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1 Introduction

Inflation produces a vast ensemble of infrared gravitons and massless, minimally coupled
(MMC) scalars [1]. In the theory of inflationary cosmology these particles are the source
of primordial tensor and scalar perturbations [2], the scalar component of which has been
detected [3]. It is natural to wonder how this ensemble of quanta changes the propagation
of free particles during inflation.

The effect of inflationary gravitons or scalars on the propagation of a particular kind
of particle is governed by that particle’s one-particle-irreducible (1PI) 2-point function.
For scalars this is the self-mass-squared, −iM2(x; x′); it is the self-energy for a fermion,
−i[iΣj ](x; x

′); for a vector it is the vacuum polarization, −i[µΠν ](x; x′); and it is the self-
energy for a graviton, −i[µνΣρσ](x; x′). One first computes the renormalized contribution
of inflationary gravitons or MMC scalars to the appropriate 1PI function, then uses this to
quantum-correct the linearized effective field equations. For example, the linearized effective
field equations of a MMC scalar are,

∂µ
(√−ggµν∂νϕ(x)

)
−

∫
d4x′ M2(x; x′)ϕ(x′) = 0 . (1)

Many studies of this type have been made over the past decade. The one loop effects of
inflationary scalars have been worked out on photons, assuming the scalars are charged [4],
on fermions, assuming a Yukawa coupling [5], and on other scalars, assuming either that the
scalars have a quartic self-interaction [6], that they interact electromagnetically [7], or that
they interact with fermions [8]. The effects of inflationary gravitons have been worked out
for MMC scalars [9] and for massless fermions [10].

What happens in each case seems to depend upon whether or not the highly infrared
gravitons and scalars created by inflation can maintain a significant interaction with the par-
ticle in question. Because neither electromagnetic nor Yukawa charge weakens with redshift,
the effects of inflationary scalars on photons and fermions is profound: both particles acquire
a growing mass [4, 5]. The same is true for MMC scalars with a quartic self-interaction [6],
but the redshift of photons and fermions means that nothing significant happens to either
charged scalars [7] or Yukawa-coupled scalars [8]. Because the spin of infrared gravitons does
not redshift, they induce a growing field strength on fermions [10]. However, gravitons only
interact with a MMC scalar through the scalar’s rapidly redshifting kinetic energy, and this
results in no significant effect[9].

The purpose of this paper is study how inflationary scalars affect the propagation of free
gravitons. We have already computed the fully renormalized, one loop contribution to the
graviton self-energy from MMC scalars [11]. That result is summarized in section 2. In
section 3 we solve the linearized effective field equations at one loop order. Section 4 gives
our conclusions.
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2 The Effective Field Equations

The purpose of this section is to present the effective field equation which we solve in the next
section. We begin by reviewing some useful facts about the background geometry. We then
give our recently derived result for the one loop MMC scalar contribution to the graviton
self-energy [11]. The section closes with a discussion of the Schwinger-Keldysh effective field
equations and how one solves them perturbatively.

2.1 The Background Geometry

Our background geometry is the open conformal coordinate submanifold of 4-dimensional
de Sitter space. A spacetime point xµ = (η, xi) takes values in the ranges

−∞ < η < 0 and −∞ < xi < +∞ . (2)

In these coordinates the invariant element is,

ds2 ≡ gµνdx
µdxν = a2ηµνdx

µdxν , (3)

where ηµν is the Lorentz metric, the scale factor is a = −1/Hη and H is the Hubble constant.
It is worth observing that our locally de Sitter geometry should be a good approximation

for primordial inflation. This can be quantified in terms of the parameter ǫ which measures
how nearly constant the Hubble parameter is. For a general scale factor, not necessarily de
Sitter, we define ǫ as,

ǫ ≡ −a−1 d

dη

(da−1

dη

)−1
. (4)

For de Sitter (a = −1/Hη) the result is ǫ = 0. If one assumes single scalar inflation then the
current upper bound on the tensor-to-scalar ratio [3] implies ǫ < 0.014 at the time, near the
end of inflation, when the largest observable perturbations experienced horizon crossing [12].
Because ǫ is expected to have been even smaller at earlier times, the de Sitter approximation
of ǫ = 0 seems quite reasonable.

The MMC scalar contribution to the graviton self-energy is de Sitter invariant and can
be expressed using the Sitter length function y(x; x′),

y(x; x′) ≡ aa′H2
[
‖~x−~x′‖2 − (|η−η′|−iǫ)2

]
. (5)

Except for the factor of iǫ (whose purpose is to enforce Feynman boundary conditions) the
function y(x; x′) is closely related to the invariant length ℓ(x; x′) from xµ to x′µ,

y(x; x′) = 4 sin2
(1
2
Hℓ(x; x′)

)
. (6)

With this de Sitter invariant quantity y(x; x′), we can form a convenient basis of de Sitter
invariant bi-tensors. Note that because y(x; x′) is de Sitter invariant, so too are covariant

