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We calculate the evolution of the geometric entanglement entropy following a

local quench in the D1D5 conformal field theory, a two-dimensional theory that

describes a particular bound state of D1 and D5 branes. The quench corresponds to

a localized insertion of the exactly marginal operator that deforms the field theory

off of the orbifold (free) point in its moduli space. This deformation ultimately

leads to thermalization of the system. We find an exact analytic expression for the

entanglement entropy of any spatial interval as a function of time after the quench

and analyze its properties. This process is holographically dual to one stage in the

formation of a stringy black hole.

I. INTRODUCTION

Consider an initial, smooth configuration of matter that collapses into a black hole.

There are longstanding questions about how the information in the initial configuration,

such as the entanglement between various subsystems, becomes encoded in the result-

ing black hole. As a quantum theory of gravity, string theory addresses many of these

questions. While the AdS/CFT correspondence leads immediately to the proposal that

certain black holes are dual to thermal mixed states of a dual conformal field theory (CFT)

[1], this says little about the formation process. To go further toward answering such dy-

namical questions, one needs to study the unitary evolution of a CFT with a gravitational

dual, undergoing thermalization. In this paper we begin such an investigation in the

D1D5 CFT, which describes a bound state of D1 and D5 branes, and is well-known as a

useful system for studying black holes in string theory.
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We study this process using the entanglement entropy, defined below, which measures

entanglement between subsystems in a quantum system. As opposed to the many studies

of black hole entropy as entanglement entropy of different parts of the bulk spacetime or

between different boundary CFTs ([2] reviews many of these), we are considering the

evolution of the entanglement entropy of subsystems of a single CFT, in order to study

its thermalization. The connection between quantum entanglement and thermodynamics

has a long history. See [3] for a short review, [4, 5] for relevant early investigations and

[6–10] for recent general results.

As a brief review, begin with a quantum system with Hilbert spaceH and Hamiltonian

H . Then factorize, or coarse-grain, the Hilbert space of the full system as H = HA ⊗HE ,

where the first factor contains all states describing degrees of freedom in a subsystem

A and the second factor all states for the exterior of A—the “environment” E. We call

a quantum system, in a state specified by a density matrix ρ, thermalized if for general

small subsystems A the reduced density matrices ρA, obtained by tracing over HE , are

approximately (Gibbs/canonical ensemble) thermal mixed states, e.g.,

ρA ≈
e−βHA

ZA
(1.1)

for some β (the inverse temperature), where HA = TrE H and ZA = TrA e
−βHA . This is an

admittedly imprecise definition of “thermalized,” but is sufficient for our purposes. The

expression in (1.1) is appropriate for those cases where the Hamiltonian is the only con-

served quantity. For systems with more symmetries, including integrable systems with

infinitely many conserved quantities, one can still define generalized Gibbs ensembles

and appropriate thermal reduced density matrices, characterized by generalized chemi-

cal potentials in addition to β [6, 8]. This is relevant for CFTs like the one we consider,

which undergo a quench but which subsequently evolve as free theories and are charac-

terized by a set of momentum-dependent temperatures [10, 11].

We are concerned here with the case that the full system AE is in a pure state, i.e., a

closed quantum system. Then the fact that ρA is mixed comes entirely from the entan-

glement of A with E. This entanglement can be measured in a variety of ways, but in

this paper we consider the Rényi and von Neumann entropies, which are given by (3.3)

below. We choose these quantities for a number of reasons, including nice analytic prop-

erties and calculability, to be discussed in the paper. Here we just emphasize that they
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let one track the thermalization of various subsystems as well as deviations from strictly

thermal behavior (see [12] §8.2 for an introductory discussion of this topic). The entan-

glement entropies, as a function of subsystem, time, and other parameters, can also yield

much other information about the system. This is explored in voluminous recent work

in condensed matter physics (see [13] for several recent reviews).

One can use these quantities, in principle, to investigate the recently conjectured ther-

malization time for black holes that saturates a causality bound [14], although we don’t

get that far in this paper. As we discuss below, it is technically difficult to quantitatively

compare the non-equilibrium dynamics we study here to the system in equilibrium and

the full thermalization process. However, we can still learn a lot from the results we

present.

Motivated by the rapid thermalization observed in heavy ion collisions as well as

the theoretical questions already mentioned, there are many investigations that use

AdS/CFT to study strongly-coupled CFTs far from equilibrium or undergoing ther-

malization, e.g., [15–21]. Some of these [22–25] also use entanglement entropy via the

holographic entanglement entropy proposal [26, 27] (see also [28] for a recent study of

the holographic Rényi entropies). These latter investigations use the dual classical ge-

ometry and so cannot address some of the most puzzling questions about information in

black holes, which involve quantum mechanics of the bulk theory in an essential way.

We study the D1D5 CFT at weak coupling, which has long been used in string theory

to study black holes [29, 30]. Early studies focused on the extremal, zero-temperature

configurations, whereas we consider exciting to a state that is far from extremal. Recent

work has studied Hawking radiation in this system in detail [31–35] and deformations of

the CFT away from the orbifold (free) point in the moduli space [36–38] (see also [39, 40]

for leading order calculations away from the orbifold point). Because we work at weak

coupling, i.e. near the orbifold point, we are not in the regime where supergravity is

a good approximation. Nonetheless the above work indicates that this regime contains

much information about black holes. Additional support for this includes several pre-

cise matchings between gravitational calculations and calculations from the free theory

data [41–43]. More evidence for the surprising efficacy of the orbifold CFT in describing

black holes comes from the very recent paper [44]. There are also general arguments for

thermalization of CFTs with gravity duals in the large N limit at any finite value of the
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coupling [45] corroborated by exact calculations in simplified models [46, 47]. The re-

sulting weakly-coupled thermal state is dual to a “stringy black hole,” in that the string

length is large compared to the size of the black hole (see [45] for further discussion of

stringy black holes). The above work indicates that such a state should also tell us about

traditional black holes.

In particular, the results illustrated in §VI have a natural explanation in terms of free

excitations traveling at the speed of light around the S1. This picture is similar to the

CFT description in [48, 49] of near-extremal supergravity excitations, which, when the

decoupling limit is relaxed, can periodically escape the AdS throat to the asymptotic flat

space. The period and rate of emission were reproduced from the same kind of CFT

dynamics we observe. Thus our results correctly capture some qualitative aspects of

the supergravity description. On the other hand, we expect that large energy (far from

extremal) supergravity excitations can back-react to form black holes. In the CFT, this

corresponds to thermalization. Since the entanglement entropy that we find does not

persist, but rather has short-time periodic dynamics, we conclude that, as expected, the

orbifold CFT does not capture this important process. We hope to address this issue more

quantitatively in future works.

A closely related precursor to our work is [50], which also calculates the evolution of

entanglement entropy in a weakly-coupled CFT. They proposed this as a way to study

quantum black hole formation and emphasized that the entanglement entropy can be

thought of as a coarse-grained thermodynamic entropy. However, their CFT (a single

fermion) has no clear dual black hole interpretation, although it does illustrate some gen-

eral features of the kind of problem we are considering.

The general process of thermalization in weakly coupled theories is well-studied, but

the D1D5 system exhibits some novel features. In particular, we consider dynamics aris-

ing from a localized insertion of a particular marginal deformation of the orbifold CFT

that acts as a local quench, to be described below. The calculation of the entropy produced

by this quench is the main result of this paper. This is the basic process by which entropy

is generated.

As emphasized in [45], the familiar semi-classical dynamics of black holes, including

the puzzling apparent loss of information, should appear in the limit N →∞ of the dual

holographic theory. Here that would correspond to the limit of infinitely many D1 and D5
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branes. We do not consider that limit here, rather we consider a finite number of branes

unitarily evolving toward a thermalized pure state as described above. In this paper we

just analyze the basic process in that evolution.

In §II we review the D1D5 CFT and the marginal deformations that we study. In §III

we set up the calculation of the entanglement entropies in the CFT, including a review

of the replica trick. Next, in §IV we compute the four-point function that we need to

calculate the entropies, which we do in §V. We illustrate some of their properties in §VI.

We conclude with a discussion of our results and future directions.

