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The interior structure of rotating black holes 3. Charged black holes

Andrew J S Hamilton
JILA and Dept. Astrophysical & Planetary Sciences,

Box 440, U. Colorado, Boulder, CO 80309, USA∗

This paper extends to the case of charged rotating black holes the conformally stationary,
axisymmetric, conformally separable solutions presented for uncharged rotating black holes in a
companion paper. In the present paper, the collisionless fluid accreted by the black hole may
be charged. The charge of the black hole is determined self-consistently by the charge accretion
rate. As in the uncharged case, hyper-relativistc counter-streaming between ingoing and outgoing
streams drives inflation at (just above) the inner horizon, followed by collapse. If both ingoing and
outgoing streams are charged, then conformal separability holds during early inflation, but fails as
inflation develops. If conformal separability is imposed throughout inflation and collapse, then only
one of the ingoing and outgoing streams can be charged: the other must be neutral. Conformal
separability prescribes a hierarchy of boundary conditions on the ingoing and outgoing streams
incident on the inner horizon. The dominant radial boundary conditions require that the incident
ingoing and outgoing number densities be uniform with latitude, but the charge per particle must
vary with latitude such that the incident charge densities vary in proportion to the radial electric
field. The sub-dominant angular boundary conditions require specific forms of the incident number-
and charge-weighted angular motions. If the streams fall freely from outside the horizon, then
the prescribed angular conditions can be achieved by the charged stream, but not by the neutral
stream. Thus, as in the case of an uncharged black hole, the neutral stream must be considered to
be delivered ad hoc to just above the inner horizon.

PACS numbers: 04.20.-q

I. INTRODUCTION

A companion paper [1], hereafter Paper 2, presents conformally stationary, axisymmetric, conformally separable
solutions for the interior of an uncharged rotating black hole that undergoes inflation at its inner horizon and then
collapses. The purpose of this paper is to extend these solutions to the case of a charged rotating black hole. A
Mathematica notebook containing many details of the calculations is at [2].
Because of the strength of electromagnetism and the overall charge neutrality of the Universe, real astronomical

black holes are expected to have little electric charge. However, a black hole is likely to build up a residual positive
charge because positively charged protons are more massive than negatively charged electrons, so protons are more
able to overcome a Coulomb barrier against accretion. The charge-to-mass ratio of a proton is e/mp ≈ 1018 in Planck
units (c = G = ~ = 1). A black hole might be able to build up a charge-to-mass of the order of the reciprocal of this
ratio [3]. If so, then trajectories of charged particles falling into the black hole would be affected by the black hole’s
charge notwithstanding its small value.
As shown in Appendix A of Paper 2, given the assumptions of conformal time-translation invariance, axisymmetry,

and conformal separability, the line-element can be taken to be

ds2 = ρ2
[

dx2

∆x
− ∆x

σ4
(dt− ωy dφ)

2
+

dy2

∆y
+

∆y

σ4
(dφ− ωx dt)

2

]

, (1)

where t is conformal time, φ is the azimuthal coordinate, x and y are radial and angular coordinates, ∆x and ∆y

are radial and angular horizon functions, and σ ≡
√

1− ωx ωy. The conformal factor ρ = ρse
vt−ξ is a product of

separable (electrovac) ρs, time-dependent evt, and inflationary e−ξ factors.
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II. COLLISIONLESS STREAMS

As in Paper 2 [1], the present paper takes a general freely-falling collisionless fluid as the source of energy that
ignites and then drives inflation. In the present paper collisionless streams are allowed to be electrically charged.

A. Conformal separability conditions

The tetrad-frame electromagnetic potential Ak is conveniently written in terms of a set of Hamilton-Jacobi potentials
Ak (the following repeats eq. (24) of Paper 2),

Ak ≡ 1

ρ

{

Ax√
−∆x

,
At√
−∆x

,
Ay
√

∆y

,
Aφ
√

∆y

}

. (2)

As shown in Appendix A of Paper 2, conformal separability requires that

ωx , ∆x are functions of x only ,
ωy , ∆y are functions of y only ,

(3)

and also that

Ax , At are functions of x only ,
Ay , Aφ are functions of y only .

(4)

However, dimensional analysis shows that the condition of conformal time-translation symmetry requires that the
potentials Ak must be proportional to the time-dependent factor evt of the conformal factor,

Ak ∝ evt , (5)

contradicting conditions (4). The dimensional argument is robust; the proportionality (5) is correct. Thus the
separability conditions adopted in this paper are, in place of conditions (4),

e−vtAx , e−vtAt are functions of x only ,
e−vtAy , e−vtAφ are functions of y only .

(6)

B. Hamilton-Jacobi separation

The fact that the conformal separability conditions (4) fail and must be replaced by conditions (6) implies that
the equations of motion of charged particles in conformally separable spacetimes are not exactly Hamilton-Jacobi
separable. A similar situation occurred in Paper 2, where it was found that the equations of motion of massive particles,
though not exactly Hamilton-Jacobi separable, are adequately so under the hyper-relativistic conditions of inflation.
This suggests that the Hamilton-Jacobi equations might still provide an adequate approximation to the equations of
motion of charged particles under the conditions peculiar to inflation. This subsection shows that the Hamilton-Jacobi
equations do in fact provide an adequate approximation, but only subject to the special condition (14). Physically,
these conditions require that only one of the ingoing and outgoing streams can be charged, the other being neutral,
§IVC.
As shown in §IV of Paper 2, the tetrad-frame momentum pk of a particle of rest mass m and charge q predicted by

the Hamilton-Jacobi equations is

pk =
1

ρ

{

Px√
−∆x

,
Pt√
−∆x

,
Py
√

∆y

,
Pφ
√

∆y

}

, (7)

where the Hamilton-Jacobi parameters Pt and Pφ are related to the particle’s conserved energy πt = −E and angular
momentum πφ = L and to the potentials At and Aφ by

Pt = πt + πφωx − qAt , Pφ = πφ + πtωy − qAφ , (8)

and Px and Py are then obtained from (the following are eqs. (35) of Paper 2)

Px =
√

P 2
t −

[

m2(ρ2 − ρ2y) +K
]

∆x , Py =
√

−P 2
φ − (m2ρ2y −K)∆y . (9)
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As it stands, the tetrad-frame momentum pk given by equations (7)–(9) does not satisfy the Lorentz force law
dpk/dλ = qplFlk to adequate accuracy.
A fix that proves to work under inflationary conditions is, firstly, to replace At in equation (8) for Pt by (At±Ax)/2

respectively for ingoing (+) and outgoing (−) particles, so that (given also that Aφ = 0, equation (28))

Pt ≡ πt + πφωx − q
At ±Ax

2
, Pφ = πφ + πtωy , (10)

and secondly, to replace the time-dependent factor evt in At ± Ax by its value as a function of x along the path of
the particle predicted by the Hamilton-Jacobi equations,

dt

dx
= − 1

Px

(

Pt

−∆x
+

ωyPφ

∆y

)

. (11)

The equation of motion predicted by equations (9)–(11) is (the following equation omits the dependency on rest mass
m, given previously by eq. (39) of Paper 2; the quantities Zk are defined later, equations (24))

dpk
dλ

− qplFlk =
q

2ρ3
√
−∆x

[

v(At ±Ax)
Pt ∓ Px

Px∆x
− (At ∓Ax)

(

∂

∂x
ln

(

1

σ2

dωx

dx

)

− Pφ

Px

vωy

∆y

)

− Zt ± Zx

]

{Pt, Px, 0, 0}

+
q

2ρ3
√

∆y

(At ∓Ax)
1

σ2

dωy

dy
{0, 0, Pφ,−Py}+

qvωy

ρ3
√

−∆x∆y

AxPx −AtPt

Px

{

Pφ
√

∆y

, 0 , 0 ,
Px√
−∆x

}

.

