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Electromagnetic and gravitational radiation do not propagate solely on the null cone in a generic
curved spacetime. They develop “tails,” traveling at all speeds equal to and less than unity. If
sizeable, this off-the-null-cone effect could mean objects at cosmological distances, such as super-
novae, appear dimmer than they really are. Their light curves may be distorted relative to their
flat spacetime counterparts. These in turn could affect how we infer the properties and evolution
of the universe or the objects it contains. Within the gravitational context, the tail effect induces
a self-force that causes a compact object orbiting a massive black hole to deviate from an other-
wise geodesic path. This needs to be taken into account when modeling the gravitational waves
expected from such sources. Motivated by these considerations, we develop perturbation theory for
solving the massless scalar, photon and graviton retarded Green’s functions in perturbed spacetimes
gµν = ḡµν + hµν , assuming these Green’s functions are known in the background spacetime ḡµν .
In particular, we elaborate on the theory in perturbed Minkowski spacetime in significant detail;
and apply our techniques to compute the retarded Green’s functions in the weak field limit of the
Kerr spacetime to first order in the black hole’s mass M and angular momentum S. Our methods
build on and generalizes work appearing in the literature on this topic to date, and lays the foun-
dation for a thorough, first principles based, investigation of how light propagates over cosmological
distances, within a spatially flat inhomogeneous Friedmann-Lemâıtre-Robertson-Walker (FLRW)
universe. This perturbative scheme applied to the graviton Green’s function, when pushed to higher
orders, may provide approximate analytic (or semi-analytic) results for the self-force problem in the
weak field limits of the Schwarzschild and Kerr black hole geometries.

I. INTRODUCTION AND MOTIVATION

This paper is primarily concerned with how to solve for
the retarded Green’s functions of the minimally coupled
massless scalar ϕ, photon Aµ, and graviton γµν in space-
times described by the perturbed metric gµν = ḡµν+hµν ,
if the solutions are known in the background metric
ḡµν . One important instance is that of Minkowski space-
time, where these Green’s functions1 are known explic-
itly. Here, we will carry out the analysis in detail for the
4 dimensional case, and obtain O[h]-accurate solutions to
the Green’s functions in perturbed Minkowski spacetime
up to quadrature. Our methods are akin to the Born ap-
proximation employed in quantum theory, where one first
obtains an integral equation for the Green’s functions,
and the O[hN ]-accurate answer is gotten after N itera-
tions, followed by dropping a remainder term. We are
not the first to develop perturbation theory for solving
Green’s functions about weakly curved spacetimes. De-
Witt and DeWitt [1], Kovacs and Thorne [2], and more
recently, Pfenning and Poisson [3] have all tackled this
problem using various techniques which we will briefly
compare against in the conclusions. As far as we are

1 Since we will be dealing exclusively with retarded Green’s func-
tions, we will drop the word “retarded” from henceforth. Despite
this restriction, our methods actually apply for advanced Green’s
functions too.

aware, however, our approach is distinct from theirs and
have not appeared before in the gravitational physics and
cosmology literature.

Green’s functions play crucial roles in understanding
the dynamics of both classical and quantum field theo-
ries. The Green’s function depends on the coordinates
of two spacetime locations we will denote as x ≡ (t, ~x)
and x′ ≡ (t′, ~x′),2 and respectively identify as the ob-
server and source positions. At the classical level, which
will be the focus of this paper, it can be viewed as the
field measured at the spacetime point x produced by a
spacetime-point source with unit charge at x′. To under-
stand this, consider some spacetime region V between
two constant time hypersurfaces t and t′, with t > t′. In
this paper we assume that spacetime is an infinite (or,
in the cosmological context, semi-infinite) manifold. Let
there be some field producing source J present in the
volume V , and non-trivial initial conditions for the fields
at t′, for example, ϕ[x′0 = t′] and ∇0′ϕ[x′0 = t′]. De-
note the scalar, photon, and graviton Green’s functions

2 The spacetime coordinates in this paper will take the form x,
x′, x′′, etc. Instead of displaying the dependence on these coor-
dinates explicitly, we will put primes on the indices of tensorial
quantities to indicate which of the variables are to be associated
with them. For example Gµν′ = Gµν [x, x′], ∇µ′′ denotes the
covariant derivative with respect to x′′, g is the determinant of
the metric at x and g′ at x′, etc.
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as Gx,x′ , Gµν′ and Gδερ′σ′ respectively. Then the scalar
field ϕ evaluated at some point x lying on the t surface
can be written as3

ϕx =

∫
V

ddx′|g′| 12Gx,x′Jx′ (1)

+

∫
dd−1~x′|g′| 12

(
Gx,x′∇0′ϕx′ −∇0′Gx,x′ϕx′

)∣∣∣∣
x′0=t′

while the photon’s vector potential evaluated at x can
be written as

Aµ =

∫
V

ddx′|g′| 12Gµν′Jν
′

(2)

+

∫
dd−1~x′|g′| 12

(
Gµν′∇0′Aν

′
−∇0′Gµν′A

ν′
)∣∣∣∣
x′0=t′

.

In the same vein, the graviton field at x reads4

γµν =

∫
V

ddx′|g′| 12Gµνα′β′Jα
′β′ (3)

+

∫
dd−1~x′|g′| 12

(
Gµνα′β′P

α′β′

ρ′ε′
∇0′γρ

′ε′

−∇0′Gµνα′β′P
α′β′

ρ′ε′
γρ
′ε′
)∣∣∣∣

x′0=t′
,

where Pα
′β′

ρ′ε′
≡ (1/2)(δαρ δ

β
ε + δαε δ

β
ρ − gα

′β′gρ′ε′).

From equations (1), (2) and (3), we see that the phys-
ical solution of a linear field theory can be expressed as
the sum of two integrals of the Green’s function (and
its gradient), one weighted by the sources present in the
system at hand and the other weighted by the initial
conditions of the fields themselves. In particular, the d-
dimensional volume integrals (with respect to x′) of the
Green’s functions, weighted by the field-producing Js,
reaffirms the interpretation that the Green’s function is
the field of a spacetime-point “unit charge” because these
volume integrals corresponds to calculating the field at
x by superposing the field produced by all the “charges”
Js present in the system.

Moreover, that the Green’s function yields a causality
respecting solution can be seen from the following. In
a generic curved spacetime, if σx,x′ (usually known as
Sygne’s world function) denotes half the square of the
geodesic distance between x and x′, a general analysis
in 4 dimensions tells us that the Green’s function in a

3 These are known as the Kirchhoff representations. We refer the
reader to the review by Poisson [4] for their derivation. In this
paper, whenever a formula holds in arbitrary spacetime dimen-
sions greater or equal to 4, we will use d to denote the dimensions
of spacetime. Summation convention is in force: Greek letters
run from 0 to d− 1 while small English alphabets run from 1 to
d− 1.