II. D1D5 REVIEW

The D1D5 system is realized in IIB string theory compactified on1 T 4 × S1 with the

bound state of N1 D1-branes wrapping the S1 and N5 D5-branes wrapping T 4 × S1. We

take the S1 to be large compared to the T 4. The near-horizon limit of the geometry is

AdS3×S3×T 4, which is dual to a two-dimensional CFT living on the boundary of AdS3.

The two-dimensional D1D5 CFT hasN = (4, 4) supersymmetry with SU(2)L×SU(2)R

R-symmetry corresponding to the isometry of the S3. The two-dimensional base space of

the CFT is given by the cylindrical boundary of AdS3 parametrized by time and the S1.

In addition, we can organize the field content using the SO(4)I ' SU(2)1 × SU(2)2 sym-

metry broken by the compactification on T 4. One can also fix the total central charge

c = 6N1N5 from the algebra of diffeomorphisms that preserve the asymptotic AdS3.

The CFT has a twenty-dimensional moduli space that corresponds to the near-horizon

twenty-dimensional moduli space of the IIB supergravity compactification.

There is a point in moduli space called the “orbifold point,” analogous to free super

Yang-Mills theory in AdS5/CFT4, where the D1D5 CFT is a sigma model with orbifolded

target space, (T 4)N1N5/SN1N5 . Just as the dual of free super Yang-Mills theory does not

have a geometric description, the orbifold CFT is far from points in moduli space that

are well described by supergravity. We wish to study the effect of certain (4, 4) exactly

marginal deformations that move the orbifold CFT toward points in moduli space that

should have geometric descriptions and, in particular, should include black hole physics.

Even though we work far from the supergravity regime, as discussed in the introduction,

1 One may also consider K3 instead of T 4.
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we can still capture some black hole physics.

We can think of the orbifold model as N1N5 copies of a (4, 4) c = 6 CFT. Each copy has

four real bosons that are vectors of SO(4)I , X i, and their fermionic superpartners. See,

e.g., [51] for details. For computational purposes, we map the real cylinder coordinates,

t ∈ R and y ∈ [0, 2πR), to dimensionless complex coordinates on the cylinder

w = τ + iσ
t

R
7→ −iτ y

R
= θ. (2.1)

Note that we have also incorporated a Wick rotation in this step. We prefer to perform

most of the computation in the complex plane by further mapping to coordinates

z = ew z̄ = ew̄. (2.2)

In addition to the local bosonic and fermionic excitations of each copy, the orbifold the-

ory also has twisted sectors: states which come back to themselves only up to an element

of the orbifold group SN1N5 upon circling the S1. The twist operators σn(z) are labeled

by n-cycles and change the twist sector of the theory. More concretely, consider opera-

tors O(i)(z) in the ith copy. In the presence of σ(12...n)(z0), the operators have boundary

conditions

O(i)(z0 + ze2πi) =


O(i+1)(z0 + z) i = 1, . . . , n− 1

O(1)(z0 + z) i = n

O(i)(z0 + z) i = n+ 1, . . . , N1N5

. (2.3)

Let us emphasize that the twist operators considered here are physical components of the

orbifold CFT, and should not be confused with twist operators introduced as part of the

replica trick.

Following [36–38], we focus on four of the marginal deformations that involve twist

operators. These operators are believed to be responsible for thermalization in the D1D5

CFT. The (4, 4) supersymmetric deformations are singlets under SU(2)L × SU(2)R. To

obtain such a singlet we apply modes of the supercharges G∓
Ȧ

to σ±2 , where we use

plus/minus indices to label elements of SU(2)L doublets and dotted capital Latin indices

for doublets of SU(2)2. In [36] it was shown that we can write the deformation operator(s)

as

ÔȦḂ(w0) = 2
[ ∫

w0

dw

2πi
G−
Ȧ

(w)
][ ∫

w̄0

dw̄

2πi
Ḡ−
Ḃ

(w̄)
]
σ++

2 (w0), (2.4)
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where the factor of 2 normalizes the operator. The operator σ+
2 is normalized to have unit

OPE with its conjugate

σ2,+(z′)σ+
2 (z) ∼ 1

z′ − z
. (2.5)

This implies that acting on the Ramond vacuum [36]

σ+
2 (z)|0−R〉

(1)|0−R〉
(2) = |0−R〉+O(z). (2.6)

Here |0−R〉 is the spin down Ramond vacuum of the CFT on the doubly wound circle

produced after the twist. The normalization (2.6) has given us the coefficient unity for

the first term on the RHS and the O(z) represent excited states of the CFT on the doubly

wound circle.

III. SET UP

Let us now outline the precise calculation we perform. Since we are interested in

the dynamics of thermalization or scrambling in the CFT, we quench the system and

then look at the entanglement entropy of spatial subsystems as a function of time. The

entanglement entropy of subsystems, as discussed, is a very natural quantity to examine

when discussing thermalization. Happily, there is already some considerable technology

for computing the entanglement entropy after both global and local quenches in two-

dimensional CFTs [52, 53].

The specific quench we consider is a local insertion of the deformation operator intro-

duced above. Since this operator is believed to be responsible for thermalization, it seems

natural to consider the dynamics after its application. Moreover, these results should tie

in strongly with previous investigations [36–38], which showed that the deformation op-

erator, in essence, effects a Bogolyubov transformation. For instance, the deformation

operator, when acting on the vacuum, produces a squeezed state of the form [36]

σ+
2 (z0) |0−R〉

(1) |0−R〉
(2)

= exp

[
−1

2

∑
m,n

γBmnαAȦ,−mα
AȦ
−n +

∑
m,n

γFmnψ
+A
−mψ

−
A,−n

]
|0−R〉 . (3.1)

In this equation, we only show the left (holomorphic) sector and consider just the twist

part of the deformation. On the left-hand side we have the two-twist operator acting

on the untwisted Ramond vacua, which produces many pairs of bosonic and fermionic
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excitations on the two-twisted Ramond vacuum. Note that the Ramond vacua have an

SU(2)L × SU(2)R spin structure. The coefficients γB and γF are functions of z0 given

explicitly in [36]. The calculation we propose, then, computes the time dependence of

the entanglement entropy of this squeezed state; although, we do not use the above form

explicitly.

The physical setup is as follows. We apply the deformation operator (2.4) to the Ra-

mond vacuum at time t = 0 and y = 0. We then look at the time-dependence of the

entanglement entropy of an arbitrary spatial interval. Since we are mostly interested in

how the entanglement entropy changes due to the quench, we subtract off the entangle-

ment entropy of the vacuum. We act in the Ramond sector since that is the sector relevant

for black holes. We will sketch the gravitational picture this corresponds to in the final

section.

III.1. Review of the replica trick for computing entanglement entropy

In the remainder of this section, we set up the calculation of the entanglement entropy

after the quench. Consider a system S with some subsystem A, and its complement B.

Recall that the (von Neumann) entanglement entropy of A in S is defined as the von

Neumann entropy of the reduced density matrix,

S(A) = −TrA ρ̂A log ρ̂A ρ̂A = TrB ρ̂S. (3.2)

The density matrix ρ̂S is the density matrix for the full system S. If, as is true throughout

this paper, the total system S is in a pure state |ψ〉, then ρ̂S = |ψ〉 〈ψ|. For our calculation,

the subsystem A corresponds to degrees of freedom living on some interval of S1. This

definition has a number of nice properties that make it the natural measure of entangle-

ment including positive definiteness, strong subadditivity, and S(A) = S(B) for a pure

state. In fact, this is essentially the unique measure of entanglement satisfying the above

properties [54].

Computing the von Neumann entanglement entropy is computationally difficult be-

cause of the log, so instead we follow [55–57] and use the replica trick: we first compute

the Rényi entropy of order n and then analytically continue to the von Neumann entropy.
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Recall that the Rényi entropy of order n is defined as

Sn(A) =
1

1− n
log (TrA ρ̂

n
A) and SvN(A) = lim

n→1
Sn(A). (3.3)

The Rényi entropies are an interesting measure of entanglement even before taking the

limit to the von Neumann entanglement entropy. In particular, they serve as a lower

bound on SvN and vanish on an unentangled state.