(12)

The right hand side of equation (12), which would vanish if the equations of motion of charged particles were
exactly Hamilton-Jacobi separable, does not vanish because the Hamilton-Jacobi approximation (9)–(11) is not exact.
Appendix D of Paper 2 gives criteria under which integrals along the path of a particle may be deemed small, in
the conformally stationary limit. By these criteria, all but one of the terms in equation (12) yields a small result
when integrated over the path of a particle through inflation and collapse. The discrepant term is the azimuthal
φ component of the last term, proportional to AxPx − AtPt, which has α = −1 and β = −3 in the terminology
of Appendix D of Paper 2, violating (marginally) condition (D4) during inflation. Integrated over the path of the
particle, the term would produce a finite difference between the true azimuthal momentum pφ and that predicted by
equations (9)–(11). The finite difference appears during inflation when |∆x| ≪ 1. The exception to this conclusion is
that the term would vanish provided that the factor AxPx −AtPt multiplying it is zero,

AxPx = AtPt . (13)

But particles are hyper-relativistic, Pt = ±Px, under the conditions |∆x| ≪ 1 where the difference occurs. Then
condition (13) holds provided that

Ax = ±At . (14)

In other words, the Hamilton-Jacobi approximation (9)–(11) works for ingoing particles only if At = Ax, and for
outgoing particles only if At = −Ax. Later, §IVC, it will be concluded that condition (14) is equivalent to requiring
that only one of the ingoing and outgoing streams can be charged; the other stream must be neutral.
One might try to go beyond the Hamilton-Jacobi approximation, but there is no point. In §III C it will be found

that the non-isotropic diagonal angular component of the electromagnetic energy-momentum tensor, which conformal
separability requires must vanish, diverges unless condition (14) is true. Condition (14) appears necessary for the
conformally separable solutions considered in this paper to hold.

C. Electric current

Equations governing the density N and number current nk of a collisionless stream were derived in §VII of Paper 2.
For a single stream of particles of charge q with fixed constants of motion, the tetrad-frame current jk is the particle
charge q times the number current nk, which is itself the number density N times the momentum pk,

jk = qnk , nk = Npk . (15)

The Hamilton-Jacobi equations predict that the number density N along a single stream satisfies

N ∝ σ2

ρ2PxPy
. (16)
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As discussed in §II B, the equations of motion of charged particles are not exactly Hamilton-Jacobi separable. The
accuracy of the Hamilton-Jacobi approximation (9)–(11) can be checked by seeing how closely the covariant divergence
Dknk that they predict vanishes. The result is (the following equation omits the dependency on rest mass m given
previously by eq. (63) of Paper 2)

Dknk = 0 , (17)

which happens to vanish identically, confirming that the Hamilton-Jacobi approximation (9)–(11) is satisfactorily
accurate.

III. ELECTROMAGNETISM

Maxwell’s equations prove to separate in a manner consistent with the separation of Einstein’s equations carried
out in §VIII of Paper 2 [1]. In this section, the spacetime is taken to be conformally time-translation symmetric (not
necessarily conformally stationary) and axisymmetric, and to satisfy the conformal separability conditions (3) and
(6).
Homogeneous solution of the stationary, separable Einstein equations leads to the usual electrovac solutions for the

vierbein coefficients ωx and ωy of the line-element, and, as is well-known, homogeneous solution of the stationary,
separable Maxwell equations leads to the same result (the following repeats eqs. (73) of Paper 2):

dωx

dx
= 2
√

(f0 + f1ωx) (g0 − g1ωx) ,
dωy

dy
= 2
√

(f1 + f0ωy) (g1 − g0ωy) , (18)

where f0, f1, g0, and g1 are constants set by boundary conditions. Equations (18) continue to hold through inflation
and collapse in charged as well as neutral black holes. As found in Paper 2, inflation occurs generically at an inner
horizon ∆x → −0 regardless of the specific choice of the constants f0, f1, g0, and g1.

A. Electromagnetic field

The electromagnetic field Fmn is a bivector, and as such has a natural complex structure [4], with the real part being
the electric field, which changes sign under parity transformation (a change of sign of all spatial coordinates), and the
imaginary part being the magnetic field, which is unchanged by a parity transformation. The complex structure is
manifest in a complexified electromagnetic field F̃mn defined by

F̃kl ≡
1

2
(Fkl +

∗Fkl) , (19)

where ∗Fkl denotes the Hodge dual of Fkl,

∗Fkl ≡
i

2
εkl

mn Fmn , (20)

with εklmn the totally antisymmetric tensor, normalized here to εklmn = [klmn] in an orthonormal tetrad frame.

The complexfied electromagnetic field tensor is self-dual, ∗F̃kl = F̃kl. Given conformal time-translation symmetry
(not necessarily conformally stationarity), axisymmetry, and conformal separability, the tetrad-frame complexified

electromagnatic field tensor F̃mn is

F̃xt ≡
1

2
(Fxt + iFφy) =

1

2ρ2

[

−
(

∂At

∂x
+

ωyAt −Aφ

σ2

dωx

dx

)

+ i

(

∂Aφ

∂y
+

ωxAφ −At

σ2

dωy

dy

)

− v

(Ax

∆x
+ i

ωyAy

∆y

)]

,

(21a)

F̃xy ≡ 1

2
(Fxy + iFtφ) = i

v(ωyAt −Aφ)

2ρ2
√

−∆x∆y

, (21b)

F̃xφ ≡ 1

2
(Fxφ + iFyt) =

v(ωyAx + iAy)

2ρ2
√

−∆x∆y

. (21c)

If the spacetime were strictly stationary, v ≡ 0, then the only non-vanishing component of the complexified
electromagnetic field would be the radial component F̃xt. In inflationary spacetimes, however, the radial horizon
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function ∆x goes to zero at the inner horizon, and the angular components F̃xy and F̃xφ of the electromagnetic field
can grow large at the inner horizon, however small the accretion rate v may be.
The only electromagnetic gauge freedom that respects conformal time-translation symmetry and the conformal

separability conditions (6) is Ak → Ak + λ∂ke
vt for some constant λ, which transforms

At → At + λvevt , Aφ → Aφ + λvωye
vt . (22)

Define the enclosed electric charge Q within radius x, and the enclosed magnetic charge Q above latitude y, by

Q ≡ −2(f0g1 + f1g0)
At

dωx/dx
, (23a)

Q ≡ −2(f0g1 + f1g0)
Aφ

dωy/dy
. (23b)

Further, define the quantities Zk by

Zx ≡ dωx

dx

∂

∂x

( Ax

dωx/dx

)

+
vAt

∆x
, Zt ≡

dωx

dx

∂

∂x

( At

dωx/dx

)

+
vAx

∆x
, (24a)

Zy ≡ dωy

dy

∂

∂y

( Ay

dωy/dy

)

+
vωyAφ

∆y
, Zφ ≡ dωy

dy

∂

∂y

( Aφ

dωy/dy

)

− vωyAy

∆y
. (24b)

The conventional radial electric and magnetic fields E and B constitute the real and imaginary parts of (twice) the

radial electromagnetic field. The radial electromagnetic field F̃xt can be written in terms of the enclosed electric and
magnetic charges Q and Q and the Zk as

2F̃xt = E + iB =
1

ρ2

[

(Q+ iQ)
ρx + iρy
ρx − iρy

− Zt + iZφ

]

. (25)

where ρx and ρy are the x and y components of the separable conformal factor ρs =
√

ρ2x + ρ2y, equation (72) of

Paper 2.