4 We will not be concerned with the nonlinear self-interaction of
the gravitons in this paper. However, these nonlinear terms may
be considered to be part of Jµν , since gravity gravitates.

x
t

t’

J[x’’]

x’

V

FIG. 1: The spacetime region V is the volume contained
within the two constant time surfaces at times t and t′, where
t > t′. The observer is located at x ≡ (t, ~x). The dark oval is
the region defined by the intersection between the past light
cone of x and its interior with that of the constant time sur-
face at t′. On it, we allow some non-trivial field configuration
to be present, and through the Kirchhoff representations in
equations (1), (2) and (3), the Green’s functions evolves it
forward in time. We emphasize that the causal structure of
the Green’s function, as exhibited by equations (4), (5) and
(6) means, in a generic curved spacetime, the observer re-
ceives fields not only from her past light cone (edge of the
dark oval), but also its interior (dark oval itself). In addition,
there is some (scalar, photon or graviton)-producing source
J which sweeps out a world tube, and our observer receives
radiation from the portion of this world tube that lies on and
within the interior of her past light cone. The picture here is
to be contrasted against the Minkowski one, where observers
only detect fields from their past null cone.

generic curved spacetime consists of two terms.5 One of
them is proportional to Θ[t − t′]δ[σx,x′ ], and describes
propagation of the fields on the null cone. The other is
proportional to Θ[t− t′]Θ[σx,x′ ], and describes propaga-
tion on the interior of the future light cone of x′.

Gx,x′ =
Θ[t− t′]

4π
(Ux,x′δ[σx,x′ ] + Vx,x′Θ[σx,x′ ]) , (4)

Gµν′ =
Θ[t− t′]

4π
(Uµν′δ[σx,x′ ] + Vµν′Θ[σx,x′ ]) , (5)

Gµνα′β′ =
Θ[t− t′]

4π

(
Uµνα′β′δ[σx,x′ ]

+ Vµνα′β′Θ[σx,x′ ]
)
. (6)

5 See Poisson’s review [4] for the Hadamard construction of the
Green’s functions in (4), (5) and (6) below. We note in passing
that, in higher than 4 dimensions, the general form of the Green’s
function will be more complicated, containing not only δ and Θ
terms, but derivatives of δ-functions too.
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In Fig. (1), we illustrate the Kirchhoff representations
in (1), (2) and (3).

Tails in curved spacetime The presence of the
two terms in equations (4), (5) and (6), the property
that for some fixed x′, the Green’s functions of massless
fields are non-zero for all x both on and inside the fu-
ture null cone for x′, teaches us an important difference
between the propagation of electromagnetic and gravita-
tional wave signals in a curved versus flat 4 dimensional
spacetime. In the latter, signals travel strictly on the
null cone, and the radiation received at some location x
is related to the source at retarded time t− t′ = |~x− ~x′|.
In the former, signals travel at all speeds equal and less
than unity.6 (We are setting c = 1.) This off-the-light-
cone piece of massless radiation is known in the literature
as the tail (or, sometimes, wake); and is often touted as a
violation of Huygens’ principle in curved spacetime. As
elucidated by DeWitt and Brehme [5], this implies the
electrodynamics of even a single electrically charged par-
ticle depends on its entire past history: it exerts a force
upon itself (a “self-force”), in addition to the one already
present in flat Minkowski spacetime, because the electro-
magnetic fields it produces travels away from it but then
scatters off the geometry of spacetime and returns to in-
teract with it at some later time.

Gravitational Dynamics This tail-induced self-
force finds an analog in the gravitational dynamics of
compact objects orbiting massive black holes, because
the gravitational waves they generate scatter off the non-
trivial background geometry and return to nudge their
trajectories away from a geodesic one. The gravitational
radiation signals of such systems are believed to be within
reach of future gravitational wave detectors, and there
is currently intense theoretical work done to understand
their dynamics. Perturbation theory in the weak field
limit of Schwarzschild and Kerr may thus provide us
with approximate but concrete results from which we can
gain physical insight from (and possibly serve as a check
against numerical calculations). For instance, that the
tail effect is the result of massless fields scattering off the
background geometry will be manifest within the pertur-
bative framework we are about to undertake; this point
has already been noted by DeWitt and DeWitt [1] and
Pfenning and Poisson [3].

Cosmology Turning our attention now to cosmol-
ogy, the past decades have provided us with observational
evidence that we live in a universe that is, at the rough-
est level, described by the spatially flat FLRW metric.
In conformal coordinates, it is

gµν = a2ηµν , ηµν ≡ diag[1,−1,−1,−1], (7)

6 This is barring special properties, such as the conformal symme-
try enjoyed by the Maxwell action, which says that light is blind
to conformal factors of the metric: a2gµν and gµν are equivalent
in its eyes. We will shortly elaborate on this point.

where a tells us the relative size of the universe at var-
ious times along its evolution. Most of our inference of
the properties of the universe come from examining light
emanating from objects at cosmological or astrophysical
distances, and furthermore our interpretation of electro-
magnetic signals are based on the assumption that they
travel on null geodesics. This statement is precisely true
when the metric is (7) because the Maxwell action that
governs the dynamics of photons in vacuum, is insensitive
to the conformal factor a2. Specifically, in 4 dimensional
spacetime, SMaxwell[η] and SMaxwell[a

2η] are exactly the
same object; the conformal factor a2 drops out.

S
(d=4)
Maxwell[a

2η] = S
(d=4)
Maxwell[η] (8)

= −1

4

∫
d4x′′ηµ

′′α′′ην
′′β′′Fµ′′ν′′Fα′′β′′

This means electromagnetic radiation in 4 dimensional
spatially flat FLRW universes behaves no differently from
how it does in 4 dimensional Minkowski spacetimes. In
particular, it travels only along null geodesics. However,
cosmological and astrophysical observations have become
so sensitive that it is no longer sufficient to model our
universe as the exactly smooth and homogeneous space-
time in (7). Rather, one needs to account for the metric
perturbations,

gµν = a2 (ηµν + hµν) . (9)

Because the a2 drops out of the Maxwell action, we
recognize that a first principles theoretical investiga-
tion of the propagation of light over cosmological dis-
tances is equivalent to the same investigation in per-
turbed Minkowski spacetime. Moreover, since the ge-
ometry is now curved (albeit weakly so), light traveling
over cosmological length scales should therefore develop
tails. As already mentioned in the abstract, if a signif-
icant portion of light emitted from a supernova at cos-
mological distances leaks off the light cone, then the ob-
server on Earth may mistakenly infer that it is dimmer
than it actually is, as some of the light has not yet ar-
rived. This leakage may also modify the light curves of
these objects at cosmological distances. To our knowl-
edge, the size of the electromagnetic tail effect in cosmol-
ogy has not been examined before. Our development of
perturbation theory for the photon Green’s function (and
confirmation of DeWitt and DeWitt’s first order results
[1]) in perturbed Minkowski, is therefore the first step to
a thorough, first principles based, understanding of the
properties of light in the cosmological context. This may
in turn affect how we interpret cosmological and astro-
nomical observations.7