2



derivatives of it. With the metrics gµν(x) and gµν(x
′), the first three derivatives of y(x; x′)

furnish a convenient basis of de Sitter invariant bi-tensors [7],

∂y(x; x′)

∂xµ
= Ha

(
yδ0µ+2a′H∆xµ

)
, (7)

∂y(x; x′)

∂x′ν
= Ha′

(
yδ0ν−2aH∆xν

)
, (8)

∂2y(x; x′)

∂xµ∂x′ν
= H2aa′

(
yδ0µδ

0
ν+2a′H∆xµδ

0
ν−2aδ0µH∆xν−2ηµν

)
. (9)

Here and subsequently ∆xµ ≡ ηµν(x−x′)ν .
Acting covariant derivatives generates more basis tensors, for example [7],

D2y(x; x′)

DxµDxν
= H2(2−y)gµν(x) , (10)

D2y(x; x′)

Dx′µDx′ν
= H2(2−y)gµν(x

′) . (11)

The contraction of any pair of the basis tensors also produces more basis tensors [7],

gµν(x)
∂y

∂xµ

∂y

∂xν
= H2

(
4y − y2

)
= gµν(x′)

∂y

∂x′µ

∂y

∂x′ν
, (12)

gµν(x)
∂y

∂xν

∂2y

∂xµ∂x′σ
= H2(2− y)

∂y

∂x′σ
, (13)

gρσ(x′)
∂y

∂x′σ

∂2y

∂xµ∂x′ρ
= H2(2− y)

∂y

∂xµ
, (14)

gµν(x)
∂2y

∂xµ∂x′ρ

∂2y

∂xν∂x′σ
= 4H4gρσ(x

′)−H2 ∂y

∂x′ρ

∂y

∂x′σ
, (15)

gρσ(x′)
∂2y

∂xµ∂x′ρ

∂2y

∂xν∂x′σ
= 4H4gµν(x)−H2 ∂y

∂xµ

∂y

∂xν
. (16)

Our basis tensors are naturally covariant, but their indices can of course be raised using
the metric at the appropriate point. To save space in writing this out we define the basis
tensors with raised indices as differentiation with respect to “covariant” coordinates,

∂y

∂xµ

≡ gµν(x)
∂y

∂xν
, (17)

∂y

∂x′
ρ

≡ gρσ(x′)
∂y

∂x′σ
, (18)

∂2y

∂xµ∂x′
ρ

≡ gµν(x)gρσ(x′)
∂2y

∂xν∂x′σ
. (19)
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2.2 The Graviton Self-Energy

It is simple to infer the unrenormalized one loop scalar contribution to the graviton self-
energy from the correlator of two stress tensors at noncoincident points [13]. However, an
enormous amount of labor is necessary to extract enough derivative operators to segregate
the ultraviolet divergences onto local counterterms, leaving a result which is integrable in
the D = 4 effective field equations. This fully renormalized result takes the form [11],

−i
[
µνΣρσ

]
(x; x′) =

√
−g(x)Pµν(x)

√
−g(x′)Pρσ(x′)

{
F0(y)

}

+
√
−g(x)Pµν

αβγδ(x)
√
−g(x′)Pρσ

κλθφ(x
′)

{
T ακT βλT γθT δφ

(D−2

D−3

)
F2(y)

}
, (20)

where the bi-tensor T ακ is,

T ακ(x; x′) ≡ − 1

2H2

∂2y(x; x′)

∂xα∂x′
κ

. (21)

The other quantities in this expression are the spin zero and spin two projectors, Pµν and
Pµν

αβγδ, respectively, and their associated structure functions, F0(y) and F2(y). We shall
devote a paragraph to each.

The two projectors come from expanding the scalar and Weyl curvatures around de Sitter
background,

R−D(D−1)H2 ≡ Pµνκhµν +O(κ2h2) , (22)

Cαβγδ ≡ Pµν
αβγδκhµν +O(κ2h2) . (23)

From (22) we have,

Pµν = DµDν − gµν
[
D2 + (D−1)H2

]
, (24)

where Dµ is the covariant derivative operator in de Sitter background. The more difficult
expansion of the Weyl tensor gives,

Pµν
αβγδ = Dµν

αβγδ +
1

D−2

[
gαδDµν

βγ−gβδDµν
αγ−gαγDµν

βδ+gβγDµν
αδ

]

+
1

(D−1)(D−2)

[
gαγgβδ−gαδgβγ

]
Dµν , (25)

where we define,

Dµν
αβγδ ≡ 1

2

[
δ(µα δ

ν)
δ DγDβ−δ

(µ
β δ

ν)
δ DγDα−δ(µα δν)γ DδDβ+δ

(µ
β δν)γ DδDα

]
, (26)

Dµν
βδ ≡ gαγDµν

αβγδ =
1

2

[
δ
(µ
δ Dν)Dβ−δ

(µ
β δ

ν)
δ D2−gµνDδDβ+δ

(µ
β DδD

ν)
]
, (27)