B. Maxwell’s equations

Maxwell’s equations are embodied in the complex equation

DmF̃mn = 2πjn , (26)

whose real (electric) and imaginary (magnetic) parts constitute respectively the source and source-free Maxwell’s
equations. Given conformal time-translation invariance and the conformal separability conditions (3) and (6), the
source-free Maxwell’s equations are satisfied identically with vanishing magnetic current. Since the magnetic current,
and in particular its time component the magnetic charge, necessarily vanishes, the solutions preclude the accretion
of any magnetic charge. Although strictly stationary solutions admit a black hole with magnetic charge, conformally
stationary solutions do not.
In terms of the Zk defined by equations (24), and given equations (18) for dωx/dx and dωy/dy, the sourced Maxwell’s

equations can be written

jx ± jt =
1

4πρ3

{

v√
−∆x

[

(Ax ±At)

(

± ∂

∂x
ln

(

1

σ2

dωx

dx

)

−
vω2

y

∆y

)

±Ay
∂

∂y
ln

(

1

σ2

dωy

dy

)

−Aφ
1

σ2

dωx

dx

]

+
v√
−∆x

(Zt ± Zy)±
√

−∆x

[

∂Zt

∂x
+ Zt

∂

∂x
ln

(

1

σ2

dωx

dx

)

− Zφ
1

σ2

dωy

dy

]}

, (27a)

jy ± ijφ =
1

4πρ3

{

vωy
√

∆y

[

(Ay ± iAφ)

(

∓ i
∂

∂y
ln

(

1

σ2

dωy

dy

)

+
v

ωy∆x

)

∓ iAx
∂

∂x
ln

(

1

σ2

dωx

dx

)

−At
1

σ2

dωy

dy

]

+
vωy
√

∆y

(Zφ ∓ iZx)∓ i
√

∆y

[

∂Zφ

∂y
+ Zφ

∂

∂y
ln

(

1

σ2

dωy

dy

)

− Zt
1

σ2

dωx

dx

]

}

. (27b)
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These equations yield both electrovac and inflationary solutions.
Electrovac solutions correspond to the case of strict stationarity, v = 0. In strictly stationary spacetimes, Ax and

Ay can be set to zero by a gauge transformation, as is evident from the fact that for v = 0 the electromagnetic field,
equations (21), is independent of Ax and Ay . This gauge freedom is available in strictly stationary but not conformally
stationary spacetimes. The homogeneous solutions of Maxwell’s equations (27) are those with Zt = Zφ = 0, which
given the defintions (24) of Zk, correspond to spacetimes with constant electric and magnetic charges Q and Q,
equations (23).
Inflationary solutions of Maxwell’s equations (27) have small but non-zero accretion rate v. During inflation, the

angular currents jy and jφ available from a collisionless source are small. The term proportional to Ay + iAφ in
equation (27b) involves a factor of v/∆x which diverges at the inner horizon ∆x → −0 however small the accretion
accretion rate v might be. The only way that this term can remain small is that

Ay = Aφ = 0 , (28)

which is equivalent to requiring that the magnetic charge be identically zero (an apparent exception to this argument
is that if Aφ is chosen to be a constant times ωy, then the divergent term can cancel against a corresponding term
proportional to At in Zx; but that simply reflects the gauge freedom (22) in Aφ). That magnetic charge must
vanish accords with the conclusion at the beginning of this subsection, that conformal time-translation invariance
and conformal separability force the magnetic current to vanish identically, so the black hole cannot accrete magnetic
charge, so its cumulative magnetic charge must be zero.
Given the vanishing of Ay and Aφ, it follows that Zy and Zφ vanish identically, and Maxwell’s equations (27) reduce

to

4πρ2(jx ± jt) =
1

ρ

{

v√
−∆x

(Ax ±At)

[

± ∂

∂x
ln

(

1

σ2

dωx

dx

)

−
vω2

y

∆y

]

±
√

−∆x

[

∂

∂x
∓ v

∆x
+

∂

∂x
ln

(

1

σ2

dωx

dx

)]

Zt

}

,

(29a)

4πρ2(jy ± ijφ) =
1

ρ

{

vωy
√

∆y

[

∓iAx
∂

∂x
ln

(

1

σ2

dωx

dx

)

−At
1

σ2

dωy

dy

]

∓ i

(

Zx
vωy
√

∆y

− Zt

√

∆y
1

σ2

dωx

dx

)}

. (29b)

C. Electromagnetic energy-momentum

In terms of the complexified electromagnetic field F̃mn, the tetrad-frame electromagnetic energy-momentum tensor
T e
kl satisfies

4πT e
kl = ηmn

(

F̃kmF̃ ∗

ln + F̃knF̃
∗

lm

)

, (30)

in which ∗ denotes the complex conjugate (not the Hodge dual). Given that the angular electromagnetic potentials
Ay and Aφ vanish, the tetrad-frame electromagnetic energy-momentum tensor T e

kl is

T e
xx − T e

tt = T e
yy + T e

φφ =
E2 +B2

4π
, (31a)

T e
xx + T e

tt

2
± T e

xt = −
v
2ω2

y(Ax ±At)
2

8πρ4∆x∆y
, (31b)

T e
xy ± T e

ty = − vωy

4πρ2
√

−∆x∆y

B(Ax ±At) , (31c)

T e
xφ ± T e

tφ = ∓ vωy

4πρ2
√

−∆x∆y

E(Ax ±At) , (31d)

T e
yy − T e

φφ

2
± iT e

yφ = −
v
2ω2

y

8πρ4∆x∆y
(Ax +At)(Ax −At) , (31e)

where E and B are the radial electric and magnetic fields from equation (25).
As discussed in §VIII I of Paper 2, the condition of conformal separability requires that the 2×2 angular submatrix

of the energy-momentum tensor must be isotropic (proportional to the unit 2×2 unit matrix), since the non-isotropic
angular Einstein components depend only on angle y (modulo an overall conformal factor), and being initially negligible
in the conformally stationary limit, must remain so at any radius x. The isotropy of the angular energy-momentum
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requires that the components given by equation (31e) must be negligible. On the other hand the right hand side of
expression (31e) is proportional to 1/∆x, which diverges at the inner horizon ∆x → −0. The only way out is that
one of the remaining factors in the expression must vanish, which requires that

Ax = ±At . (32)

Condition (32) is the same as that (14) found previously in order that the equations of motion of charged particles
be Hamilton-Jacobi separable to adequate accuracy.

IV. INFLATIONARY SOLUTIONS

This section presents inflationary solutions to the combined Maxwell and Einstein equations. Subsection IVA
derives the evolution of the electric potentials Ax and At from the vanishing of Zx and Zt, which Maxwell’s equations
sourced by a collisionless current require to be small. The case of small but finite Zk is deferred to Appendix A.
Subsection IVB shows that, with these potentials, Maxwell’s equations are satisfied by a sum of currents from ingoing
and outgoing collisionless streams. Subsection IVC concludes that only one or other of the ingoing and outgoing
streams can be charged. Subsection IVD reviews 8 of the Einstein components, and §IVE shows that the energy-
momentum required by these 8 Einsteins, after subtraction of the electromagnetic energy-momentum, is satisfied
by the energy-momentum of ingoing and outgoing collisionless streams. The remaining 2 Einstein components were
shown in §VIIID,E of Paper 2 to govern the evolution of the inflationary exponent ξ and horizon function ∆x.
Subsection IVF, following along the lines of §VIII J of Paper 2, shows how the sub-dominant electromagnetic source
for these 2 Einstein components can be taken into account by solving the Einstein equations to next higher order.