7 We emphasize here that, we are not, as yet, claiming that the
tail effect is significant in the cosmological context. Rather, this
paper is laying down the groundwork – the computation of the
photon Green’s function – in order to investigate this issue from
first principles.
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JWKB Now, the JWKB approximation where one
assumes that the wavelength of the massless fields are ex-
tremely small relative to the characteristic length scales
of the spacetime geometry (which, in term, usually
amounts to neglecting all geometric terms relative to the
� in the wave equation), is often used to justify that null
cone propagation is the dominant channel of travel for
massless fields in generic curved spacetimes. (See for
example Misner, Thorne and Wheeler [6].) Here, we
caution that, even in cases where the JWKB approxi-
mation yields exact results, it does not imply that light
travels solely on the light cone. Such a counterexam-
ple is that of odd dimensional Minkowski spacetimes,
where the momentum vector kµ satisfies the exact dis-
persion relation ηµνkµkν = 0, but the Green’s functions
of massless fields develop power law tails: for odd d,
V [x, x′] ∝ ((t − t′)2 − (~x − ~x′)2)−(d−2)/2. (See Soodak
and Tiersten [7] for a pedagogical discussion on tails of
Green’s functions in Minkowski spacetimes.) This tells
us that, even for 4 dimensional flat spacetime, the rig-
orous way to prove that light travels on the null cone
is by computing the photon Green’s function, since it is
the Green’s function (via the Kirchhoff representations
in (1), (2) and (3)) that determines how physical signals
propagate away from their sources.

In the next section, we will review the general theory
of Green’s functions and some geometrical constructs re-
lated to them. Perturbation theory for Green’s functions
will then be delineated in the subsequent two sections;
following that, we will apply the technology to calculate
the Green’s functions in the Kerr black hole spacetime,
up to first order in its mass and angular momentum. We
will conclude with thoughts on possible future investiga-
tions.

II. GENERAL THEORY

This section will summarize the key technical features
of Green’s functions we will need to understand in the
development of perturbation theory in the following two
sections. We refer the reader to Poisson’s review [4] for an
in-depth discussion. We first examine the world function
σx,x′ , van Vleck determinant ∆x,x′ and the parallel prop-
agator gµν′ , which are geometrical objects needed for the
formal construction of the Green’s functions themselves.
We will record the equations obeyed by the Green’s func-
tions, and then describe the coefficients of δ[σx,x′ ] and
Θ[σx,x′ ] in (4), (5) and (6). Finally we will compute
the σx,x′ , ∆x,x′ and gµν′ in Minkowski and perturbed
Minkowski spacetimes.

World Function The world function σx,x′ defined
in the introduction is half the square of the geodesic dis-
tance between x and x′. Assuming there is a unique
geodesic whose worldline has coordinates {ξα[λ]|λ ∈
[0, 1]; ξα[0] = x′α, ξα[1] = xα}, it has the integral repre-

sentation

σx,x′ =
1

2

∫ 1

0

gµν [ξ]ξ̇µξ̇νdλ (10)

with ξ̇ ≡ dξ/dλ.
van Vleck Determinant Closely related to σx,x′

is the van Vleck determinant ∆x,x′

∆x,x′ = −det[∂µ∂ν′σx,x′ ]

|gg′|1/2
. (11)

Parallel Propagator The parallel propagator gµν′
is formed by contracting two sets of orthonormal basis
tangent vector fields {εµA|A, µ = 0, 1, 2, 3, . . . , d−1}, one

based at x and the other at x′. (The A-index is raised and
lowered with ηAB and the µ-index is raised and lowered
with the metric.)

gµν′ [x, x
′] ≡ ηABε

A
µ [x]ε B

ν′ [x′], (12)

with the boundary conditions that the metric be recov-
ered at coincidence x = x′,

gµν′ [x
′, x′] = gµ′ν′ [x

′], gµν′ [x, x] = gµν [x]. (13)

The defining property of these vector fields {εµA} and
hence the parallel propagator itself, is that for a fixed
pair of x and x′, the {εµA} are parallel transported along

the geodesic joining x′ to x. That is, ξ̇α∇αεµA = 0 and
consequently

ξ̇α∇αgµν′ = 0. (14)

Green’s Function Equations Next we record the
equations defining the Green’s function. For the massless
scalar,

�x′Gx,x′ = �xGx,x′ =
δd[x− x′]
|gg′|1/4

(15)

with �x′ ≡ gµ
′ν′∇µ′∇ν′ and �x ≡ gµν∇µ∇ν . For the

Lorenz gauge photon (∇αAα = 0),8

�x′Gµν′ −R λ′

ν′ Gµλ′ = �xGµν′ −R λ
µ Gλν′

= gµν′
δd[x− x′]
|gg′|1/4

. (16)

DeWitt and Brehme [5] points out that the divergence
(with respect to x) of the Lorenz gauge photon Green’s

8 Our Christoffel symbol is Γαµν = (1/2)gαλ(∂{µgν}λ − ∂λgµν);
Riemann tensor is Rαβµν = ∂µΓαβν+ΓαµσΓσβν−(µ↔ ν); the Ricci

tensor and scalar Rβν = Rαβαν , R = gβνRβµ. Symmetrization

is denoted, for example, by T{αβ} = Tαβ+Tβα. Antisymmetriza-
tion is denoted, for example, by T[αβ] = Tαβ − Tβα. Whenever
we are performing an expansion in series of hµν , the metric per-
turbation, indices of tensors are to be lowered and raised with
the background metric ḡµν .
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function is the negative gradient (with respect to x′) of
the massless scalar Green’s function

∇µGµν′ = −∇ν′Gx,x′ . (17)

We will later note that our perturbative result satis-
fies (17). Proceeding to the de Donder gauge graviton
(∇µγµν = ∇νγ/2, with γ ≡ gµνγµν),(

1

2

(
δµ{αδ

ν
β} − gαβg

µν
)

(�−R+ 2Λ) + 2Rµ ν
α β

+Rν{αδ
µ
β} − g

µνRαβ − gαβRµν
)
Gµνρ′σ′

= δαβ;ρ′σ′
δd[x− x′]
|gg′|1/4

(18)

where we have included a non-zero cosmological constant
Λ. The δαβ;σ′ρ′ is built out of the parallel propagator
gµν′ [x, x

′],

δαβ;ρ′σ′ ≡
1

2
(gαρ′gβσ′ + gασ′gβρ′) . (19)

Green’s functions are bitensors. Coordinate transfor-
mations at x can be carried out independently from x′

(and vice versa). Derivatives with respect to x are in-
dependent of that with respect to x′, so for instance,
∇µGαβ′ = ∂µGαβ′ − ΓλµαGλβ′ .

