit expressions of the different pieces of the
multipolar post-Minkowskian self-force in terms of the
radiation-reaction and local potentials. It also gives for-
mulae to simplify the computation of the different spatial
derivatives of the Kerr local potentials. Appendix B pro-
vides complementary formulae related to the mapping
between Boyer-Lindquist and harmonic coordinates. In
particular, we give expressions for the components of the
Jacobian and Hessian, and for the components of the
covariant and contravariant Kerr metric tensor in har-
monic coordinates. Appendix C constructs a system of
asymptotically, mass-centered coordinates and a system
of approximate harmonic coordinates that we compare
with the exact harmonic coordinates of Sec. III D. Ap-
pendix D performs a far-field expansion of the Kerr met-
ric coefficients in the approximate harmonic coordinates
of Appendix C. Appendix E describes in detail how to
implement the one-to-one mapping between the orbital
elements OA = (e, p, ι/θinc) and the constants of motion
IA = (E,Lz, C/Q). Appendix F summarizes the main
formulae for the computation of the fundamental fre-
quencies and periods with respect to the Boyer-Lindquist
coordinate time. Finally, Appendix G provides expres-
sions for the coefficients that determine the evolution of
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the radius and Carter constants of an inspiral through
circular non-equatorial geodesics.

II. THE SELF-FORCE APPROACH TO EMRIS

In this section we review some of the basic and well-
established concepts related to the self-force as they are
related to the new kludge approach (see the review pa-
pers [30, 31, 74] for details).

The foundations for the first-order perturbative de-
scription of EMRIs were laid down in the papers by Mino,
Tanaka, and Sasaki [24] and Quinn and Wald [25]. The
main result of these papers was the equation of motion of
a massive point-like object (describing the SCO) in the
geometry of a MBH. The stress-energy tensor of the SCO
is then given by

Tαβ = m∗

∫
dτ√
−g

δ4 [xµ − zµ(τ)]
dzα

dτ

dzβ

dτ
, (1)

where g denotes the determinant of gαβ . Then, the SCO
generates metric perturbations, hαβ , around the MBH
background geometry that in the Lorenz gauge,

∇µh̃µν = 0 , h̃αβ ≡ hαβ − 1

2
gαβh , h ≡ gµνhµν , (2)

satisfy the linearized Einstein equations

� h̃αβ + 2R α
µ
β
ν h̃

µν = −16πm? T
αβ , (3)

where R̄µανβ is the Riemann tensor of the MBH back-
ground geometry. However, according to this equation,
the metric perturbations diverge at the particle location.
Then, the gravitational backreaction on the particle mo-
tion, the self-force, is provided by the regularized part
of the perturbations, say hR

αβ , according to a Hadamard

prescription given in [24]. Then, the equation of motion
for an EMRI, the MiSaTaQuWa equation, is

d2zα

dτ2
+ Γαµνu

µuν = FαSF , (4)

where the self-force, FαSF, is given by

FαSF = −1

2
m?

(
gαλ + uαuλ

)
uµuν

(
2∇µhR

νλ −∇λhR

µν

)
.

(5)
Therefore, the dynamics of EMRIs is determined by the
coupled system of Eqs. (4),(5), and (2) with a practical
regularization scheme (like the mode sum scheme [75]). A
remarkable point is that Eqs. (4) and (5) can be rewritten
as geodesic equations of motion for a point particle in
a perturbed geometry that only take into account the
regularized part of the metric perturbations, ie. geodesic
in the geometry gαβ + hR

αβ [76].
But how do we evolve the trajectory of the SCO ac-

counting for the self-force in a self-consistent way? As it
was proposed in [65] (see also [77] and [78] for a recent

use of this technique), one can use a relativistic exten-
sion of the well-known method of osculating orbits. The
idea is to take the trajectory to be always tangent to a
geodesic orbit, such that the motion transitions smoothly
from one geodesic to the next. Such smooth transition is
facilitated in EMRI by the fact that EMRI trajectories
are very close to a (local) geodesic for a long time. This
is because of the clean separation in EMRI time scales:
the radiation reaction time scale is much larger than the
orbital (geodesic) one, except for the tiny fraction corre-
sponding to the merger-plunge phase.

The way to carry out this transition is to properly ac-
count for the time-evolution of the set of orbital elements
that completely characterize a geodesic orbits. Follow-
ing [65], it is important to distinguish between two sets
of orbital elements: principal orbital elements, in our
case either IA = (E,Lz, Q/C) or OA = (e, p, ι/θinc); and
positional orbital elements that determine the initial po-
sition in the geodesic as well as the geodesic initial spa-
tial orientation. The radiation reaction changes in the
principal elements are due to the dissipative part of the
self-force, while radiation reaction changes in the posi-
tional elements are due to the conservative part of the
self-force. In this work we only consider dissipative ef-
fects and hence we are only concerned with changes in
the principal orbital elements.

The implementation of the method of osculating or-
bits consists in the translation of the fact that at any
time there will be a geodesic trajectory, zµG, with orbital
elements whose position and velocity at that time will
coincide with those of the accelerated trajectory. This
can be written in the following way:

zα(τ) = zαG
(
τ ;PA(τ); IA(τ)

)
, (6)

dzα

dτ
(τ) =

∂zαG
∂τ

(
τ ;PA(τ); IA(τ)

)
, (7)

where PA denote the positional orbital elements. Al-
though we have used here the constants of motion as prin-
cipal orbital elements, we could also have used OA. Com-
bining these osculation conditions with the equations of
motion (4), we can arrive at the following equations [65]:

∂zαG
∂PA

dPA

dτ
+
∂zαG
∂IA

d IA

dτ
= 0 , (8)

∂

∂PA

(
∂zαG
∂τ

)
dPA

dτ
+

∂

∂IA

(
∂zαG
∂τ

)
d IA

dτ
= aαSF , (9)

where aαSF is the SCO self-acceleration, which is related to
the self-force of Eq. (5) by aαSF = m−1

? FαSF. This is due to
the fact that IA has been defined as the SCO constants
of motion per unit mass. From the inversion of these
equations we can obtain the evolution of the different or-
bital elements. In this paper, we will focus exclusively
on the dissipative effects of the self-force which only af-
fect to the principal orbital elements (either IA or OA),
ie. dPA/dτ = 0 and we ignore the first term in Eqs. (8)
and (9). We will refer to the principal orbital elements
simply as orbital elements.
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III. THE NEW KLUDGE SCHEME

In this section we present all the details of the new
kludge scheme. As explained in the previous sections,
we separate the problem into two parts: that of con-
structing the SCO’s trajectory and that of building the
waveform from these trajectories. We begin then with
a description of the background MBH geometry and its
associated geodesics. We then show how to enhance the
geodesic equation system to allow for the variation of the
constants of the motion. The latter require knowledge of
the self-acceleration, which we calculate in a multipo-
lar, post-Minkowskian expansion. Finally, we present an
explicit transformation between Boyer-Lindquist coordi-
nates (used to evolve the modified geodesic system) and
harmonic coordinates, needed to generate waveforms in
a multipolar decomposition.

A. MBH Geometry and Geodesic Motion

The geometry of the MBH is modeled by the Kerr met-
ric [79], a vacuum stationary and axisymmetric space-
time that describes the final state of gravitational col-
lapse, according to the BH no-hair conjecture [80] and
uniqueness theorems (see, e.g. [81]). In Boyer-Lindquist
coordinates [82], (xµBL) = (t, r, θ, φ), the line element cor-
responding to the Kerr metric, gK

αβ , is given by

ds2 = −dt2 +
ρ2

∆
dr2 + ρ2dθ2 + (r2 + a2) sin2 θ dφ2

+
2M•r

ρ2
(dt− a sin2 θ dφ)2 , (10)

where ρ2 ≡ r2 + a2 cos2 θ and ∆ ≡ r2 − 2M•r + a2 =
r2f + a2, with f ≡ 1− 2M•/r. For convenience, we also
define the quantity Σ2 ≡ (r2 + a2)2 − a2∆ sin2 θ . The
function ∆ has two roots:

r± ≡M• ±
√
M2
• − a2 . (11)

The root r+ (≥ r−) coincides with the location of the
event horizon.

The Kerr geometry is stationary, as described by the
timelike Killing vector field ζα(t) = δαt , and axisymmetric,

as described by a spacelike Killing vector field ζα(φ) = δαφ .

It also well-known that the Kerr geometry has an ad-
ditional symmetry described by a 2-rank Killing tensor,
ξαβ , given by

ξαβ = ∆ k(αlβ) + r2 gK

αβ , (12)

where kα and lα are the two null principal directions of
the Kerr geometry

kα =

[
r2 + a2

∆
,−1, 0,

a

∆

]
, lα =

[
r2 + a2

∆
, 1, 0,

a

∆

]
.

(13)

When the effect of the self-force is neglected (or equiv-
alently, in the limit of zero mass for the SCO), the
SCO follows geodesics orbits of the MBH geometry. The
Boyer-Lindquist coordinates of a timelike geodesic can
be parameterized in terms of proper time as zµ(τ) =
(t(τ), r(τ), θ(τ), φ(τ)). For a given geodesic, we can con-
struct three geodesic constants of motion, corresponding
to each of the three symmetries of the Kerr spacetime.
Stationarity leads to a conserved energy, E , or equiva-
lently an energy per unit mass

E ≡ E/m? ≡ −ζ(t)
α uα . (14)

Axial symmetry leads to a conserved component of the
angular momentum vector (the one along the spin axis,
which we choose to be the z axis)

Lz ≡ Lz/m? ≡ ζ(φ)
α uα . (15)

The Killing tensor symmetry (12) leads to a conserved
Carter constant, which can be defined as follows

Q ≡ Q/m2
? ≡ ξαβuαuβ , (16)

but also we will use the alternative definition

C ≡ Q− (Lz − aE)
2
. (17)

The existence of these three symmetries makes the
geodesic equations for zµ(τ) integrable and completely
separable [83]. The separation can be carried out using
the definitions of these constants of motion and also the
normalization condition of the four-velocity, gK

µνu
µuν =

−1. The separated equations of motion for the compo-
nents of zµ(τ) obey the following set of ordinary differ-
ential equations (see [84] for a detailed analysis of the
physical properties of the solutions of these equations):

ρ2 dt

dτ
=

1

∆

(
Σ2E − 2M•arLz

)
, (18)

ρ4

(
dr

dτ

)2

=
[(
r2 + a2

)
E − aLz

]2 − (Q+ r2
)

∆ , (19)

ρ4

(
dθ

dτ

)2

= C − cot2 θL2
z − a2 cos2 θ

(
1− E2

)
, (20)

ρ2 dφ

dτ
=

1

∆

[
2M• a rE +

Lz
sin2 θ

(
∆− a2sin2 θ

)]
. (21)

We are interested here in timelike bound and stable
geodesics, what we call orbits. These orbits, apart from
being characterized by the three constants of motion IA,
can also be characterized by the orbital elements OA,
which can be defined in terms of the turning points of
the radial and polar motion (see Appendix E for more
details). The turning points for the radial motion are
just the minimum and maximum of r, also known as
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pericenter and apocenter, rperi and rapo, which can be
used to introduce the concepts of semi-latus rectum and
eccentricity

rperi =
pM•
1 + e

, rapo =
pM•
1− e

, (22)

or equivalently

p =
2 rperi rapo

M•(rperi + rapo)
, e =

rapo − rperi

rperi + rapo

. (23)

The turning point for the polar motion is just the min-
imum of θ, θmin ∈ [0, π/2], which determines the inter-
val in which θ oscillates, ie. (θmin, π − θmin) and it can
be used to introduce the concept of inclination angle,
θinc ∈ [−π/2, π/2], as

θinc = sign(Lz)
[π

2
− θmin

]
. (24)

Another common definition of orbital inclination angle
uses the constants of motion IA

cos ι =
Lz√
L2
z + C

. (25)

Alternatively, the orbits can also be characterized in
terms of three fundamental frequencies (see e.g. [85–
87]) with respect to the Boyer-Lindquist coordinate time
(they can be also constructed using proper time or any
other time): Ωr, associated with the radial motion (from
periapsis to apoapsis and back); Ωθ, associated with po-
lar motion; and Ωφ, associated with azimuthal motion.
These frequencies are important because precessional or-
bital effects are due to mismatches between them and
because they can be used to decompose, among other
things, the GW in a Fourier expansion [86].

Expressions for these frequencies in terms of quadra-
tures have been obtained for Kerr in [85], and recently
also in [86, 87]. Appendix F provides explicit formulae
for the fundamental frequencies and periods used in this
paper.

A final consideration regarding geodesic motion that
is going to be important in this paper is the 3 + 1 split-
ting of the four-velocity into spatial and time compo-
nents. This splitting is associated with the time vari-
able used to evolve the geodesic equations, in this paper
Boyer-Lindquist time t. The four-velocity of the SCO,
uα = dzµ/dτ , choosing the Boyer-Lindquist time param-
eterization zµ(t) = (t, zi(t)), can then be decomposed as

uµ =

(
dt

dτ
,
dzi

dτ

)
≡ Γ (1, vi) , (26)

where Γ and vi are given by

Γ = ut =
dt

dτ
, vi = Γ−1ui =

dzi

dt
. (27)

Using the normalization condition gK
µνu

µuν = −1, the
factor Γ, the GR generalization of the special-relativistic

Lorentz factor, can be written in terms of the metric and
the components of the velocity vi as follows:

Γ =
(
−gK

tt − 2gK

tiv
i − gK

ijv
ivj
)−1/2

. (28)

B. New kludge Osculating Trajectories

In this work we consider a version of our scheme in
which we only include the dissipative effects of the self-
force, ie. those that only affect to principal orbital ele-
ments. In Sec. VI we discuss how to introduce conser-
vative pieces of the self-force in the new kludge scheme.
The time scale of change of IA(τ)/OA(τ), the radiation
reaction time scale TRR, is much bigger than the orbital
time scales TOrbital, such that the ratio of these time scales
satisfies: TOrbital/TRR ∼ q.

Following the method of osculating orbits described
in Sec. II, we can describe the orbital evolution as given
locally in time by the geodesic equations (18)-(21), where
the constants of motion are promoted to time-dependent
quantities:

IA −→ IA(τ) , OA −→ OA(τ) . (29)

Although here we parameterize the time dependence
of these quantities in terms of proper time, in prac-
tice we will use coordinate time, that corresponds to
time associated with distant observers. For our dis-
cussion, we denote the solution of the evolution equa-
tions (18)-(21) with the modifications of Eq. (29) by
zµ(τ) = [t(τ), r(τ), θ(τ), φ(τ)], but it is clear that it
would no longer be a solution of the original geodesic
equations. We do not decompose this solution, which
takes into account self-force effects, into a background
geodesic plus a deviation [26], as the deviations grow
secularly in time and after a certain number of cycles it
cannot be considered a small deviation of the background
geodesic orbit. Instead, in the spirit of the osculating or-
bits method, we treat zµ as a new, self-consistent trajec-
tory that is continuously corrected away from geodesic
motion during evolution. In this sense, we are construct-
ing an orbit that is made out of geodesic patches corre-
sponding to different constants of motion. The transi-
tion from one patch to another is given by the (multipo-
lar, post-Minkowskian) self-force, lacking a more accu-
rate prescription. The length (duration) of the geodesic
patches, or equivalently, the frequency at which the con-
stants of motion are updated, is a free parameter that we
can choose in the new kludge numerical implementation.

