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Abstract. The Einstein constraint equations have been the subject of study for
more than fifty years. The introduction of the conformal method in the 1970’s
as a parameterization of initial data for the Einstein equations led to increased
interest in the development of a complete solution theory for the constraints, with
the theory for constant mean curvature (CMC) spatial slices and closed manifolds
completely developed by 1995. The first general non-CMC existence result was
establish by Holst et al. in 2008, with extensions to rough data by Holst et al.
in 2009, and to vacuum spacetimes by Maxwell in 2009. The non-CMC theory
remains mostly open; moreover, recent work of Maxwell on specific symmetry
models sheds light on fundamental non-uniqueness problems with the confor-
mal method as a parameterization in non-CMC settings. In parallel with these
mathematical developments, computational physicists have uncovered surprising
behavior in numerical solutions to the extended conformal thin sandwich for-
mulation of the Einstein constraints. In particular, numerical evidence suggests
the existence of multiple solutions with a quadratic fold, and a recent analysis
of a simplified model supports this conclusion. In this article, we examine this
apparent bifurcation phenomena in a methodical way, using modern techniques
in bifurcation theory and in numerical homotopy methods. We first review the
evidence for the presence of bifurcation in the Hamiltonian constraint in the time-
symmetric case. We give a brief introduction to the mathematical framework for
analyzing bifurcation phenomena, and then develop the main ideas behind the
construction of numerical homotopy, or path-following, methods in the analysis of
bifurcation phenomena. We then apply the continuation software package AUTO
to this problem, and verify the presence of the fold with homotopy-based numer-
ical methods. We discuss these results and their physical significance, which lead
to some interesting remaining questions to investigate further.
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1. Introduction

Einstein’s gravitational field equations for relating the space curvature at a time
slice to the stress-energy can be split into a set of evolution and constraint equa-
tions. The four constraint equations, known as the (scalar) Hamiltonian constraint
and the (3-vector) momentum constraint, constrain the induced spatial metric gij
and extrinsic curvature Kij. The Einstein constraint equations have been the sub-
ject of study for more than fifty years (cf. [2]). The introduction of the conformal
method in the 1970’s as a way of parameterizing initial data to the Einstein equa-
tions led to increased interest in the development of a complete solution theory
for the constraints, with the theory for constant mean curvature (CMC) spatial
slices and closed manifolds completely developed by 1995. The CMC theory on
closed manifolds is particular satisfying, with nearly all physically interesting cases
exhibiting both existence and uniqueness of solutions.

However, other than the near-CMC result of Isenberg and Moncrief in 1996 [10],
the theory for non-CMC solutions remained completely open until the first far-
from-CMC existence result was establish by Holst et al. [8] in 2008, with extensions
to rough data by Holst et al. in 2009 [9], and to vacuum spacetimes by Maxwell in
2009 [13]. However, the non-CMC theory remains mostly open, and what is known
is much less satisfying than the CMC case; the new non-CMC results of Holst et al.
and Maxwell are based on new types of topological fixed point arguments, and while
they establish existence, these arguments do not give uniqueness. Moreover, more
recent work of Maxwell on specific symmetry models show in fact that uniqueness
is lost, and also sheds light on some fundamental problems with the conformal
method itself as a parameterization of initial data on manifolds that are not very
close to CMC.

Several decompositions of the equations have been formulated in addition to the
conformal method, although the solution theory for only the conformal method is
well-developed (cf. [3]). In particular, in the extended conformal thin sandwich
(XCTS) decomposition of the constraints, a conformal factor ψ, the lapse N , and
the shift βi, are solved for in five coupled elliptic equations with supplied back-
ground data. In parallel with the mathematical developments in the theory for the
conformal method, computational physicists have uncovered surprising behavior in
numerical solutions to the XCTS formulation. In particular, numerical evidence
suggests the existence of multiple solutions; Pfeiffer and York in [14] numerically
construct two solutions for a specific choice of free data.