Hadamard form We now have sufficient vocabu-
lary to describe the coefficients of δ[σx,x′ ] and Θ[σx,x′ ]
in the Green’s functions in equations (4), (5) and (6).
Assuming x and x′ lie in a region of spacetime where
there is a unique geodesic joining them, in 4 dimensional
spacetimes, the null cone pieces are built out of the van
Vleck determinant and the parallel propagators

Ux,x′ =
√

∆x,x′ (20)

Uµν′ =
√

∆x,x′gµν′ (21)

Uµνα′β′ =
√

∆x,x′Pµνα′β′ (22)

where

Pµνα′β′ ≡
1

2
(gµα′gνβ′ + gµβ′gνα′ − gµνgα′β′) . (23)

The tail portions of the Green’s functions satisfy the ho-
mogeneous equations, for example, �xVx,x′ = �x′Vx,x′ =
0; Poisson [4] explains the appropriate non-trivial bound-
ary conditions the tail function V s must satisfy. More-
over, the derivation of (20), (21) and (22) shows that the
geometric tensors in the wave equation for photons and
gravitons only contribute to the tail portion of the field
propagation; while it is the differential operator, namely
�, that contributes to both the behavior of the null prop-
agation and that of the tail piece. We will also witness
this in the perturbative framework we are about to pur-
sue.

It is appropriate at this point to highlight that these
geometrical constructs, from which the light cone piece

of the Green’s functions are built, have physical mean-
ing for the cosmologist. For example, the world function
obeys the following equation involving the van Vleck de-
terminant

�xσx,x′ +∇µσx,x′∇µ ln ∆x,x′ = d. (24)

Because ∇ασx,x′ is proportional to the tangent vector ξ̇α

at x (it points in the direction of greatest rate of change

in geodesic distance), �xσx,x′ ∝ ∇αξ̇α describes the rate
of change of the cross sectional area of the congruence of
geodesics (the “expansion”) through the neighborhood
of x, which via (24) is related to the gradient of ∆x,x′

along the geodesics. This expansion scalar is related to
the evolution of the angular diameter distance, which
then in turn is related to the luminosity distance rela-
tion. (See, for example. Visser [8] and Flanagan et al.
[9].) Along similar lines, initially parallel null rays from
an extended source become deflected due to gravitational
effects (weak lensing). Since the parallel propagator de-
scribes the parallel transport of an orthonormal reference
frame along these trajectories, namely

gµν′ [x, x
′]εν

′

A[x′] = εµA[x] (see (12)), (25)

they ought to contain physical content regarding polar-
ization, rotation and shear of null bundles of photons. To
sum, the light cone part of the massless scalar and pho-
ton Green’s function should provide an alternate means,
from the standard ones in use by cosmologists today, of
getting at the physics of null light traveling through the
universe. This warrants more study.

Before moving on to develop our perturbation theory,
let us take a few moments to calculate the world func-
tion, van Vleck determinant and parallel propagator up
to first order in hµν in perturbed Minkowski spacetime.
This will allow us to construct the null cone piece of
the scalar, photon and graviton Green’s function, and
in turn, serve as a consistency check on our first Born
approximation results below.9 In fact, this was how Ko-
vacs and Thorne [2] constructed the null cone piece of
their Green’s functions, by calculating separately the van
Vleck determinant and Synge’s world function. But we
shall argue that this is not necessary. The Born series
scheme we have devised gives us a single coherent frame-
work where all three geometric objects appearing in the
null cone piece of the Green’s function are byproducts of
the computation. Specifically, the van Vleck determinant
and the world function can be read off the massless scalar
Green’s function Gx,x′ , and the parallel propagator can
be read off the Lorenz gauge photon Green’s function
Gµν′ .

9 Some of the results here can be found in Kovacs and Thorne [2]
and Pfenning and Poisson [3], but we include them so that the
discussion is self-contained.
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σ, ∆ and gµν′ in Minkowski The geodesic equa-
tion in Minkowski spacetime is

d2ξ̄α

dλ2
= 0, (26)

with boundary conditions ξ̄α[0] = x′α and ξ̄α[1] = xα.
The solution is

ξ̄α[λ] = x′α + λ(x− x′)α. (27)

Inserting this into (10) yields the world function

σ̄x,x′ =
1

2
ηµν∆µ∆ν , (28)

where we have defined

∆µ ≡ (t− t′, ~x− ~x′)µ, (29)

which is not to be confused with the van Vleck determi-
nant (we will always place the spacetime coordinates as
subscripts for the latter). Since

∂µσ̄x,x′ = ∆µ, ∂µ′ σ̄x,x′ = −∆µ

∂µ∂ν′ σ̄x,x′ = −ηµν (30)

by equation (11), the van Vleck determinant is unity. In
Cartesian coordinates, the parallel propagator is numeri-
cally equal, component-by-component, to the Minkowski
metric ηµν .

∆x,x′ = 1, ḡµν′ = ηµν . (31)

We shall soon be making heavy use of the massless scalar
Ḡx,x′ , photon Ḡµν′ , and graviton Ḡµνα′β′ Green’s func-
tions in 4 dimensional Minkowski spacetime, so let us
record their explicit expressions here

Ḡx,x′ =
Θ[t− t′]δ[σ̄x,x′ ]

4π

=
Θ[t− t′]δ[t− t′ − |~x− ~x′|]

4π|~x− ~x′|
(32)

Ḡαβ′ = ηαβḠx,x′ (33)

Ḡµνα′β′ = P̄µναβḠx,x′ (34)

with

P̄µναβ =
1

2

(
ηµ{αηβ}ν − ηµνηαβ

)
. (35)

The photon here obeys the Lorenz gauge ηµν∂µAν =
0 while the graviton the de Donder gauge ∂µhµν =
∂νη

αβhαβ/2. For computational purposes, we record
that the P̄ has the following symmetries

P̄µναβ = P̄αβµν = P̄νµαβ = P̄µνβα. (36)

σ, ∆ and gµν′ in perturbed Minkowski To tackle
these geometric entities in perturbed Minkowski, we start
by noting that the integral in (10) defines a variational

principle for geodesics. For fixed end points x′ and x, and
λ an affine parameter, the paths which extremizes the
integral in (10) are the geodesics. Let ξ be the geodesic
in perturbed Minkowski spacetime joining x′ to x. If
we were to solve it perturbatively, we can try ξ = ξ̄+ δξ,
where δξ can be viewed as a small displacement, and plug
this ansatz into the integral in (10). But since the integral
defines a variational principle, that means the first order
variation of the integrand, due to the O[δξ] deviation of
the geodesic from the Minkowski one, is zero. To first
order in hµν , the world function can thus be obtained
from (10) by simply setting ξ = ξ̄.