Dµν ≡ gαγgβδDµν
αβγδ = D(µDν) − gµνD2 . (28)
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The spin zero structure function is,

F0 =
κ2H4

(4π)4

{

H2

[
1

72
× 4

y
ln
(y
4

)]
− 1

12
× 4

y
ln
(y
4

)
+

1

72
× 4

y
+
1

6
ln2

(y
4

)

+
1

45
× 4

4 − y
ln(

y

4
)− 1

45
ln(

y

4
) +

43

216
× 4

4− y
− 5

6
× y

4
ln(1− y

4
)

+
7

90
× 4

y
ln(1− y

4
)− 1

20
ln(1− y

4
)− 7(12π2 + 265)

540
× y

4

+
84π2 − 131

1080
− 1

3
× y

4
ln2

(y
4

)
+

4

9
× y

4
ln
(y
4

)

− 1

30
(2− y)

[
7Li2(1−

y

4
)− 2Li2(

y

4
) + 5 ln(1− y

4
) ln(

y

4
)
]}

. (29)

Here Li2(z) is the dilogarithm function,

Li2(z) ≡ −
∫ z

0
dt

ln(1−t)

t
=

∞∑

k=1

zk

k2
. (30)

The same function also appears in the spin two structure function,

F2 =
κ2H4

(4π)4

{

H2

[
1

240
× 4

y
ln(

(y
4

)]
+

3

40
× 4

y
ln
(y
4

)
−11

48
× 4

y
+

1

4
ln2

(y
4

)

−119

60
ln
(y
4

)
+

4096

(4y − y2 − 8)4

[[
−47

15

(y
4

)8
+

141

10

(y
4

)7

−2471

90

(y
4

)6
+

34523

720

(y
4

)5 − 132749

1440

(y
4

)4
+

38927

320

(y
4

)3

−10607

120

(y
4

)2
+

22399

720

(y
4

)
− 3779

960

]
4

4− y
+

[
193

30

(y
4

)4 − 131

10

(y
4

)3

+
7

20

(y
4

)2
+

379

60

(y
4

)
− 193

120

]
ln(2− y

2
) +

[
−14

15

(y
4

)5 − 1

5

(y
4

)4

+
19

2

(y
4

)3 − 889

60

(y
4

)2
+

143

20

(y
4

)
− 13

20
− 7

60

(4
y

)]
ln(1− y

4
)

+
[
−476

15

(y
4

)9
+ 160

(y
4

)8 − 5812

15

(y
4

)7
+

8794

15

(y
4

)6

−18271

30

(y
4

)5
+

54499

120

(y
4

)4 − 59219

240

(y
4

)3
+

1917

20

(y
4

)2

−1951

80

(y
4

)
+

367

120

]
4

4− y
ln(

y

4
) +

[
4
(y
4

)7 − 12
(y
4

)6
+ 20

(y
4

)5

−20
(y
4

)4
+ 15

(y
4

)3 − 7
(y
4

)2
+

(y
4

)]4− y

4
ln2(

y

4
)

+
[
367

30

(y
4

)4 − 4121

120

(y
4

)3
+

237

16

(y
4

)2
+

1751

240

(y
4

)
− 367

120

]
ln(

y

2
)
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+
1

64
(y2 − 8)

[
4(2− y)− (4y − y2)

][1
5
Li2(1−

y

4
) +

7

10
Li2(

y

4
)
]]}

.

(31)

Note that these results were derived for Bunch-Davies vacuum, which corresponds to a state
which is minimum energy in the distant past [11]. This is the standard choice for inflationary
perturbations, and the choice we must make in order to compute quantum corrections to the
usual tree order results.

2.3 The Schwinger-Keldysh Effective Field Equations

Because the graviton self-energy is the 1PI graviton 2-point function, it gives the quantum
correction to the linearized Einstein equation,

√−gDµνρσhρσ(x)−
∫
d4x′

[
µνΣρσ

]
(x; x′)hρσ(x

′) =
1

2
κ
√−g T µν

lin
(x) , (32)

Here Dµνρσ is the Lichnerowicz operator, specialized to de Sitter background

Dµνρσ ≡ D(ρgσ)(µDν) − 1

2

[
gρσDµDν+gµνDρDσ

]

+
1

2

[
gµνgρσ−gµ(ρgσ)ν

]
D2 + (D−1)

[1
2
gµνgρσ−gµ(ρgσ)ν

]
H2 , (33)

and Dµ is the covariant derivative operator in the background geometry.
Two embarrassments would confront us were we to solve equation (32) using the self-

energy of the previous sub-section:

• Causality violation — the field equation at xµ involves the field at points x′µ outside
the past light-cone of xµ; and

• Reality violation — the quantum-induced graviton field would acquire an imaginary
part due to the nonzero imaginary part of the in-out self-energy.