Before showing how to compute the Rényi entropy, we first review how to write the

density matrix ρ̂S as a path integral. From there we can easily compute Tr ρnA as a path

integral with twisted boundary conditions. Let us work in some basis with states that

we will write as |ϕ〉; it is perhaps most natural to think of these as shape states (field

eigenstates), but any basis works. Then, the ϕ1–ϕ2 element of the density matrix at time

T can be written as

〈ϕ2| ρ̂(T ) |ϕ1〉 = 〈ϕ2|ψ(T )〉 〈ψ(T )|ϕ1〉

= 〈ϕ2| e−iĤT |ψ0〉 〈ψ0| eiĤT |ϕ1〉

= 〈ψ0| eiĤT |ϕ1〉 〈ϕ2| e−iĤT |ψ0〉 , (3.4)

where we have suggestively switched the order of the two amplitudes for reasons that

should become clear. The state |ψ0〉 is the state at t = 0, which for us is the state imme-

diately after the quench. We have the product of two amplitudes, each of which can be

written as a separate path integral; however, it is more fruitful to think of this as one path

integral with discontinuous intermediate boundary conditions. More specifically,

〈ϕ2| ρ̂(T ) |ϕ1〉 =

∫
Dφ(t)

∣∣∣∣φ(0)=ϕ2

φ(−T )=ψ0

ei
∫ 0
−T dt L(φ(t))

∫
Dφ(t)

∣∣∣∣φ(−T )=ψ0

φ(0)=ϕ1

ei
∫−T
0 dt L(φ(t))

=

∫
Dφ(t)

∣∣∣∣
BCs
ei

∫
C dt L(φ(t)), (3.5)

where “BCs” in the last line indicates the boundary conditions from the previous line,

and the contour C starts at t = −T goes to t = 0 and then backwards to t = −T . We

see, then, that we can think of the density matrix as a path integral which accepts two

boundary conditions at t = 0. We have translated the ψ0 boundary condition down to

t = −T to match with previous calculations [52, 53].

While this is formally correct, there are a couple of subtleties to address. First of all,

we should clarify what we mean by the above path integral, since as written we need
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double-valued fields. It is more precise to parametrize C as

t =

s s ∈ [−T, 0]

−s s ∈ (0, T ]
s ∈ [−T, T ], (3.6)

in which case the action in the path integral becomes∫
C

dt L(φ(t)) =

∫ 0

−T
dsL(φ(s))−

∫ T

0

dsLT (φ(s)), (3.7)

and φ is single-valued on s. We put the superscipt T on L in the second term to indicate

that it is the time-reversed Lagrangian. The second issue we need to address is Wick-

rotating the path integral. We usually Wick-rotate the path integral to imaginary time to

make the oscillatory term iS into a convergent−SE ; however, we now have a minus sign

between the two terms in (3.7), which means that we should Wick-rotate the two terms

oppositely. When we Wick-rotate the second part in the opposite direction, we get rid of

the minus sign and the time-reversal: we get a smoothly defined Euclidean path integral

Z(τ0, τf ;ψ0;ϕ1, ϕ2) =

∫
Dφ(τ)

∣∣∣∣
BCs

exp

(
−
∫ τf

τ0

dτ LE(φ(τ))

)
BCs: φ(τ0) = φ(τf ) = ψ0, φ(0−) = ϕ2, φ(0+) = ϕ1.

(3.8)

We can compute this path integral for τ0 < 0 < τf with real τ0 and τf , and finally analyt-

τ

ττ0 f
0+0-

-iT ± ε

ψ
0

φ
2
φ
1 ψ

0

FIG. 1. The contour along the real axis of the complex τ -plane for the Euclidean path integral.

The analytic continuation back to Lorentzian time is shown in light gray, which shows how the ε

regularization arises.

ically continue to the desired matrix element via

〈ϕ2| ρ̂ |ϕ1〉 = lim
ε→0+

Nε Z(−iT − ε,−iT + ε;ψ0;ϕ1, ϕ2), (3.9)
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where we put in ε to “remember” which direction we Wick-rotated the two terms. The

factor of Nε is a normalization constant that ensures Tr ρ̂ = 1,

1

Nε

= 〈ψ0| e−(2ε)Ĥ |ψ0〉 =

∫
DϕZ(−iT − ε,−iT + ε;ψ0;ϕ, ϕ). (3.10)

The limit as ε → 0 is both delicate and crucial to getting the right physics, since φ(τ) has

a branch cut along the negative imaginary axis. Later, it should become clear that ε plays

the role of a UV cutoff.

Before continuing, let us remark that the above should be reminiscent of the Schwinger–

Keldysh, or closed time path, formalism with temperature T = 1/(2ε) (see, e.g., [58] for

a review of this formalism). Indeed, if one integrates over ψ0, then it is exactly the

Schwinger–Keldysh formalism, with some insertions at t = 0. Also note that if one iden-

tifies ϕ1 = ϕ2 = ϕ and integrates over ϕ, then one computes Tr ρ̂, which is unity for a

pure state.

We now have all of the tools to understand how to compute the Rényi entanglement

entropy as a function of time after the quench. First note that it should now be clear how

to compute the reduced density matrix (3.2):

〈a2| ρ̂A |a1〉 = 〈a2|TrB ρ̂ |a1〉

=

∫
B

DbNεZ
(
− iT − ε,−iT + ε;ψ0;ϕ1 = {a1, b}, ϕ2 = {a2, b}

)
≡ NεZA

(
− iT − ε,−iT + ε;ψ0; a1, a2

)
. (3.11)

Here we indicate a field taking values a on A and b on B by {a, b}. We can compute this

quantity from the same path integral in (3.8) with altered boundary conditions at t = 0.

In the region B, we now demand that φ be continuous at t = 0. We started with a full cut,

which we sew together in region B. The boundary conditions on the remainder determine

the matrix element computed. This manifold is pictured in Figure 2.

Now, to compute TrA ρ̂
n
A we start by inserting

∫
Da |a〉 〈a| in between each ρ̂A and then

perform the trace in the |a〉 basis. This becomes n distinct copies of the above path integral

with appropriate integrals over the ai:

Tr ρ̂nA =

∫
Da0

∫
Da1 · · ·

∫
Dan−1 〈a0| ρ̂A |an−1〉 · · · 〈a2| ρ̂A |a1〉 〈a1| ρ̂A |a0〉

=

∫
Da0 · · ·

∫
Dan−1(Nε)

n ZA(τ0, τf ;ψ0; an−1, a0) · · ·ZA(τ0, τf ;ψ0; a0, a1), (3.12)
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AB
a2
a1

FIG. 2. The reduced density matrix as a path integral. Note that flat piece on top is there for illus-

trative purposes only. The boundary condition on the bottom two edges are both |ψ0〉; whereas,

the boundaries in region A are “inputs” which determine the matrix element of the reduced den-

sity matrix.

where τ0 and τf get analytically continued as described. One can then put all of the pieces

into a single path integral over n replicas, with n-twisted boundary conditions in region

A connecting the replicas and singly-twisted boundary conditions outside of A.

III.2. Entanglement entropy in the D1D5 CFT

Let us apply the above general discussion to the matter at hand. We need to compute

the twisted path integral described above. We can rewrite the path integral as a correlator

of local twist operators that induce the appropriate monodromy, and then compute the

correlator using techniques in [59]. Let us note that there is an extra layer of obfuscation

beyond computations in other CFTs since our quench involves a distinct twist operator

that is part of the physical spectrum of the CFT.

We prepare the state |ψ0〉 by starting with the vacuum at τ = −∞, evolving forward to

τ0 where we insert our quench Ô(w0) from (2.4). To compute the Rényi entropy, we need

n replicas of |ψ0〉. The trace in (3.12) is then proportional to the four-point function

Wn(τ0, τf ; θ1, θ2) =
〈
[O†(wf )]

n σn(w2)σn(w1) [O(w0)]n
〉
, (3.13)

where

w0 = τ0 wf = τf w1 = iθ1 w2 = iθ2. (3.14)

Since each of the O’s has a 2-twist it becomes necessary to clarify the branching structure
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of the correlator. Let us specify the indices of the twist fields involved in the correlator:

[σ2]n = σ(12)σ(34) · · ·σ(2n−1,2n) σn = σ(135...2n−1). (3.15)

The indices are labels for the 2n sheets involved in the correlator, and we use the par-

enthetical notation for single cycles of Sn. Note that the bare twist σn introduced by the

replica trick twists one copy from each pair of twisted replicas. This fixes the topology of

the correlator.