σx,x′ ≈ σ̄x,x′ + ∆µ∆ν Î(0)µν , (37)

where

Î(0)µν ≡
1

2

∫ 1

0

hµν [ξ̄]dλ. (38)

(The reason for the name Î(0)µν will be clear later.) Now
put (37) into (11), and employ (30). Then use the fol-
lowing relation, that for matrices A and B such that B
is a small perturbation relative to A,

det[A+B] = det[A]
(
1 + Tr[A−1B] + . . .

)
. (39)

(Tr denotes trace, and A−1 is the inverse of A.) We then
deduce the square root of the van Vleck determinant is

√
∆x,x′ ≈

(
1− 1

4
h− 1

4
h′ + Î(0) (40)

+ ∆β
(
∂µ − ∂µ

′
)
Î(0)µβ −

1

2
∆α∆β∂µ∂µ′ Î(0)αβ

)
.

Here, h′ ≡ ηµνhµ′ν′ and Î(0) ≡ ηµν Î(0)µν .
In [8], Visser developed perturbation theory for solving

the van Vleck determinant. In particular, he showed that
the O[h] accurate

√
∆x,x′ is given by (his equation 61)

√
∆x,x′ ≈ 1 +

∆α∆β

2

∫ 1

0

dλ(1− λ)λ(R|1)αβ [ξ̄], (41)

where (R|1)αβ [ξ̄] is the linearized Ricci tensor evaluated
on the unperturbed geodesic ξ̄.

Let us show the equivalence of (40) and (41). First, we
write down the explicit form of the linearized Ricci tensor
in Cartesian coordinates. One is lead to the expression

√
∆x,x′ ≈ 1 +

∆α∆β

2

∫ 1

0

dλ(1− λ)λ

(
∂µ
′′
∂α′′hβ′′µ′′

− 1

2
∂α′′∂β′′h

)
− 1

2
∆α∆β∂µ∂µ′ Î(0)αβ , (42)

where we have employed (1 − λ)∂µ′′ = ∂µ′ and λ∂µ′′ =
∂µ. In the first line, the ∆α∂α′′ = d/dλ. This can be

integrated-by-parts, and the resulting (1−2λ)∂µ
′′

is ∂µ
′−
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∂µ, and can be pulled out of the integral,

∆α∆β

2

∫ 1

0

dλ(1− λ)λ∂µ
′′
∂α′′hβ′′µ′′ = ∆β(∂µ − ∂µ

′
)Î(0)µβ .

(43)

What remains is to demonstrate that

−∆α∆β

4

∫ 1

0

dλ(1− λ)λ∂α′′∂β′′h = −1

4
h− 1

4
h′ + Î(0).

This relation can be reached by recognizing
∆α∆β∂α′′∂β′′h = d2h/λ2, followed by integrating-

by-parts the d2/dλ2.
Equation (14) says the parallel propagator is parallel

propagated along ξ. If we write gµν′ = ηµν + hµν′ and
keep only the O[h] terms in the Christoffel symbol in
∇αhµν′ = ∂αhµν′ − Γλαµhλν′ , (14) is then approximately
equivalent to

d

dλ
hµν′ [ξ[λ], x′] (44)

=
1

2

(
∂ρ′′hµ′′ν′′ [ξ̄] + ∂µ′′hρ′′ν′′ [ξ̄]− ∂ν′′hµ′′ρ′′ [ξ̄]

)
ξ̇ρ[λ]

where the derivatives are with respect to ξ̄; for exam-
ple, ∂µ′′ ≡ ∂/∂ξ̄µ. Since δξ has to begin at O[h], that

means to the first order, we can replace ξ̇ρ with ˙̄ξρ = ∆ρ.
Recognizing

dhµ′′ν′′ [ξ̄]

dλ
= ∆ρ∂ρ′′hµ′′ν′′ [ξ̄] (45)

and recalling the boundary conditions (13) then allow us
to integrate (44) to deduce

gµν′ ≈ ηµν +
1

2
(hµν + hµ′ν′) +

∆ρ

2

∫ 1

0

∂[µ′′hν′′]ρ′′ [ξ̄]dλ.

(46)

As can be checked explicitly,

∂µ′′hν′′ρ′′ [ξ̄] = (∂µ + ∂µ′)hν′′ρ′′ . (47)

We may thus re-write (46) in terms of Î(0)µν in (38),

gµν′ ≈ ηµν +
1

2
(hµν + hµ′ν′) + ∆ρ(∂[µ + ∂[µ′)Î

(0)
ν]ρ. (48)

To be clear, hµν and hµ′ν′ are the metric perturbations
at x and x′ respectively; while ηµν + hµν′ is the parallel
propagator in perturbed Minkowski spacetime.

III. PERTURBATION THEORY

We now describe the Born series method to solve the
Green’s functions in a formal power series in hµν , the
metric perturbation.

Scalar The quadratic action of the minimally cou-
pled massless scalar field evaluated in the perturbed met-
ric gµν = ḡµν + hµν reads

Sϕ[g] ≡ 1

2

∫
ddx′′|g′′| 12∇α

′′
ϕ∇α′′ϕ (49)

while the same action evaluated in the background met-
ric ḡµν , with ∇µ denoting the covariant derivative with
respect to it, is

Sϕ[ḡ] ≡ 1

2

∫
ddx′′|ḡ′′| 12∇α

′′

ϕ∇α′′ϕ. (50)

In Sϕ[g], if we replace one field with Ḡx,x′′ , the Green’s
function in ḡµν , and the other with Gx′′,x′ , the Green’s
function in gµν , upon integration-by-parts, and using
(15), we see that

2Sϕ[g; Ḡx,x′′ , Gx′′,x′ ] (51)

=

∫
ddx′′|g′′| 12∇α

′′
Ḡx,x′′∇α′′Gx′′,x′ = −Ḡx,x′ .

Similarly, by replacing one of the fields in Sϕ[ḡ] with
Ḡx′′,x′ and the other with Gx,x′′ , one obtains

2Sϕ[ḡ;Gx,x′′ , Ḡx′′,x′ ] (52)

=

∫
ddx′′|ḡ′′| 12∇α

′′

Gx,x′′∇α′′Ḡx′′,x′ = −Gx,x′ .