The evolution equations for IA(τ)/OA(τ) can be ob-
tained from the equations of osculating orbits, Eqs. (8)
and (9). In our case, the inversion of these equations to
find dIA(τ)/dτ can be done easily by using the symme-

tries of the Kerr geometry. By applying gK

αβζ
β
(t), gK

αβζ
β
(φ),

and ξαβu
β to Eq. (9) in combination with Eqs. (14)-(17)

we obtain the evolution equations for E, Lz, and C/Q



10

respectively.

dE

dτ
= −ζ(t)

α aαSF , (30)

dLz
dτ

= ζ(φ)
α aαSF , (31)

dQ

dτ
= 2 ξαβu

αaβSF , (32)

dC

dτ
=
dQ

dτ
+ 2 (aE − Lz)

(
dLz
dτ
− adE

dτ

)
. (33)

The evolution of these quantities with respect to coordi-
nate time t introduces a factor Γ−1 in the above equa-
tions, due to the relation: d/dt = Γ−1d/dτ . The most im-
portant quantity here is the self-acceleration aαSF, which
as we shall see scales ∼ Γ2 [see Eq. (57)] and is given by
the metric perturbations hR

αβ . This is probably the main
ingredient of self-force descriptions of EMRIs, which is
described in more detail in the next section.

For certain special orbits, the rate of change of the or-
bital elements satisfies special relations due to the sym-
metries. One of these are equatorial orbits, ie. orbits with
θ(t) = π/2. We can see that from Eq. (20) this implies
C = 0. Therefore, equatorial orbits are characterized by
θ(t) = π/2 and C = 0. Equation (33) allows us to write
dC/dτ = 2CαaαSF, where

Cα = (δβα + uαu
β)
[
ξβλu

λ + (aE − Lz)
(
ζ

(φ)
β + aζ

(t)
β

)]
.

(34)
The vector Cα vanishes for equatorial geodesics, which
implies that the Carter constant C(t) is always zero and
Q(t) can be obtained directly from a combination of
dE/dt and dLz/dt. The self-force then maps equatorial
geodesics to equatorial geodesics, ie. the equatorial char-
acter of geodesics is preserved upon self-force evolution.

Another type of orbits with extra symmetries are equa-
torial and circular orbits. These orbits have a helical
symmetry described by an approximate Killing vector
(which is exact on the geodesic intervals). This symme-
try can be derived from the fact that for these special
orbits dφ/dt = Ωφ = const. [see Eq. (21)]. The angular

velocity Ωφ can be written as (see [84]):

Ωφ = ± v3
o

M•

(
1± a

M•
v3
o

) , (35)

where the upper/lower sign corresponds to pro-
grade/retrograde circular orbits (ie. that coro-
tate/counterrotate with the MBH spin and have

Lz > 0/Lz < 0), vo ≡
√
M•/ro, and ro is

the Boyer-Lindquist radial coordinate of the cir-
cular orbit. Then, the helical Killing vector is
ζαHel = ζα(t) + Ωφ(r)ζα(φ) = ∂αt + Ωφ(r)∂αφ . The associated

constant of motion is then Λ ≡ gK

αβζ
α
Helu

β = −E+ ΩφLz.

The evolution of Λ is dΛ/dτ = ζHel
α aαSF and it can be

shown that dΛ/dτ = 0 for locally circular equatorial
orbits. Hence, the evolution of the angular momentum

in the spin direction is related to the evolution of the
energy by dLz/dt = Ω−1

φ dE/dt.
Finally, let us consider circular but non-equatorial or-

bits, ie. orbits with r = ro = const. but C 6= 0. There is
no helical symmetry for these orbits due to the fact that
the MBH spin is not aligned with the orbital angular mo-
mentum. Nevertheless, as shown in [88, 89] the radiation-
reaction evolution of these orbits preserves their circular
character (see also [42]). These orbits are then character-
ized by the vanishing of the right-hand side of Eq (19),

R(ro) ≡
[(
r2
o + a2

)
E − aLz

]2 − (Q+ r2
o

)
∆(ro) = 0 (the

radial coordinate does not change), and its first radial
derivative, R′(ro) ≡ (dR(r)/dr)ro = 0 (the orbit is al-

ways at a turning point of the radial motion). In ad-
dition, the condition R′′(ro) < 0 has to be satisfied for
the circular orbit to be stable. Following [42], the preser-
vation of the circularity of the orbit along the inspiral
translates into the following two conditions: Ṙ = 0 and
Ṙ′ = 0. From these two conditions we can express the
time evolution of the radius of the orbit and the evolu-
tion of the Carter constant in terms of the evolution of
the energy and angular momentum of the orbit:(

Ċ
ṙo

)
= −1

d

(
c11 c12

c21 c22

)(
Ė

L̇z

)
, (36)

where the coefficients cAB (A,B = 1, 2) and d are func-
tions of (M•, a;E,Lz, C, ro) and are given in Appendix G.
Therefore, the evolution of C and ro can be obtained by
evaluating dE/dt and dLz/dt from the multipolar, post-
Minkowskian self-force.

To finish this section, and as a consistency check, we
take the Newtonian limit of the rate of change of the
orbital elements in Eqs. (30)-(32). In this limit, we find
that to leading order

Ė = atRR = via
i
RR , (37)

L̇z = r2 sin2 θ aφRR , (38)

Q̇ = −2 r2 sin2 θ a aφRR , (39)

Ċ = −4M• a r cos2 θ sin2 θ aφRR , (40)

which agrees with the Newtonian expressions of [90] after
transforming to Cartesian coordinates. Notice, however,
that Eqs. (30)-(32) contain many more terms than in [90],
due to the fact that in the latter the Γ factor is expanded
in the low-speed and weak-field limit.

C. Multipolar Post-Minkowskian Self-Acceleration

Here we discuss a method to obtain an approxima-
tion for the self-force (5). The most rigorous approach
would be to compute this force within the framework
of BH perturbation theory, but as already argued, such
a task is still under development and in computational
terms would be very costly. A different approach is to
extract the self-force from the PN equations of motion.
Such a path was taken by Pound and Poisson [65] for
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a Schwarzschild background and Gair, et al. for a Kerr
background [78]. This approach, however, is built under
a PN approximation, which is not ideal for EMRI mod-
eling as the SCO can reach relativistic velocities, with
significant relativistic Γ factor, as it orbits close to the
MBH.

Instead of either of these approaches, we here approx-
imate the self-force via a multipolar, post-Minkowskian
expansion (see e.g. [64, 91, 92]):

gPM

00 = −1 + 2V − 2V 2 + 2VRR +O(G9/2) , (41)

gPM

0i = −4V i − 4V iRR +O(G9/2) , (42)

gPM

ij = δij
[
1 + 2V + 2VRR +O(G4)

]
, (43)

where V and V i are time-symmetric potentials, in the
sense that they are made out of the half-sum of re-
tarded and advanced integrals of the stress-energy ten-
sor over the source, ie. the half-sum of the retarded and
advanced Green functions associated with the pertur-
bative equations. As a consequence, these potentials
are invariant under time inversion. The quantities VRR

and V iRR are time-asymmetric radiation-reaction poten-
tials, constructed from the half-difference of retarded and
advanced waves, and hence, odd under time inversion.
These potentials are given by [64, 93]

VRR(tH,xH) = −1

5
xijHM

(5)
ij (tH) +

1

189
xijkH M

(7)
ijk(tH)

− 1

70
x2

Hx
ij
HM

(7)
ij (tH) +O(xH

ijM
(9)
ij ) , (44)

V iRR(tH,xH) =
1

21
x<ijk>H M

(6)
jk (tH)

− 4

45
εijkx

jl
H S

(5)
kl (tH) +O(xijkH M

(8)
ij ) , (45)

where we recall that (xαH) = (tH, x
i
H) are spacetime har-

monic coordinates, εijk is the antisymmetric Levi-Civita
symbol, and

x̂<ijk>H ≡ xijkH − 3

5
x2

Hδ
(ijx

k)
H . (46)

is the symmetric trace-free (STF) projection of the multi-
index quantity xijk = xixjxk. The first term in VRR

[Eq. (44)] corresponds to the well-known Burke-Thorne
radiation reaction potential [94]:

VBurke−Thorne(tH,xH) = −1

5
xijHM

(5)
ij (tH) . (47)

The quantities M
(n)
ij , M

(n)
ijk , and S

(n)
ij are the nth-

time-derivative of the STF mass quadrupole, mass oc-
topole and current quadrupole moments. Formally, the
radiation-reaction potentials depend on the integral of
certain derivatives of the asymmetric sum (half-difference
of retarded and advanced waves) of multipole moments
(see, e.g. Eqs. (2.8) in [93]). Equation (45), however,
is obtained by expanding these integrals in a slow-
velocity approximation, after which the arguments of the
radiation-reaction potentials depend on time only. This

is consistent with the fact that the radiation-reaction
force is to be evaluated in the source zone of the SCO,
and not in the wave zone.

Let us provide explicit expressions for these multipole
moments. To lowest order, the mass moments are given
by

Mij = ηm z<ij> , Mijk = η δm z<ijk> (48)

and the current moment is

Sij = η δm εkl<izj>
kżl , (49)

where angle-brackets are STF projections. To higher or-
der, these moments become more complicated as there
are now non-linear contributions from the non-reactive
potentials (ie. non-linear contributions from the back-
ground) as well as tail and memory contributions. These
expressions can be found for example in Eq. (3.1)–(3.3)
of [95] and Eq. (5.3)–(5.5) of [96]. In BH perturbation
theory language, these higher-order terms would con-
tribute conservative and dissipative corrections to the
dissipative equations of motion. We neglect these con-
tributions in the current version of the new kludge ap-
proach, but they can be easily incorporated in future
improvements of the scheme.

The metric given in Eqs. (41)-(42) is expanded in the
far-field limit, a resummation of which is necessary in or-
der to use it for self-force calculations. All terms that are
independent of the radiation-reaction potentials can be
identified with MBH background geometry terms, cor-
rected perhaps by the presence of the SCO. Neglecting
the latter, we can exactly re-sum the metric in Eqs. (41)-
(43) so that it can written as follows

gPM

tt = gK,H
tt + hRR

tt +O(G9/2) , (50)

gPM

ti = gK,H
ti + hRR

ti +O(G9/2) , (51)

gPM

ij = gK,H
ij + hRR

ij +O(G4) , (52)

where gK,H
µν is the Kerr metric in harmonic coordinates

(we shall discuss the issue of coordinates in more detail
in Sec. III D) and where we have introduced the metric
perturbation, hRR

µν , which is given by

hRR

tt = 2VRR , hRR

ti = −4V iRR , hRR

ij = 2 δijVRR . (53)

These are the metric perturbations that are going to de-
scribe the radiation reaction effects in our new kludge
scheme, and hence they are our approximation to the
regularized metric perturbations hR

αβ in Eqs. (4) and (5).
Regarding the MBH background geometry, it is useful

for the purposes of this work to introduce some scalar,
vector, and tensor potentials in harmonic coordinates,
which contain information equivalent to the potentials
V and V i in Eqs. (41)-(43):

K ≡ K00 = gK,H
00 + 1 , Q ≡ Q00 = g00

K,H + 1 , (54)

Ki ≡ K0i = gK,H
0i , Qi ≡ Q0i = g0i

K,H , (55)
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Kij ≡ gK,H
ij − δij , Qij ≡ gijK,H − δij , (56)

or more compactly Kµν ≡ gK,H
µν − ηµν and Qµν ≡ gµνK,H −

ηµν . The expressions from these local potentials can be
derived directly from the expressions of the components
of the Kerr metric in harmonic coordinates given in Ap-
pendix B 2.

We are now in a position to compute the self-
acceleration in terms of the radiation-reaction potentials
of Eqs. (44) and (45) through Eq. (53) and Eq. (5). In
what follows we develop the expression for the acceler-
ation in order to describe its structure and the role of
the different terms that appear on it. The first step is to
use the decomposition of the SCO four-velocity given in
Eqs. (26) and (27) in such a way as to rewrite Eq. (5) in
the following form:

aαRR = −Γ2Pαβ
(
A

(1)
β +A

(2)
β

)
, (57)

where we have factored out the dependence on the rela-
tivistic Γ factor [see Eq. (A3) for the expression of Γ in
terms of the potentials Kµν and the spatial velocity vi]

Pαβ is the projector orthogonal to the SCO four-velocity,

Pαβ = gαβK + uαuβ (in terms of the potentials Qµν it is
given in Eq. (A2)). The two pieces of the self-acceleration

in Eq. (57) contain different terms. The first piece, A
(1)
α ,

only contains gradients of the radiation-reaction poten-
tials and the spatial velocity vi, whereas the second piece,

A
(2)
αβ , contains explicit couplings between the MBH po-

tentials (actually their derivatives) and the radiation re-
action potentials. The form of these two terms is the
following:

A(1)
α = GRR

µνα v
µvν , (58)

where

GRR

µνα ≡
1

2

(
∂µh

RR

να + ∂νh
RR

µα − ∂αhRR

µν

)
, (59)

and

A(2)
α = −hRR

αβ Γβµν v
µvν , (60)

where the connection is to be computed with the Kerr
background metric in harmonic coordinates. Putting all
these different ingredients together and separating space
and time components, we arrive at the following structure

for the piece A
(1)
α :

A
(1)
t = ARR , A

(1)
i = ARR

i , (61)

where the expressions for the quantities ARR and ARR
i ,

which depend only on the three-velocity vi and spacetime
derivatives of the radiation reaction potentials V RR and
V RR
i , are given in Eqs. (A4) and (A5) of Appendix A.

The second piece of the self-acceleration, A
(2)
α , has the

following structure:

A
(2)
t = [BRR + CRR +DRR]VRR

+
[
BiRR + CiRR +DiRR

]
V RR

i , (62)

A
(2)
i = −2 [BRR + CRR +DRR]V RR

i

− 1

2
δij
[
BjRR + CjRR +DjRR

]
VRR , (63)

where the quantities BRR, BiRR, CRR, CiRR, DRR, and DiRR,
which depend on the SCO three-velocity vi and the MBH
potentials (K,Ki,Kij) and (Q,Qi, Qij) and their spatial
derivatives, are all given explicitly in Eqs. (A6)-(A11) of
Appendix A.

One can check that in the limit gK,H
µν → ηµν (or equiv-

alently, (K,Ki,Kij) → (2V (1 − V ),−4Vi, 2V δij) and
|v| � 1 (in units c = 1), the spatial components of
the acceleration in Eq. (57) reduce exactly to Eq. (3.11)
in [91, 92] order by order. This can be checked by realiz-
ing that the self-acceleration here, Eq. (57), is related to
the self-acceleration in [91, 92], let us call it aiIW, via

aiIW =
d2zi

dt2
=
dvi

dt
= Γ−2

(
aiRR − viatRR

)
. (64)

D. From Boyer-Lindquist to Harmonic Coordinates

The resummed MBH background metric in Eq. (52),
the background Kerr metric, must be written in harmonic
coordinates in order for all terms to be in the same co-
ordinate system and to be consistent with other ingredi-
ents of the new kludge scheme, like the waveform gener-
ation procedure described in Sec. III E. However, there
are parts of this scheme that are easier to implement in
Boyer-Lindquist coordinates, such as the integration of
the geodesic equations. Therefore, it is crucial to de-
termine out how to transform from Boyer-Lindquist to
harmonic coordinates.