We can now write the Rényi entanglement entropy as

Sn(T, θ1, θ2) = − 1

1− n
log

(
Wn(−iT − ε,−iT + ε; θ1, θ2)

[W1(−iT − ε,−iT + ε)]n

)
. (3.16)

Note that σ1 is the identity operator and so there is no need to specify the θ1 and θ2 forW1.

Also note that any normalization issues from defining |ψ0〉 in terms of the local operator

O(w0) cancel out between the numerator and denominator.

IV. THE FOUR-POINT FUNCTION

The four-point function in Equation (3.13) factorizes into a four-point function of bare

twist operators that we compute by mapping to a covering space and a correlator of

insertions in the covering space.

We first compute the correlator of the bare twists, and then treat the non-twist su-

percharge insertions that appear in the covering space. We map the correlator in Equa-

tion (3.13) to the plane via the exponential map (2.2). We will then treat the associated

Jacobian factors in §IV.4.

IV.1. The twist correlator

Let us begin, then, with just the twist part of the correlator

〈[σ2(zf )]
nσn(z3)σn(z2)[σ2(z0)]n〉 . (4.1)

Note that this part of the correlator applies to any CFT with two copies that are suddenly

joined by σ2. Thus when discussing the bare twist results, we keep c the central charge of
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a single copy. The SL(2,C) symmetry determines the form of the 4-pt function up to an

arbitrary function of the cross-ratio. Therefore, we can compute the 4-pt function

Fn(u) = 〈[σ2(∞)]nσn(u)σn(1)[σ2(0)]n〉 , (4.2)

and then find the 4-pt function of interest in Equation (4.1).

To compute the four-point function we need to find a map to the covering space, and

then compute the Liouville action associated with the map [59]. Fortunately, Appendix D

of [51] gives an explicit formula for spherical genus correlation functions of SN -twist

operators as a function of the coefficients of the map. Once we find the map, we can

make use of the formula to avoid computing the Liouville action directly.

Let us now list the properties the map z = z(t) from the z-plane to the t-plane must

have, as determined by the index structure shown in Equation (3.15). First, one can show

from the Riemann–Hurwitz formula that the covering space must have spherical genus:

g =
1

2

∑
i

ri − s+ 1 =
1

2
[1 · n+ (n− 1) + (n− 1) + 1 · n]− (2n) + 1 = 0, (4.3)

where ri is the ramification of the ith point with nontrivial monodromy and s is the total

number of sheets (or indices) involved. Second, the map must have monodromy at z = 0,

1, u, and∞ appropriate for their respective twist operators. For example, the point z = 0

must have n images in the covering space, each with monodromy 2. Third, generic points

in the z-plane should have 2n distinct images in the t-plane. Thus, we are looking for a

meromorphic function z(t) with the following local properties:2

z ≈ a∗j(t− t∗j)2 z ≈ 0, t ≈ t∗j j = 0, . . . , n− 1

z − 1 ≈ a1t
n z ≈ 1, t ≈ 0

z − u ≈ au(t− 1)n z ≈ u, t ≈ 1

z ≈ b0t
2 z →∞, t→ t∞0 =∞

z ≈ bj
(t− t∞j )2

z →∞, t ≈ t∞j j = 1, . . . , n− 1,

(4.4)

where the a’s and b’s are coefficients that are determined from the map and the t∗j and t∞j
are the various preimages of z = 0 and z =∞, respectively. We have fixed the points 0, 1,

2 Let us note that in an unfortunate notational choice the stars do not indicate complex conjugation. They

are merely labels.
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and∞ in the t-plane. The remaining points in the t-plane must be determined from the

map.

A rational function that satisfies the above properties is given by

z =

[
Atn − (t− 1)n

tn − (t− 1)n

]2

, (4.5)

where

u = A2. (4.6)

Note that

t∗j =
1

1− A 1
n ei

2πj
n

t∞j =
1

1− ei 2πj
n

, (4.7)

and we can write
dz

dt
=

2n(A− 1)2

[tn − (t− 1)n]3
tn−1(t− 1)n−1

n−1∏
j=0

(t− t∗j) (4.8)

and

tn − (t− 1)n = n
n−1∏
j=1

(t− t∞j ) Atn − (t− 1)n = (A− 1)
n−1∏
j=0

(t− t∗j). (4.9)

This allows us to write the map in a form more conducive to finding the a’s and b’s,

z =
(A− 1)2

n2

∏n−1
j=0 (t− t∗j)2∏n−1
j=1 (t− t∞j )2

. (4.10)

The coefficients can be written as

a1 = 2(−1)n+1(A− 1) (4.11a)

au = 2A(A− 1) (4.11b)

a∗k =
n(A− 1)2

[(t∗k)
n − (t∗k − 1)n]3

(t∗k)
n−1(t∗k − 1)n−1

n−1∏
j=0,j 6=k

(t∗k − t∗j) (4.11c)

b0 =
(A− 1)2

n2
(4.11d)

bk =
(A− 1)2

n2

[ ∏n−1
j=0 (t∞k − t∗j)∏n−1

j=1,j 6=k(t
∞
k − t∞j )

]2

. (4.11e)

We can plug these into the formula from [51] to find Fn(u),

Fn(u) =

(
M∏
i=1

p
− c

12
(pi+1)

i

)(
N−1∏
j=0

q
c
12

(qj−1)

j

)(
M∏
i=1

|ai|−
c
12

pi−1

pi

)(
F−1∏
j=0

|bj|
− c

12

qj+1

qj

)
|b0|

c
6 q

c
6
0 ,

(4.12)
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where

p∗j ≡ 2 p1 = pw = n qj ≡ 2, (4.13)

and c is the central charge of a single copy of the CFT. (Remember that c = 6 for the

D1D5 CFT.) All of the various coefficients and products can be checked by appropriate

Laurent expansions and by judicious use of the identities (4.9).3 The final result takes a

very simple form

Fn(A) =
(
2−

c
4
nn−

c
6

(n+1)
) (

2
c
12
n
)(
|4A(A− 1)2|−

c
12
n−1
n

∣∣∣∣n2n A2n−2

(A− 1)2n−4

∣∣∣∣− c
24

)

×
∣∣∣∣(A− 1)2n

n2n+4

∣∣∣∣− c8 ∣∣∣∣(A− 1)2

n2

∣∣∣∣ c6 2
c
6

=
∣∣4A(A− 1)2

∣∣− c
12

(n− 1
n

)
, (4.14)

where recall thatA =
√
u. As usual, this statement is ambiguous since the square root has

two branches. For instance, as one moves u to z = 1, A approaches either +1 or −1; the

amplitude is zero in one case and not in the other. The location of the branch cut plays a

crucial role in getting the correct answer, so let us take a moment to discuss its physical

origin.

There are two sets of branch cuts associated with the correlator in Equation (4.2). There

are the (12)(34) · · · branch cuts which extend from the origin to infinity, and there is the

(135 · · · ) branch cut that connects the two σn’s. From this structure, we see that each of

the two σn’s can be on one of two branches. Physically, then, when u approaches 1 the

two σn’s could be on the same branch and colliding, or they could be on two separate

branches and widely separated. This explains the physical origin of the square root.

IV.2. The non-twist insertions

We now include the effect of the non-twist operators. Each application of G− 1
2

brings

in a Jacobian factor when mapped to the covering space. The chiral primary σ++
2 inserts

an appropriately normalized spin field S++ in the covering space [60]; all other Jacobian

factors associated with the chiral primary twist operator are taken care of by the Louiville

action and the operator normalization.

3 One needs to plug in with specific values of t and take derivatives to get the desired results.
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Thus for each operator inserted at the origin, we write (this is the holomorphic part)
√

2
(
G−
Ȧ,− 1

2

σ+
2 (0)

)
=
√

2

∮
0

dz

2πi
G−
Ȧ

(z)σ+
2 (0)

→
√

2

∮
t∗

dt

2πi

(
dz

dt

)− 1
2

G−
Ȧ

(t)
[
(a∗)−

1
8S+(t∗)

]
=

1

(a∗)
5
8

∮
t∗

dt

2πi

1√
t− t∗

(
∂XAȦ(t∗)SA(t∗)√

t− t∗
+ . . .