The surface terms incurred during integration-by-parts
in (51) and (52) are zero because the surface integrands

at hand, namely Ḡx,x′′∇α
′′
Gx′′,x′ and Gx,x′′∇

α′′

Ḡx′′,x′ ,
due the causal structure of the Green’s functions, are
non-zero only in the spacetime region defined by the in-
tersection of the interiors of the past light cone of x with
that of the future null cone of x′. As Fig. (2) informs
us, this intersection is always a finite region of spacetime.
As long as we are dealing with a spacetime manifold that
is infinite (or semi-infinite) in extent, this finite region of
intersection lies deep inside the region enclosed by the
surface at infinity, and hence does not contribute to the
surface integral itself. Subtracting the equations (51) and
(52) then hands us an integral equation for Gx,x′ :

Gx,x′ − Ḡx,x′ (53)

=

∫
ddx′′|g′′| 12 gα

′′β′′∇α′′Ḡx,x′′∇β′′Gx′′,x′

−
∫

ddx′′|ḡ′′| 12 ḡα
′′β′′∇α

′′

Gx,x′′∇α′′Ḡx′′,x′ .

First Born Approximation Perturbation theory may
now be carried out by iterating (53) as many times as
one wishes (followed by dropping the remainder integral
terms containing Gx,x′), and expanding

gαβ = ḡαβ − hαβ + . . . (54)

|g| 12 = |ḡ| 12
(

1 +
1

2
h+ . . .

)
; h ≡ ḡαβhαβ (55)
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FIG. 2: Top Panel : The intersection of the interiors of the
future null cone of x′ and that of the past null cone of x always
defines a finite (as opposed to infinite) region of spacetime.
Moreover, if (and only if) x′ lies on or within the interior of
the backward light cone of x (or, equivalently, if and only if
x lies on or within the interior of the forward light cone of
x′), then there is a non-trivial intersection (indicated by the
dark dashed oval) between the forward light cone of x′ and
backward light cone of x, which in 3-space we shall show is a
prolate ellipsoid, when the background is Minkowski. Bottom
Panel : If x′ lies outside the backward light cone of x (or,
equivalently, if x lies outside the forward light cone of x′),
then there is no intersection between the forward light cone
of x′ and backward light cone of x.

to as high an order in hµν as desired. (We are now rais-
ing and lowering all indices with the background metric
ḡµν .) To obtain the first Born approximation, the O[h]-
accurate result forGx,x′ , one replaces theGx,x′′ occurring
within the integrals in (53) with Ḡx,x′′ and only need to

expand the |g′′|1/2 and gα
′′β′′ to first order. The result is

Gx,x′ ≈ Ḡx,x′ +

∫
ddx′′|ḡ′′| 12 (56)

×
{
∂α′′Ḡx,x′′

(
1

2
h′′ḡα

′′β′′ − hα
′′β′′
)
∂β′′Ḡx′′,x′

}
with h′′ ≡ ḡρ

′′τ ′′hρ′′τ ′′ . In perturbed Minkowski space-
time, we set ḡµν = ηµν , employ Cartesian coordinates,
and then use the spacetime translation symmetry re-
flected by the Green’s function Ḡx,x′ for any d, namely

∂µḠx,x′ = −∂µ′Ḡx,x′ , (57)

to pull the two derivatives out of the integral

Gx,x′ ≈ Ḡx,x′ (58)

+ ∂α∂β′

∫
ddx′′Ḡx,x′′

(
1

2
h′′ηαβ − hα

′′β′′
)
Ḡx′′,x′

with h′′ ≡ ηρτhρ′′τ ′′ . This matches equation 2.27 of De-
Witt and DeWitt [1], if we note that their Green’s func-
tion is negative of ours.
Photon Next, we turn to the photon. The Maxwell

action in terms of electric and magnetic fields Fµν is

SMaxwell = −1

4

∫
ddx′′|g′′| 12 gµ

′′α′′gν
′′β′′Fµ′′ν′′Fα′′β′′ .

(59)

We have already noted in the introduction, that this ac-
tion SMaxwell enjoys a conformal symmetry in 4 dimen-
sions, namely, it evaluates to the same object in both the
metric gµν and the metric a2gµν ; the conformal factor a2

drops out. Whenever there is such a conformal factor,
for instance, as in the context of a spatially flat inhomo-
geneous FLRW universe described by the metric in (9)
we will choose the Lorenz gauge with respect to gµν and
not a2gµν :

∇µAµ ≡
1

|g| 12
∂µ

(
|g| 12 gµνAν

)
= 0 (60)

so that the dynamics of Aµ will also be blind to a2.
The quadratic action for the photon’s vector potential
Aµ evaluated in the metric gµν = ḡµν + hµν is

SA[g] = −1

2

∫
ddx′′|g′′| 12

(
∇α
′′
Aβ
′′
∇α′′Aβ′′ (61)

+Rα
′′β′′Aα′′Aβ′′

)
.

Via steps analogous to the ones taken to obtain the in-
tegral equation for the scalar Green’s function, replacing
one field with G and the other with Ḡ, we can write
down the corresponding integral equation for the pho-
ton Green’s function Gµν′ in the perturbed spacetime
gµν = ḡµν + hµν :

Gµν′ − Ḡµν′ (62)
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=

∫
ddx′′|g′′| 12

(
gα
′′β′′gλ

′′ρ′′∇α′′Ḡµλ′′∇β′′Gρ′′ν′

+Rλ
′′ρ′′Ḡµλ′′Gρ′′ν′

)
−
∫

ddx′′|ḡ′′| 12
(
ḡα
′′β′′ ḡλ

′′ρ′′∇α′′Gµλ′′∇β′′Ḡρ′′ν′

+ R̄λ
′′ρ′′Gµλ′′Ḡρ′′ν′

)
.

Here and below, the barred geometric tensors such as
R̄µν are built out of ḡµν ; whereas the un-barred ones are
built out of gµν .
First Born Approximation Like the scalar case, one

may now pursue perturbation theory of the photon
Green’s function by iterating the integral equation (62)
however many times (followed by dropping the remainder
integral terms containing Gµν′) and perform the expan-
sion in (54) and (55), and of the Christoffel symbols

Γµαβ [g]− Γµαβ [ḡ] (63)

=
1

2
(ḡµλ − hµλ + . . . )

(
∇{αhβ}λ −∇λhαβ

)

to whatever order in hµν one wishes. To O[h], we merely
need to replace the Gµν′ occurring under the integral sign
in (62) with Ḡµν′ and develop the necessary expansion
to linear order in hµν . The additional complication in
the photon case here, and the graviton case below, is
that one has to deal with integrals of the schematic form∫
Ḡ(Γ|1)∇Ḡ, arising from the covariant differentiation of

the Green’s functions. The (Γ|1) is the first order in hµν
variation of the Christoffel symbol,

(Γ|1)µαβ =
1

2
ḡµλ

(
∇{αhβ}λ −∇λhαβ

)
. (64)