In addition, there have been more theoretical results suggesting non-uniqueness.
Under additional assumptions of conformal flatness and time-symmetry, the Hamil-
tonian constraint becomes a decoupled equation for the conformal factor. Baum-
garte, Murchadha and Pfeiffer [5] solve this form of the Hamiltonian constraints
using Sobolev functions, to find that an equation parameter has two admissible
values consistent with the constraints. Walsh [16] performs a Lyapunov-Schmidt
analysis (a standard technique in bifurcation theory) of this form of the Hamiltonian
constraint, and shows that at a critical point with two expected solution branches,
the solution branches should take the form of a quadratic fold. In this article, we
examine this apparent bifurcation phenomena in a methodical way, using modern
techniques in bifurcation theory and in numerical homotopy methods.

Outline of the paper. The remainder of the paper is structured as follows. In §2,
give an overview of the constraint equations in the Einstein system and in particular
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the XCTS formulation thereof. In §3, we give a brief introduction to the mathemat-
ical framework for analyzing nonlinear operators in general. We build on this in §4
where we expound on the theoretical framework underlying bifurcation analysis. In
§5, we develop the main ideas behind the construction of numerical homotopy, or
path-following, methods in the numerical treatment of bifurcation phenomena, and
subsequently in §6 present the methodology of the numerical techniques we perform
for this problem. In §7, we apply the continuation software package AUTO to the
constraint problem, and verify the presence of the fold with homotopy-based nu-
merical methods. We confirm the earlier results, as well as provide a framework for
a more careful exploration of the solution theory for various parameterizations of
the constraint equations. Analyzing the Hamiltonian constraint for time-symmetric
conformally flat initial data, as in [16, 5], we demonstrate the existence and location
of a critical point, evidence that the solution branch at the critical point forms a
one-dimensional fold, and the form of the solution as continued past the critical
point.

2. Conformal Thin Sandwich Decomposition

In General Relativity it is common to look at the curvature of spatial hyper-
surfaces taken at time-slices of space-time. The Einstein constraint equations are
conditions on the induced spatial metric gij and the second fundamental form Kij

for being a spatial slice. In addition, there are six evolution equations that govern
how this geometric data evolves in a full spacetime. In solving the equations, a
variety of decompositions have been proposed. In the XCTS formulation, proposed
by York [11], the shift vector βi, the lapse N and a conformal factor ψ are solved
for given a set of supplied data that includes (g̃ij, ũij, K, ∂tK), where g̃ij is the con-
formally related induced spatial metric, ũij its time derivative, and K the trace of
the extrinsic curvature. The lapse and shift are formed from taking a level set of t
and looking at the normal to the hypersurface n = N−1(∂t − βi∂i) where i indexes
over spatial coordinates [4]. The Hamiltonian constraint of the XCTS equations
can be written as

∇̃2ψ − 1

8
R̃ψ − 1

12
K2ψ5 +

1

8
ψ−7ÃijÃij + 2πψ5ρ = 0. (2.1)

Here ∇̃ represents the covariant derivative, R̃ the trace of the Ricci tensor and Ã
the trace free part of the extrinsic curvature, all associated with the conformally
scaled metric g̃ij. Following [5, 16] we assume time-symmetry (so Kij = 0) and
conformally flat initial data. This constraint then reduces to

∇2ψ + 2πρψ5 = 0. (2.2)

Following [5] we let ρ be the constant mass-density of a star. Without loss of
generality, we take ρ = 0 outside r = 1 and look for solutions to (2.2) with boundary
conditions

∂ψ

∂r
= 0, r = 0, (2.3)

ψ = 1, r = 1. (2.4)

We can note that the maximum principle does not apply for this equation and
hence uniqueness is not guaranteed. We will see that this equation has two, one,
or no solutions, depending on the value of ρ.
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3. Nonlinear Operators on Banach Spaces

Let X and Y be Banach spaces, and let X ′ and Y ′ be their respective dual spaces.
Given a (generally nonlinear) map F : X → Y , we are interested in the following
general problem:

Find u ∈ X such that F (u) = 0 ∈ Y. (3.1)

We will give a brief overview of techniques for analyzing solutions to (3.1), and for
characterizing their behavior with respect to parameters.