Both features are the result of taking the in-out matrix element of the operator field equa-
tions. This isn’t wrong, in fact it is exactly the right thing to do in the study of asymptotic
scattering problems. However, there is no S-matrix in de Sitter space [14], so the more nat-
ural problem is to release the universe in a prepared initial state and then watch it evolve.

The correct effective field equations for releasing the universe in a prepared initial state
are derived by taking the expectation value of the operator field equations in that state.
They are given by the Schwinger-Keldysh formalism [15] which, for our problem, amounts
to replacing the in-out self-energy in (32) by the sum of two of the four Schwinger-Keldysh
self-energies, [

µνΣρσ
]
(x; x′) −→

[
µνΣρσ

]
++

(x; x′) +
[
µνΣρσ

]
+−

(x; x′) . (34)
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At the one loop order we are working [µνΣρσ]++(x; x
′) agrees exactly with the in-out result

given in the previous sub-section. To get [µνΣρσ]+−
(x; x′), at this order, one simply adds a

minus sign and replaces the de Sitter length function y(x; x′) everywhere with,

y(x; x′) −→ y+−
(x; x′) ≡ H2a(η)a(η′)

[
‖~x−~x′‖2 − (η−η′+iǫ)2

]
. (35)

It will be seen that the ++ and +− self-energies cancel unless the point x′µ is on or inside
the past light-cone of xµ. That makes the effective field equation (32) causal. When x′µ is
on or inside the past light-cone of xµ the +− self-energy is the complex conjugate of the ++
one, which makes the effective field equation (32) real. This also effects a great simplification
in the structure functions because only those terms with branch cuts in y can make nonzero
contributions, for example,

ln(y++)− ln(y+−
) = 2πiθ

(
η−η′ − ‖~x−~x′‖

)
. (36)

2.4 Perturbative Solution

Because we only know the self-energy at one loop order, all we can do is to solve (32)
perturbatively by expanding the graviton field and the self-energy in powers of κ2,

hµν(x) = h(0)
µν (x) + κ2h(1)

µν (x) +O(κ4) . (37)

Of course h(0)
µν (x) obeys the classical, linearized Einstein equation. Given this solution, the

corresponding one loop correction is defined by the equation,

√
−g(x)Dµνρσκ2h(1)

ρσ (x) =
∫
d4x′

[
µνΣρσ

]
(x; x′)h(0)

ρσ (x
′) . (38)

The classical solution for a dynamical graviton of wave vector ~k is [16],

h(0)
ρσ (x) = ǫρσ(~k)u(η, k)e

i~k·~x , (39)

where the tree order mode function is,

u(η, k) =
H√
2k3

[
1− ik

Ha

]
exp

[ ik

Ha

]
, (40)

and the polarization tensor obeys all the same relations as in flat space,

0 = ǫ0µ = kiǫij = ǫjj and ǫijǫ
∗
ij = 1 . (41)
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3 Computing the One Loop Source

The point of this section is to evaluate the one loop source term on the right hand side of
equation (38) for a dynamical graviton (39-41). We begin by drawing inspiration from what
happens in the flat space limit. Our de Sitter analysis commences by partially integrating
the projectors. This results in considerable simplification but the plethora of indices is
still problematic. To effect further simplification we extract and partially integrate another
d’Alembertian, whereupon the xµ projector can be acted on the residual structure function
to eliminate four contractions. At this point we digress to derive some important identities
concerning covariant derivatives of the Weyl tensor. The final reduction reveals zero net
result.

3.1 The Flat Space Limit

The one loop contribution to the graviton self-energy from MMC scalars in a flat background
was first computed by ‘t Hooft and Veltman in 1974 [17]. When renormalized and expressed
in position space using the Schwinger-Keldysh formalism the result takes the form [18],

[
µνΣρσ

flat

]
(x; x′) = ΠµνΠρσF0(∆x2) +

[
Πµ(ρΠσ)ν−1

3
ΠµνΠρσ

]
F2(∆x2) . (42)

Here Πµν ≡ ∂µ∂ν − ηµν∂2 and the two structure functions are,

F0(∆x2) =
iκ2

(4π)4
∂2

9

[
ln(µ2∆x2

++
)

∆x2
++

− ln(µ2∆x2
+−

)

∆x2
+−

]
, (43)

F2(∆x2) =
iκ2

(4π)4
∂2

60

[
ln(µ2∆x2

++
)

∆x2
++

− ln(µ2∆x2
+−

)

∆x2
+−

]
(44)

The two coordinate intervals are,

∆x2
++

≡
∥∥∥~x−~x′

∥∥∥
2 −

(
|x0−x′0|−iǫ

)2
, (45)

∆x2
+−

≡
∥∥∥~x−~x′

∥∥∥
2 −

(
x0−x′0+iǫ

)2
. (46)

Of course this same form follows from taking the flat space limit of the de Sitter result
summarized in the previous section.