Harmonic coordinates refers to any member of the fam-
ily of coordinate systems, say {xαH}, that satisfy the equa-
tion

�xαH = 0 , (65)

where � is the D’Alembertian operator: � ≡ gαβ∇α∇β .
When we write down the D’Alembertian operator in this
coordinate system, this condition is equivalent to the

condition: gαβH Γµ,Hαβ = 0, which in turn is equivalent to

requiring ∂βg
αβ
H = 0, where gαβH =

√−gH gαβH . Notice
that the harmonic coordinate condition and the harmonic
gauge condition are different things. The first expresses
a property of a given coordinate system in a given space-
time, whereas the second refers to the correspondence
between the background and perturbed spacetimes in
perturbation theory. In this sense, the gauge condition
∂µh

µν = 0, where hµν = gαβ − ηαβ , enforces harmonic
coordinates at first order in perturbations around flat
spacetime. Although the Lorenz gauge condition Eq. (2)
is similar to the harmonic gauge condition, these condi-
tions are in general different, coinciding only for pertur-
bations around Minkowski spacetime.

The most commonly employed coordinate systems in
GR to describe BH geometries are Schwarzschild or
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Boyer-Lindquist coordinates, neither of which is actu-
ally harmonic. Although the time and azimuthal Boyer-
Lindquist coordinates, t and φ, satisfy Eq. (65), the radial
and polar coordinates, r and θ, do not. One can further
check that Eddington-Finkelstein and Kerr-Schild coor-
dinates are also non-harmonic. Of course, if one consid-
ers a vacuum, Minkowski spacetime, then Eq. (65) be-
comes trivial, ∂α∂αx

µ = 0, which is generically satisfied
by many coordinate systems.

Harmonic coordinates for the Kerr metric have been
studied extensively in the literature. A harmonic slicing
of the Kerr metric was found in [97], where the time-
function T is related to Boyer-Lindquist coordinates via

T = t+
r2
+ + a2

r+ − r−
ln

∣∣∣∣r − r+

r − r−

∣∣∣∣ , (66)

where r± are given in Eq. (11). Although the slicing is
harmonic, the full set of four-dimensional coordinates is
not. Ref. [98] did find a full set of harmonic coordinates
for Kerr but no explicit expressions for the metric com-
ponents were given. In [99], based on work by Ding (see
Ref. [99] for references on this), a different transforma-
tion to harmonic coordinates was found, where the time
slicing was not modified. This is very convenient for the
new kludge scheme, which is why we adopted this choice
in this paper.

Following [99], we can map the Kerr metric from
Boyer-Lindquist coordinates (t, r, θ, φ) to harmonic ones
(tH, xH, yH, zH) via the coordinate transformation

tH = t , (67)

xH =

√
(r −M•)2

+ a2 sin θ cos[φ− Φ(r)] , (68)

yH =

√
(r −M•)2

+ a2 sin θ sin[φ− Φ(r)] , (69)

zH = (r −M•) cos θ . (70)

while the inverse transformation is

t = tH , φ = Φ(r) + arctan

(
yH

xH

)
, (71)

r = M• +
1√
2

[
r2
H − a2 +

√
(r2

H − a2)
2

+ 4a2z2
H

]1/2

,

(72)

θ = arccos

(
zH

r −M•

)
, (73)

We have here introduced the short-hand notation

rH ≡ (x2
H + y2

H + z2
H)1/2 , (74)

and the angle function Φ(r), which is given by

Φ(r) =
π

2
− arctan

{
r−M•
a + Ω(r)

1− r−M•
a Ω(r)

}
, (75)

with

Ω(r) = tan

[
a

2
√
M2
• − a2

ln

(
r − r−
r − r+

)]
. (76)

The coordinate transformation between Boyer-Lindquist
and harmonic coordinates requires expressions for
(cos Φ, sin Φ) and the Jacobian and Hessian of the trans-
formation, which we provide in Appendix B.

We have checked that Eq. (65) is satisfied identically
for (xαH) = (tH, xH, yH, zH) in the Kerr background. More-
over, one can see that this transformation reduces to
the standard one from Schwarzschild to harmonic co-
ordinates [100] in the a → 0 limit. In this limit, the
transformation (68)-(70) reduces to the Euclidean trans-
formation from spherical to Cartesian coordinates, with
rH playing the role of the spherical coordinate, related to
the radial coordinate r by rH = r −M•.

This explicit coordinate transformation allows us to
compute certain ingredients of the new kludge scheme in
Boyer-Lindquist coordinates and then transform the re-
sult to harmonic coordinates when needed. For instance,
the Kerr metric in harmonic coordinate is then simply

gK,H
µν = gK,BL

ρσ

∂xρBL

∂xµH

∂xσBL

∂xνH
(77)

where the Jacobian ∂xρBL/∂x
µ
H is given in Appendix B 1

and the transformation is shown explicitly in Ap-
pendix B 2.

In particular, in the current implementation of the new
kludge scheme, we choose to perform the quasi-geodesic
evolution using variables associated with Boyer-Lindquist
coordinates (see Sec. IV). Then, from the information
of the trajectory in Boyer-Lindquist coordinates we can
compute the velocity and accelerations in harmonic co-
ordinates using the following relations

ṙH =
∂rH

∂xiBL

ẋiBL =
∂rH

∂r
ṙ +

∂rH

∂θ
θ̇ +

∂rH

∂φ
φ̇ , (78)

r̈H =
∂rH

∂xiBL

ẍiBL +
∂2rH

∂xiBL ∂x
j
BL

ẋiBL ẋ
j
BL

=
∂rH

∂r
r̈ +

∂rH

∂θ
θ̈ +

∂rH

∂φ
φ̈

+
∂2rH

∂2r
ṙ2 +

∂2rH

∂2θ
θ̇2 +

∂2rH

∂2φ
φ̇2

+ 2

(
∂2rH

∂r ∂θ
ṙ θ̇ +

∂2rH

∂r ∂φ
ṙ φ̇+

∂2rH

∂θ ∂φ
θ̇ φ̇

)
. (79)

where the Hessian ∂2rH/∂x
i
BL ∂x

j
BL is given in Ap-

pendix B 3. Notice that we only need the spatial com-
ponents of the self-acceleration in Eqs. (30)-(32). With
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this acceleration, we can then compute the change in the
constants of the motion as we osculate from one geodesic
to the next.

On the other hand, thinking about extending the new
kludge scheme to systems in which the central object, the
MBH in our case, is not described by the Kerr metric but
by a different metric tensor (either because the central
object corresponds to an exotic distribution of mass or
because it is governed by an alternative theory of grav-
ity, or perhaps both), it may happen that transforming to
harmonic coordinates may be a very difficult task, even
when given an explicit coordinate transformation as the
one above is known (although in this case one may re-
sort to numerical computations). Fortunately, one does
not need a full coordinate transformation to read off the
multipole moments of the background. Thorne [47] has
shown that it suffices to work with so-called asymptoti-
cally Cartesian and mass centered coordinates of order N
(ACMC-N). These coordinates are defined such that the
background metric is time-independent and has a certain
spherical harmonic structure (see, e.g. Eq.(11.1a) in [47]).
Thorne has further shown that harmonic coordinates are
ACMC-∞, and found an explicit map between Boyer-
Lindquist and ACMC-2 coordinates [47]. In Appendix C
we construct an ACMC-4 coordinate system and com-
pare it to the exact harmonic coordinates described in
this section. The difference between a standard ACMC-
4 and its harmonic generalization appears only near the
horizon, and in particular, it should affect results when
PN corrections to the multipole moments are taken into
account. We work here directly in harmonic coordinates
as given by Eqs. (67)-(70) and explained in detail in Ap-
pendix B.

E. Waveform Generation

Once the orbital evolution, including self-force back-
reaction, has been computed, one can construct the re-
sulting GWs. Expressions for these as a function of
the trajectories can be obtained by solving Eq. (3) ei-
ther numerically or analytically, via some approximation
scheme. Here we use the solution for the waveforms that
comes from the combination of post-Minkowskian and
PN expansions and which gives rise to standard multipo-
lar expressions (see e.g. [101] for a review). In this way we
can write the plus- and cross-polarized solution to Eq. (3)
as an infinite series expansion in terms of derivatives of
mass and current multipole moments [47, 102]:

h+− i h× =
1√
2

∑
`,m

[
U `m(tr)− iV `m(tr)

]
−2Y

`m, (80)

where tr denotes retarded time and U `m and V `m are
radiative mass and current multipole moments:

U `m ≡ 16π

(2`+ 1)!!

√
(`+ 1)(`+ 2)

2`(`− 1)
UL Y`m∗L , (81)

V `m ≡ −32π`

(2`+ 1)!!

√
(`+ 2)

2`(`+ 1)(`− 1)
VL Y`m∗L , (82)

where (UL,VL) are symmetric, trace-free, mass-type and
current-type multipole moment tensors (see, e.g. Eq.(15)
in [102]). Even for the case of comparable-mass BH merg-
ers, such an expansion taken only up to quadrupole order
(l = 2) has been shown to be sufficient to recover the
waveform to excellent accuracy [103].

This prescription is then complete, once expressions for
the radiative moments are given in terms of derivatives
of the orbital trajectories. Such identification, however,
is difficult, as these moments are defined in the far-zone
(many gravitational wavelengths away from the center
of mass of the binary), and have no knowledge of the
source multipole moments, defined in the near zone (less
than a gravitational wavelength from the center of mass).
Asymptotic matching can be used to relate the radiative
to the source multipole moments [101], yielding explicit
expressions that depend only on derivatives of the orbital
trajectories in the near-zone. Here, in this initial version
of the new kludge scheme, we only consider just the lead-
ing order contributions to the multipoles moments, ie. we
identify the source and radiative moments: UL = ML and
VL = SL, ignoring in this way subleading corrections that
correspond to tail and memory effects.

In a transverse-traceless gauge, one can rewrite the
harmonically decomposed metric perturbation in the fol-
lowing simpler form:

hTT

ij =

∞∑
`=2

[
4

`!

1

r
M

(`)
L−2(tr)NL−2

+
8`

(`+ 1)!

1

r
εkl(iSj)kL−1(tr)nlNL−2

]STF

, (83)

which, when we consider only multipoles up to the mass
hexadecapole and the current octopole, reduces to

hTT

ij =
2

r
M̈STF

ij +
2

3r

[ ...
M ijkn

k + 4εkl(iS̈j)knl

]STF

+
1

6r

[....
M ijkln

knl + 6εkl(i
...
S j)kmn

lnm
]STF

. (84)

The expressions for these multipole moments have been
given in Eqs. (48) and (49), except for the mass hexade-
capole and current octopole multipoles, which are given
respectively by

Mijkl = ηm z<ijkl> , (85)

Sijk = ηm εlm<izjk>
l żm . (86)
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Again, these moments contain higher order corrections
that can also be easily included in subsequent improve-
ments of the new kludge scheme. The plus and cross-
polarized projections can then be constructed via

h+,× = eij+,×h
TT

ij , (87)

where eij+,× is the plus- and cross-polarization tensors.
Finally, the observables that one wishes to compute are

the GW response functions, which are given by a projec-
tion of the plus- and cross-polarized waveform with the
beam pattern functions of the detectors. For a detec-
tor like LISA there are two such functions, F+,I/II and
F×,I/II (see, e.g. [15, 104] for expressions of these func-
tions) and the response is thus

h ≡
√

3

2DL

∑
A=I,II

(
F+,A h+ + F×,Ah×

)
, (88)

where DL is the luminosity distance from the source to

the observer and the prefactor of
√

3/2 is due to the tri-
angular arrangement of the LISA detector.

F. Summary of the New Kludge Approach

The physical quantity one is interested in is the re-
sponse function, which is given by Eq. (88) in terms
of the beam-pattern functions (see, e.g. [15]) and the
plus- and cross-polarized waveform. The latter is given
in Eq. (87) in terms of the transverse-traceless metric
perturbation. The first approximation we make is to ex-
pand hTT

ij in post-Minkowskian multipole moments Mij ,
Mijk and Sij through Eq. (84), where we neglect tail
and memory corrections. The second approximation we
make is to treat these moments in a Newtonian-like fash-
ion through Eq. (48) and (49) in terms of the trajectory
of the bodies, neglecting post-Newtonian corrections due
to non-linearities. These two approximations provide the
response function as a function of the trajectory of the
bodies in harmonic coordinates.

The orbital trajectories are obtained by solving the
geodesic equations enhanced by time-varying orbital el-
ements in Boyer-Lindquist coordinates. The time varia-
tion of the orbital elements is prescribed by the radiation-
reaction acceleration in Eqs. (61), (62) and (63) in har-
monic coordinates and in terms of quantities that depend
on the harmonic Kerr background [with the map given
in Eqs. (C5)-(C8)] and reactive potentials, in turn given
in Eq. (45). To evolve osculating orbits, one must there-
fore map the Boyer-Lindquist acceleration and velocity to
harmonic coordinates via Eqs. (78)-(79), so as to compute
the rates of change of the orbital elements, which then
in turn allows us to map between osculating geodesics.
Once the SCO’s world-line has been completely obtained,
we can use it in harmonic coordinates in the waveform
prescription.

The kludge nature of the approach then becomes clear.
We employ a combination of approximation schemes that

include a multipolar, post-Minkowskian expansion (for
the far-zone metric perturbation and for the local pre-
scription of the self-force) a post-Newtonian expansion
(for the multipole moments in terms of the trajectories)
and a BH perturbation theory expansion (when treating
the trajectories as self-adjusting geodesics). All of this is
tied together via a non-trivial numerical implementation
that is described next.

IV. NUMERICAL IMPLEMENTATION OF THE
NEW KLUDGE SCHEME

In this section we provide details of how we have imple-
mented each of the ingredients of the new kludge scheme
described in the previous section. The numerical code
that we have developed is written in C language [105] and
uses different parts of the GNU scientific library [106] as
we describe below.

A. Integration of the Equations of Motion

We need to integrate numerically the set of ODEs con-
sisting of Eqs. (18)-(21), and at the same time we need to
update the value of the constants of motion (E,Lz, C/Q).
The separation of the geodesic equations has produced
equations for the radial and polar Boyer-Lindquist coor-
dinates, Eqs. (19) and (20) respectively, that have turn-
ing points (at pericenter and apocenter in the case of the
radial coordinate, and at the location of the orbital incli-
nation angle in the case of the polar coordinate), and at

these points we have ṙ = 0 and θ̇ = 0. This means that
these are not the best variables for the numerical inte-
gration, as ODE solvers present convergence problems at
turning points.