We say that the problem F (u) = 0 is well-posed if there is (a) existence, (b)
uniqueness, and (c) continuous dependence of the solution on the data of the prob-
lem. Recall that if F is both one-to-one (injective) and onto (surjective), it is
called a bijection, in which case the inverse mapping F−1 exists, and we would have
both existence and uniqueness of solutions to the problem F (u) = 0. Recall that
F : X → Y is a continuous map from the normed space X to the normed space
Y if limj→∞ uj = u implies that limj→∞ F (uj) = F (u), where {uj} is a sequence,
uj ∈ X. If both F and F−1 are continuous, then F is called a homeomorphism.
If both F and F−1 are differentiable (see the below for the definition of differenti-
ation of abstract operators in Banach spaces), then F is called a diffeomorphism.
If both F and F−1 are k-times continuously differentiable, then F is called a Ck-
diffeomorphism. A linear map between two vector spaces is a type of homomorphism
(structure-preserving map); a linear bijection is called an isomorphism.

We will need to assemble just a few basic concepts involving general nonlinear
maps in Banach spaces, to provide the mathematical framework for the discussions
in the next section. In particular, the following notion of differentiation of maps on
Banach spaces will be required (see [15, 17] for more complete discussions).

Definition 3.1. Let X and Y be Banach spaces, let F : X → Y , and let D ⊂ X
be an open set. Then the map F is called Fréchet- or F-differentiable at u ∈ D if
there exists a bounded linear operator Fu(u) : X → Y such that:

lim
‖h‖X→0

1

‖h‖X
‖F (u+ h)− F (x)− Fu(u)(h)‖Y = 0.

The bounded linear operator Fu(u) is called the F-derivative of F at u. The
F-derivative of F at u can again be shown to be unique. If the F-derivative of F
exists at all points u ∈ D, then we say that F is F-differentiable on D. If in fact
D = X, then we simply say that F is F-differentiable, and the derivative Fu(·)
defines a map from X into the space of bounded linear maps, Fu : X → L(X, Y ).
In this case, we say that F ∈ C1(X;Y ). Many of the properties of the derivative of
smooth functions over domains in Rn carry over to this abstract setting, including
the chain rule: If X, Y , and Z are Banach spaces, and if the maps F : X → Y and
G : Y → Z are differentiable, then the derivative of the composition map H = G◦F
also exists, and takes the form

Hu(u) = (G ◦ F )u(u) = GF (F (u)) ◦ Fu(u),

where Hu : X → L(X,Z), Fu : X → L(X, Y ), and GF : Y → L(Y, Z). Higher
order Fréchet (and Gâteaux) derivatives can be defined in the obvious way, giving
rise to multilinear maps and giving meaning to the notation F ∈ Ck(X;Y ). Note
that below we will often encounter functions of two variables F (u, λ), and will be
interested in the derivatives of such functions with respect to each variable; we will
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denote these using the consistent notation Fu and Fλ. See [1, 15] for more complete
discussions of general maps and differentiation in Banach spaces.

A fundamental concept concerning linear operators that we will need for the
discussions below is that of a Fredholm operator. Let X and Y be Banach spaces,
and let A ∈ L(X, Y ), or in other words, A is a bounded linear operator from X to Y .
In the case that X and Y have additional Hilbert space structure, wherein there
is an inner-product, the Riesz Representation Theorem implies that the adjoint
operator A∗ ∈ L(Y,X), defined as the operator for which (Ax, y) = (x,A∗y), exists
uniquely. There are four fundamental subspaces of X and Y associated with A and
A∗, namely:

(i) N (A) : null space (or kernel) of A
(ii) R(A) : range space of A

(iii) N (A∗) : null space (or kernel) of A∗

(iv) R(A∗) : range space of A∗

One can consider the dimension (dim) and co-dimension (codim) of each of these
four spaces, where co-dimension is taken to be relative to the larger spaces that
they are subspaces of. The operator A ∈ L(X, Y ) is called a Fredholm operator if
and only if:

(i) dim(N (A)) <∞
(ii) dim(R(A)) <∞

The difference of these two dimensions, namely

ind(A) = dim(N (A))− dim(R(A)), (3.2)

is called the Fredholm index of A. A basic result about Fredholm operators is the
following.

Theorem 3.2. If A ∈ L(X, Y ) is a Fredholm operator, then

(i) R(A) is closed.
(ii) A∗ is Fredholm with index ind(A∗) = −ind(A).