In flat space, the mode function for a plane wave graviton with wave vector ~k is,

hflat
µν (x) = ǫρσ(~k)

1√
2k

e−ikx0+i~k·~x . (47)

The one loop correction to this (from MMC scalars) is sourced by,

(
Source

)µν
(x) =

∫
dx4x′

[
µνΣρσ

flat

]
(x; x′)hflat

ρσ (x
′) . (48)
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It might seem natural to extract the various derivatives with respect to xµ from the integra-
tion, for example,

∫
d4x′ ΠµνΠρσF0(∆x2)× hflat

ρσ (x
′)

=
iκ2

(4π)4
ΠµνΠρσ ∂

2

9

∫
d4x′

[
ln(µ2∆x2

++
)

∆x2
++

− ln(µ2∆x2
+−

)

∆x2
+−

]
× hflat

ρσ (x
′) . (49)

That would reduce the source (48) to a tedious set of integrations, followed by some equally
tedious differentiations.

The point of this sub-section is that a more efficient strategy is to first convert all the xµ

derivatives to x′µ derivatives — which can be done because they act on functions of ∆x2.
Then ignore surface terms and partially integrate the x′µ derivatives to act upon hflat

ρσ (x
′).

For example, doing this for the spin zero contribution (49) gives,
∫
d4x′ ΠµνΠρσF0(∆x2)× hflat

ρσ (x
′)

−→ iκ2

(4π)4

∫
d4x′

[
ln(µ2∆x2

++
)

∆x2
++

− ln(µ2∆x2
+−

)

∆x2
+−

]
× ∂′2

9
Π′µνΠ′ρσhflat

ρσ (x
′) . (50)

Because the graviton mode function is both transverse and traceless, we have Π′ρσhflat
ρσ (x

′) =
0. The spin two contribution is only a little more complicated,

∫
d4x′

[
Πµ(ρΠσ)ν − 1

3
ΠµνΠρσ

]
F2(∆x2)× hflat

ρσ (x
′)

−→ iκ2

(4π)4

∫
d4x′

[
ln(µ2∆x2

++
)

∆x2
++

− ln(µ2∆x2
+−

)

∆x2
+−

]
× ∂′6

60
hµν
flat(x

′) . (51)

This also vanishes because ∂′2hflat
ρσ (x

′) = 0.
In expressions (50) and (51) we have employed a rightarrow, rather than an equals sign,

because the surface terms produce by partial integration were ignored. There are no surface
terms at spatial infinity in the Schwinger-Keldysh formalism because the ++ and +− terms
cancel for spacelike separation. The ++ and +− contributions also cancel when x′0 > x0,
so there are no future surface terms. However, there are nonzero contributions from the
initial value surface.1 We assume that all such contributions are absorbed into perturbative
corrections to the initial state, such as has recently been worked out for a MMC scalar with
quartic self-interaction [20].

3.2 Partial Integration

We now start to evaluate the one loop source term (38) for a dynamical graviton,
∫
d4x′

[
µνΣρσ

]
(x; x′)h(0)

ρσ (x
′)

1For a two loop example, see [19].
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= i
∫
d4x′

√
−g(x)Pµν(x)

√
−g(x′)Pρσ(x′)

{
F0

}
h(0)
ρσ (x

′)

+2i
∫
d4x′

√
−g(x)Pµν

αβγδ(x)
√
−g(x′)Pρσ

κλθφ(x
′)

{
T ακT βλT γθT δφF2

}
h(0)
ρσ (x

′) . (52)

In this expression and henceforth we simply write “F0” and “F2” to stand for the full
Schwinger-Keldysh expressions,

F0 ≡ F0(y++)−F0(y+−
) , F2 ≡ F2(y++)− F2(y+−

) . (53)

The integral (52) can be simplified in two steps. First, the projectors Pµν(x) and Pµν
αβγδ(x),

which act on a function of xµ, can be pulled outside the integration over x′µ. Second, the
projectors Pρσ(x′) and Pρσ

κλθφ(x
′), which act on x′µ, can be partially integrated to act on the

graviton wave function h(0)
ρσ (x

′). After these two steps, the integral (52) becomes,

∫
d4x′

[
µνΣρσ

]
(x; x′)h(0)

ρσ (x
′)

= i
√
−g(x)Pµν(x)

∫
d4x′

√
−g(x′)F0

{
Pρσ(x′)h(0)

ρσ (x
′)
}

+2i
√
−g(x)Pµν

αβγδ(x)
∫
d4x′

√
−g(x′) T ακT βλT γθT δφF2

{
Pρσ

κλθφ(x
′)h(0)

ρσ (x
′)

}
. (54)

Note that the spin zero term drops out due to the tranversality and tracelessness of the
dynamical graviton, h(0)

ρσ :

Pρσh(0)
ρσ =

{
DρDσ −

[
D2 + (D−1)H2

]
gρσ

}
h(0)
ρσ = 0 . (55)

Thus we only have the spin two term, which gives the linearized Weyl tensor,

Pρσ
κλθφ(x

′)h(0)
ρσ (x

′) = δCκλθφ(x
′) . (56)