For such terms, we will choose to integrate by parts, mov-
ing all the (single) derivatives acting on the hµνs in the
(Γ|1) onto the un-perturbed Green’s functions Ḡ. (As
already argued, there are no surface terms.) The ensuing
manipulations require the use of equations (16) and (17).
About a generic perturbed spacetime gµν = ḡµν + hµν ,
we then gather that

Gµν′ ≈ Ḡµν′ +
1

2
Ḡµα′h

α′

ν′ +
1

2
h α
µ Ḡαν′

+

∫
ddx′′|ḡ′′| 12

(
∇α′′Ḡµλ′′

(
1

2
h′′ḡα

′′β′′ ḡλ
′′ρ′′ − hα

′′β′′ ḡλ
′′ρ′′
)
∇β′′Ḡρ′′ν′

+
1

2
∇λ
′′

Ḡµσ′′h
α′′σ′′∇α′′Ḡλ′′ν′ −

1

2
Ḡµσ′′h

α′′σ′′∇α′′∇ν′Ḡx′′,x′

+
1

2
∇µḠx,x′′hα

′′λ′′∇α′′Ḡλ′′ν′ −
1

2
Ḡµσ′′h

α′′λ′′∇σ
′′

∇α′′Ḡλ′′ν′

− 1

2
∇α′′∇µḠx,x′′hα

′′σ′′Ḡσ′′ν′ +
1

2
∇α′′Ḡµλ′′hα

′′σ′′∇λ
′′

Ḡσ′′ν′

− 1

2
∇σ
′′

∇α′′Ḡµλ′′hα
′′λ′′Ḡσ′′ν′ +

1

2
∇α′′Ḡµλ′′hα

′′λ′′∇ν′Ḡx′′,x′

+ Ḡµσ′′
(
hσ
′′ρ′′R̄ λ′′

ρ′′ + R̄σ
′′

ρ′′h
ρ′′λ′′

)
Ḡλ′′ν′

+ Ḡµλ′′

(
(R|1)λ

′′ρ′′ +
1

2
h′′R̄λ

′′ρ′′
)
Ḡρ′′ν′

)
. (65)

In (65), we are again raising and lowering all indices
with the background metric ḡµν . Here and below, (R|n),
(R|n)µν and (R|n)µναβ are the portion of the respective
geometric tensors (built out of gµν = ḡµν +hµν) contain-
ing precisely n powers of the perturbation hµν .

When the background is Minkowski ḡµν = ηµν all the
barred geometric tensors are identically zero. Like in
the scalar case, we employ Cartesian coordinates and the
spacetime translation symmetry property of Ḡx,x′ in (57)
to massage (65) into

Gµν′ ≈ Ḡx,x′ηµν +
1

2
Ḡx,x′ (hµ′ν′ + hµν) (66)
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+

∫
ddx′′

{
ηµν∂α∂β′Ḡx,x′′

(
1

2
h′′ηα

′′β′′ − hα
′′β′′
)
Ḡx′′,x′

+
1

2
(∂α − ∂α′)

(
∂[µ + ∂[µ′

)
Ḡx,x′′h

α′′

ν′′]Ḡx′′,x′ + Ḡx,x′′ (R|1)µ′′ν′′ Ḡx′′,x′

}
.

This matches equation 2.23 of DeWitt and DeWitt [1], up
to a sign error, if we take into account both their Rαβ and
Green’s function are negative of ours. (Their sign error10

is the following: the two terms on the line right before the
last line (involving the Ricci tensor), should both carry
a negative sign each, since they must have come from
integrating by parts the term −δ[σ]hσ′′µ′′,ν′′δ

σ′

, [σ′].) As a
consistency check of this result, one may perform a direct
computation to show that the Gµν′ in (66) satisfies (17)
to first order in hµν .
Graviton Gravitation as encoded in the Einstein-

Hilbert action

SEH ≡ −
1

16πGN

∫
ddx|g| 12 (R− 2Λ) (67)

is a nonlinear theory. (GN is Newton’s constant and Λ
is the cosmological constant.) One can insert the metric
gµν +

√
32πGNγµν into the Einstein-Hilbert action (67)

and find a resulting infinite series in γµν . The quadratic
piece, which will determine for us the Green’s function
of the graviton, is

Sγ [g] =
1

2

∫
ddx|g| 12

(
∇µγβν∇µγβν −

1

2
∇σγ∇σγ

− 2Rνλβµγ
λµγβν − 2γβσγ ν

σ Rβν + 2γ γβνRβν

+

(
γσργ

σρ − 1

2
γ2
)

(R− 2Λ)

)
, (68)

where we have chosen the de Donder gauge ∇µγµν =
1
2∇νγ, with γ ≡ gµνγµν . (The geometric tensors in (68),
such as Rνλβµ, are built out of gµν .) From (68) and fol-
lowing the preceding analysis for the scalar and photon,
we may write down the integral equation involving the
graviton Green’s functions

Gδερ′σ′ − Ḡδερ′σ′

=

∫
ddx′′|g′′| 12

(
∇τ ′′Ḡδεα′′β′′gτ

′′κ′′
(
gα
′′µ′′gβ

′′ν′′ − 1

2
gα
′′β′′gµ

′′ν′′
)
∇κ′′Gµ′′ν′′ρ′σ′

+ Ḡδεα′′β′′

((
gα
′′µ′′gβ

′′ν′′ − 1

2
gα
′′β′′gµ

′′ν′′
)

(R− 2Λ)− 2Rµ
′′α′′ν′′β′′

−Rβ
′′ν′′gα

′′µ′′ −Rα
′′ν′′gβ

′′µ′′ +Rµ
′′ν′′gα

′′β′′ +Rα
′′β′′gµ

′′ν′′
)
Gµ′′ν′′ρ′σ′

)
−
∫

ddx′′|ḡ′′| 12
(
∇τ ′′Gδεα′′β′′ ḡτ

′′κ′′
(
ḡα
′′µ′′ ḡβ

′′ν′′ − 1

2
ḡα
′′β′′ ḡµ

′′ν′′
)
∇κ′′Ḡµ′′ν′′ρ′σ′

+Gδεα′′β′′

((
ḡα
′′µ′′ ḡβ

′′ν′′ − 1

2
ḡα
′′β′′ ḡµ

′′ν′′
)(
R̄ − 2Λ

)
− 2R̄µ

′′α′′ν′′β′′

− R̄β
′′ν′′ ḡα

′′µ′′ − R̄α
′′ν′′ ḡβ

′′µ′′ + R̄µ
′′ν′′ ḡα

′′β′′ + R̄α
′′β′′ ḡµ

′′ν′′
)
Ḡµ′′ν′′ρ′σ′

)
. (69)