To avoid this problem, we introduce new variables in
the place of the radial and polar Boyer-Lindquist coordi-
nates, r and θ. These new coordinates are angle variables
defined by the following expressions:

r =
pM•

1 + e cosψ
, cos2 θ = cos2 θmin cos2 χ . (89)

We can write the equations for r and θ in terms of their
turning points and other extrema (points at which the
time derivatives vanish but are not accessible to the mo-
tion). In the case of the radial motion, we can write the
right-hand side of Eq. (19) as

(1− E2)(rapo − r)(r − rperi)(r − r3)(r − r4) , (90)

where r3 and r4 satisfy rapo > rperi > r3 > r4. In the same
way, we can write the right-hand side of the equation for
the polar motion [Eq. (20)] in the following form

a2(1− E2)

1− z
(
z+ − z

) (
z − z−

)
, (91)
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where

z = cos2 θ , z− = cos2 θmin , (92)

and z+ > z−. We describe in Appendix E the relations
between these extrema, ie. (rapo, rperi, r3, r4) and (z−, z+),
and how to find them.

For convenience, we parametrize the trajectory in
terms of the Boyer-Lindquist coordinate time t, which
is also a time harmonic coordinate, instead of the proper
time τ . This is done using Eq. (18) to rewrite the evolu-
tion equations with respect to t. In this way, the resulting
equations for (ψ(t), χ(t), φ(t)) are (see also, e.g. [86]):

dψ

dt
=
M•
√

1− E2
√

[p(1− e)− p3(1 + e cosψ)] [p(1 + e)− p4(1 + e cosψ)]

(1− e2) [Ψ(ψ) + a2E z(χ)]
, (93)

dχ

dt
=

√
a2(1− E2)

(
z+ − z− cos2 χ

)
Ψ(ψ) + a2E z(χ)

, (94)

dφ

dt
=

1

Ψ(ψ) + a2E z(χ)

{
2M•ar(ψ)E

∆(r(ψ))
+

(
1

1− z(χ)
− a2

∆(r(ψ))

)
Lz

}
, (95)

where we have introduced the following definitions: p3 ≡
r3(1− e)/M•, p4 ≡ r4(1 + e)/M•,

Ψ(ψ) ≡
[

(r2(ψ) + a2)2

∆(r(ψ))
− a2

]
E − 2M•ar(ψ)Lz

∆(r(ψ))
, (96)

and r(ψ) and z(χ) are given through Eq. (89). There-
fore, the actual outcome of the numerical integration of
the ODEs of Eqs. (93)-(95) is a time series of the three an-
gles (ψ(t), χ(t), φ(t)), which grows monotonically in time.
The numerical method we use to integrate these ODEs
is the Bulirsch-Stoer extrapolation method ([107]) as de-
scribed by [108] (see also [109]).

B. Estimation of Time Derivatives

Probably the main challenge in the numerical imple-
mentation of the new kludge scheme is the evaluation of
the time derivatives of the different quantities involved.
To understand the nature of this problem let us focus
on the computation of our multipolar, post-Minkowskian
self-force. If we look at the expression for the radia-
tion reaction potentials VRR and V iRR, Eqs. (44) and (45),
we realize that we need to compute up to the seventh
time derivative of the mass quadrupole and octopole mo-
ments and up to the fifth time derivative of the current
quadrupole moment. But since we also need to compute
time derivatives of these potentials [see Eqs. (57) and (61)
and also Eqs. (A4) and (A5)] we also need the eighth time
derivative of the mass quadrupole and octopole moments
and the sixth time derivative of the current quadrupole
moment.

In principle, one could think about computing these
derivatives analytically by using the equations of mo-
tion, Eqs. (18)-(21). The problem is that we need the

time derivatives of the trajectory in harmonic coordi-
nates, and to pass from the ODE angles (ψ(t), χ(t), φ(t))
to harmonic coordinates we need to first use Eq. (89) to
go from these angles to Boyer-Lindquist coordinates, and
then Eqs. (67)-(70) to go from Boyer-Lindquist to har-
monic coordinates. Therefore, we would need to obtain
analytically higher time-derivatives of the ODE angles
(up to eighth order), which involves using the Christoffel
symbols of the Kerr metric and several of their deriva-
tives, and also to differentiate several times Eqs. (89)
and (67)-(70). In practice, this makes the analytical com-
putations unfeasible, even using modern computer alge-
bra systems, and even if they weren’t, one would worry
about the reliability of the numerical evaluation of the
huge expressions that one would result.

For these reasons, we resort to a numerical evalua-
tion of these derivatives. The starting point is the fact
that we can compute the trajectory, the velocity, and
the acceleration almost directly from the integration of
the ODE equations (18)-(21) and with a high accuracy.
From there, and using purely analytical expressions, we
can directly obtain the second time derivatives of the
mass quadrupole and octopole moments and the first
time derivative of the current quadrupole moment. Thus,
we just need to compute up to the six additional time
derivative for the mass moments (ie., starting from their
second time derivative) and up to the five additional time
derivative for the current quadrupole moment (ie., start-
ing from its first time derivative).

Computing numerical derivatives, in contrast to nu-
merical integration, is a subtle task (see, e.g. [109]). For
instance, if we consider finite difference formulae for the
different derivatives, the computation requires the partic-
ular combinations of the function we want to differentiate
at points close to the evaluation point, and these combi-
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nations are divided by a power of the offset between the
different evaluation points. If one chooses the offset to be
too small, high-order cancelations in the combinations of
the function evaluations can occur beyond machine pre-
cision, yielding a meaningless final result. If instead one
chooses the offset to be too big, the function might be
evaluated at points where its behavior is very different
from the one near the evaluation points, which in turn
can also lead to large errors in the numerical derivatives.
In many situations one can find an interval of offset val-
ues in which the high-order derivatives are sufficiently
accurate, but such an interval depends on the orbit char-
acteristics and it is not easy to predict. Although we tried
many different finite difference rules (from rules involving
a few points to rules involving more than 20 evaluation
points), as well as other generic numerical differentiation
techniques (such as numerical interpolation or Cheby-
shev differentiation), a large amount of fine-tuning that
was difficult to predict seemed essential in all cases.

The key point to improve the differentiation algorithm
is to realize that the methods we have just discussed are
more general than needed for the EMRI problem. In
the latter, one is always dealing with functions with cer-
tain properties that can be exploited to construct a bet-
ter numerical differentiation method. The key feature
is that multipole moments are functionals of the trajec-
tories, which are are piecewise timelike bounded Kerr
geodesics, and in turn can be characterized by three fun-
damental frequencies (in the generic case, see the discus-
sion in Sec. III A). Following [86], we know that a general
functional of Kerr orbits, let us call it f [ψ, χ, φ](t), can be
expanded in a multiple Fourier series of these frequencies,
that is

f [ψ, χ, φ](t) =
∑
k,m,n

fk,m,ne
−i (kΩr+mΩθ+nΩφ) t , (97)

where (k,m, n) are integers running from −∞ to +∞ and
fk,m,n are complex coefficients such that f−k,−m,−n =

f̄k,m,n. There are three special cases in which this expan-

sion is simplified: (i) Circular equatorial orbits; (ii) Equa-
torial non-circular orbits; (iii) Circular non-equatorial or-
bits. In case (i), the Fourier series contains only a single
frequency, the azimuthal one Ωφ. In case (ii), there are

two independent frequencies, Ωr and Ωφ. In case (iii),
there are also two independent frequencies, but they are
Ωθ and Ωφ.

Our procedure to estimate time derivatives is then to
first fit an expansion like that of Eq. (97) to the multipole
moments that are required using a standard least-square
fitting algorithm, and then then to estimate time deriva-
tives via

f (N)[ψ, χ, φ](t) =
∑
k,m,n

fNk,m,ne
−i (kΩr+mΩθ+nΩφ) t , (98)

where

fNk,m,n = (−i)N (kΩr +mΩθ + nΩφ)N fk,m,n . (99)

The Fourier fits to the multipole moments, therefore,
play a crucial role in the accuracy of the high-order
derivatives. We carry these fits out by evaluating the
function to be fitted on a certain number of points along
a geodesic piece of the orbit. As we have already men-
tion, we can compute analytically the first time deriva-
tives of the multipoles, so the time-dependent functions

that we actually fit are: M
(2)
ij (t), M

(2)
ijk(t), and S

(1)
ij (t) for

the radiation reaction potentials, and also Mijkl(t) and

Sijk(t) for the waveforms. The parameters that we need

to choose for the least-squares fit are: (i) the size in time
of the interval where we fit the function; (ii) the num-
ber of points in this interval where the function is going
to be evaluated (ie. the number of points to be fitted);
and (iii) the number of harmonics/frequencies that we
include in the finite expansion of Eq. (97). For choice
(i), we take a fixed fraction of the shortest orbital pe-
riod (ie. of the minimum of Tr = 2π/Ωr, Tθ = 2π/Ωθ,
and Tφ = 2π/Ωφ; see Appendix F). For choice (ii), we
use between 50 − 500 points, depending on the case we
are dealing with (generic or very particular) and the pre-
cision we want to achieve. For choice (iii), we use be-
tween 2 and 5 harmonics of the fundamental frequencies.
Adding more harmonics would increase the accuracy of
the derivatives, but we have empirically found that 5 har-
monics is usually sufficient.

For the practical implementation of the least-squares
fit we use the GNU Scientific Library [106]. We have
performed a number of experiments for different types of
functions (and also for multipole moments of the orbital
trajectory) and we have found that this technique is very
robust and provides very high accuracy even for the high-
est derivatives. For instance, for the sixth time derivative
we find typical accuracies of one part in 105. Taking into
account that the magnitude of the time derivatives of the
multipole moments decreases significantly with the order
of the derivative, this accuracy is more than enough for
our purposes. Another important feature of this tech-
nique is that is has appeared to be quite robust with
respect to the three choices of parameters we have dis-
cussed above.

V. NUMERICAL RESULTS

In this section, and in order to illustrate the new kludge
scheme, we present some numerical results from a nu-
merical code that we have developed to implement new
kludges, as well as some comparison with other results
in the literature. The examples of new kludge evolutions
shown here are all for prograde orbits but there are no
obstacle to produce similar results for retrograde orbits.

Let us first consider our proper use of harmonic coordi-
nates, an ingredient of new kludges that is very different
from traditional kludge implementations. In the latter,
(see, e.g. [39]) harmonic coordinates are approximated
via (Euclidean) Cartesian Boyer-Lindquist coordinates,
ie. (xBL, yBL, zBL) = (r sin θ cosφ , r sin θ sinφ, r cos θ).
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Such coordinates will differ from true harmonic coordi-
nates greatly in the strong-field regime. In turn, this will
modify the resulting trajectories and waveforms, as the
proper choice of coordinates is crucial in the calculation
of multipole moments, both in radiation reaction compu-
tations and in waveform production.

Let us then compare how much error is introduced by
the use of the wrong coordinate system in EMRI wave-
form construction. For this, we employ circular equato-
rial orbits as they are simpler when comparing the wave-
form phase. Figure 1 shows a circular-equatorial inspiral
orbit for a system with: a/M• = 0.1, q = 1/10 and
po = 10, where po is the initial value of the semi-latus
rectum. That is, both orbits have the same initial semi-
latus rectum, and hence the same initial energy and or-
bital frequency Ωφ. We have chosen such a large mass
ratio in this case, so that one could see the trajectory
tracks in the figure. The orbit on the left panel has been
built and represented using the harmonic coordinates xαH
whereas the orbit on the right has been built and repre-
sented using the Cartesian Boyer-Lindquist coordinates
xBL (these coordinates are used both for the integration
of the geodesic equations of motion and for the estima-
tion of the self-force).

The trajectories in this figure are stopped at the radius
of the last stable circular equatorial orbit (LSO), given
by [84]:

rLSO = M•

{
3 + Z2 ∓

√
(3− Z1) (3 + Z1 + 2Z2)

}
,

(100)
where the upper (lower) sign is for prograde (retrograde)
orbits, and

Z1 = 1 +

(
1− a2

M2
•

) 1
3

[(
1 +

a

M•

) 1
3

+

(
1− a

M•

) 1
3

]
,

Z2 =

√
3
a2

M2
•

+ Z2
1 .

For the evolutions shown in Fig. 1, the LSO r ≈ 5.67M•
and rH ≈ 4.67M•, consistent with rH ∼ r −M•.

One must be careful when comparing trajectory tracks,
since these are completely coordinate dependent (by def-
inition). Instead, we can compare the number of GW cy-
cles, which are directly observable. The number of orbital
cycles in the case of harmonic coordinates is essentially
double that of the Boyer-Lindquist Cartesian coordinate
case, and consequently, the same is true for the associated
waveforms (not shown here). This extremely large dis-
tance is perhaps a bit of an overestimate, since we consid-
ered very strong field EMRIs and used the two different
systems of coordinates in both the waveform generation
and the calculation of the multipolar, post-Minkowskian
self-force. This last point is important because in many
kludge schemes the coordinates only enter in the tra-
jectory and in the waveform construction, whereas the

radiation-reaction part is based on PN results or on BH
perturbation theory. In any case, this example shows
that the proper and consistent choice of coordinates can
play a major role in the final waveforms produced.

Let us now consider how other choices in the new
kludge scheme modify the final waveforms produced.
One approximation one can make to simplify new kludges
is to ignore the local potentials Kµν and Qµν introduced
in Eqs. (54)-(56), ie. to pick Kµν = Qµν = 0, or in the
case that we use the approximate harmonic coordinates
of Appendix C we can use the expansions of Appendix D
for these potentials to any order. Obviously this can
make a big difference and in our simulations we have al-
ways used the Kerr local potentials in exact harmonic
coordinates [Eqs. (54)-(56)].

Another approximation one can make is to use just
the radiation reaction potential of Burke and Thorne
[Eq. (47)] (with V iRR = 0), instead of the full poten-
tials of Eqs. (44) and (45) (see [91, 92]). In order to
illustrate the waveform difference in this case we have
studied the inspiral of a system with M• = 4.5× 106M�,
a/M• = 0.98 and q = 10−5. In Figure 2 we show the evo-
lution of the semi-latus rectum for two cases, one with
p(t = to) ≡ po = 3 (the plot on the left), being to the
evolution initial time, and the other one with po = 8. As
we can see from the figure, the higher-derivative correc-
tions to the Burke-Thorne radiation-reaction potential
[Eqs. (44) and (45)] increase the radiation-reaction ef-
fects, in the sense that p and the other orbital elements
change more rapidly when these corrections are included.
Moreover, these corrections are more significant in the
strong field region, near the last stable orbit, and less so
as the distance to the MBH increases.