(iii) K is a compact operator, then A+K is Fredholm with ind(A+K) = ind(A).

Proof. See [17]. �

4. Bifurcation Theory for Nonlinear Operators Equations

Bifurcation Theory studies the branching of solutions as governed by param-
eter(s). Throughout this section we will refer to a ”solution curve” which, for
F (u, λ) plots points in (||u||, λ) space at which (u, λ) solves F (u, λ) = 0, and ||u||
denotes the norm of u. Specifically, we are interested in the local behavior of the
solution curve in a neighborhood of a known solution (u0, λ0). This is because, in
order to explore the solution space to a certain operator equation F (u, λ), we often
solve F (u, λ0) for u, then obtain another (u1, λ1) from the original solution data we
obtain, and similarly continue to subsequent solutions.

Bifurcation theory has its foundation in the implicit function theorem,

Theorem 4.1 (Implicit Function Theorem). If it holds that, for an operator F :
X × R → Y , if F (u, λ) with F (u0, λ0) = 0, F and Fu are continuous on some
region U × V with (x0, λ0) ∈ U × V , and Fu(u0, λ0) is nonsingular with a bounded
inverse, then there is a unique branch of solutions (u(λ), λ)) in for λ ∈ V , e.g.
F (u(λ), λ) = 0. Furthermore u(λ) is continuous with respect to λ in V
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This theorem states that if the operator Fu is nonsingular at a certain point
(x0, λ0) there is a unique solution u for each λ close to λ0 on either side of λ0 and
we can plot a one-dimensional curve in (||u||, λ) space through (||u0||, λ0). With a
singular Fu, however, such a branch is not guaranteed, suggesting the possibility
of two or more such u(λ) branches or no solutions for some λ in every neighbor-
hood around λ0. The exact form of the branching depends on the dimensions of
Fu(x0, λ0), Fλ(x0, λ0) and whether Fλ(x0, λ0) ∈ R(Fu(x0, λ0)).

In the case of a ”fold”, wherein there is still a one-dimensional path through
(u0, λ0) but the path exists solely on one side of λ0 for λ, we have

(i) dim(N (Fu(u0, λ0))) = 1,
(ii) dim(N (Fu(u0, λ0)

∗)) = 1, where Fu(u0, λ0)
∗ is the adjoint operator of

Fu(u0, λ0),
(iii) Fλ(u0, λ0) /∈ R(Fu(u0, λ0).

It can be shown, under these circumstances, near (u0, λ0) the continuation of the
solution will be of the form

u(ε) = u0 + εφ+ C1ε
2 +O(ε3), (4.1)

λ(ε) = λ0 + C2ε
2 +O(ε3), (4.2)

where φ is a basis for the null-space of Fu(u0, λ0) (see [6]). Note that there is no
linear λ(ε) term, so the solution curve, at first approximation, stays at a constant
value of λ and changes in u. The specific values of C1 and C2 are based on the
Hessian of the operator F . With a fold the C2 will be negative, so the solution
curve shows λ increase up to a certain critical point λc then decreases. With C1 < 0
the actual solution u changes at first-order along φ, the change then dampens in
magnitude. Hence with C2 6= 0, the resulting solution curve appears locally as a
sideways parabola, and hence called a ”simple quadratic fold”. If, on the other
hand, C2 = 0, we have at (x0, λ0) a ”fold of order m” if λ(k)(ε) = 0 for k < m [12].
In the case of a simple singular point, we have either

(i) dim(N (Fu(u0, λ0))) = 1, and
(ii) Fλ(u0, λ0) ∈ R(Fu(u0, λ0)),

or we have

(i) dim(N (Fu(u0, λ0))) = 2, and
(ii) Fλ(u0, λ0) /∈ R(Fu(u0, λ0)).

In this case, we have a situation of branch-switching, in which there are are two
branches of solutions crossing the point (u0, λ0) [12]. With high-dimensional null-
spaces, the situation becomes increasingly complicated, with multiple branching
solutions of various forms. We illustrate the three representative cases as they
would appear in (||u||, λ) space in Figure 1.