A. Evolution of the electromagnetic potential and enclosed charge

The definitions (24) of Zk provide evolutionary equations for the electric potentials Ax and At:
(

∂

∂x
± v

∆x

) Ax ±At

dωx/dx
=

Zx ± Zt

dωx/dx
. (33)

Since the angular components of the collisionless current must be small, Maxwell’s equations (29b) require that Zx

and Zt be small. The dominant driving term in equation (33) is then the one proportional to v/∆x, which diverges
at the inner horizon ∆x → −0 however small the accretion rate v may be. By comparison, the effect of a small but
finite Zx and Zt is essentially negligible. In Appendix A the effect of small but finite Zk will be considered, but for
the remainder of this paper Zx and Zt will be taken to vanish:

Zx = Zt = 0 . (34)

Thus the solutions of interest are the homogeneous solutions of equations (33), those with vanishing right hand
side. Equations (33) depend on the horizon function ∆x, whose behaviour as a function of radius x was solved in
Paper 2. Equation (93a) of Paper 2 gives

dx

∆x
= − dUx

2(U2
x − v

2)
=

1

4v
d ln

(

Ux + v

Ux − v

)

. (35)

Consequently the homogeneous solutions of equations (33) are

Ax ±At

dωx/dx
= ∓ Q±

4(f0g1 + f1g0)
, (36)

where Q± are ingoing (+) and outgoing (−) enclosed electric charges satisfying

Q± = Q±

• e
vt

[

(Ux − v)(u+ v)

(Ux + v)(u− v)

]±1/4

, (37)

with Q±
• constants of integration. The total enclosed electric charge Q, which is related to the potential At by

equation (23a), is a sum of the ingoing and outgoing enclosed charges,

Q = Q+ +Q− . (38)
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The constants Q±
• physically represent the cumulative ingoing and outgoing electric charge accreted by the black hole

up to t = 0. The total electric charge Q• of the black hole at t = 0, as seen by an observer well outside the horizon,
is a sum of the ingoing and outgoing cumulative charges,

Q• = Q+
• +Q−

• . (39)

The relation between time t and radius x along the path of a particle is given by equation (11). In the hyper-
relativistic conditions Pt = ±Px characteristic of inflation and collapse when |∆x| ≪ 1, equation (11) simplifies to
dt/dx = ±1/∆x, which given equation (35) integrates to

evt =

[

(Ux + v)(u− v)

(Ux − v)(u+ v)

]±1/4

. (40)

The relation (40) continues to hold even at the end of collapse, when |∆x| ceases to be small, and Ux is growing
exponentially huge, and the time coordinate t is frozen.
The solutions (37) for the enclosed electric charges Q± have the salient feature that, in view of equation (40), the

ingoing charge Q+ is constant along the path of an ingoing particle, while the outgoing charge Q− is constant along
the path of an outgoing particle. As found in §VIII E of Paper 2, in the conformally stationary limit the coordinates x
and y along the path of a freely-falling stream remain frozen throughout inflation and collapse, so the factor dωx/dx
in the relation (36) is constant. Consequently the potentials Ax±At are also constant along the paths of respectively
ingoing and outgoing particles. Among other things, this implies that the Hamilton-Jacobi parameter Pt defined by
equation (10) is constant along the path of an ingoing or outgoing particle. Likewise the Hamilton-Jacobi parameter
Px defined by equation (9) is constant along the path of an ingoing or outgoing particle during inflation and collapse,
as long as |∆x| ≪ 1.
Maxwell’s equations (29) show that the potentials Ax±At are sourced respectively by ingoing and outgoing currents,

and may thus be called ingoing and outgoing potentials. To bring out the dependence on the ingoing and outgoing
potentials Ax ± At, it is helpful to re-express Maxwell’s equations (29) in terms of a sum of ingoing and outgoing
currents

jk = j+k + j−k , (41)

where for vanishing Zk, equation (34),

j±x = ±j±t =
1

8πρ3
v√
−∆x

(Ax ±At)

[

± ∂

∂x
ln

(

1

σ2

dωx

dx

)

−
vω2

y

∆y

]

, (42a)

j±y ≡ ∓ 1

8πρ3
vωy
√

∆y

(Ax ±At)
1

σ2

dωy

dy
, (42b)

j±φ ≡ − 1

8πρ3
vωy
√

∆y

(Ax ±At)
∂

∂x
ln

(

1

σ2

dωx

dx

)

. (42c)

Should not the term proportional to v inside square brackets on the right hand side of equation (42a) be neglected
compared to the dominant first term, in the conformally stationary limit v → 0? No. The term is needed to ensure
that the equations hold not only to leading radial order but also to sub-dominant angular order.

B. Collisionless source of electric current

Maxwell’s equations (41)–(42) can be satisfied by currents from a sum of ingoing and outgoing collisionless streams,

j±k = q±N±p±k , (43)

with charge densities

q±N± =
vQ±

32πρ2(f0g1 + f1g0)

dωx

dx

[

∂

∂x
ln

(

1

σ2

dωx

dx

)

∓
vω2

y

∆y

]

, (44)
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and hyper-relativistic tetrad-frame momenta

p±k =
1

ρ



















− 1√
−∆x

, ∓ 1√
−∆x

,
1

√

∆y

1

σ2

dωy

dy

∂

∂x
ln

(

1

σ2

dωx

dx

)

∓
vω2

y

∆y

, ± 1
√

∆y

∂

∂x
ln

(

1

σ2

dωx

dx

)

∂

∂x
ln

(

1

σ2

dωx

dx

)

∓
vω2

y

∆y



















. (45)

The densities (44) and momenta (45) are defined up to arbitrary normalization factors such that their product is
constant. The densities (44) and momenta (45) conform with the behaviour of collisionless streams during inflation
and collapse as long as

|∆x| ≪ 1 , (46)

which is to say before the angular motions of the streams become important. The Hamilton-Jacobi result (16) requires
that the density along a stream evolve as

N ∝ 1

ρ2
, (47)

since the Hamilton-Jacobi parameters Px and Py are constant and σ is frozen at its inner horizon value. The densities
from equation (44) indeed satisfy the proportionality (47), since all other factors in the equation are constant along the
path of the stream (including Q±, as shown in the previous subsection IVA). Similarly the tetrad-frame momentum
p±k , equation (45), accords with the Hamilton-Jacobi form (7), with constant Hamilton-Jacobi parameters Pk along
the path of the stream.

C. Only one stream can be charged

In §II B, the condition At = ±Ax, equation (14), emerged from requiring that the motions of charged particle be
adequately described by the Hamilton-Jacobi equations, and in §III C the same condition, equation (32), emerged
from requiring that the angular components of the electromagnetic energy-momentum be isotropic, as conformal
separability requires.
It has now been seen that the potentials Ax ± At are sourced respectively by ingoing and outgoing collisionless

streams, §IVB. Thus the condition At = ±Ax requires that only one of the streams can be charged, and the other
must be neutral. If the ingoing stream is charged, then At = Ax, while if the outgoing stream is charged, then
At = −Ax.
If the ingoing stream is charged, then Q+

• is non-zero, while if the outgoing stream is charged, then Q−
• is non-zero.

In a real astronomical black hole, collisions and magnetohydrodynamic processes are likely to keep charged particles
tightly coupled above the inner horizon, forcing them into a common ingoing or outgoing stream before inflation ignites.
Thus the condition that only one stream be charged is physically realistic.