We can assess quantitatively the difference due to in-
troducing corrections to the Burke-Thorne potential by
looking at the GWs emitted. To that end, we introduce
the following definition:

h+ − ih× = AGW eiΦGW , (101)

where AGW =
√
h2

+ + h2
× is the GW amplitude and

ΦGW = arctan (h×/h+) is the accumulated GW phase.
The GW phase difference induced by the presence of the
corrections to the Burke-Thorne potential is shown in
Fig. 3 for the evolution with po = 8 that corresponds to
the right panel of Fig. 2. Observe that the GW phase dif-
ference increases with time to accumulate up to 4.54 rad
for a total evolution time of 0.2 yr. This means we can
expect a dephasing of more than 3 cycles for a 1 yr evolu-
tion, ie. the radiation reaction corrections to the Burke-
Thorne potential are of relevance for precise and long
EMRI evolutions. The situation is even more dramatic
for the strong field evolution that starts with po = 3 (left
panel of Fig. 2), where the evolution with only the Burke-
Thorne potentials takes 55.2 days while the one with the
full radiation-reaction potentials takes 42.8 days before
reaching an unstable orbit, which translates in a differ-
ence of 2862.5 GW cycles.
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FIG. 1. Circular and equatorial inspiral of a binary system characterized by a/M• = 0.1 and q = 1/10. The inspiral starts
at (x, y) = (10, 0)M•. The figure on the left shows the inspiral using harmonic coordinates and the figure on the right using
Cartesian Boyer-Lindquist coordinates.

FIG. 2. Evolution of the semi-latus rectum in circular and equatorial inspirals of a binary system characterized by: M• =
4.5 × 106M�, a/M• = 0.98, and q = 10−5. The figure on the left shows an inspiral that has started with po = 3 and the figure
on the right an inspiral that has started with po = 8. While the one on the left stopped near the last stable circular orbit, the
one on the right was stopped after 0.2 yr of evolution.

Finally, let us look at the choices associated with the
waveform construction model. In this part of the new
kludge scheme, we can choose the multipolar order of the
expansion of the gravitational radiation field as described
in Sec. III E. Three possibilities present themselves here:
(i) Quadrupolar waveforms; (ii) Octopole-Quadrupolar

waveforms; and (iii) Hexadecapole-Octopolar waveforms.
Case (i) is the lowest-order approximation and consists of
considering only the mass quadrupole term in the wave-
form expansion. This is equivalent to considering up to
second time derivatives of the trajectory, ie. up to accel-
erations. Case (ii) accounts for the next order multipole,
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FIG. 3. Evolution of the GW phase difference between two
inspirals characterized by: M• = 4.5 × 106M�, a/M• = 0.98,
q = 10−5 and po = 8. The GW phase difference is computed
using the formula: ∆ΦGW(t) = ΦBurke−Thorne

GW (t)−ΦFull RR
GW (t),

where ΦBurke−Thorne
GW is the GW phase for an evolution that

uses only the Burke-Thorne potential [Eq. (47)] and ΦFull RR
GW

is the GW phase for an evolution that uses the full radiation-
reaction potentials [Eqs. (54)-(56)].

that is, the mass octopole and the current quadrupole.
This is equivalent to considering up to third time deriva-
tives of the trajectory, ie. up to the jerk: ji ≡ d3xi/dt3.
Case (iii) adds one more multipole, that is, the mass hex-
adecapole and the current octopole. This is equivalent to
considering up to the fourth time derivatives of the tra-
jectory, ie. up to the snap: si ≡ d4xi/dt4.

In general, adding more multipoles does not affect the
GW phase but it introduces amplitude corrections that
depend on the inspiral character. For instance, compar-
ing the quadrupole waveforms with the hexadecapole-
octopole waveforms for the evolutions corresponding to
Fig. 2, we find no difference in the GW phase, but a 3.3%
(for the case with po = 8) and 4.8% (for the case with
po = 3) difference in the averaged GW amplitude. In
this comparison we have used the full radiation-reaction
potentials for all evolutions.

Let us now present some results for orbits more generic
than circular equatorial, since our kludges can easily han-
dle these as well. Consider first circular non-equatorial
orbits, since these are the simplest kind of orbits that
allow us to study the evolution of the orbital inclina-
tion, either as described by θinc [see Eq. (E1)] or by ι
[see Eq. (25)]. In this sense, it is interesting to test the
conclusions of [42] (see also [110]) that inclination re-
mains almost constant for most such EMRIs and also to
compare some quantitative results in order to assess the

present new kludge implementation.
The approximation dι/dt = 0 has been considered by

different authors in order to obtain an evolution equation
for the Carter constant:

dι

dt
= 0 ⇒ Ċ =

2C

Lz
L̇z . (102)

Given that it is not simple to estimate the evolu-
tion of C within the framework of perturbation theory
(see [58, 111]), this approximation provides a clear path
to the construction of generic EMRI waveforms. The PN
leading-order prediction for the evolution of the inclina-
tion given by Ryan [112] predicts a grow in the incli-
nation. Although this prediction is known to overesti-
mate the inclination growth (see [110] for a discussion),
it agrees with BH perturbation computations valid in the
strong field.

Table II presents some results of the evolution of the ra-
dius ro and Carter constant C for circular non-equatorial
orbits characterized by:

(i) a/M• = 0.05, ro/M• = 100, and ι = 60.0 deg;

(ii) a/M• = 0.95, ro/M• = 100, and ι = 60.05 deg;

(iii) a/M• = 0.05, ro/M• = 7, and ι = 60.17 deg;

(iv) a/M• = 0.95, ro/M• = 7, and ι = 60.43 deg .

These evolutions use Eq. (36) and the formulae of Ap-
pendix G. Observe from the table that the new kludge
results are in very good agreement with Teukolsky like
evolutions, even though the former has not really been
refined or optimized.

The local nature of new kludges can also be appreci-
ated in the local, non-uniform temporal changes of the
inclination angle, ie. dι/dt is not constant in time but
oscillates with the orbital period Tθ (see Table III for the
value of the fundamental frequencies Ωθ and Ωφ for the

cases of Table II). In contrast, we find that dro/dt is ap-
proximately constant within orbital time scales. We illus-
trate these facts in Fig. 4 where we compare the evolution
of both quantities for a total time of ∆t = 800M• and for
the third case of Table II, characterized by a/M• = 0.05,
ro/M• = 7, and ι = 60.17 deg. The results of Table II
can be obtained via a simple linear regression of the evo-
lution of ι over a number of orbital periods (we quote the
slope as the value of dι/dt in Table II).

Let us comment further on the results of Table II, clas-
sifying them into weak field calculations [cases (i) and
(ii)] and strong field ones [cases (iii) and (iv)]. First, as
it was already discussed, the new kludge results in the
weak field do not differ much using the Burke-Thorne
or the full radiation-reaction potentials, whereas in the
strong field the differences are significative. Second, con-
sidering the absolute value of the numbers quoted in the
table, new kludges tend to always underestimate the rate
of decay of the radius of the circular orbit, ro, with re-
spect to the Teukolsky results of [43]. This is in contrast
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a/M• ro/M• ι (deg) Quantity PN Teukolsky New Kludge New Kludge
(Ref. [89]) (Ref. [43]) Burke-Thorne Full RR

0.05 100 60.00 q−1 (dro/dt) −1.2797 × 10−5 −1.2676 × 10−5 −1.1700 × 10−5 −1.1708 × 10−5

(M•/q) (dι/dt) 7.0439 × 10−12 6.6936 × 10−12 6.1597 × 10−12 6.5089 × 10−12

0.95 100 60.05 q−1 (dro/dt) −1.2733 × 10−5 −1.2610 × 10−5 −1.1622 × 10−5 −1.1634 × 10−5

(M•/q) (dι/dt) 1.3389 × 10−10 1.2040 × 10−10 1.1628 × 10−10 1.2273 × 10−10

0.05 7 60.17 q−1 (dro/dt) −3.6762 × 10−2 −1.0964 × 10−1 −8.3338 × 10−2 −8.9633 × 10−2

(M•/q) (dι/dt) 1.5867 × 10−5 1.0875 × 10−5 9.6088 × 10−6 1.6233 × 10−5

0.95 7 60.43 q−1 (dro/dt) −2.7499 × 10−2 −4.6574 × 10−2 −3.4547 × 10−2 −3.6825 × 10−2

(M•/q) (dι/dt) 3.0806 × 10−4 1.2073 × 10−4 1.6023 × 10−4 2.5962 × 10−4

TABLE II. Evolution of the radius, ro, and inclination angle, ι, of circular non-equatorial orbits characterized by (columns 1st
to 3rd from top to bottom): (i) a/M• = 0.05, ro/M• = 100, and ι = 60.0 deg; (ii) a/M• = 0.95, ro/M• = 100, and ι = 60.05
deg; (iii) a/M• = 0.05, ro/M• = 7, and ι = 60.17 deg; (iv) a/M• = 0.95, ro/M• = 7, and ι = 60.43 deg . Column 5th gives the
value of q−1 (dro/dt) and (M•/q) (dι/dt) obtained from the PN calculations of Ryan [89]; column 6th gives the value obtained
by Hughes [43] solving the Teukolsky equation; and columns 7th and 8th are the values obtained with our current new kludge
implementation using the Burke-Thorne [Eq. (47)] and the full [Eqs. (44) and (45)] radiation reaction potentials respectively.

a/M• ro/M• ι (deg) M•Ωθ M•Ωφ
0.05 100 60.00 9.9992 × 10−4 1.0000 × 10−3

0.95 100 60.05 9.9856 × 10−4 1.0004 × 10−3

0.05 7 60.17 5.3776 × 10−2 5.4065 × 10−2

0.95 7 60.43 4.9813 × 10−2 5.4537 × 10−2

TABLE III. Values of the fundamental frequencies Ωθ and
Ωφ (see Appendix F for details) for the four cases shown in
Table II. The values of the frequencies are normalized with
respect to the MBH mass M•.

with the PN results of [89], which overestimate dro/dt in
the weak field and underestimate it in the strong field.

Regarding the evolution of the inclination angle ι the
situation is a bit different, although we can still see sim-
ilar differences between using the Burke-Thorne and the
full radiation-reaction potentials in the strong field com-
putations. For the weak field computations, the differ-
ences are significantly bigger for the evolution of ι than
for the evolution of ro. To put these numbers in context,
the errors in the new kludge estimations of the rates of
ro and ι, as compared with the Teukolsky estimations,
are: for dro/dt, 7.63 − 7.83% for the weak field com-
putations and 18.24 − 25.82% for the strong field ones;
for dι/dt, 1.93 − 7.97% for the weak field computations
and 11.64 − 115.04% for the strong field ones. In the
weak field, the new kludge computations, again assum-
ing that the Teukolsky computations are the correct ones,
in general do worse than the PN ones for dro/dt but they
do better for dι/dt, whereas in the strong field the new
kludge computations seem to be better than the PN ones
in general. Of course, this assumes that the Teukolsky
waveforms are exactly correct, which is not the case ei-
ther. A more detailed comparison between Teukolsky
and new kludge results will be carried out elsewhere.

Let us finish by considering an example of generic,
eccentric and inclined orbital evolutions with the new
kludge scheme. For such orbits, all the constants of mo-
tion/orbital elements change in time, plotted in Fig. 5 for

FIG. 4. Evolution of the radius ro (upper plot) and inclination
ι (lower plot) for the circular non-equatorial orbit character-
ized by a/M• = 0.05, ro/M• = 7, and ι = 60.17 deg. This is
the third case in Table II. The total time of the evolution in
units of the MBH mass is 800M•.

a sufficiently long time, including many orbital periods.
The main figure hides the changes in the orbital time
scales, so we have included subplots where we can see
that the evolution details scale with the orbital periods.
As we have already discussed above, this is a consequence
of using a local in time self-force. These effects are not
present in evolutionary schemes based on flux averaging
over a certain number of orbital periods (essentially all
other models currently used).

As we can see in Fig. 5, the local evolution of the dif-
ferent quantities presents slightly different patterns. The
difference in these patterns are enhanced if one chooses
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a more extreme orbit (more eccentric and more strong
field). We can also appreciate that looking at the global
evolution (over the long time scale) all quantities decay
in time except for the inclination, which grows in time.
However, if one looks at the details of the evolution over
the orbital periods, one can see (eg. for the eccentric-
ity) that it can locally grow in time although the global
tendency is to decay. Therefore, the new kludge scheme
leads to quite reach evolutionary patterns due to its local
in time character, which also makes it a very valuable tool
to investigate questions like the appearance of transient
resonances in EMRIs [73].

To illustrate the multipolar waveforms produced by the
new kludge scheme for general orbits, Fig. 6 shows short
fragments (for the sake of clarity) of the GWs associated
with the last evolution of Fig. 5, ie. for the inspiral of a
system with M• = 106M�, a/M• = 0.98, and q = 10−5,
and with initial orbital elements (p, e, ι) = (7, 0.6, 57.39
deg). The waveforms polarizations shown in Fig. 6, which
correspond to an observer along the spin axis, present the
richness of EMRI GWs for eccentric and inclined orbits.

VI. CONCLUSIONS AND DISCUSSION

We have introduced the new kludge scheme to model
the dynamics and the GW emission of EMRIs, which
in principle could also be used for intermediate-mass
ratio systems. This scheme combines ingredients from
the multipolar, post-Minkowskian formalism and black
hole perturbation theory to evolve a non-geodesic word
line (with respect to the geometry of the binary’s large
component, assumed here to be a MBH) and construct
waveforms. The orbits are built as a sequence of local
geodesics whose orbital elements evolve according to a
local self-force that we approximate via a multipolar,
post-Minkowskian expansion. The leading order term
of this self-force corresponds to the well-known Burke-
Thorne radiation-reaction potential. We have seen that
a crucial ingredient in this construction is the mapping
from Boyer-Lindquist coordinates, in which we integrate
locally in time the orbits to the harmonic coordinates
required both by the multipolar, post-Minkowskian self-
force and for the GW multipolar expansion. Once we
have trajectories in harmonic coordinates, it is straight-
forward to build waveforms.

In practice, the implementation of the new kludge
schemes requires a number of numerical/analytical in-
gredients. First, one must numerically integrate (locally
in time) geodesic equations, for which we use appropriate
angle variables that avoid turning points. From the inte-
gration of these equations, we can use analytical formu-
lae to map the trajectories (and associated velocities and
accelerations) to harmonic coordinates. Then, informa-
tion from small fragments of the geodesic orbit (smaller
than the fundamental orbital periods) is used to build
the different multipole moments and compute their time

derivatives. We have found this to be the most chal-
lenging point of the implementation as we need up to
eight-order time derivatives of the multipoles, in partic-
ular of the mass quadrupole. Numerical differentiation
is much more complicated than numerical integration,
since the choice of the offset in finite difference formu-
lae is crucial to obtain correct results. By experimenting
with different numerical techniques we have concluded
that general differentiation techniques (ie. valid for any
differentiable function) are quite difficult to implement
successfully (specially for the high-order derivatives re-
quired), since the derivatives require precise fine-tuning
that depends on the fundamental frequencies of motion.
The way out has been to use a numerical method that
takes into account what we know analytically about lo-
cal motion: the fundamental frequencies. More specifi-
cally, we find that fitting a truncated multi-period (the
fundamental periods, which we also obtain numerically
in terms of elliptic integrals) Fourier series to fragments
of the local evolution using standard least-squares meth-
ods provides the accuracy that we require for a precise
estimation of the radiation-reaction potentials and the
self-force. With this, we can then evolve the constants
of motion, thus mapping from the initial geodesic to new
ones. Such a transition requires the mapping of the new
constants of motion (E,Lz, C/Q) to the new orbital el-
ements (e, p, ι/θinc), which can be done using analytic
formulae. Repeating this procedure iteratively in time,
we build the inspiral trajectory or worldline, from which
we then finally construct the waveforms.