)
=

1

(a∗)
5
8

∂XAȦ(t∗)SA(t∗). (4.15)

The factor of a∗ in the square brackets with S+ is a local normalization that comes with

the definition of σ+
2 [60]. We have suppressed the j index on a∗ and t∗ in the above. Let

us define

OȦ(t) = ∂XAȦ(t)SA(t). (4.16)

For the operators inserted at infinity we can write a similar expression; however, it

is helpful to make what we mean by “infinity” more precise by making the complex

plane into a sphere. Following [59], we cut both the z- and t-planes into large discs with

all operators in the finite plane enclosed, and then glue equal-sized discs on top. Then

infinity of the original plane becomes a point centered on this “second” disc. The radius

of the z-plane discs is 1/δ and the the radius of the t-plane discs is 1/δ′.

The insertions at infinity become(
(G†)Ȧ−,− 1

2
σ2,+(∞)

)
→ δ

5
4 b

5
8 (O†)Ȧ(t∞), (4.17)

where again we have suppressed the index j on b and t∞. The exception to the above is

the j = 0 insertion at t∞0 =∞. This insertion, gets an additional factor of δ′:(
(G†)Ȧ−,− 1

2
σ2,+(∞)

)
→ δ

5
4

δ′
5
2

b
5
8 (O†)Ȧ(t̃ = 0). (4.18)

The above equations were written for just the left part of the operators, but we must

also include the right part. Thus, the contribution from the non-twist insertions may be

written as∣∣∣∣∣
∏

j bj∏
j a
∗
j

∣∣∣∣∣
5
4
δ

5
2
n

δ′5

×
〈

: (O†)ȦḂ(t∞0 )(O†)ȦḂ(t∞1 ) · · · (O†)ȦḂ(t∞n−1) : :OȦḂ(t∗0) · · ·OȦḂ(t∗n−1) :
〉

(no sum),

(4.19)
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where the insertion at t∞0 should be thought of as at t = 1/δ′ (really at t̃ = 0); the end

result being that the δ′s cancel out in the limit as δ′ → 0. We can evaluate the products of

the a∗s and bs as before:

δ
5
2
n

δ′5

[
|A− 1|5(n−1)

n5(n+1)|A|5n−1
2

]
×
〈

: (O†)ȦḂ(∞)(O†)ȦḂ(t∞1 ) · · · (O†)ȦḂ(t∞n−1) : :OȦḂ(t∗0) · · ·OȦḂ(t∗n−1) :
〉

(no sum).

(4.20)

The bracketed expression is the Jacobian factor from the map and the factor of δ5n/2 cor-

responds to the fact that we have n operators with weight 5/8 (subtracting off the weight

of the bare twist) in the left and right sectors inserted at infinity in the z-plane. Note that

the correlator of bare twist operators has a factor of δ3n/2 that has been dropped in (4.12),

since we really want the regularized correlator.

Since we are dealing with free fields the above correlator is easily evaluated in terms

of Wick contractions. For instance, for n = 2 we have

1

δ′5

〈
: (O†)ȦḂ(t∞0 )(O†)ȦḂ(t∞1 ) : :OȦḂ(t∗0)OȦḂ(t∗1) :

〉
=

1

|t∞1 − t∗0|5
+

1

|t∞1 − t∗1|5

=

∣∣∣∣12 − 1

1−
√
A

∣∣∣∣−5

+

∣∣∣∣12 − 1

1 +
√
A

∣∣∣∣−5

= 25 |1−
√
A|10 + |1 +

√
A|10

|1− A|5
. (4.21)

Thus putting all of the contributions together for n = 2 we find

F̂2 =
∣∣4A(A− 1)2

∣∣− 3
4 ·

[
|A− 1|5

215|A| 52

]
· 25 |1−

√
A|10 + |1 +

√
A|10

|1− A|5

= 2−
23
2 |A|−

13
4 |A− 1|−

3
2

(
|1−
√
A|10 + |1 +

√
A|10

)
. (4.22)

We use this to find the Rényi entropy of order 2.

Unfortunately, we could not find a closed-form expression for the general covering

space amplitude suitable for analytic continuation. It may, however, be written as the

sum over all total Wick contractions:〈
: (O†)ȦḂ(∞)(O†)ȦḂ(t∞1 ) · · · (O†)ȦḂ(t∞n−1) : :OȦḂ(t∗0) · · ·OȦḂ(t∗n−1) :

〉
=
∑
s∈Sn

n−1∏
j=0

|tj,s(j)|−5, (4.23)

where tj,k = t∞j − t∗k.
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IV.3. The four-point function of interest

We can use (4.14) to find the 4-point function that we actually want. The general form

of the 4-point function is dictated by SL(2,C) symmetry to be (cf. [61])

A4 = 〈φ4(z4)φ3(z3)φ2(z2)φ1(z1)〉 = f(η, η̄)
∏
i<j

z
h
3
−hi−hj

ij z̄
h̄
3
−h̄i−h̄j

ij η =
z12z34

z13z24

, (4.24)

where zij = zi − zj and f(η, η̄) is a function that is completely undetermined by SL(2,C)

symmetry. We can compute the 4-point function with points, 0, 1, u, and∞, and deter-

mine f and therefore the general 4-point function.

IV.3.1. The four-point function of bare twists

We separately compute the entanglement entropy of the bare twist operator σ2 and of

the full deformation operator.

In our case the operators are left–right symmetric and therefore hi = h̄i, and

A4 = f(η)
∏
i<j

|zij|2(h
3
−hi−hj). (4.25)

We know that the conformal scaling dimensions for the bare twists are [57, 62]

h1 = h4 = n
c

24

(
2− 1

2

)
h2 = h3 =

c

24

(
n− 1

n

)
, (4.26)

Above, we computed the correlator with

z1 = 0 z4 =∞ z2 = 1 z3 = u. (4.27)

For this case, we have

η =
1

u
(4.28)

and thus the 4-point function takes the form

A4 = |∞|−4h4

[
f(η)|1− u|2(h

3
−2h2)|u|2(h

3
−h1−h2)

]
, (4.29)

where we regulated the factor of “∞” by putting the CFT on a disc (see above). We are

interested in the finite part.
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We can then write the general 4-pt function in terms of the one we computed as (we

use the fact that h1 = h4 and h2 = h3)

A4 = Fn(u)

∣∣∣∣ η

1− η
z23

∣∣∣∣−4h2

|z0f |−4h1 u =
1

η
. (4.30)

Plugging in with the above weights and with F from Equation (4.14)

〈σ2(zf )σn(z2)σn(z3)σ2(z0)〉 = |zf − z0|−
cn
4

∣∣∣∣ (1 +
√
η)4

16 η (z2 − z3)4

∣∣∣∣
c
24

(n− 1
n

)

, (4.31)

where recall

η =
(z0 − z2)(z3 − zf )
(z0 − z3)(z2 − zf )

1− η =
(z0 − zf )(z2 − z3)

(z0 − z3)(z2 − zf )
. (4.32)

Note that the amplitude is invariant under interchange of z2 and z3 or z0 and zf .

IV.3.2. The four-point function with the full deformation operator for n = 2

For the full deformation operator the weights are given by

h1 = h4 = n h2 = h3 =
1

4

(
n− 1

n

)
. (4.33)

Plugging in as before, this gives

〈
[Ô†(zf )]

nσn(z3)σn(z2)[Ô(z0)]n
〉

= F̂n(u)

∣∣∣∣ η

1− η
z23

∣∣∣∣−(n− 1
n

)

|z0f |−4n, (4.34)

where as before we should replace u with 1/η.

For the case n = 2, we can plug in with F̂2 from Equation (4.22):

〈
[Ô†(zf )]

2σ2(z3)σ2(z2)[Ô(z0)]2
〉

= 2−
23
2 |z23|−

3
2 |z0f |−8

∣∣∣∣1 +
√
η

η
1
4

∣∣∣∣ 3
2 |1− η 1

4 |10 + |1 + η
1
4 |10

|η| 54
.

(4.35)

We have carefully written the above expression so that the η 7→ 1/η symmetry is manifest.