D. Einstein and energy-momentum tensors

For the solutions to be valid, Einstein’s equations must also be satisfied. Equations (124) of Paper 2 give 8 of the
Einstein components in the conformally stationary limit (the remaining 2 components are considered in §IVF):

ρ2
(

Gxx +Gtt

2
± Gxt

)

=
Ux ∓ v

−∆x
(∆′

x ± v) , (48a)

ρ2 (Gxy ± Gty) = − Ux ∓ v

√

−∆x∆y

∆y
∂ ln ρ2s
∂y

, (48b)

ρ2 (Gxφ ± Gtφ) = ± Ux ∓ v

√

−∆x∆y

(

∆y

σ2

dωx

dx
∓ 2vωy

)

, (48c)

ρ2
(

Gyy −Gφφ

2
± iGyφ

)

= 0 , (48d)

in which ∆′
x ≡ d∆x/dx|xin

is the (positive) derivative of the electrovac horizon function ∆x at the inner horizon
x = xin.
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In the present situation, there are two sources of energy-momentum, electromagnetic and collisionless. Given
the expressions (25) for the radial electric and magnetic fields E and B, and the solutions (36) for the potentials
Ax ±At, and given that only one of the ingoing or outgoing streams can be charged (which implies that Q+Q− = 0),
equations (31) for the electromagnetic energy-momentum T e

kl are

8πρ2
(

T e
xx + T e

tt

2
± T e

xt

)

=
Ux ∓ v

−∆x
X±

vωy

∆y
, (49a)

8πρ2
(

T e
xy ± T e

ty

)

= ± Ux ∓ v

√

−∆x∆y

X± 1

σ2

dωy

dy
, (49b)

8πρ2
(

T e
xφ ± T e

tφ

)

=
Ux ∓ v

√

−∆x∆y

X±
∂

∂x
ln

(

1

σ2

dωx

dx

)

, (49c)

T e
yy − T e

φφ

2
± iT e

yφ = 0 , (49d)

where

X± ≡ vωy

u∓ v

[

Q±
•

4ρs(f0g1 + g1g0)

dωx

dx

]2

. (50)

The total energy-momentum prescribed by the Einstein components (48), minus the electromagnetic energy-
momentum (49), is

8πρ2
(

Txx + Ttt

2
± Txt

)

=
Ux ∓ v

−∆x

(

∆′

x ± v−X±
vωy

∆y

)

, (51a)

8πρ2 (Txy ± Tty) = − Ux ∓ v

√

−∆x∆y

(

∆y
∂ ln ρ2s
∂y

±X±
1

σ2

dωy

dy

)

, (51b)

8πρ2 (Txφ ± Ttφ) = ± Ux ∓ v

√

−∆x∆y

[

∆y
1

σ2

dωx

dx
∓ 2vωy ∓X±

∂

∂x
ln

(

1

σ2

dωx

dx

)]

, (51c)

8πρ2
(

Tyy − Tφφ

2
± iTyφ

)

= 0 , (51d)

For the solution to be consistent, the energy-momentum tensor given by equations (51) must be consistent with being
sourced by collisionless streams. Indeed it is, as shown in the next subsection.

E. Collisionless source of energy-momentum

The energy-momentum tensor (51) coincides with that of a sum of ingoing (+) and outgoing (−) collisionless
streams

Tkl = N+p+k p
+

l +N−p−k p
−

l , (52)

with number densities

N± =
1

16π
(Ux ∓ v)

(

∆′

x ± v−X±
vωy

∆y

)

, (53)

and tetrad-frame momenta

p±k =
1

ρ















− 1√
−∆x

, ∓ 1√
−∆x

,
1

√

∆y

∆y
∂ ln ρ2s
∂y

±X±
1

σ2

dωy

dy

∆′

x ± v−X±
vωy

∆y

, ∓ 1
√

∆y

∆y
1

σ2

dωx

dx
∓ 2vωy ∓X±

∂

∂x
ln

(

1

σ2

dωx

dx

)

∆′

x ± v−X±
vωy

∆y















,

(54)
as long as condition (46) on the horizon function ∆x holds. The densities (53) and momenta (54) are defined up to
arbitrary normalization factors such that the energy-momentum (52) is fixed. The ingoing and outgoing densities
N±, equation (53), conform to the Hamilton-Jacobi behaviour (16), satisfying (see equation (117) of Paper 2)

N± ∝ 1

ρ2
∝ Ux ∓ v , (55)
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the remaining factors in equation (53) being constant along the path of a stream. Similarly the tetrad-frame momentum
p±k , equation (54), accords with the Hamilton-Jacobi form (7), with constant Hamilton-Jacobi parameters Pk along
the path of the stream.
If the black hole were uncharged, then X± defined by equation (50) would vanish, and equations (53) and (54)

would reduce to equations (127) and (128) of Paper 2. If the black hole’s charge-to-mass ratio Q•/M• is of order
unity, then (one of, if only one stream is charged) X± is of order unity, but if the black hole’s charge is small, then
X± too will be small. In any case, the charge of the black hole has little effect on the collisionless densities N±,
equation (53), the term proportional to X± being of order v compared to the principal term ∆′

x. This expresses the
fact that the radial components of the energy-momentum are dominated by the streaming energy-momentum, not the
electromagnetic energy-momentum. This in turn reflects the fact that the inflationary instability is fundamentally
gravitational, not electromagnetic. However, if the black hole’s charge-to-mass ratio is of order unity, then it has
order unity effect on the angular components of the collisionless momenta p±k , equation (54).
The mean charge 〈q±〉 per accreted particle is the ratio of the charge density q±N±, equation (44), to the number

density N±, equation (53):

〈q±〉 ≡ q±N±

N±
= e−vt vQ±

•

2ρ2s (f0g1 + f1g0)

dωx

dx

[

∂

∂x
ln

(

1

σ2

dωx

dx

)

∓
vω2

y

∆y

]

∆′

x ± v−X±
vωy

∆y

. (56)

The mean charge per particle (56) decreases with time as the black hole expands, consistent with dimensional analysis:

〈q±〉 ∝ e−vt . (57)

This contrasts with the number densities N±, which are dimensionless, independent of conformal time t. Aside from
the dependence on t, the remaining factors in the mean charge per particle (56) are just functions of latitude y, the
dependence on radius x being frozen at its inner horizon value.
The angular components of the number-weighted momenta p±k given by equation (54) differ from those of the

charge-weighted momenta p±k given by equation (45). The difference poses no great difficulty, but it does mean
that the angular conditions on the current and the energy-momentum of the charged stream cannot be accomplished
simultaneously with a single collisionless component. Two components to the charged stream would suffice. For
example, one component could be charged, fulfilling the conditions (44) and (45), and the other could be neutral,
its number and momentum chosen such that, when added to those of the charged component, their sum fulfills
the conditions (53) and (54). More generally, both components could be charged, the more highly charged stream
providing much of the current, and the more lightly charge stream providing much of the number density.