Apart from the exact harmonic coordinates of Ding
(see Ref. [99]) that we use in our implementation, we have
also provided approximate harmonic coordinates based
on the construction of ACMC coordinates (see Appen-
dices C and D). The construction of these coordinates is
a useful exercise that can be used in scenarios where the
big component of the binary is not described by the Kerr
geometry but by something else either related with other
theories of gravity or with the idea that MBH at galactic
centers may be exotic matter configurations rather than
black holes.

The results presented here serve as a first introduction
and proof-of-principle of the new kludge scheme. Much
work remains to be done to improve and to validate the
method in order to obtain GWs to the level of accuracy
required for LISA data analysis. One clear way of im-
proving the scheme is to use better expressions for the
different multipole moments that go beyond the present
leading-order approximation. One caveat of doing this
is that the PN corrections required are in general not
known for generic spinning binaries. In any case, the
currently known PN corrections will certainly improve
the accuracy of the new kludge evolutions. Another way
to improve the scheme would be to introduce conserva-
tive corrections to the background, for instance as it is
done in the EOB formalism [48].

A more detailed and exhaustive validation of the new
kludge scheme would include, as a first step, a compari-
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FIG. 5. Evolution (for a total time of 10−2 yrs) of an eccentric and inclined inspiral of a system characterized by: M• =
106M�, a/M• = 0.98, and q = 10−5. The plots show the evolution of the following quantities: Energy E (top left), actually
104[E − E(to)], where E(to) = 0.9575513; angular momentum along the spin axis, Lz (top centre); Carter constant C (top
right); semi-latus rectum, p (bottom left), with p(to) = 7; eccentricity, e (bottom centre), with e(to) = 0.6; and inclination
angle ι (bottom right), actually 104[ι− ι(to)], where ι(to) = 57.39 deg. All plots contain subplots where the detailed evolution
during a few orbital periods is shown.

FIG. 6. Fragments of the GWs emitted from an eccentric and
inclined system [with initial orbital elements (p, e, ι)(to) =
(7, 0.6, 57.39 deg)] characterized by: M• = 106M�, a/M• =
0.98, and q = 10−5. The evolution of the constants of motion
and orbital elements of this system are shown in Figure 5.
The solid line represents the + polarization, h+(t), and the
dotted line represents the × polarization, h×(t), as seen by
an observer located along the spin axis.

son of the evolution of the constants of motion with the
fluxes associated with them that are calculated by solv-
ing the Teukolsky equation [42, 43]. As we have already
mentioned above, one has to be careful in doing this com-

parison given that the latter employs averages over sev-
eral cycles, while the new kludge fluxes are computed
locally at the SCO’s location. Once the fluxes have been
validated, one should compare the waveforms themselves.
An overlap study would determine the level of agreement
between them.

Another interesting aspect that we can test is whether
the new kludge scheme can be used for IMRIs and even
for systems with moderate mass ratios. Recently, com-
parisons between self-force, PN, and numerical relativity
computations have arrived to the conclusion that by re-
placing the mass ratio q by the symmetric mass ratio η,
the self-force predictions compare quite well with numeri-
cal relativity and PN predictions in the comparable-mass
range [33, 35]. These results may allow for a simpler de-
scription of IMRIs, which otherwise would require either
long full numerical computations or higher-order pertur-
bative computations, or a combination of both. In the
new kludge scheme, q → η is actually mostly built in
already, since the mass ratio information enters through
the definition of the multipole moments [see Eqs. (48),
(49), (85), and (86)]. For these, we already use gen-
eral binary expressions, instead of effective one-body ones
with mass qM•. Therefore, it would be interesting to see
whether future improvements of the new kludge scheme
can produce reasonably good results for systems other
than EMRIs.

The ability to compute approximate local quantities
at the location of the SCO, in particular the multipo-
lar, post-Minkowskian self-force, makes the new kludge
scheme an interesting tool to study certain local behavior
believed to exist in EMRIs. For example, Flanagan and
Hinderer [73] have recently reported that certain rapid
changes in orbital elements can arise for generic EM-
RIs when the orbital frequencies become commensurate.
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During these rapid changes, it has been postulated that
the EMRI waveforms might suffer a “glitch,” not unlike
those observed in pulsar astronomy. Questions remain
though as to the exact nature of this effect. One could
compare the effect of these glitches in waveforms as com-
puted from an averaged-scheme (such as the Teukolsky
one) and a local one (such as the new kludge approach).
These, and other studies, would provide one more piece
to the EMRI puzzle.
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Appendix A: Useful Formulae for the Computation
of the Self-Acceleration

In this appendix we define the quantities relevant to
the multipolar, post-Minkowskian radiation-reaction ac-

celeration of Eq. (57), where the pieces A
(1)
α and A

(2)
α are

given in Eqs. (58) and (60) respectively. We also need
the expression of the projector orthogonal to the SCO
four-velocity. This quantity can be written in terms of
the potentials Kµν and Qµν as follows:

Pαβ = ηαβ +Qαβ + Γ2vαvβ , (A1)

Pαβ = ηαβ +Kαβ + Γ2vαvβ . (A2)

where the Γ factor was already given in Eq. (28), but it
can also be rewritten, in terms of the Kµν potentials, as

Γ =
1√

1− v2 −K − 2Kiv
i −Kijv

ij
, (A3)

where we can see how the relativistic Γ factor is modified,
with respect to the Special Relativity form Γ = (1 −
v2)−1/2, due to Kerr local potentials.

The first piece of the self-acceleration, A
(1)
α , is deter-

mined by the object GRR
µνα [Eq. (59)]. The time and spatial

components of A
(1)
α [see (61)] are given by

ARR =
(
1− v2

)
∂tVRR + 2vi∂iVRR − 4vij∂iV

RR

j , (A4)

ARR

i = −
(
1 + v2

)
∂iVRR + 2vi∂tVRR + 2viv

j∂jV
RR

− 8vj∂[jV
RR

i] − 4∂tV
RR

i . (A5)

The second piece of the self-acceleration, A
(2)
α , is lin-

ear in the radiation-reaction potentials VRR and V RR
i [see

Eq. (60)]. The coefficients of the linear combinations of
these potentials in the time and spatial components of

A
(2)
α [Eqs. (62) and (63) respectively] have the following

form:

BRR = Qi∂iK , (A6)

CRR = 2 (1−Q) vi∂iK + 4Qivj∂[iKj] , (A7)

DRR = 2 (1−Q) vij∂iKj

− Qivjk
(
2∂(jKk)i − ∂iKjk

)
, (A8)

BiRR = −2
(
δij +Qij

)
∂jK , (A9)

CiRR = 4Qivj∂jK + 8
(
δik +Qik

)
vj∂[jKk] , (A10)

DiRR = 4Qivjk∂jKk

+ 2
(
δil +Qil

)
vjk
(
2∂(jKk)l − ∂lKjk

)
. (A11)

All contractions in these expressions are to be performed
with the Kronecker delta, δij = δij = diag(1, 1, 1), and
we recall that Latin indices in the middle of the alphabet
stand for spatial coordinates only (thus, all tensors are
purely spatial).

For the purposes of the new kludge scheme we need to
compute these local potentials associated with the Kerr
metric (KH, KH

i , and KH
ij) and its inverse (QH, QiH, and

QijH ) in harmonic coordinates. They are need for the or-
thogonal projector [Eqs. (A1) and (A2)], for the Γ factor
[Eq. (28)], and for the coefficients of the second piece

of the acceleration, A
(2)
α [Eqs. (A6)-(A11)]. Moreover,

for these coefficients we also need to compute the first
spatial derivatives of the metric potentials (∂kKH, ∂kK

H
i ,

and ∂kK
H
ij). This can be done in an efficient way by using

the following relations:

∂kKH = gK,BL

tµ
BLΓµti

∂xiBL

∂xkH
, (A12)
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∂kK
H

i = gK,BL

µ(t
BLΓµm)n

∂xnBL

∂xkH

∂xmBL

∂xiH

+ 2 gK,BL

tm

∂2xmBL

∂xiH∂x
k
H

, (A13)

∂kK
H

ij =

{
gK,BL

µ(`
BLΓµm)n

∂xnBL

∂xkH

∂xmBL

∂xiH

+ 2 gK,BL

`m

∂2xmBL

∂xiH∂x
k
H

}
∂x`BL

∂xiH
. (A14)

The advantage of these expressions is that they only in-
volve the Jacobian and Hessian of the coordinate trans-
formation between Boyer-Lindquist and harmonic coor-
dinates, and the Christoffel symbols in Boyer-Lindquist
coordinates. The latter are relatively simple functions
and have to be computed anyway for other purposes
(e.g. to compute the accelerations of Boyer-Lindquist co-
ordinates).

Appendix B: Harmonic Coordinates for Rotating
Black Holes

In this appendix we describe more properties of the
set of harmonic coordinates for rotating BHs employed in
this paper. Eqs. (67)-(70) and Eqs. (71)-(73) provide the
explicit expressions for the transformation from Boyer-
Lindquist to harmonic coordinates and the inverse trans-
formation. From these transformations, we find that the
relation between the Boyer-Lindquist radial coordinate r
and the spatial harmonic coordinates (xH, yH, zH) is:

x2
H + y2

H

(r −M•)2 + a2
+

z2
H

(r −M•)2
= 1 , (B1)

which resembles the relation between r and the spatial
Kerr-Schild Cartesian coordinates (see, e.g. [113]). This
relation allows us to write r as a function of rH as given
in Eq. (72), which we find convenient to rewrite as r ≡
M• + %, where

% =

√
1

2

[
r2
H − a2 +

√
(r2

H − a2)2 + 4(s · rH)2
]
. (B2)

and where the dot here denotes the flat-space three-
dimensional scalar product. Moreover, we have here in-
troduced the following notation in the spirit of the usual
three-dimensional flat space vector algebra: a position
vector rH = (xH, yH, zH), whose spatial norm (under the
flat three-dimensional metric) was defined in Eq. (74),
and the reduced spin vector s which, for consistency with
the choices made in the paper we take it to be aligned
with the z-axis: s = (0, 0, a). Nevertheless, one does not
need to assume this specific form for s, as the expressions
we present in this Appendix are invariant under the ac-
tion of the rotation group. We can then use the above
expressions for arbitrary directions of the spin angular
momentum of the BH. Note from Eq. (B2) that we al-
ways have r2

H ≥ %2 ≥ r2
H − a2, and clearly the equality

holds for the Schwarzschild case (a = 0). These inequal-
ities translate in the following inequalities for r:

rH +M• ≥ r ≥
√
r2
H − a2 +M• . (B3)

An important ingredient of the construction of the har-
monic coordinates is the angle function Φ(r), which was
already given in Eq. (75). However, its proper definition
is actually [99]

Φ(r) ≡ −
∫ ∞
r

dr′
aM2
•

∆(r′)[∆(r′) +M2
• ]
, (B4)

where we recall that ∆(r) ≡ r2−2M•r+a2. An alterna-
tive expression for Φ(r) can be obtained by simplifying
Eq. (75) into

Φ(r) =
π

2
− arctan

(
r −M•
a

)
− a

2
√
M2
• − a2

ln

(
r − r−
r − r+

)
. (B5)

Two important relations to evaluate the coordinate
transformation of Eqs. (67)-(70) are:

cos Φ =
r−M•
a + Ω(r)√

[1 + Ω2(r)]
{

1 +
(
r−M•
a

)2} , (B6)

sin Φ =
1− r−M•

a Ω(r)√
[1 + Ω2(r)]

{
1 +

(
r−M•
a

)2} . (B7)

where Ω(r) is given in Eq. (76). The explicit form of the
components of the Kerr metric and its inverse in har-
monic coordinates is given in Appendix A of [99]. These
expressions are quite lengthy and, in that form, not very
efficient for numerical computations. In what follows, we
present an alternative method to compute the compo-
nents of the transformed metric in an efficient way. At
the same time, we introduce expressions that are invari-
ant under the rotation group, in the sense that they do
no longer assume the BH spin axis is aligned with the
ẑH-axis.

1. Jacobian

We start by presenting the expressions of the com-
ponents of the Jacobian associated with the coordi-
nate transformation between Boyer-Lindquist and har-
monic coordinates. In other words, we compute the
matrices JBL

H = D(t, r, θ, φ)/D(tH, xH, yH, zH) and JH
BL =

D(tH, xH, yH, zH)/D(t, r, θ, φ), which obviously are in-
verses of each other: JH

BL · JBL
H = JBL

H · JH
BL = Id3, where
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Id3 is the identity matrix in three-dimensions. The com-
ponents of the Jacobian JBL

H are

∂t

∂tH
= 1 ,

∂t

∂rH

= 0 , (B8)

∂r

∂tH
=

∂θ

∂tH
=

∂φ

∂tH
= 0 , (B9)

∂r

∂rH

=
%
{
%2rH − (s · rH)s

}√
r2
H − %2 [%4 + (s · rH)2]

, (B10)

∂θ

∂rH

=
%
{

(s · rH)rH − %2s
}√

r2
H − %2 [%4 + (s · rH)2]

, (B11)

∂φ

∂rH

= − a

(r2
H − %2)(%2 + a2)

s× rH

+
aM2
•%
{
%2rH − (s · rH)s

}
(%2 + a2)(%2 + a2 −M2

• ) [%4 + (s · rH)2]
, (B12)

where the × denotes the usual flat-space three-
dimensional vector product. The components of the in-
verse Jacobian, ie. JH

BL, are

∂tH
∂t

= 1 ,
∂tH
∂r

=
∂tH
∂θ

=
∂tH
∂φ

= 0 , (B13)

∂rH

∂r
=
%2rH − (s · rH)s

%(%2 + a2)

− M2
•

(%2 + a2)(%2 + a2 −M2
• )
s× rH , (B14)

∂rH

∂θ
=

s · rH

%
√
r2
H − %2

rH −
% (%2 + a2)

a2
√
r2
H − %2

s , (B15)

∂rH

∂φ
=

1

a
s× rH . (B16)

2. Kerr Metric in Harmonic Coordinates

The expressions above can be used to compute the
transformed Kerr metric and its inverse in harmonic co-
ordinates systematically and efficiently. The covariant

components of the metric in harmonic coordinates are

gK,H
tt = gK,BL

tt , gK,H
tr = gK,BL

tφ

∂φ

∂rH

, (B17)

gK,H
rr = gK,BL

rr

∂r

∂rH

∂r

∂rH

+ gK,BL

θθ

∂θ

∂rH

∂θ

∂rH

+ gK,BL

φφ

∂φ

∂rH

∂φ

∂rH

, (B18)

where unlabeled coordinates on the right-hand sides
stand for Boyer-Lindquist coordinates as usual. Simi-
larly, the contravariant components of the metric in har-
monic coordinates are

g ttK,H = g ttK,BL , g trK,H = g tφK,BL

∂rH

∂φ
, (B19)

grr
K,H = g rrK,BL

∂rH

∂r

∂rH

∂r
+ g θθK,BL

∂rH

∂θ

∂rH

∂θ

+ gφφK,BL

∂rH

∂φ

∂rH

∂φ
. (B20)

It is easy to see that, under transformation of the three-
dimensional rotation group, the covariant and contravari-
ant (tH, tH) components transform as scalars, the co-
variant and contravariant (tH, r

i
H) components transform

as vectors, and the covariant and contravariant (riH, r
j
H)

components transform as 2-rank tensors. The expres-
sions of all these components are invariant.