The one loop source term then reduces to the integral,

∫
d4x′

[
µνΣρσ

]
(x; x′)h(0)

ρσ (x
′)

= 2i
√
−g(x)Pµν

αβγδ(x)
∫
d4x′

√
−g(x′)T ακT βλT γθT δφF2δCκλθφ(x

′) . (57)

3.3 Extracting Another d’Alembertian

A challenge to evaluating expression (57) is the complicated tensor structure of the external
projector Pµν

αβγδ(x) acting on the internal factors of T ακ · · · F2. Recall from the flat space
limit that all of this was converted to derivatives with respect to x′µ and then partially
integrated onto the graviton wave function to give zero. To follow this on de Sitter we must
make the structure function more convergent by extracting a factor of ′ and then partially
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integrating it onto the graviton wave function. After this the external projector can be acted,
which eliminates four indices, and a final further partial integration can be performed.

The first step is extracting the extra d’Alembertian,

F2 =
′

H2
F̂2 . (58)

We next commute the ′ through the factor of T ακT βλT γθT δφ:

T ακT βλT γθT δφ
′

H2
F̂2 =

( ′

H2
+4

)[
T ακT βλT γθT δφF̂2

]

− 1

H2
F̂ ′

2

{
∂y

∂xα

∂y

∂x′
κ

T βλT γθT δφ + · · ·+ T ακT βλT γθ ∂y

∂xδ

∂y

∂x′
φ

}

− 1

2H2
F̂2

{
gαβ

∂y

∂x′
κ

∂y

∂x′
λ

T γθT δφ + gαγ
∂y

∂x′
κ

∂y

∂x′
θ

T βλT δφ

+gαδ
∂y

∂x′
κ

∂y

∂x′
φ

T βλT γθ + gβγ
∂y

∂x′
λ

∂y

∂x′
θ

T ακT δφ

+gβδ
∂y

∂x′
λ

∂y

∂x′
φ

T ακT γθ + gγδ
∂y

∂x′
θ

∂y

∂x′
φ

T ακT βλ

}
. (59)

Exploiting the tracelessness of the Weyl tensor on any two indices, and its antisymmetry on
the first two and last two indices, gives,

P µν
αβγδT ακT βλT γθT δφ

′

H2
F̂2δCκλθφ = P µν

αβγδ

′

H2

[
F̂2T ακT βλT γθT δφ

]
δCκλθφ

= P µν
αβγδ

{
4F̂2T ακT βλT γθT δφ − 4

H2
F̂ ′

2

∂y

∂xα

∂y

∂x′
κ

T βλT γθT δφ

}
δCκλθφ . (60)

For the first term of (60) we can partially integrate the ′ onto the linearized Weyl tensor.
Then the one loop source term becomes

∫
d4x′

[
µνΣρσ

]
(x; x′)h(0)

ρσ (x
′)

= 2i
√
−g(x)Pµν

αβγδ(x)
∫
d4x′

√
−g(x′)

{
T ακT βλT γθT δφF̂2

′

H2
δCκλθφ(x

′)

+
[
4F̂2T ακT βλT γθT δφ − 4

H2
F̂ ′

2

∂y

∂xα

∂y

∂x′
κ

T βλT γθT δφ

]
δCκλθφ(x

′)

}
. (61)

This sets the stage for acting the outer projector.

3.4 Derivatives of the Weyl Tensor

At this point it is useful to make a short digression on the covariant derivatives of the Weyl
tensor. In this sub-section we use gµν for the full metric, not the de Sitter background. All
curvatures are similarly for the full metric.
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The Bianchi identity tells us,

DǫRαβγδ +DγRαβδǫ +DδRαβǫγ = 0 . (62)

If the stress-energy vanishes, all solutions to the Einstein equation obey,

Rµν −
1

2
gµνR = −3H2gµν =⇒ Rµν = 3H2gµν . (63)

In D = 3 + 1 the Weyl tensor can be expressed in terms of the other curvatures as,

Cαβγδ = Rαβγδ −
1

2

(
gαγRβδ − gγβRδα + gβδRαγ − gδαRγβ

)
+

1

6

(
gαγgβδ − gαδgβγ

)
R . (64)

Now note that the covariant derivative of the metric vanishes. Substituting (63) in (64)
implies,

DǫCαβγδ = DǫRαβγδ . (65)

Combining this relation into (62) gives,

DǫCαβγδ +DγCαβδǫ +DδCαβǫγ = 0 . (66)

Our first key identity derives from contracting α into ǫ, and exploiting the tracelessness of
the Weyl tensor,

DαCαβγδ = 0 . (67)

Our second identity derives from contracting Dǫ into relation (66), commuting derivatives
and then using relation (67),

Cαβγδ = −DρDγC
ρ

αβδ +DρDδC
ρ

αβγ , (68)

= 6H2Cαβγδ −Rρ σ
αγ Cρβδσ +Rρ σ

γβ Cρδασ

−Rρ σ
βδ Cραγσ +Rρ σ

δα Cργβσ − Rρσ
γδCαβρσ . (69)