F. Remaining Einstein components

The remaining 2 Einstein components, besides the 8 given as equations (48), are Gxx −Gtt and Gyy +Gφφ. These
two components govern the evolution of the horizon function ∆x and inflationary exponent ξ, as described in §VIIID,E
of Paper 2. Unlike other Einstein components, these 2 Einstein components do not grow during inflation, although
they do grow during collapse when the conformal factor shrinks. They do not grow firstly because the trace of the
collisionless energy-momentum remains negligible, and the trace of the electromagnetic energy-momentum is zero, and
secondly because the combination Gyy+Gφφ of angular components of the energy-momentum is, for both collisionless
and electromagnetic contributions, independent of the radial horizon function ∆x, and therefore they do not grow
large at the inner horizon where ∆x → −0, unlike radial components which are proportional to inverse powers of ∆x.
To dominant order, the evolution of the horizon function and inflationary exponent during inflation and collapse

are unaffected by the collisionless and electromagnetic energy-momentum, except that the initial electrovac solution
sets the derivative ∆′

x of the horizon function at the inner horizon.
The effect of the sub-dominant purely angular components of the energy-momentum may be taken into account

by solving the Einstein equations for the 2 components to next higher order in ∆x/Ux, as described in §VIII J of
Paper 2. Given the expressions (25) for the radial electric and magnetic fields E and B, and the solutions (36) for
the potentials Ax ±At, the relevant components (31a) of the electromagnetic energy-momentum T e

kl are

8πρ2 (T e
xx − T e

tt) = 8πρ2
(

T e
yy + T e

φφ

) 1

2

[

(Ux − v)
X+

vωy
+ (Ux + v)

X−

vωy

]

[

(

∂

∂x
ln

(

1

σ2

dωx

dx

))2

+

(

1

σ2

dωy

dy

)2
]

. (58)
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If the charge-to-mass ratio of the black hole is of order unity, so that one of X± is of order unity, then
the electromagnetic energy-momentum (58), which is of order ∼ Ux/v, is larger by of order 1/v than the
corresponding collisionless energy-momentum given by equation (136) of Paper 2. Thus the angular components
of the electromagnetic energy-momentum, though still a sub-dominant influence on the evolution of the horizon
function and inflationary exponent during inflation and collapse, have a potentially larger influence than the angular
components of the collisionless energy-momentum.
The electromagnetic energy-momentum components (58) can be taken into account in the Einstein equations by

introducing source functions FX and FY to the evolutionary equations for Ux and ∆x, equations (139) of Paper 2.
The relevant source functions are

FX = FY =
4πρ2

(

T e
yy + T e

φφ

)

Ux
. (59)

During early inflation, while Ux remains at its initial value of u, the source functions are just those of the electrovac
spacetime, which are already taken into account in the solution. Once Ux has increased appreciably above u, the
horizon function is already exponentially tiny, |∆x| ∼ e−1/v. The condition that the sources FX and FY have negligible
influence on the evolution of Ux and ∆x is that UxFX ≪ U2

x/|∆x|, which for the source functions (59) is equivalent to
|∆x|/Ux ≪ 1/v. This is well-satisfied during inflation because |∆x| is exponentially tiny, and during collapse because
|∆x| remains small and Ux grows exponentially large.
Eventually the conformally separable solution breaks down, but not because of the electromagnetic energy-

momentum (provided that only one of the ingoing and outgoing streams is charged). Rather, when the angular
motion of the collisionless streams becomes comparable to their radial motion, which happens when |∆x| & 1 at
the end of collapse, the conformally separable Einstein and Maxwell equations cease to be satisfied by the energy-
momentum and current of freely-falling collisionless streams.

V. BOUNDARY CONDITIONS

Maxwell’s and Einstein’s equations have prescribed the forms of the electric current (43)–(45) and energy-
momentum (52)–(54) of the freely-falling ingoing and outgoing collisionless streams during inflation and collapse.
These forms are required by the condition of conformal separability. As in Paper 2, because the accretion rate is
asymptotically tiny, the charge and energy-momentum of the collisionless streams are negligible above the inner
horizon, so have negligible effect on the geometry above the inner horizon. From the perspective of boundary
conditions, what is important is the form of the collisionless streams incident on the inner horizon.
During inflation and collapse, the radial (x-t) components of the momenta p±k of the streams are of order 1/

√
−∆x

times the angular (y-φ) components, and dominate as long as |∆x| ≪ 1. The solution for the dominant radial
components is essentially unaffected by the angular components. If only the dominant radial Maxwell and Einstein
equations are required to be satisfied, then only radial boundary conditions, §VA, need be imposed. If the sub-
dominant angular Maxwell and Einstein equations are required to be satisfied, then also angular boundary conditions,
§VB, must be imposed. If the sub-sub-dominant purely angular Einstein equations are further required to be satisfied,
then yet further boundary conditions, §VD, must be imposed.

A. Density and charge of collisionless streams incident on the inner horizon

The indispensable boundary conditions are those on the radial (x-t) components of the collisionless current and
energy-momentum incident on the inner horizon.
The ingoing (+) and outgoing (−) radial energy-momenta during inflation and collapse are, equations (52)–(54),

T±

xx = ±T±

xt = T±

xx =
N±

ρ2|∆x|
. (60)

The initial values of these components are set by the incident number densities N±, equation (53), which are, since
Ux = u initially,

N± =
1

16π
(u∓ v)

(

∆′

x ± v−X±
vωy

∆y

)

. (61)

If the sub-dominant parts proportional to v are neglected, then the density (61) is uniform, independent of latitude,
meaning that the required accretion flow is monopole. If the sub-dominant contributions proportional to v are taken
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into account, which is necessary if the boundary conditions are to be imposed to angular order, §VB, then the part
proportional to X±, which arises from the presence of the electromagnetic field, introduces a small angular dependence
of the incident densities N±.
The ingoing (+) and outgoing (−) radial currents during inflation and collapse are, equations (43)–(45),

j±x = ±j±t =
q±N±

ρ
√
−∆x

. (62)

The initial values of the radial currents (62) are set by the incident charge densities q±N±, equation (44), which are,

q±N± =
vQ±

•

32πρ2s (f0g1 + f1g0)

dωx

dx

[

∂

∂x
ln

(

1

σ2

dωx

dx

)

∓
vω2

y

∆y

]

. (63)

Unlike the number density N±, the charge density q±N± varies significantly with latitude. If the sub-dominant term
proportional to v inside square brackets on the right hand side of equation (63) is neglected, then the incident charge
density is proportional to the radial electric field E,

q±N± =
vE

4π
. (64)

The different angular behaviours of the number and charge and densities (61) and (63) mean that the mean charge
per particle must vary with latitude, equation (56).
The charge density equation (63) relates the ingoing and outgoing cumulative black hole charges Q±

• to the rates
q±N± at which ingoing and outgoing charge are accreted. This is a feature of conformally time-translation symmetric
(self-similar) spacetimes, that cumulative properties are determined by the rate of their accretion.

B. Angular motions of collisionless streams incident on the inner horizon

The angular components of the momenta of the collisionless streams are sub-dominant during inflation and collapse.
If the sub-dominant Einstein and Maxwell equations are to be satisfied, then angular boundary conditions must be
imposed in addition to the radial boundary conditions.
Equation (54) specifies the required number-weighted tetrad-frame momentum p±k of the ingoing and outgoing

streams. The corresponding number-weighted Hamilton-Jacobi parameters P±

k are

P±

k =















−1 , ∓1 ,

∆y
∂ ln ρ2s
∂y

±X± 1

σ2

dωy

dy

∆′

x ± v−X±
vωy

∆y

, ∓
∆y

1

σ2

dωx

dx
∓ 2vωy ∓X±

∂

∂x
ln

(

1

σ2

dωx

dx

)

∆′

x ± v−X±
vωy

∆y















. (65)

Similarly, equation (45) specifies the required charge-weighted tetrad-frame momentum p±k of whichever of the ingoing

or outgoing streams is charged, and the corresponding charge-weighted Hamilton-Jacobi parameters P±

k are

P±

k =



















−1 , ∓1 ,

1

σ2

dωy

dy

∂

∂x
ln

(

1

σ2

dωx

dx

)

∓
vω2

y

∆y

, ±

∂

∂x
ln

(

1

σ2

dωx

dx

)

∂

∂x
ln

(

1

σ2

dωx

dx

)

∓
vω2

y

∆y



















. (66)