The computation of the components of the Kerr met-
ric and its inverse in harmonic coordinates requires ex-
pressions for the Boyer-Lindquist components of the Kerr
metric in harmonic coordinates. The covariant compo-
nents are

gK,BL

tt = −%
2(%2 −M2

• ) + (s · rH)2

%2(%+M•)2 + (s · rH)2
, (B21)

gK,BL

tφ = −2M•
a

%2(%+M•)
2(r2

H − %2)

%2(%+M•)2 + (s · rH)2
, (B22)

gK,BL

rr =
%2(%+M•)

2 + (s · rH)2

%2(%2 + a2 −M2
• )

, (B23)

gK,BL

θθ =
%2(%+M•)

2 + (s · rH)2

%2
, (B24)

gK,BL

φφ =
r2
H − %2

a2

[
(%+M•)

2 + a2

+
2M•%

2(%+M•)(r
2
H − %2)

%2(%+M•)2 + (s · rH)2

]
, (B25)

while the contravariant components are
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g ttK,BL = −%2

[
(%+M•)

2 + a2
]2 − (%2 + a2 −M2

• )(r2
H − %2)

[%2(%+M•)2 + (s · rH)2] (%2 + a2 −M2
• )

, (B26)

g tφK,BL = − 2M•a%
2(%+M•)

[%2(%+M•)2 + (s · rH)2] (%2 + a2 −M2
• )
, (B27)

g rrK,BL =
%2(%2 + a2 −M2

• )

%2(%+M•)2 + (s · rH)2
, (B28)

g θθK,BL =
%2

%2(%+M•)2 + (s · rH)2
, (B29)

gφφK,BL =
a2
[
%2(%2 −M2

• ) + (s · rH)2
]

[%2(%+M•)2 + (s · rH)2] (%2 + a2 −M2
• )(r2

H − %2)
. (B30)

3. Hessian

Let us now present explicit expressions for the Hes-
sian of the transformation between harmonic and Boyer-
Lindquist coordinates, needed for the computation of the
accelerations in harmonic coordinates. Also, for the com-

putation of the derivatives of the metric in harmonic co-
ordinates we need the Hessians of the Boyer-Lindquist co-
ordinates with respect to the harmonic ones. More specif-
ically, for the computation of the coefficients of the sec-

ond piece of the acceleration, A
(2)
α [Eqs. (A6)-(A11)]. We

give here these expressions using the three-dimensional
vector notation introduced above. The expressions for
the Hessian matrix ∂2rkH/(∂x

i
BL ∂x

j
BL) are:

∂2rH

∂r2
= − 1

(%2 + a2)2

[
1− M4

•
(%2 + a2 −M2

• )2

]
s× s× rH +

2M2
• %

(%2 + a2)(%2 + a2 −M2
• )2
s× rH , (B31)

∂2rH

∂r ∂θ
=

1

(%2 + a2)
√
r2
H − %2

{
s× rH × rH −

M2
• (s · rH)

%(%2 + a2 −M2
• )
s× rH

}
, (B32)

∂2rH

∂r ∂φ
=

1

a(%2 + a2)

{
%(s× rH)− M2

•
%2 + a2 −M2

•
s× s× rH

}
, (B33)

∂2rH

∂θ2
= −rH ,

∂2rH

∂θ ∂φ
=

(s · rH)

a%
√
r2
H − %2

s× rH ,
∂2rH

∂φ2
=

1

a2
s× s× rH . (B34)

and the expressions for its inverse ∂2xkBL/(∂r
i
H ∂r

j
H) are:

∂2r

∂rH∂rH

=
%

%4 + (s · rH)2

{
Id3 + s� s+

2

%4 + (s · rH)2

[
%2rH − (s · rH)s

]
�
[
%2rH + (s · rH)s

]
+

(s · rH)2 − 3%4

[%4 + (s · rH)2]
2

[
%2rH + (s · rH)s

]
�
[
%2rH + (s · rH)s

]}
, (B35)

∂2θ

∂rH∂rH

=
1√

r2
H − %2 [%4 + (s · rH)2]

{[(
r2
H

r2
H − %2

− 4 %4

%4 + (s · rH)2

)
∂r

∂rH

− %

r2
H − %2

rH

]
�
[
(s · rH)rH − %2s

]
+ %(s · rH) [Id3 − s� rH]} , (B36)

∂2φ

∂rH∂rH

= φ1
rHrH

+
∂2Φ

∂rH∂rH

= φ1
rHrH

+ Φ′′
∂r

∂rH

� ∂r

∂rH

+ Φ′
∂2r

∂rH∂rH

, (B37)

where φ1
rHrH

is the following symmetric matrix

φ1
rHrH

=


2xHyH

(x2
H+y2H)2

y2H−x
2
H

(x2
H+y2H)2

0

∗ − 2xHyH
(x2

H+y2H)2
0

∗ ∗ 0

 , (B38)

and where � denotes symmetric tensor product: a�b =
(a⊗ b+ b⊗ a)/2.
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Appendix C: ACMC and approximate Harmonic
Coordinate Systems

In this Appendix, we construct an ACMC-6 coordinate
system and a system of approximate harmonic coordi-
nates associated with these ACMC-6 coordinates that
we compare with the exact harmonic coordinates pre-
sented in Sec. III D. Thorne [47] constructed an ex-
plicit map between Boyer-Lindquist coordinates (xαBL) =
(t, r, θ, φ) and ACMC-2 for a Kerr BH with mass M•
and Kerr spin parameter a. The extension of this map
from Boyer-Lindquist coordinates to ACMC-6 coordi-
nates, (xαACMC) = (T,X, Y, Z), is given below for the first
time:

t = T , (C1)

r = R+
a2

2R
cos2 θ̄ − 5a4

8R3
cos4 θ̄ +

21a6

16R5
cos6 θ̄ , (C2)

θ = θ̄ − a2

4R2
sin(2θ̄)

{
1− 3a2

2R2
cos2 θ̄ +

10a4

3R4
cos4 θ̄

}
,

(C3)

φ = arctan

(
Y

X

)
, (C4)

where we have introduced the shorthands R = (X2 +
Y 2 + Z2)1/2, and θ̄ = arccos(Z/R).

Harmonic coordinates are guaranteed to be ACMC-
∞ (see [47]), but the converse is not necessarily true:
ACMC coordinates of order N are not necessarily har-
monic. Nonetheless, one can enhance the ACMC-6 co-
ordinate transformations of Eqs. (C1)-(C4) to construct
a map from Boyer-Lindquist coordinates to approximate
harmonic (AH) coordinates (xαAH) = (tAH, xAH, yAH, zAH):

t = tAH , (C5)

r = rAH +M• −
a2[1− (ŝ · nAH)2]

2 rAH

− 5a4(ŝ · nAH)4

8 r3
AH

+
21a6(ŝ · nAH)6

16 r5
AH

, (C6)

θ = θAH −
a2(ŝ · nAH)

√
1− (ŝ · nAH)2

2 r2
AH

{
1− 3a2(ŝ · nAH)2

2 r2
AH

+
10a4(ŝ · nAH)4

3 r4
AH

}
, (C7)

φ = arctan

(
ŷAH · nAH

x̂AH · nAH

)
, (C8)

where ŝ is a unit vector (in the Euclidean sense) along
the MBH spin axis which, according to the conventions
of this paper, has components s = (0, 0, 1). Moreover we

have introduced the following notation in the Euclidean
vector calculus style: rAH = riAH = (xAH, yAH, zAH),
rAH = (x2

AH + y2
AH + z2

AH)1/2, nAH = niAH = bmrAH/rAH,
θAH = arccos(ŝ·nAH), ŷAH and x̂AH are three-dimensional
(spatial), orthogonal vectors in the plane orthogonal to
the spin axis.

These approximate harmonic coordinates are not
only ACMC-6 but also harmonic up to terms of or-
der O(M6

•/r
6
AH), as one can check by verifying that

∂AH

β (
√
−gK,AH gαβK,AH) = 0, where gK,AH

αβ is the transformed

Kerr metric 1 and ∂AH
α denotes partial differentiation with

respect to these coordinates.
One should note that this coordinates are only pseudo-

harmonic, in that they do not respect the harmonic co-
ordinate condition to all orders in M•/rAH. Therefore,
these coordinates differ somewhat from the transforma-
tion in Eqs. (67)-(70). We can show this by expanding
Eqs. (71)-(73) in M•/rH � 1 and a/rH � 1:

t = tH , (C9)

r = rH +M• −
a2

2 rH
[1− (ŝ · nH)2]

− a4

8 r3
H

[
1− 6(ŝ · nH)2 + 5(ŝ · nH)4

]
(C10)

− a6

16 r5
H

[
1− 15(ŝ · nH)2 + 35(ŝ · nH)4 − 21(ŝ · nH)6

]
,

θ = θH −
a2(ŝ · nH)

√
1− (ŝ · nH)2

2 r2
H

{1

+
3a2

4r2
H

[
1− 2(ŝ · nH)2

]
+

5a4

24r4
H

[
1− 4(ŝ · nH)2

] [
3− 4(ŝ · nH)2

]}
,(C11)

φ = φH −
aM2
•

3 r3
H

− aM2
•

10 r5
H

[
a2 − 5a2(ŝ · nH)2 + 2M2

•
]
, (C12)

where we have used a similar vector notation as in
Eqs. (C5)-(C8) with θH = arccos(ŝ · nH) and φH =
arctan(ŷH · nH/x̂H · nH). As we can see, disagreements
arise in the radial transformation at order O(a4), but
this difference is proportional to a monopole (without
angular dependence) and a quadrupole term (quadratic
in angular dependence), which do not modify the ACMC

1 This transformation is slightly different from that found in [114],
for zero integration constants. One can show by direct evalua-
tion, however, that both transformations lead to harmonic coor-
dinates that are also ACMC.
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condition at octopole order. Similar disagreements arise
also in the angular sector of the transformation.

We have thus shown that the ACMC coordinate map
we found in Eqs. (C5)-(C8) reproduces the main ingredi-
ents of the full harmonic coordinate transformation. In
fact, since we have shown that Eqs. (C5)-(C8) lead to a
metric that satisfies the harmonic coordinate condition,
we can infer that the difference between this equation
and Eqs. (71)-(73) must amount to a refinement of the
coordinate system.

Appendix D: Far-Field Expansion of the Kerr
Metric in Approximate Harmonic Coordinates

In this appendix we expand the Kerr metric in the far-
field using the approximate harmonic coordinates xαAH

of Appendix C [the coordinate transformations from
Boyer-Lindquist coordinates are given in Eqs. (C5)-(C8)].
Then, in transforming the Kerr metric from Boyer-
Lindquist coordinates to these approximate harmonic co-
ordinates we assume M•/rAH � 1 and a/rAH � 1. We
give the expressions of the Kerr metric and its inverse
in terms of the local potentials Kαβ and Qαβ . The far-
field expansions of the Kµν potentials in the approximate
harmonic coordinates of Eqs. (C5)-(C8), KAH

αβ , is given by

KAH = KAH

00 =
2M•
rAH

{
1− M•

rAH

+
1

2 r2
AH

[
2M2
• + a2

(
1− 3(ŝ · nAH)2

)]
− M•
r3
AH

[
M2
• + a2

(
1− 4(ŝ · nAH)2

)]}
, (D1)

KAH

i = KAH

0i = −2M•
r2
AH

{
1− M•

rAH

(D2)

+
1

2 r2
AH

[
2M2
• + a2

(
1− 5(ŝ · nAH)2

)]}
(ŝ× nAH)i ,

KAH

ij =
2M•
rAH

{
δij +

M•
2 rAH

(
δij + nAH

i nAH

j

)
+

1

2 r2
AH

[
2M2
•n

AH

i nAH

j + a2
(
1− 3(ŝ · nAH)2

)
δij
]

+
1

2M•r
3
AH

[
2M4
•n

AH

i nAH

j +M2
•a

2
{(

(ŝ · nAH)2 − 2
)
δij

+ 3
(
1− (ŝ · nAH)2

)
nAH

i nAH

j

}
+
a4

4

{(
1− 3(ŝ · nAH)2

)
δij

− 2
(
2− 9(ŝ · nAH)2

)
nAH

i nAH

j

}
−
a2
(
8M2
• − a2

)
4

(ŝ · nAH)
(
nAH

i ŝj + nAH

j ŝi
)

+
3a2

(
4M2
• − a2

)
4

ŝiŝj

]}
. (D3)

The far-field expansions of the Qµν potentials in the ap-

proximate harmonic coordinates, of Eqs. (C5)-(C8), QαβAH,

is given by

QAH = Q00
AH = −2M•

rAH

{
1 +

M•
rAH

+
1

2 r2
AH

[
2M2
• + a2

(
1− 3(ŝ · nAH)2

)]
+

M•
r3
AH

(
M2
• − a2

)}
, (D4)

QiH = Q0i
H = −2M•

r2
AH

{
1− M•

rAH

(D5)

+
1

2 r2
AH

[
4M2
• + a2

(
1− 5(ŝ · nAH)2

)]}
(ŝ× nAH)

i
,

QijAH = −2M•
rAH

{
δij − M•

2 rAH

(
3δij − niAHn

j
AH

)
− 1

2 r2
AH

[
2M2
•n

i
AHn

j
AH −

(
4M2
• + a2

(
1− 3(ŝ · nAH)2

))
δij
]

+
1

2M•r
3
AH

[
3M4
•n

i
AHn

j
AH −M2

•
{
a2
(
1 + 3(ŝ · nAH)2

)
niAHn

j
AH

+
(
5M2
• + a2

(
2− 9(ŝ · nAH)2

))
δij
}

+
a4

4

{(
1− 3(ŝ · nAH)2

)
δij − 2

(
2− 9(ŝ · nAH)2

)
niAHn

j
AH

}
+
a2
(
8M2
• + 3a2

)
4

(ŝ · nAH)
(
niAHŝ

j + njAHŝ
i
)

−
a2
(
4M2
• + 3a2

)
4

ŝiŝj

]}
. (D6)

where we recall that the symbol × refers to the Euclidean
vector product and the dot product to the Euclidean
scalar product. Moreover, niAH ≡ xiAH/rAH and indices are
raised and lowered with the flat metric. We have checked
that the above metric satisfies the differential harmonic
coordinate condition to the order of approximation. That

is, we have checked that ∂AH

β (
√
−gK,AH gαβK,AH) = 0, where

here gK,AH

αβ is the expanded Kerr metric in the approxi-
mate harmonic coordinates as determined by the expan-
sions of the potentials above, and ∂AH

α denotes partial
differentiation with respect to the approximate harmonic
coordinates (xαAH).