This symmetry comes from the exchange symmetry z2 ↔ z3 or z0 ↔ zf .

IV.4. From the cylinder to the plane

The physics of the D1D5 system originates on the (Lorentzian) cylinder, so we should

be careful to put in Jacobian factors that arise in using the exponential map from the
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cylinder to the plane. Normalized states are normalized states, so we do not need to

worry about Jacobian factors for the Oi and O†i . We do, however, need to worry about

Jacobian factors from the replica twists.

We started on the plane with dimensionful coordinates t ∈ R and y ∈ [0, 2πR) and

then introduced Euclidean dimensionless coordinates τ , θ via (2.1) that may be written as

a complex coordinate w = τ + iθ. Note that R is the radius of the large S1 cycle that the

D1s wrap. Finally, we map to the complex plane using the map in (2.2):

z = ew = eτ+iθ → e−i
t
R

+i y
R

z̄ = ew̄ = eτ−iθ → e−i
t
R
−i y

R ,
(4.36)

where the arrows show how we should analytically continue back to real time at the end

of the calculation.

This is a convenient point in the discussion to put in the appropriate normalization so

that

N
〈
O†O

〉
= 1 =⇒ N = |z0f |4h1 . (4.37)

This is in the z-plane, but as mentioned above, we can put in the normalization on the

cylinder or on the z-plane. One can check that the normalization ensures that we insert

a normalized state, which means that W1 = 1. Note that this factor cancels out the in-

verse factor in Equation (4.30). Starting from the cylinder, we can compute the four-point

function as

Wn = |z0f |4h1

〈
O†iσn(w)σn(w + i∆θ)Oi

〉
= |z0f |4h1

∣∣∣ z
R

∣∣∣4∆n
〈
O†iσn(z)σn(zei∆θ)Oi

〉
= |z0f |4h1

∣∣∣ z
R

∣∣∣ c6 (n− 1
n

) 〈
O†iσn(z)σn(zei∆θ)Oi

〉
. (4.38)

This normalization ensures that W1 = 1 and this will let us easily compute the entan-

glement entropies. Note that while the Jacobian factor is unity for n = 1, it still gives a

nontrivial contribution to the von Neumann entropy defined as the limit as n→ 1.
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V. THE ENTROPY

We now have all of the pieces to discuss the entropy. Let us first treat the Rényi entan-

glement entropy of the bare twist operator:

Sn =
1

1− n
log

Wn

W n
1

=
c

24

n+ 1

n
log

[
R4 |z2 − z3|4

|z2|2|z3|2

∣∣∣∣ 16η

(1 +
√
η)4

∣∣∣∣] . (5.1)

Since we have carefully normalized the Wn so that W1 = 1, the von Neumann entropy is

SvN = lim
n→1

Sn =
c

12
log

[
R4 |z2 − z3|4

|z2|2|z3|2

∣∣∣∣ 16η

(1 +
√
η)4

∣∣∣∣] . (5.2)

The limit is trivial only because we already canceled out the 1−n in the denominator. We

illustrate various properties of this formula in §VI.

Let us also write down the n = 2 Rényi entropy for the full deformation operator. This

is given by

S2 = − logW2 = − log

[
2−

23
2 R−

3
2
|z2|

3
4 |z3|

3
4

|z23|
3
2

∣∣∣∣1 +
√
η

η
1
4

∣∣∣∣ 3
2 |1− η 1

4 |10 + |1 + η
1
4 |10

|η| 54

]
. (5.3)

Recall that the Rényi entropy gives a lower bound for the von Neumann entropy and that

it vanishes if and only if the reduced density matrix is that of a pure state.

V.1. Entanglement of the vacuum

It is useful to subtract off the contribution to the entanglement entropy from the vac-

uum, which we compute here. We want to compute this as a function of the physical

cylinder coordinates, so we include Jacobian factors for the map z → y, while keeping

the convenient variables z = eiy/R. From the above, we have

Svac
n =

1

1− n
log

[∣∣∣ z
R

∣∣∣ c6 (n− 1
n

) 〈
σn(z)σn(zeiθ)

〉]
=

1

1− n
log

[∣∣∣∣ 1

R

z2

z2 − z3

∣∣∣∣ c6 (n− 1
n

)
]

=
c

6

n+ 1

n
logR

∣∣∣∣z2 − z3

z2

∣∣∣∣ . (5.4)
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The limit as n→ 1 yields the von Neumann entropy

Svac
vN =

c

3
logR

∣∣∣∣z2 − z3

z2

∣∣∣∣ . (5.5)

Since z3 = eiθz2 we have∣∣∣∣z3 − z2

z2

∣∣∣∣ =

∣∣∣∣z3

z2

− 1

∣∣∣∣ =
∣∣eiθ − 1

∣∣ = 2| sin θ
2
|, (5.6)

and so

Svac
vN =

c

3
log

[
L

π
sin

(
πl

L

)]
, (5.7)

where we have written the above expression in terms of l = |y2 − y1| and L = 2πR to

show agreement with [56, 57] for a CFT on a cylinder.

Actually, in the above we have suppressed an ultraviolet cutoff a in terms of which

we measure the physical lengths l and L. So the correct expression is (5.7) with l and L

replaced by l/a and L/a. There is a logarithmic divergence of Svac
vN as a → 0 as noted in

early investigations [56, 63]. One can either treat the expression as an asymptotic result

for a small but finite a, as would be appropriate for studying lattice theories (e.g., in

condensed matter theory), or find “renormalized” entropy differences between various

states in the theory. In some cases these differences are finite in the a→ 0 limit [56].

Here we follow the latter approach (although, as it turns out, our entropy differ-

ences are still divergent), since we are interested in the extra entanglement added by

the quenching process: the entanglement entropy increase, ∆S. After subtracting off the

entanglement of the vacuum we get for the insertions of the bare twist operators

∆SvN =
c

12
log

∣∣∣∣ 16η

(1 +
√
η)4

∣∣∣∣ (5.8)

and similarly for the full deformation operators:

∆S2 = log

2
23
2

∣∣∣∣∣ η
1
4

1 +
√
η

∣∣∣∣∣
3
2 |η| 54
|1− η 1

4 |10 + |1 + η
1
4 |10

 . (5.9)

VI. PROPERTIES

In this section we include plots of the entropies ∆SvN and ∆S2 for a variety of space

and time intervals and examine some of their properties. We discuss the details of the
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UV cutoff and the choices of branch cuts needed to compute with the entropy formulas

we have given. We start with the entanglement entropy introduced by the bare twist

operator, then consider the full deformation operator.

VI.1. The entanglement from a bare twist

Our formula (5.8) can now be computed for any time and choice of interval [θ1, θ2].

We recall that the quench is located at θ = 0 and t = 0. To actually compute from (5.8)

we must choose c, ε (as described in §III.1), and a prescription for the square roots (as

mentioned at the end of §IV.1). In this subsection, we choose c = 1.4 The entropy increase

∆S diverges as ε → 0 for some values of t, see (6.9) below. We can understand this by

thinking of ε as a UV suppression factor or regulator, consistent with its appearance in

the evolution operator e−iH(t−iε). It is perhaps not surprising that the local quench has a

UV divergence since it is localized at a point, a phenomenon observed in [64]. In a real

physical process there should of course be a finite amount of energy, which we can treat

as a finite ε in our calculation. We would fix the appropriate value of ε in a full treatment

of the physical evolution of the D1D5 CFT, but here we leave it as an unfixed but small

parameter. With finite ε we have

η =
sin
(

1
2
( t
R

+ θ1 − iε)
)

sin
(

1
2
( t
R

+ θ2 + iε)
)

sin
(

1
2
( t
R

+ θ1 + iε)
)

sin
(

1
2
( t
R

+ θ2 − iε)
)

η̄ =
sin
(

1
2
( t
R
− θ1 − iε)

)
sin
(

1
2
( t
R
− θ2 + iε)

)
sin
(

1
2
( t
R
− θ1 + iε)

)
sin
(

1
2
( t
R
− θ2 − iε)

) , (6.1)

where here θi = yi/R and ε should really be ε/R so that all parameters are dimensionless.