We conclude, for completeness, this section with an exposition of the generalized
form of the bifurcation analysis method of Lyapunov-Schmidt, as used for this
problem by Walsh [16]. The exposition follows Zeidler [17]. We assume that

(i) Fu(u0, λ0) is a Fredholm operator of index k,
(ii) dim(N (Fu(u0, λ0))) = n.

Then we define projection operators P : X → X and Q : X → X with P (X) =
N (Fu(u0, λ0)) and (I − Q)(Y ) = R(Fu(u0, λ0)). Now the equation F (u, λ) = 0 is
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Figure 1. Common Locally Bifurcating Solution Paths.

equivalent to the pair

(I −Q)F (y + z, λ) = 0, (4.3)

QF (y + z, λ) = 0, (4.4)

with y = (I −P )u and z = Pu. Now the first equation satisfies the assumptions of
the Implicit Function Theorem, and so we can get a unique solution branch y(z, λ),
substitute the solution in the second equation to obtain the branching equation

QF (y(z, λ) + z, λ) = 0, (4.5)

then solve for z(λ) to get the branch u = y(z(λ), λ) + z(λ) Note that, in practice,
one solves (4.3) by expanding the operators in the bases of N (Fu(u0, λ0)) and
N (Fu(u0, λ0)

∗). Hence, to be constructive, one must already have an estimation of
the dimension of the null-space of Fu(u0, λ0). In particular, Walsh [16] performs
the analysis with the starting assumption that dim(N (Fu(u0, λ0))) = 1. So while
the technique is appropriate once this is known, it is not a standalone method of
bifurcation analysis.

5. Numerical Bifurcation Theory

In the procedure of continuation, we seek to find a solution u to a problem
F (u, λ) = 0 as we move along λ. In the case of a nonsingular Jacobian of the
operator (Fu(u0, λ0)), it is standard to apply Newton’s method on a discretization
of the solution space. So we perform continuation by repeatedly iterating λ =
λ + ∆λ then resolving F (u, λ) = 0 for u. However, the procedure is invalid in
the case of a singular Jacobian of the equation operator, necessitating alternatives
for traversing a solution as the parameter varies. Depending on the form of the
bifurcation, various procedures exist. Considering the finite-dimensional case (e.g.
for a discretization of u), we have that F (u, λ) maps RN × R to RN . In this case,
the rank of [Fu, Fλ] = N if either Fu is nonsingular, which is the case above, or
Fλ(u0, λ0) /∈ R(Fu(u0, λ0)). In this case dim(N ([Fu, Fλ])) = 1. Let’s say we have a
solution F (u0, λ0) = 0. In the latter case, we cannot just set λ1 = λ0 + ∆ (with a
constant ∆) and solve for u1, but we can solve for F (u1, λ1) = 0 together with one
more scalar equation, which we can set to be a constraint on the total magnitude in
the change of (u, λ). With pseudo-arclength continuation, at a certain parameter

λ0 and solution vector u0, and a direction vector (u̇0, λ̇0) of the solution branch
determined thus far, you run Newton’s method on the two equations F (u1, λ1) = 0

and (u1 − u0)∗u̇0 + (λ1 − λ0)λ̇−∆s = 0, where ∆s is a constant ”arclength” term.
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It can be shown that the Newton’s method Jacobian matrix is nonsingular if the
point is either one at which Fu is nonsingular or a fold [6].

If dim(N (Fu)) > 1 or Fλ(u0, λ0) ∈ R(Fu(u0, λ0)) then the Jacobian of Newton’s
method in the pseudo-arclength continuation equations is singular as well, and
other procedures must be used to continue the solution. Methods of continuation
usually involve constructive techniques, wherein the nullspace vectors for Fu and
the solution Fuφr = Fλ are explicitly found and coefficients constructed (for a list
of relevant algorithms, see [12]). With even higher-dimensional null-spaces, this
framework is generalized.