Appendix E: Relations between different orbital
parameterizations

Geodesic orbits in Kerr spacetime are fully determined
by the three constants of motion IA = (E,Lz, C or Q).
In this work, we restrict our attention to bounded mo-
tion (E2 < 1, see [115]). Then, it is also very useful
to characterize the orbit in terms of the orbital param-
eters OA = (p, e, ι or θinc), which provide more trans-
parent geometrical information about the properties of
the orbit. Both sets of parameters are important, the
set IA is more adapted to the separation of the geodesic
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equations and to the radiation reaction computations,
whereas the set OA is better in terms of orbit character-
ization. Therefore, it is important to know the relation
between these two sets of constants of motion and how
to map them. This is specially important when radiation
reaction changes these parameters and we need to know
the new values of OA once the new values of IA have
been computed using Eqs. (30)-(33). The relations we
present below follow from developments in [85–87].

Let us first consider the case in which the set (p, e, θinc)
is known, ie. we parametrize the orbit in terms of these
parameters and we need to find the parameters IA for
evolving the equations of motion. We mainly use θinc
instead of ι for convenience, but we shall also present
formulae related to the inclination angle ι. The goal is
to find the mapping from (p, e, θinc) to (E,Lz, C or Q).
First of all, given θinc, the minimum value that θ can
take, θmin, is [see Eq. (24)]

θmin =
π

2
− sign(Lz) θinc , (E1)

where the sign of Lz determines whether the orbit is pro-
grade (positive) or retrograde (negative). The sign of Lz
is encoded in θinc as follows: If 0 < θinc < π/2, then
sign(Lz) = 1; if −π/2 < θinc < 0, then sign(Lz) = −1.
The particular case θinc = 0 is singular in the sense that
both signs are possible for Lz.

Since θ = θmin is a minimum, we have θ̇(θmin) = 0,
which means that the right-hand side of Eq. (20) has to
vanish at θmin, from which we obtain an expression for C

C = z−

[
L2
z

1− z−
+ a2(1− E2)

]
. (E2)

where z− is given in Eq. (92). Now that we have an
expression for C in terms of E and Lz, let us find expres-
sions for (E,Lz) in terms of p and e. This can be done
from the analysis of the radial motion, and using the ex-
pressions of the apocenter and pericenter radii, rapo and
rperi [Eq. (22)], in terms of (p, e). These values of r are
extrema and hence, the right-hand side of Eq. (19) van-
ishes at r = rapo and at r = rperi, leading to two equations
for the three unknowns (E,Lz, C). The Carter constant,
however, is given in terms of (E,Lz) in Eq. (E2), which
then leads to two equations for two unknowns, (E,Lz).
These equations take the following polynomial structure

αIE
2 + 2βIELz + γIL

2
z + λI = 0 , (E3)

where the sub-index I stands for apocenter or pericenter
and where the coefficients αI , βI , γI , and λI , in the case
of non-circular orbits (rperi 6= rapo), are given by

αI =
(
r2
I + a2

) (
r2
I + a2z−

)
+ 2M•rIa

2
(
1− z−

)
,(E4)

βI = −2M•rIa , (E5)

γI = − 1

1− z−

[
r2
I + a2z− − 2M•rI

]
, (E6)

λI = −
(
r2
I + a2z−

)
∆(rI)

= −
(
r2
I + a2z−

) (
r2
I − 2M•rI + a2

)
. (E7)

In the case of circular orbits these two relations are ex-
actly the same and we need an extra equation. This
equation comes from the fact that in the circular case
dr/dτ must always vanish and hence also the radial
derivative of Eq. (19) must vanish. Then, the first equa-
tion in the circular case is given by Eqs. (E4)-(E7) with
rI = ro = const., and the coefficients of the second one
are given by:

α2 = 2ro
(
r2
o + a2

)
− a2 (ro −M•)

(
1− z−

)
, (E8)

β2 = −aM• , (E9)

γ2 = −ro −M•
1− z−

, (E10)

λ2 = −ro∆(ro)− (ro −M•)
(
r2
o + a2z−

)
, (E11)

One can then combine the two expressions in Eq. (E3)
to eliminate one of the two unknowns. For instance, we
can eliminate Lz and obtain an equation for E, which
can be written in the following form:(

[α, γ]2 + 4[α, β][γ, β]
)
E4

+ 2 ([α, γ][λ, γ] + 2[γ, β][λ, β])E2 + [λ, γ]2 = 0 ,(E12)

where the notation [∗, ∗] denotes the following antisym-
metric product:

[Π,Ω] ≡ ΠapoΩperi −ΠperiΩapo , (E13)

and the subscripts denote at which radii we have to eval-
uate the quantity (e.g., Πapo = Π(rapo)). Eq. (E12) is
bi-quadratic in E, which means that there are two solu-
tions for E2 and from each of these, there are two values
of E, one positive and one negative, that are related by
time-inversion. From the two solutions for E2, the larger
one corresponds to retrograde orbits, while the smaller
one corresponds to prograde ones. Given E2, we can
then find Lz through

L2
z =

1

[β, γ]

(
[α, β]E2 + [λ, β]

)
, (E14)

where the positive solution correspond to prograde or-
bits and the negative one for retrograde orbits. Fi-
nally, the Carter constant C is given by Eq. (E2) and
Q from Eq. (17). Once we know the constants of motion
(E,Lz, C) we can also find the inclination angle ι from
Eq. (25).

The next point is the computation of the extrema of
the radial and polar motions. For the radial motion there
are four extrema [see Eq. (90)]: rapo > rperi > r3 > r4.
From Eqs. (19) and (90) we know that these extrema
must satisfy the following relations:

rapo + rperi + r3 + r4 =
2M•

1− E2
, (E15)

raporperi + r3r4 + (rapo + rperi)(r3 + r4)

=
a2(1− E2) + L2

z + C

1− E2
, (E16)

(rapo + rperi)r3r4 + (r3 + r4)raporperi =
2M•Q

1− E2
, (E17)

raporperir3r4 =
a2C

1− E2
. (E18)
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From these relations we can find (r3, r4) using, for in-
stance, Eqs. (E15) and (E18), to get

r3,4 = A±
√
A2 − B , (E19)

where the plus sign corresponds to r3, and A and B are
given by

A =
M•

1− E2
−
rapo + rperi

2
, (E20)

B =
a2C

1− E2

1

raporperi

. (E21)

For the polar motion, and using the variable z = cos2 θ,
there are two extrema [see Eq. (91)]: z+ and z−, with
z+ > z−. From Eqs. (20) and (91), these extrema satisfy

z− + z+ =
a2(1− E2) + L2

z + C

a2(1− E2)
, (E22)

z−z+ =
C

a2(1− E2)
. (E23)

Given z−, from Eq. (E1), we can find z+ from any of
these two.

Let us now consider the inverse case in which we know
the set (E,Lz, C/Q) and we want to find the orbital pa-
rameters (p, e, θinc) and other important quantities. We
can start from the equations for the extrema for the radial
and polar motions. In the first case, any extrema r? will
satisfy the following quartic [from Eqs. (19) and (90)]:

r4
? + a3r

3
? + a2r

2
? + a1r? + a0 = 0 , (E24)

where the coefficients are given by:

a3 = − 2M•
1− E2

, a2 =
a2(1− E2) + L2

z + C

1− E2
,(E25)

a1 = − 2M•Q

1− E2
, a0 =

a2C

1− E2
. (E26)

We can solve this quartic equation by steps (see,
e.g. [116]). First, let us consider the following cubic equa-
tion:

y3 + b2y
2 + b1y + b0 = 0 , (E27)

where the coefficients are given by

b2 =
5

2
δ , b1 = 2δ2 − ε , (E28)

b0 =
1

2
δ3 − 1

2
δε− 1

8
τ2 , (E29)

and where δ, τ , and ε are the coefficients of the depressed
quartic u4 +δu2 +τu+ε = 0 . This equation is associated
with the initial quartic via the change of variable: r? =
u− a3/4. Then, the relations between the coefficients of
the depressed quartic and those of the initial quartic are:

δ = −3

8
a2

3 + a2 , τ =
1

8
a3

3 −
1

2
a2a3 + a1 , (E30)

ε = − 3

256
a4

3 +
1

16
a2a

2
3 −

1

4
a1a3 + a0 . (E31)

Now, let us consider a real solution to the cubic equation
above, namely y1 (a cubic equation with real coefficients
always has at least one real root). Then, the four solu-
tions of the initial quartic can be written as follows:

r? = −1

4
a3 +

1

2

{
s1

√
δ + 2y1

+ s2

√√√√−(3δ + 2y1 + s1

2τ√
δ + 2y1

) , (E32)

where s1 and s2 are two independent signs, which lead
to the four solutions. We can then immediately identify
the extrema rapo > rperi > r3 > r4 and from Eq. (22) we
find e and p.

In the case of the polar motion, things are a bit eas-
ier. We need to find the roots of the following quadratic
equation for z? = cos2 θ [from Eqs. (20) and (91)]:

z2
? + c1z? + c0 = 0 , (E33)

where the two coefficients are given by

c1 = −a
2(1− E2) + L2

z + C

a2(1− E2)
, (E34)

c0 =
C

a2(1− E2)
. (E35)

Then, the two extrema of polar motion are given by

z± = − c1
2c0
±

√(
c1
2c0

)2

− c0 , (E36)

and from Eqs. (92) and (24) we find the inclination angle
θinc. The inclination angle ι follows from Eq. (25) as
before.

Appendix F: Formulae for the Fundamental
Frequencies and Periods

In order to give formulae for the fundamental frequen-
cies and periods with respect to the Boyer-Lindquist co-
ordinate time, it is very convenient to start first consid-
ering the frequencies and periods with respect to a new
time (see [66]): d/dλ ≡ ρ2d/dτ , which separates the ra-
dial and polar dependence in the sense that it terms of λ
the equations for r and θ become:(

dr

dλ

)2

= R(r) ,

(
dθ

dλ

)2

= Θ(θ) , (F1)

where R(r) and Θ(θ) denote the right-hand sides of
Eqs. (19) and (20) respectively. The fundamental fre-
quencies of the radial and polar motions associated with
the λ time are Υr = 2π/Λr and Υθ = 2π/Λθ, where the
periods, denoted by Λr and Λθ, are given by

Λr = 2

∫ rapo

rperi

dr√
R
, Λθ = 2

∫ π−θmin

θmin

dθ√
Θ
. (F2)
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Then, following [87], the radial and polar frequencies with
respect to the λ time can be written as

Υr =
π
√

(1− E2)(rapo − r3)(rperi − r4)

2K(kr)
, (F3)

Λθ =
π a
√

(1− E2)z+

2K(kθ)
, (F4)

where

kr =

√
(rapo − rperi)(r3 − r4)

(rapo − r3)(rperi − r4)
, kθ =

√
z−
z+

, (F5)

and K denotes the complete elliptic integral of the first
kind (we adopt the definitions of [116] for the elliptic
functions).

The right-hand side of the equations for t and φ,
Eqs. (18) and (21), have the following structure in terms
of the λ time

dt

dλ
= Tr(r) + Tθ(θ) + aLz , (F6)

dφ

dλ
= Φr(r) + Φθ(θ)− aE , (F7)

and from here we can compute the azimuthal frequency
with respect to the λ time,r Υφ, and also the rate of
change of the time t with respect to the time λ, Υt, as
follows (see [87], but note that there is a typo in the first
expression in equation 21, our Eq. (F9), there is a closing
square bracket that is located in the wrong place, the one
that has E/2 as coefficient):

Υφ =
2aΥr

π(r+ − r−)
√

(1− E2)(rapo − r3)(rperi − r4)

{
2M•E r+ − aLz

r3 − r+

[
K(kr)−

rperi − r3

rperi − r+

Π(−h+, kr)

]
− ( + ←→ − )}+

2Lz
πa
√

(1− E2)z+

Υθ , (F8)

Υt = 4M2
•E +

2aE
√
z+

π
√

1− E2
[K(kθ)− E(kθ)] Υθ

+
2Υr

π
√

(1− E2)(rapo − r3)(rperi − r4)

{
E

2

[(
r3(rapo + rperi + r3)− raporperi

)
K(kr)

+ (rperi − r3)(rapo + rperi + r3 + r4)Π(−hr, kr) + (rapo − r3)(rperi − r4)E(kr)
]

+ 2M•E
[
r3K(kr) + (rperi − r3)Π(−hr, kr)

]
+

2M•
r+ − r−

[
(4M2

•E − aLz)r+ − 2M•a
2E

r3 − r+

(
K(kr)−

rperi − r3

rperi − r+

Π(−h+, kr)

)
− ( + ←→ − )

]}
, (F9)

where E and Π denote the complete elliptic integrals of
the second and third kinds respectively, and

hr =
rapo − rperi

rapo − r3

, (F10)

h± =
(rapo − rperi)(r3 − r±)

(rapo − r3)(r2 − r±)
. (F11)

From these expressions for the fundamental frequencies
and periods with respect to the λ time we can compute
the corresponding ones for the Boyer-Lindquist coordi-
nate time t by using the following simple expressions:

Ωr =
Υr

Υt

, Ωθ =
Υθ

Υt

, Ωφ =
Υφ

Υt

, (F12)

and

Tr =
2π

Ωr
, Tθ =

2π

Ωθ
, Tφ =

2π

Ωφ
. (F13)

Appendix G: Formulae for the Evolution of Circular
non-Equatorial Orbits

Here we provide the expressions of the components of
the matrix that determines the evolution of the Carter
constant and radius of circular non-equatorial orbits in
terms of the evolution of the energy and angular momen-
tum component along the spin axis [see Eq. (36)]. The
expressions of the cAB (A,B = 1, 2) and d quantities, as
functions of (M•, a;E,Lz, C, ro) are:
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c11 = 4E(1− E2)r6
o − 12M•Er

5
o + 2E

[
a2(1− E2) + 3(C + L2

z)
]
r4
o + 8M•

[
2a(Lz − aE)− E(C + L2

z) + a2E3
]
r3
o

+ 2a
[
a3E(1− E2) + aE(C + L2

z) + 6M2
• (aE − Lz)

]
r2
o − 4M•a

2E
[
(aE − Lz)2 + C

]
ro

+ 4aM2
• (Lz − aE)

[
(aE − Lz)2 + C

]
, (G1)

c12 = 4(1− E2)Lzr
4
o − 16M•(1− E2)(Lz − aE)r3

o + 2
[
6M2
• (Lz − aE)− Lz(C + L2

z + a2(1− E2)
]
r2
o

+ 4M•Lz
[
(aE − Lz)2 + C

]
ro − 4M2

• (Lz − aE)
[
(aE − Lz)2 + C

]
, (G2)

c21 = −2
[
Er5

o − 3M•Er
4
o + 2a2Er3

o + aM•(Lz − 2aE)r2
o

+ a4Ero − a3M•(Lz − aE)
]
, (G3)

c22 = −2a
[
M•Er

2
o − aLzro − aM•(aE − Lz)

]
, (G4)

d = 2(1− E2)r4
o − 4M•(1− E2)r3

o +
[
6M2
• − C − L2

z + 5a2(1− E2)
]
r2
o + 2M•

[
a2(E2 − 3)− 2aLzE + C + L2

z

]
ro

+ a4(1− E2) + a2(C + L2
z)− 2M2

•
[
(aE − Lz)2 + C

]
. (G5)
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