For the remainder of our discussion, we set R = 1. In the above expressions and in what

follows, θ parametrizes the double circle by running from θ = 0 to θ = 4π. This explains

the factors of 1/2 inside the trigonometric functions.

Using sundry trigonometric identities, we can rewrite η and η̄ in a slightly more useful

form

η = e2iϕ tanϕ = ε̃
cot t+θ2

2
− cot t+θ1

2

1 + ε̃2 cot t+θ2
2

cot t+θ1
2

, (6.2)

4 The appropriate choice for the D1D5 CFT would be c = 6; however, the c-dependence is just an overall

constant here, and since the bare twist operator is not the deformation operator, we may as well just set

c = 1.
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where we have introduced ε̃ = tanh(ε/2). For our purposes, it suffices to drop the ε̃2 term

in the denominator and write

tanϕ ≈ ε̃
[
cot t+θ2

2
− cot t+θ1

2

]
≈ 0± =⇒ ϕ ≈ nπ n ∈ Z. (6.3)

From the above, we conclude that for small ε ϕ is close to some multiple of π, and there-

fore η is essentially unity. This fact could have been read off from (6.1) directly; the key

realization from the above is that the sign of the 0 depends on time which implies ϕ has

some nontrivial time-dependence. If we plot ϕ as function of t for reasonably small ε

and take care with the signs, we get Figure 3. Note that tanϕ never vanishes in (6.2),

and therefore −π < ϕ < 0. We have chosen these particular branches to be consistent

with (6.4).

2Π-Θ12Π-Θ2 4Π-Θ14Π-Θ2

t

R

-Π

Π

j, j

FIG. 3. (color online) Plot of ϕ (blue, dashed) and ϕ̄ (red, dot-dashed) versus time for ε = 10−2,

where η = exp 2iϕ and η̄ = exp 2iϕ̄. Note that ϕ and ϕ̄ obey the strict inequality −π < ϕ < 0 <

ϕ̄ < π for all time. In the limit as ε goes to zero, the function converges pointwise to a piecewise

function saturating the inequalities. Indeed, for ε = 10−4 the plot is (visually) indistinguishable

from the corresponding piecewise function.

All of the time dependence comes from the interaction of this phase with the square

root. We have carefully chosen ϕ and ϕ̄ in Figure 3 so that the correct branches are

√
η = eiϕ

√
η̄ = eiϕ̄ η

1
4 = −ei

ϕ
2 η̄

1
4 = −ei

ϕ̄
2 , (6.4)

where the fourth roots arise when considering the Rényi entropy of the full deformation

operator. Then, we can write the entropy in terms of ϕ and ϕ̄

∆SvN = − c
6

log
(

cos 1
2
ϕ
)
− c

6
log
(

cos 1
2
ϕ̄
)

(6.5)
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Note that in defining ϕ and ϕ̄ from (6.2) there is an ambiguity associated tan; similarly, in

writing the square root of η in terms of ϕ and ϕ̄ there are two branches one could choose.

However, the above choices are fixed for us by casuality: the entanglement entropy of

our interval cannot change from the vacuum value until a signal traveling at the speed

of light from the quench could reach the interval. The origin of the branch cut is also

discussed at the end of §IV.1.

Since for small ε, ϕ and ϕ̄ spend the vast majority of time near 0 or ±π, let us examine

the limiting behavior of the entropy away from the transitions. This is where the approx-

imations in Equation (6.3) are good. Let us define x to be the difference of cotangents,

x = cot t+θ2
2
− cot t+θ1

2
. (6.6)

Then, for small ε̃x we can write

cos2 ϕ

2
≈

1− 1
4
(ε̃x)2 +O

(
(ε̃x)4

)
x < 0

1
4
(ε̃x)2 +O

(
(ε̃x)4

)
x > 0

, (6.7)

and thus the left-moving contribution to the entanglement entropy is given by

SL = − log
(

cos ϕ
2

)
≈


1
8
(ε̃x)2 +O

(
(ε̃x)4

)
x < 0

− log 1
2
ε̃x+O

(
(ε̃x)2

)
x > 0

. (6.8)

We see that the entanglement entropy (away from transition regions) either vanishes like

ε̃2 or diverges like − log ε̃. The peak value occurs at t = − θ1+θ2
2

+ 2nπ for integer n. We

can estimate the peak value as

S
peak
L ≈ − log ε̃+ log

(
tan θ2−θ1

4

)
+O(ε̃2). (6.9)

The unbounded growth of Speak
L as ε → 0 indicates that the state after the local quench

has entangled elements of arbitrarily high energy, a UV effect already discussed.

The ε dependence of Speak
L indicates only partial thermalization, as we now discuss. We

can think of the UV regulator ε as introducing a temperature 1/2ε, in that it corresponds

to introducing the operator e−2εH in our density matrix given in (3.4). We can compare the

ε dependence of Speak
L with the entanglement entropy of the interval in the equilibrium

mixed state at temperature 1/2ε. The limit ε → 0 corresponds to high temperatures and

in this limit the entropy should be dominated by the extensive quantity

Smax
L

∣∣∣∣
ε→0

∼ ∆θ

ε
. (6.10)
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This gives the asymptotic behavior of a general CFT of length ∆θ at temperature 1/ε,

which is a regularized expression for the maximum entropy on that interval. Thus, we

see that while the entanglement entropy we produce diverges, it is parametrically less

than the maximum possible entropy for the subsystem. In other words, even at peak en-

tanglement, the system is far from being “Page-scrambled” as defined in [14], referring

to [65]. This is expected since being Page-scrambled would require the reduced density

matrix after the quench to evolve to the maximal-entropy (infinite-temperature) thermal

density matrix, proportional to the identity operator on HA, but we do not expect a local

quench to lead to a thermal reduced density matrix (at any temperature). Firstly, this

system has decoupled momentum sectors which can thus be independently thermalized

with various momentum-dependent temperatures [11]. Secondly, the local quench pro-

duces coherent sets of non-interacting particles traveling from the quench point, so there

is no mechanism to scramble their momenta. So thermalization must involve more than

the process we study here, as we discuss further in the Conclusion.

Now we can examine some specific calculations of ∆SvN, choosing c = 1 and ε =

10−4. The branch cuts are chosen as discussed above. The first obvious feature from the

formulae is that the entropy is 2π-periodic, which follows from the 2π-periodicity of the

quenching process; the point where the two circles join becomes two anti-podal points

on the length 4πR circle.

In figure 4a we choose the interval [π/2, 3π/4] and see positive entropy at those times

when the null world line from the quench point intersects the interval. We have separated

the contribution from the left-moving and right-moving sectors for illustrative purposes.

With the interval to the right of the quench point, the the entropy can be qualitatively

understood in terms of particles emitted from the quench point and traveling with unit

velocity, a picture first described in [52]. The positive entropy comes from the presence

of entangled pairs of (left- or right-moving) particles, one member of which is inside the

interval and the other outside, and so is traced over. A space-time picture of this is given

in Figure 5 and we discuss it further in the Conclusion. ∆S2 behaves the same way, as

shown in Figure 4b. In fact, plots of ∆S2 take almost exactly the same shapes and share

all the qualitative properties of those of ∆SvN, so we only include plots of the latter in the

following.

We can translate the interval toward and away from the quench point, as seen in Fig-
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FIG. 4. (color online) ∆SvN, 4a, and ∆S2, 4b, for the interval [π/2, 3π/4]. For ∆SvN the right-

moving contribution is shown in red (gray), the left-moving in black. For ∆S2 we cannot separate

the left and right-moving contributions.

ure 6a, which is seen to have almost no effect on the entropy curve. However, if the

quench takes place inside the interval there is a very noticeable effect shown in Figure 6b,

due to overlapping contributions from the left and right-moving sectors. We can examine

intervals of different sizes, as in Figure 7, and see a clear dependence on the size of the

interval. The dependence of the peak value on the size can be read from the second term

in (6.9).