6. Setup for Hamiltonian Constraint Bifurcation

We reprint the equations (2.2)–(2.3) here

∇2ψ + 2πρψ5 = 0, (6.1)

∂ψ

∂r
= 0, r = 0, (6.2)

ψ = 1, r = 1, (6.3)

and perform a reduction for bifurcation analysis following [6].
The goal is to transform this equation into a form wherein its linearization be-

comes an eigenvalue problem. This can be done by parameterizing an extra bound-
ary condition. The equation can be rewritten in an equivalent form as

∇2ψ + 2πρψ5 = 0, (6.4)

ψ(0) = p, (6.5)

∂ψ

∂r
(0) = 0. (6.6)

Now we seek to solve F (p, ρ) ≡ ψ(1, p, ρ)− 1 = 0. Writing ψp(t, p, ρ) = dψ
dp

(t, p, ρ),

Fp(p, ρ) = ψp(1, p, ρ) and similarly Fρ(p, ρ) = ψρ(1, p, ρ) Now ψp satisfies

∇2ψp + 10πρψ4ψp = 0, (6.7)

ψp(0) = 1, (6.8)

∂ψp
∂r

(0) = 0, (6.9)

which is an eigenvalue problem having a distinct solution. Define now a(p, λ) =
ψp(1, p, ρ) = Fp(p, ρ). Similarly then ψρ satisfies

∇2ψρ + 2πψ5 + 10πρψ4ψρ = 0, (6.10)

ψρ(0) = 0, (6.11)

∂ψρ
∂r

(0) = 0, (6.12)

and likewise define b(p, ρ) = ψρ(1, p, ρ) = Fρ(p, ρ). Now we have F(p,ρ) = (a, b), So

N(F(p,ρ))) can be

(
1
0

)
,

(
0
1

)
, both, or neither. Let us discuss each of these cases

separately. If the null-space is empty, then we have a nonsingular Jacobian of the
operator, so continuation can proceed with Newton’s method as standard. If the

null-space is

(
0
1

)
, so b(p, ρ) = 0, then this is a situation where the same solution
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exists for a differential increase in ρ, which is also an uninteresting case. If the null-

space is

(
1
0

)
, so a(p, ρ) = 0 and b(p, ρ) 6= 0, we now have a case where N(Fp) = 1

but Fρ /∈ Fp, so we have a fold. Pseudo-arclength continuation must be performed,
and the form of the continuation gleamed from the coefficients. Finally, in the case
of a full two-dimensional null-space, we have reached another solution branch. Here,
there are two solution branches intersecting, and so we have a choice between three
directions in the continuation of the solution. We now seek to perform this analysis
numerically to locate any critical points for (6.1) and see one of these scenarios
occurs.

7. Numerical Results

Recall that a continuation procedure attempts to solve F (u, λ) for varying λ by
a series of successive iterations along discrete steps of λ. The procedure begins at
some λ0, finds the solution F (u0, λ0), finds the nullspace information of Fu(u0, λ0)
and Fλ(u0, λ0), then using this information performs a suitable continuation step
to find the next solution F (u1, λ1). We used the continuation software AUTO to
trace the solutions to (2.2) with boundary conditions (2.3). AUTO ([7]) performs
numerical continuation on ODEs (notice that due to symmetry the differential
equation becomes an ODE with just variable r). AUTO calculates the dimension
of the null-space of the Jacobian of the differential operator and performs, as re-
quired, Newton’s method, pseudo-arclength continuation or explicit calculation of
the null-space directions if it identifies higher-order bifurcations, as discussed in
(5). It uses the bordering algorithm for the case of pseudo-arclength continuation
([6]) and otherwise more intricate linear algebraic algorithms for higher-dimensional
bifurcations.

Continuation reveals a quadratic fold at a value of ρ around ρc ≈ 0.35. For
ρ < ρc there are two solutions to (2.2), at ρ = ρc, there is exactly one solution, and
at ρ > ρc there are no solutions. AUTO finds that at ρ = ρc the nullspace of the
discrete Jacobian differential operator has a dimension of one. In addition, it finds
that the 2nd derivative information indicates that the continuation has a quadratic
form. At all other points along the solution curve, the Jacobian is nonsingular.
Now we let the exponent vary. Writing the equation as ∇2ψ + 2πρψa = 0, we
investigate the continuation for different values of a. Knowing that the Laplacian
operator on its own has an invertible Jacobian, we expect a fold to appear for some
value of a. We find that indeed, with a > 1 a fold appears, the curvature of the
solution continuation becoming sharper with increasing a. In Figure 3 we see the
bifurcation diagram for a = 1, 1.25, 5, 10. We’d like to note that, in contrast to
the previous numerical evidence for non-uniqueness [14], rather than looking at the
form of the solution curve and making an educated guess at the presence of a second
solution curve, we confirm that there is one and only one additional solution curve
which connects to the primary solution set in a quadratic curve and there are no
additional branches or any solutions past ρc.