Relations (67) and (69) hold, to all orders in the graviton field, for any solution to the
source-free Einstein equations. Taking the first order in the graviton field amounts to just
replacing the full Weyl tensor by the linearized Weyl δCαβγδ we have been using, replacing
the full covariant derivative operators by the covariant derivatives in de Sitter background
and replacing the full Riemann tensor by its de Sitter limit. When these things are done the
two identities become,

DαδCαβγδ = 0 +O(h2) , (70)

δCαβγδ = 6H2δCαβγδ +O(h2) . (71)

Note also that if the stress-energy had been nonzero the right hand sides of relations (70)
and (71) would have contained simple combinations of derivatives of the stress tensor.
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3.5 The Final Reduction

We are now ready to act the outer projector on the remaining terms,
∫
d4x′

[
µνΣρσ

]
(x; x′)h(0)

ρσ (x
′) = 2i

√
−g(x)

∫
d4x′

√
−g(x′) δCκλθφ(x

′)
{
Pµν

αβγδ(x)
[
10F̂2T ακT βλT γθT δφ − 4

H2
F̂ ′

2

∂y

∂xα

∂y

∂x′
κ

T βλT γθT δφ

]}
. (72)

The second line of this expression is quite complicated by itself, but it is greatly simplified
when contracted into the linearized Weyl tensor,

δCκλθφ(x
′)Pµν

αβγδ(x)
[
10F̂2T ακT βλT γθT δφ − 4

H2
F̂ ′

2

∂y

∂xα

∂y

∂x′
κ

T βλT γθT δφ

]

= δCκλθφ(x
′)

{
∂y

∂x′
κ

∂y

∂x′
θ

T λ(µT ν)φf1(y) +
∂y

∂x′
κ

∂y

∂x′
φ

T λ(µT ν)θf2(y)

+
∂y

∂x′
λ

∂y

∂x′
θ

T κ(µT ν)φf3(y) +
∂y

∂x′
λ

∂y

∂x′
φ

T κ(µT ν)θf4(y)

}
. (73)

Here the functions fi(y) are,

f1 =−125F̂2+115(2−y)F̂ ′
2−(68− 116y + 29y2)F̂ ′′

2 −2(2−y)(4y−y2)F̂ ′′′
2

f2 =−75

2
F̂2+

69

2
(2−y)F̂ ′

2−(28− 44y + 11y2)F̂ ′′
2 −(2−y)(4y−y2)F̂ ′′′

2

f3 =−85

2
F̂2+

15

2
(2−y)F̂ ′

2

f4 =−5F̂2−13(2−y)F̂ ′
2−

5

2
(4y−y2)F̂ ′′

2 (74)

Changing the dummy indices in (73) gives,

δCκλθφ(x
′)Pµν

αβγδ(x)
[
10F̂2T ακT βλT γθT δφ − 4

H2
F̂ ′

2

∂y

∂xα

∂y

∂x′
κ

T βλT γθT δφ

]

=
∂y

∂x′
κ

∂y

∂x′
θ

T λ(µT ν)φf(y)δCκλθφ(x
′) . (75)

Here the function f(y) is,

f(y)=−50F̂2+60(2−y)F̂ ′
2−(40− 62y +

31

2
y2)F̂ ′′

2 −(2−y)(4y−y2)F̂ ′′′
2 . (76)

The final reduction is accomplished by one more partial integration. Let us define the
integral I[f ] of a function f(y) by the relations,

∂y

∂x′
κ

f(y) ≡ ∂

∂x′
κ

I[f ](y) such that
∂I[f ]

∂y
= f(y) . (77)
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Then the one loop source becomes,

∫
d4x′

[
µνΣρσ

]
(x; x′)h(0)

ρσ (x
′)

= 2i
√
−g(x)

∫
d4x′

√
−g(x′)

∂y

∂x′
κ

f(y)
∂y

∂x′
θ

T λ(µT ν)φδCκλθφ(x
′) (78)

= −2i
√
−g(x)

∫
d4x′

√
−g(x′)I[f ]

{
D2y

Dx′
κDx′

θ

T λ(µT ν)φδCκλθφ(x
′)

+
DT λ(µT ν)φ

Dx′
κ

∂y

∂x′
θ

δCκλθφ(x
′) +

∂y

∂x′
θ

T λ(µT ν)φDκδCκλθφ(x
′)

}
. (79)

The first and second terms include the metric,

D2y

Dx′
κDx′

θ

= H2(2− y)gκθ(x′),
DT λ(µT ν)φ

Dx′
κ

=
1

2

∂y

∂x(µ

T ν)(φgλ)κ(x′) , (80)

so they give zero when contracted into the linearized Weyl tensor. The third term vanishes
by the transversality of the linearized Weyl tensor (for dynamical gravitons only) which we
showed in (67). Hence the one loop source term for a dynamical graviton is zero:

∫
d4x′

[
µνΣρσ

]
(x; x′)h(0)

ρσ (x
′) = 0 . (81)

Before concluding we should comment on the validity of our result (81), in view of the
enormous difference between de Sitter and the actual expansion history of the universe. Of
course equation (32) is correct for any geometry, but we only know the graviton self-energy
for de Sitter background. This does not make any difference for cosmologically observable
tensor perturbations for two reasons:

• As explained section 2.1, de Sitter is an excellent approximation to primordial infla-
tion up until cosmologically observable perturbations experience first horizon crossing.
After this time the de Sitter approximation breaks down, but those perturbations are
almost constant.