The angular components P±
y and P±

φ vary with latitude y, but remain frozen at their inner horizon values along the

path of a stream during inflation and collapse, as long as |∆x| ≪ 1, that is, until angular motions become important
at the end of collapse, when |∆x| & 1.
The number- and charge-weighted angular motions (65) and (66) differ. To achieve both angular conditions requires

that the charged stream contain more than one component. As remarked in §IVE, both conditions (65) and (66)
together can be accomplished with two (or more) components, a more highly charged component that produces most
of the current, and a more lightly charged component that produces most of the number density.
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C. Feasibility of the angular boundary conditions with collisionless streams accreted from outside the outer

horizon

Can the boundary conditions (65) and (66) on the angular motions of incident ingoing and outgoing streams be
accomplished by real collisionless streams? In §XC of Paper 2 [1] it was shown that, in the case of an uncharged black
hole, the conditions cannot be accomplished if the collisionless streams are required to be accreted from outside the
outer horizon. In the present subsection it is shown that electric charge alleviates the problem, but does not eliminate
it.
If every particle is accreted from outside the outer horizon, then the Hamilton-Jacobi parameter Pt must necessarily

be negative (ingoing) at the outer horizon for every particle. For a particle of charge q, the Pt and Pφ of the particle
at the inner horizon must then satisfy the inequality, generalizing inequality (161) of Paper 2,

Pt ≤ Pφ
ωx,in − ωx,out

1− ωx,outωy,in
+ q

(

−At,in +
1− ωx,inωy,in

1− ωx,outωy,in
At,out

)

, (67)

where subscripts out and in denote values at the outer and inner horizons. If the particle has the same charge as
the black hole, as is more likely since the black hole inherits its charge from the accreted streams, then the charge-
dependent factor in condition (67) is positive, so that the allowed region of the Pt–Pφ plane includes a finite region
around the origin Pt = Pφ = 0. Physically, the black hole’s charge repels the charged particle between the outer and
inner horizon, increasing its Pt. This is sufficient to allow the ratio Pt/Pφ prescribed by either of equations (65) and
(66) to be accomplished at all latitudes.
If both ingoing and outgoing streams were permitted to be charged, with the same charge as the black hole, then

condition (67) could be accomplished by both streams at all latitudes. If both streams are charged, however, the
spacetime does not remain conformally separable because the diagonal angular components of the electromagnetic
energy-momentum diverge near the inner horizon. Conformal separability begins to break down when the diverging
component ρ2(T e

yy − T e
φφ), equation (31e), which is dimensionless, is of order unity, which happens when

|∆x| ∼
v
2Q+

• Q
−
•

ρ2
. (68)

This is small, both because it is proportional to the square v
2 of the small accretion rate v, and because real black

holes are likely to have small charge, so Q±
• will be small. The black hole charge can, despite its smallness, affect

charged particles because of the large charge-to-mass ratio of real particles, protons and electrons. Although the
value (68) of the horizon function ∆x when conformal separability fails is small, it is nonetheless large compared to
the exponentially tiny values to which the horizon function is driven during inflation.
If conformal separability is required to persist during inflation and collapse, then one or other of the ingoing and

outgoing streams must be neutral. For the neutral stream, as discussed in §XC of Paper 2, the condition (67) (with
q = 0) cannot be satisfied simultaneously at all latitudes.
To summarize, if conformal separability to angular order is demanded only during the early part of inflation, then

the required conditions on the incident angular motions of ingoing and outgoing streams can be accomplished by
collisionless streams accreted entirely from outside the outer horizon, provided that both streams are charged, with
the same charge as the black hole. However, if conformal separability is demanded throughout inflation and collapse,
then one of the streams must be neutral, and the angular conditions on that neutral stream cannot be accomplished
by a collisionless stream accreted entirely from outside the outer horizon.

D. Dispersion of angular motions incident on the inner horizon

The purely angular components of the energy-momentum tensor are sub-sub-dominant during inflation and collapse
while |∆x| ≪ 1. Their effect can nevertheless be taken into account by solving the Einstein equations to next higher
order in ∆x/Ux, as described in §IVF. If the Einstein equations are required to hold to this order, then the condition
of conformal separability requires that the 2×2 angular submatrix of the energy-momentum tensor must be isotropic.
The electromagnetic energy-momentum tensor (31) satisfies the condition of isotropy provided that condition (32)
holds, which is true provided that only one of the ingoing or outgoing streams is charged. As discussed in §XD of
Paper 2, the condition of angular isotropy on the collisionless energy-momentum can also be contrived, by allowing
multiple incident ingoing and outgoing streams whose angular components of momentum satisfy (65) in the mean,
but are isotropic in their mean squares.
The more precisely the Einstein and Maxwell equations are required to be satisfied, the more special and contrived

the conditions required by conformal separability become.
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VI. CONCLUSIONS

The conformally stationary, axisymmetric, conformally separable solutions for the interior structure of rotating
black holes found in Paper 2 [1] generalize to the case of charged rotating black holes. Maxwell’s equations separate
consistently with Einstein’s equations. The collisionless fluid accreted by the black hole is permitted to be electrically
charged, and the charge of the black hole is produced self-consistently by the accretion of charge. As in the uncharged
case, hyper-relativistic counter-streaming between ingoing and outgoing streams drives mass inflation at the inner
horizon, followed by collapse.
The only anomaly is that conformal separability in charged black holes requires that only one of the ingoing or

outgoing streams can be charged: the other stream must be neutral. If both streams are charged, then conformal
separability holds during early inflation, but radially counter-streaming electric currents, in concert with the rotation
of the black hole, generate angular electromagnetic fields that cause the non-isotropic diagonal angular component
of the electromagnetic energy-momentum to diverge, destroying conformal separability. I suspect that the physical
reason for the breakdown of conformal separability is that if both streams are charged, then they can exchange energy-
momentum via the electromagnetic field that they mutually create. This breaks the v ↔ −v symmetry between the
ingoing and outgoing streams, which appears to be important to the existence of the solutions.
In practice, the condition that only one stream be charged is physically realistic, since collisions and

magnetohydrodynamic processes are likely to keep charged particles tightly coupled above the inner horizon, forcing
them into a common ingoing or outgoing stream before inflation ignites.
The most important equations in this paper are the Maxwell equations (27). These equations hold over the entire

regime of interest, from electrovac through inflation and collapse. In concert with the Einstein equations (88) from
Paper 2, their solution yields the full suite of both stationary, separable electrovac, and conformally stationary,
conformally separable inflationary solutions.
The condition of conformal separability imposes a hierarchy of boundary conditions on the collisionless streams

incident on the inner horizon. The indispensible boundary condition is on the dominant radial components of the
collisionless energy-momentum and current. The radial conditions require that the incident number densities N±,
equation (61), of the ingoing and outgoing streams must be uniform with latitude (with a sub-dominant order v angular
dependence arising from the electromagnetic field). By contrast the incident charge densities q±N±, equation (63)
must vary with latitude with, to leading order, the same angular dependence as the radial electric field E, equation (64).
The different angular dependences of the number and charge densities N± and q±N± imply that the incident mean
charge per particle must vary with latitude, equation (56).
If the sub-dominant radial-angular components of the Einstein equations and angular components of the Maxwell

equations are required to be satisfied, then conformal separability requires that the angular components of the number-
weighted and charge-weighted momenta of the incident streams have Hamilton-Jacobi parameters Pk satisfying
equations (65) and (66) respectively. The number- and charge-weighted angular motions differ, implying that the
conditions cannot be accomplished by a collisionless charged stream containing just one component. However, the
angular conditions on a charged stream can be achieved with two (or more) components, a more highly charged
component that produces most of the current, and a more lightly charged component that produces most of the
number density.
In Paper 2, it was emphasized that the solutions had the limitation that the angular conditions on the incident

ingoing and outgoing streams could not be achieved by collisionless streams that fall freely from outside the outer
horizon. The present paper finds that the required angular conditions can be achieved by a charged stream, provided
that the stream has the same sign charge as the black hole, but not by a neutral stream. As commented above, if
both streams are charged, then conformal separability holds only during early inflation. If conformal separability is
required to hold throughout inflation and collapse, then one of the streams must be neutral, and then the angular
conditions on the incident neutral stream cannot be achieved by a stream that falls freely from outside the outer
horizon.
If the sub-sub-dominant purely angular Einstein equations are required to be satisfied, then conformal separability

requires that the angular energy-momentum tensor be isotropic (proportional to the unit 2 × 2 matrix). The
electromagnetic energy-momentum is isotropic provided that only one of the ingoing or outgoing streams is charged,
and the collisionless energy-momentum can be contrived to be isotropic.
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Appendix A: Non-vanishing Zx and Zt