Now we look at two representative solutions from the two branches. Taking the
two solutions at ρ = 0.2 for the original problem a = 5, we see We note that this
confirms the results of [5], as the solutions have the form of a Sobolev function and
furthermore the conformal factor is considerably larger, suggesting a higher ADM
energy, for the upper branch solutions.
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Figure 2. Solution curve for (6.1).

8. Discussion

The Conformal Thin Sandwich approach has been a promising formulation of
the Einstein constraints. The XCTS method appears to have the benefit of more
physically intuitive and less computationally onerous specification of free data In
contrast to its namesake predecessors, the conformal method and thin sandwich
approach. In particular, you save the task of having to specify a divergence-free
part of a symmetric tracefree tensor in the conformal method. As such it has been
used extensively in the construction of the geometry of binary neutron stars and
black holes (see the bibliography 5-12 in [14]). As such this paper provides a point
of caution for numerical relativists.

As Baumgarte et al. [5] noted, the upper branch corresponds to a higher level
of ADM energy than the lower branch in this model of a constant density black
hole. As such, in most applications with this set of asymptotically flat, spherically
symmetric free data, the lower branch should be chosen as the correct, physically
representative solution, but numerical relativists should be aware that a solver could
reach either one and be able to identify the need to switch to the other branch.
In addition, as ρ → ρc standard numerical procedures will become increasingly
ill-conditioned. Pinning the solution to the expected branch is recommended as a
solution strategy.

Finally, it should be noted that since this bifurcation analysis is complete, rather
than simply constructive, and so demonstrates conclusively that 1) there are exactly
two solutions for ρ < ρc and 2) there are no solutions for ρ > ρc for this choice of
free data. The fact that the same choice of free data is consistent with two qualita-
tively disparate geometries suggests future investigation in the relation between the
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Figure 3. Bifurcation diagram for a = 1, 1.25, 5, 10.

structure in the free and dependent set of data. In addition, it would be an inter-
esting investigation as to why a higher density is inconsistent with time-symmetry,
conformal flatness and spherical symmetry.

9. Conclusion

In this article, we have examined the apparent bifurcation phenomena in the
XTCS formulation of the Einstein constraints in a methodical way, using modern
techniques in bifurcation theory and in numerical homotopy methods. We first
gave an overview of the Einstein constraints in §2, and followed this in §3 with
a brief introduction to the mathematical foundations for, and in §4 the frame-
work for analyzing bifurcation phenomena in nonlinear operators equations. In §5,
we developed the main ideas behind the construction of numerical homotopy, or
path-following, methods in the numerical treatment of bifurcation phenomena, and
in §6 we presented the set up of and in §7 we applied the continuation software
package AUTO to the constraint problem. We verified the presence of the fold
with homotopy-based numerical methods, confirming the earlier results. Analyz-
ing the Hamiltonian constraint for time-symmetric conformally flat initial data, as
in [16, 5], we demonstrated the existence and location of a critical point, evidence
that the solution branch at the critical point is one-dimensional, and the form of
the solution as continued past the critical point is a simple quadratic fold. We con-
firm Walsh’s [16] constructive Lyapunov-Schmidt analysis by showing numerically
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Figure 4. Solutions for a = 5, ρ = 0.2.

that there is indeed a solution point at which there is a one-dimensional kernel
for the linearization of the differential equation operator, justifying the assumption
made in his analysis, as well as confirming numerically that indeed the form of the
solution continuation expansion coefficients are such that this equation exhibits a
quadratic fold rather than branching or higher-order folds.

The techniques presented here can be viewed as providing a framework for a
more careful exploration of the solution theory for various parameterizations of the
constraint equations, as well as the geometric relationship between the free data in
the model problem investigated.
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