VI.2. The entanglement from the deformation operator

Here we examine the second Rényi entropy that results from quenching with the full

deformation operator. The expression for S2 in (5.3) may be written as

S2 = Svac
2 + Sbare

2 + Sins
2 , (6.11)

where Svac
2 is the Rényi entropy of the vacuum in (5.4), Sbare

2 is the additional Rényi en-

tropy added by the bare twist in (5.1), and Sins
2 is the new contribution from the super-
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t=0

t=2π

t=4π

θ1 θ2

FIG. 5. (color online) Here we show the two circles being joined at θ = 0 and θ = 2π. Time is

increasing up on the figure. The quench occurs at t = 0. Lightcones are emanating from the two

quench sites. The right-moving excitations travel along the green (dashed) diagonal lines, and the

left-moving excitations along the blue (solid) diagonal lines. The gray vertical strip represents the

time-evolution of the interval [θ1, θ2], and the red (dark) parts of the strip show when we expect

nonvanishing entanglement from the particle interpretation.

charge and spin field in the covering space. We write the three pieces as

Svac
2 =

3

4
log

∣∣∣∣R2 z
2
23

z2z3

∣∣∣∣ (6.12a)

Sbare
2 =

3

8
log

16|η|
|1 +
√
η|4

(6.12b)

S ins
2 = − log

|1− η 1
4 |10 + |1 + η

1
4 |10

210|η| 54
. (6.12c)

Using (6.4), we can rewrite the last two terms as

Sbare
2 = −3

4
log
(

cos ϕ
2

)
− 3

4
log
(

cos ϕ̄
2

)
(6.13a)

Sins
2 = − log

[
cos5 ϕ

4
cos5 ϕ̄

4
− sin5 ϕ

4
sin5 ϕ̄

4

]
, (6.13b)

and ∆S2 = Sbare
2 + Sins

2 . We plot this for the interval [π/2, 3π/4] in Figure 4b and, as men-

tioned, plots analogous to those in Figures 6a, 6b, and 7 look very similar. Let us note that

Sins
2 is distinguished from the entanglement of the vacuum and of the bare twist in that

the left and right contributions do not directly factorize. That being said, one finds that
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FIG. 6. (color online) ∆SvN for various translated equal-size intervals [0 + xπ/10, π/2 + xπ/10],

6a, and [−π/4 + xπ/20, π/4 + xπ/20], 6b, with the different colors, going from blue-green to red

(light to dark), showing x = 0, 1, 2, 3, 4, 5.
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FIG. 7. (color online) ∆SvN for intervals of various sizes [π/4 − xπ/20, π/2 + xπ/20], with the

different colors, going from red to blue-green (dark to light), showing x = 1, 2, 3, 4, 5.

Sins still enjoys a superposition principle with respect to the left and right contributions

as long as left- and right-moving excitations do not simultaneously contribute to the entropy.

To illustrate consider Sins
2 in the limit of vanishing ε. In particular, the peak value of

Sins
2 when left or right excitations are separately in the interval is given by

lim
ε→0

Sins
2

∣∣∣∣
sing. cont.

=
5

2
log 2, (6.14)
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and is finite. When both left and right excitations contribute, however, S ins
2 is given by

lim
ε→0

Sins
2

∣∣∣∣
both cont.

= 4 log 2, (6.15)

which serves as a finite upper bound on S ins
2 ; however, it is not simply twice the con-

tribution from left- or right-movers separately. Aside from the failure of left and right

contributions to factorize, S ins
2 is further distinguished in its finiteness. In contrast, Sbare

2

represents a huge (actually divergent) amount of entanglement. This suggests that it is

the twisting part of the deformation operator that predominantly contributes to thermal-

ization. This is consistent with the point of view advocated in [36–38], which focuses on

the effect of the twist operator.

VII. CONCLUSION

We have seen how to analytically compute entanglement entropies for arbitrary spatial

intervals of the D1D5 CFT following a local quench of the system by an exactly marginal

deformation operator, which contains the 2-twist operator and moves the theory toward

the supergravity regime in its moduli space. For the insertions of the bare twist operators

we were able to compute all of the Rényi entropies Sn and the von Neumann entropy

while for the full deformation operators we were only able to compute the Sn for n ≥

2. We could understand the qualitative behavior of the entropies as arising from pairs

of entangled particles generated at the quench event and propagating from there at the

speed of light.

This process does not lead to thermalization of the system, as we saw in the discussion

below (6.9), but from the point of the view of the interval these particles should appear

as thermal radiation in accord with their non-zero entropy. The non-zero entropy does

not itself, of course, guarantee the radiation is thermal, but we expect it is for several

reasons. First we note that global quenches, which can also be understood as producing

pairs of entangled particles [52], do generally lead to thermalized systems [10, 11, 50].

In our case of a local quench, the positive entanglement entropy is apparently due to

the entanglement of pairs of localized excitations, one member of which is inside the

interval and one outside, and so is traced over. This is a situation familiar from Hawking

radiation: it appears thermal to observers outside the horizon.
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A toy model illustrates this in more detail. Consider two harmonic oscillators with

operators {a, a†} and {b, b†} in the entangled state |ψ〉 ∝ eλa
†b†|0〉. Such a squeezed state is

the general result of a Bogolyubuv transformation on the operator algebras and appears

in our case as (3.1) above. If we then trace over, say, the b oscillator then the resulting

reduced density matrix is given by

ρa ∝
∑
n

|λ|2n |n〉a〈n|a. (7.1)

Now we can compare to a thermal density matrix for the a oscillator using (1.1):

ρth ∝ e−βHa ∝
∑
n

e−βωn|n〉a〈n|a, (7.2)

and we see that ρa is a thermal density matrix at inverse temperature β = − 1
ω

log |λ|2. It is

straightforward to compute the entropies of the state ρa as a function of λ (or equivalently

β) but we do not need the explicit formulas here.

This simple calculation illustrates how thermal density matrices, with their associated

entropies, arise from the process we are considering. Of course, the trace we perform in

the CFT, over the exterior of a spatial interval, is not directly analogous to this simple

case. It seems to be difficult to perform such a spatial trace directly on the state after the

quench, given by (3.1), which is why we pursued a technique here that makes extensive

use of the powerful conformal symmetry of the system. It would be interesting to pursue

that direct approach and also to trace over different classes of subsystems, corresponding

to different coarse-grainings.

Ultimately we would like to understand thermalization in this system, with general

subsystems characterized by reduced density matrices of the kind in (1.1). Here we have

only studied an individual event involving a small sector of the full theory, which is a

system of N1 D1 and N5 D5 branes with N1 and N5 potentially large. This has been in the

spirit of time-dependent perturbation theory of a weakly interacting system: individual

interactions are treated separately and the cumulative effect of many independent inter-

actions is put together at the end. We can imagine how the thermal radiation produced

by many independent local quenches can ultimately lead to a thermalized system, but a

full, careful treatment remains to be done.

We would like to compare the entropies produced from such a process to those of the

system in equilibrium at some finite temperature, not just the high-temperature limit we
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considered above. Computing the finite-temperature entropies would involve comput-

ing two-point functions of twist operators in a domain with both space and time period-

ically identified, i.e., a torus. This is somewhat challenging as the answer would depend

on the full operator content [61] and one cannot uniformize to the plane. It has been

carried out for a single fermion [66] and we hope to address this for the D1D5 system in

future work. It should also be possible to learn more information about the state after

the quench by judiciously studying the whole set of Rényi entropies that can be obtained

from (4.20) and (4.23) (or (5.1) for the bare twists), rather than just n = 1 or 2 as we did

here, since they collectively contain significantly more information. Our results (particu-

larly for the bare, non-supersymmetric twist operators) may be relevant to and possibly

subject to verification by the local quenches studied in condensed matter systems, e.g.,

[67–69]. However, there a number of issues in making such a comparison, since our CFT

and local quench are both highly specific, and we have not seriously attempted to do so.

Finally, a few words on the bulk description of the process we studied. The D1-branes

are wrapped in the D5-branes, which are localized in the transverse asymptotically 4+1

dimensional Minkowski space. Initially the branes are in a stationary state correspond-

ing to the ground state of the D1D5 orbifold CFT. We then imagine a sudden interaction

with an external field in the transverse space, which weakly deforms the D1D5 system

by the exactly marginal twist operator (2.4) and generates excitations that propagate pe-

riodically in the AdS throat region. As we discussed in the introduction, dynamics of

this sort have been investigated in the supergravity regime [48, 49]. This supplies the

energy necessary for thermalization, which would occur after further interactions. This

is admittedly just a sketch that we hope to improve.
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