The calculation of the evolution of the potentials Ax ± At in §IVA was premised in part on the vanishing of Zx

and Zt defined by equations (24). This Appendix examines what happens if Zx and Zt do not vanish.
The conclusion is that Zx and Zt must take a certain form (A5) in order that Maxwell’s equations can continue

to be satisfied by the current of collisionless streams. By adjusting the proportionality factor z in this form (A5),
the angular current j±φ of the collisionless ingoing or outgoing stream can be adjusted to be an essentially arbitrary
function of latitude y. This change relaxes the angular conditions on the current imposed by the assumption of
conformal separability, but leaves all the conclusions of the main text unchanged. Only the azimuthal angular current
j±φ is adjustable: the radial currents j±x and j±t are scarcely affected, and the angular current j±y is not affected at all.

1. Required form of Zx and Zt

Currents sourced by Maxwell’s equations (29) with non-vanishing Zx and Zt must continue to fit the form of
collisionless currents. For the radial currents jx± jt, this requires that the set of terms proportional to Zt on the right
hand side of equation (29a) must be proportional to Ax ±At times an appropriate factor of the horizon function ∆x

(the sub-dominant third term inside square brackets is temporarily neglected in this subsection §A1, but is re-instated
thereafter):

(

∂

∂x
∓ v

∆x

)

Zt ∝
Ax ±At

∆x
. (A1)

Equation (A1) requires that

∂Zt

∂x
= −Ax

At

v

∆x
Zt , (A2)

which, given that Ax = ±At, integrates to

Zt ∝ Ax ±At , (A3)

whichever one of Ax±At is non-vanishing. Equation (33) shows that Zx±Zt is a source for the evolution of Ax±At.
To ensure that the combination Ax ± At that vanishes continues to vanish as |∆x| decreases to exponentially tiny
values, the corresponding source Zx ± Zt must also vanish. Putting this condition together with (A3) requires that

Zx = ±Zt ∝ Ax ±At , (A4)

for whichever one of Ax ±At is non-vanishing. The constraints (A4) on Zx and Zt are conveniently written

Zx ± Zt = z
vωy

∆y
(Ax ±At) , (A5)

for some factor z, which could be an arbitrary function of angle y.
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2. Evolution of the electromagnetic potential and enclosed charge

Inserting the result (A5) for Zx ± Zt into the evolutionary equation (33) for Ax ±At gives

(

∂

∂x
± v

∆x
− z

vωy

∆y

) Ax ±At

dωx/dx
= 0 . (A6)

The driving term proportional to v/∆x, which diverges at the inner horizon ∆x → −0, dominates the term proportional
to z in the conformally stationary limit. The z-term changes the evolution of the potentials negligibly.

3. Maxwell’s equations

Given Zx and Zt from equation (A5), Maxwell’s equations (29) become equations (41) with, in the same format as
equations (42),

j±x = ±j±t ≡ 1

8πρ3
v√
−∆x

(Ax ±At)

{

± ∂

∂x
ln

(

1

σ2

dωx

dx

)

−
vω2

y

∆y
+ z

ωy

∆y

[

±v−∆x

(

∂

∂x
ln

(

1

σ

dωx

dx

)

+
z

2

vωy

∆y

)]

}

,

(A7a)

j±φ ≡ − 1

8πρ3
vωy
√

∆y

(Ax ±At)

[

∂

∂x
ln

(

1

σ2

dωx

dx

)

− z

(

± 1

σ2

dωx

dx
− vωy

∆y

)]

, (A7b)

while the expression (42b) for j±y remains unchanged. The term proportional to ∆x on the far right hand side of
equation (A7a) is negligible compared to the other terms for |∆x| ≪ 1, so the radial Maxwell equation (A7a) simplifies
to

j±x = ±j±t =
1

8πρ3
v√
−∆x

(Ax ±At)

[

± ∂

∂x
ln

(

1

σ2

dωx

dx

)

−
vω2

y

∆y
± z

vωy

∆y

]

. (A8)

4. Collisionless source of electric current

Maxwell’s equations (41) with currents given by equations (A8), (42b), and (A7b) can be satisfied by currents from
a sum of ingoing and outgoing collisionless streams, equation (43), with charge densities

q±N± = − vQ±

32πρ2(f0g1 + f1g0)

dωx

dx

[

∂

∂x
ln

(

1

σ2

dωx

dx

)

∓
vω2

y

∆y
+ z

vωy

∆y

]

, (A9)

and charge-weighted tetrad-frame momenta

p±k =
1

ρ



















− 1√
−∆x

, ∓ 1√
−∆x

,
1

√

∆y

1

σ2

dωy

dy

∂

∂x
ln

(

1

σ2

dωx

dx

)

∓
vω2

y

∆y
+ z

vωy

∆y

, ± 1
√

∆y

∂

∂x
ln

(

1

σ2

dωx

dx

)

− z

(

± 1

σ2

dωx

dx
+

vωy

∆y

)

∂

∂x
ln

(

1

σ2

dωx

dx

)

∓
vω2

y

∆y
+ z

vωy

∆y



















.

(A10)
The adjustable angle-dependent factor z makes only a sub-dominant order v change to the charge densities q±N±,
equation (A9), but an order unity change to the azimuthal component p±φ of the momentum (A10). Adjusting z

changes the azimuthal current j±φ arbitrarily, but leaves the other current components essentially unchanged.

It is worth commenting that z can be adjusted so that the azimuthal current j±φ is zero for whichever stream is
charged. This in no way affects the conclusion that only one of the ingoing or outgoing streams can be charged.
The divergence in the angular component (31e) of the electromagnetic energy-momentum tensor is driven by counter-
streaming of radial, not angular, ingoing and outgoing currents, coupled to the rotation of the black hole. The only
way to remove the divergence, as conformal separability requires, is to allow only one of the radial currents to be
charged.
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5. Energy-momenta

A finite Zx ± Zt affects the radial electric field E, equation (25), to sub-dominant order v. This small change
propagates into corresponding components (31) of the electromagnetic energy-momentum tensor, which leads to a
small change in the azimuthal component p±φ of the number-weighted tetrad-frame momenta of collisionless ingoing
and outgoing streams. The small change amounts to changing

∂

∂x
ln

(

1

σ2

dωx

dx

)

→ ∂

∂x
ln

(

1

σ2

dωx

dx

)

+ z
vωy

∆y
(A11)

in expressions (49c) and (58) for the electromagnetic energy-momentum components T e
xφ ± T e

tφ and T e
xx − T e

tt, and in

equation (54) for the azimuthal component p±φ of the number-weighted tetrad-frame momenta.