• Our result (57) is valid for any geometry, and the linearized Weyl tensor vanishes for
constant perturbations. So there is no contribtuion from the portion of the integration
which derives from times after the end of inflation.

To see the second point, note that general coordinate invariance requires matter contributions
to the graviton self-energy to take the form (20), provided one uses expressions (22-23) to
define the projectors for a general metric, and provided the general form of expression (21)
is related to the geodetic length function through (6). That form is all we required to derive
equation (57).
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4 Conclusions

We have found that the inflationary production of MMC scalars has no effect on dynamical
gravitons at one loop order. There is nothing very surprising about this result. It is exactly
what happens in flat space [17]. Although the scalar contribution to the graviton self-energy
is enormously more complex in de Sitter than in flat space, we showed in section 3 that all of
this complexity can be absorbed into surface integrations over the initial time. It is plausible
that these surface integrations can be regarded as perturbative redefinitions of the initial
state which involve two scalars and one graviton. The null effect of flat space certainly has
this interpretation, which implies the same for the highest derivative part of the de Sitter
result. What has yet to be proved — and so must be labeled a conjecture — is that the
lower derivative, intrinsically de Sitter parts have the same interpretation. Checking this
requires a computation like that recently completed for the self-interacting scalar [12].

That is the math behind our result; the physics is that ultraviolet virtual scalars affect
gravitons the same as in flat space, and infrared scalars carry too little stress-energy to
have much effect. The effect of ultraviolet scalars is limited, as on flat space, to inducing
higher derivative counterterms. Although primordial inflation produces many scalars, they
are all highly infrared so they interact only weakly with gravtions. (This seems to be why
inflationary gravitons have no significant effect on MMC scalars [9].) One might worry that
a very infrared graviton would still suffer some effect from absorbing a comparably infrared
scalar. To understand why this is not so, let us model the process by simply replacing the
graviton’s co-moving wave number k with a new one k′,

0 = ü(t, k) + 3Hu̇(t, k) +
k2

a2(t)
u(t, k) −→ ü(t, k) + 3Hu̇(t, k) +

k′2

a2(t)
u(t, k) . (82)

The effect on the mode function is negligible after both 1/a2 terms have redshifted into
insignificance.

Both math and physics suggest that inflationary gravitons might do something inter-
esting to other gravitons. The graviton contribution to the graviton self-energy has been
derived at one loop order [21] so the computation can be made. Of course one can reduce
the effect to a temporal surface term, as we did in section 3, but it seems likely that this
surface term will depend upon the observation time η so that it cannot be absorbed into a
perturbative correction to the initial state. The reason for this is that the graviton contri-
bution contains de Sitter-breaking, infrared logarithms [21], unlike the scalar contribution.
The physical principle involved would be that gravitons possess spin and even very infrared
gravitons continue to interact via the spin-spin coupling which doesn’t exist for scalars. This
is presumably why inflationary gravitons induce a secular enhancement of the field strength
of massless fermions [10].

It would also be interesting to investigate how inflationary scalars affect the force of
gravity. That can be done by solving (38) to correct for the linearized response to a stationary
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point mass M [22],

h
(0)
00 (x) = a2 × 2GM

a‖~x‖ , h
(0)
0i (x) = 0 , h

(0)
ij (x) = a2 × 2GM

a‖~x‖ × δij . (83)

The same reduction procedures we laid out in section 3 can be applied in this case except
that:

• The spin zero projector Pρσ(x′) does not annihilate (83); and

• The linearized stress tensor does not vanish.

Because the linearized stress tensor is proportional to δ3(~x′), we should be able to reduce
the computation to a single integration over η′.

Note that the virtual scalars of flat space do induce a correction to the classical potential
[23, 24] and we expect one as well on de Sitter background. On dimensional grounds the flat
space result must (and does) take the form,

Φflat = −GM

r

{
1 + constant× G

r2
+O(G2)

}
. (84)

On de Sitter background there is a dimensionally consistent alternative provided by the
Hubble constant H and by the secular growth driven by continuous particle production,

ΦdS = −GM

r

{
1 + constant×GH2 ln(a) +O(G2)

}
. (85)

If such a correction were to occur its natural interpretation would be as a time dependent
renormalization of the Newton constant. The physical origin of the effect (if it is present)
would be that virtual infrared quanta which emerge near the source tend to collapse to it,
leading to a progressive increase in the source.
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