First Born Approximation Because of the number of
terms and the plethora of indices in (69), the perturba-
tion theory about a generic background ḡµν and arbitrary
dimensions d is best left for a computer algebra system
to handle. We shall be content with the case of 4 dimen-
sional perturbed Minkowski spacetime, and also set the
cosmological constant to zero for now. To O[h], we re-
place in (69) all the Gδεα′β′ occurring under the integral
sign with P̄δεαβḠx,x′ (see (34)) and expand all quantities

about Minkowski spacetime up to first order in pertur-
bations. Let us employ Cartesian coordinates, raise and
lower indices with ηµν , and integrate-by-parts the deriva-
tives acting on hµν occurring within the Christoffel sym-
bols, ∫

ddx′′Ḡx,x′′∂µ′′hα′′β′′Ḡx′′,x′ (70)

= (∂µ + ∂µ′)

∫
ddx′′Ḡx,x′′hα′′β′′Ḡx′′,x′ ,
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where we have invoked (57). It helps to exploit the sym-
metries of the Riemann tensor indices (Rµναβ = Rαβµν =
−Rνµαβ = −Rµνβα), those of P̄ recorded in (36), and to
recognize that, in d = 4 dimensions,

P̄αβµν P̄µνρσ =
1

2
δα{ρδ

β
σ}. (71)

For reasons to be apparent in the next section, we shall
re-express all the ∂τ∂

τ ′ as

∂τ∂
τ ′ =

1

2
(∂τ + ∂τ ′)(∂

τ + ∂τ
′
)− 1

2
∂τ∂

τ − 1

2
∂τ ′∂

τ ′

≡ 1

2
(∂ + ∂′)2 − 1

2
∂2 − 1

2
∂′2

followed by using the Minkowski version of (15), namely

∂2Ḡx,x′ = ∂′2Ḡx,x′ = δd[x− x′]. (72)

We then arrive at

Gδερ′σ ≈ Ḡx,x′
(
P̄δερσ +

1

4
(ηρδ(hεσ + hε′σ′) + ησδ(hερ + hε′ρ′) + ηρε(hδσ + hδ′σ′) + ησε(hδρ + hδ′ρ′))

− 1

2
ηρσhδε −

1

2
ηδεhρ′σ′

)
+

∫
d4x′′

{
P̄δερσ∂α∂β′Ḡx,x′′

(
1

2
h′′ηαβ − hα

′′β′′
)
Ḡx′′,x′

+
1

4

(
∂τ − ∂τ

′
)(

(∂[ε + ∂[ε′)Ḡx,x′′hρ′′]τ ′′Ḡx′′,x′ησδ + (∂[ε + ∂[ε′)Ḡx,x′′hσ′′]τ ′′Ḡx′′,x′ηρδ

+ (∂[δ + ∂[δ′)Ḡx,x′′hρ′′]τ ′′Ḡx′′,x′ησε + (∂[δ + ∂[δ′)Ḡx,x′′hσ′′]τ ′′Ḡx′′,x′ηρε

)
+ Ḡx,x′′

(
P̄δερσ(R|1) + ηεδ(R|1)ρ′′σ′′ + ηρσ(R|1)δ′′ε′′

− 1

2
ηρ{δ(R|1)ε′′}σ′′ −

1

2
ησ{δ(R|1)ε′′}ρ′′ + (R|1)ρ′′{δ′′ε′′}σ′′

)
Ḡx′′,x′

}
. (73)

One scattering approximation Let us examine
(58), (66) and (73). The terms that do not involve any
integrals can be viewed as the propagation of null signals,
modulated by the metric perturbations multiplying the
Ḡx,x′ . The terms involving integrals, go schematically as

∂x∂x′
∫

d4x′′Ḡx,x′′h[x′′]Ḡx′′,x′ . Due to the causal struc-
ture of the Ḡs, this can be interpreted as a scattering
process. The Ḡx′′,x′ tells us our massless field begins at
the source x′ and travels along a null ray to x′′; the h[x′′]
says it then scatters off the metric perturbations (and
its derivatives) at x′′; and the Ḡx,x′′ informs us that it
then propagates along a null path from x′′ to reach the
observer at x. The full (scattered) signal consists of in-
tegrating over all the x′′ from which the signal can scat-
ter off. This is the perturbative picture for the origin
of tails of massless fields in weakly curved spacetime.11

11 We are being slightly inaccurate here, in that some of the
∂x∂x′

∫
d4x′′Ḡx,x′′h[x′′]Ḡx′′,x′ terms also contribute to null

From this heuristic point of view, we can already an-
ticipate that high order perturbation theory will involve
more than one scattering events contributing to the tail
effect. This scattering picture may also help us estimate
its size without detailed calculations, and deserves some
contemplation.

IV. δ[σ] AND Θ[σ] DECOMPOSITION IN 4
DIMENSIONAL PERTURBED MINKOWSKI

In this section we will restrict ourselves to 4 dimensions
and analyze further the first order results for the scalar
(58), photon (66) and graviton (73) Green’s functions we

propagation, as we will see in the next section. But we want
to introduce this scattering picture here, because it is easier to
see it from (58), (66) and (73), written in terms of the Minkowski
Green’s function Ḡs, than from (84), (86), and (87) below, which

are expressed in terms of Θ[σx,x′ ] and the Î-integrals in (78).
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have obtained in perturbed Minkowski spacetime, and
show that to O[h], concrete results for the Green’s func-
tions can be gotten once a single matrix of integrals (in-
volving hαβ) can be performed. We will also decompose
these scalar, photon and graviton Green’s functions into
their null cone and tail pieces. As a consistency check
of our Born approximation, we show that their null cone
pieces matches the Hadamard form described by equa-
tions (20), (21) and (22); this generalizes the analysis
carried out in Pfenning and Poisson [3] to the case of
arbitrary perturbations hµν .

In the scalar (58), photon (66) and graviton (73)
Green’s functions results, we have to deal with deriva-
tives (with respect to x or x′) acting on the following
matrix integral

1

4π
Iαβ ≡

∫
d4x′′Ḡx,x′′hα′′β′′Ḡx′′,x′ (74)

with the Ḡx,x′ from (32). Because of (70), even the ge-
ometric tensor terms can be expressed as sum of deriva-
tives with respect to x or x′ acting on (74). For example,∫

d4x′′Ḡx,x′′(R|1)Ḡx′′,x′ (75)

= ∂α+∂β+

∫
d4x′′Ḡx,x′′(h

α′′β′′ − ηαβh′′)Ḡx′′,x′

where h′′ is the trace of hµ′′ν′′ and

∂α+ ≡ ∂α + ∂α′ . (76)

In appendix (A) we show that Iαβ involves the integral of
hαβ (but in Euclidean 3-space) over the surface generated
by rotating the ellipse with foci at ~x and ~x′ and semi-
major axis (t − t′)/2, about the line joining ~x and ~x′.
(This is the dashed oval in Fig. (2).)

Iαβ [x, x′] ≡ Θ[t− t′]Θ[σ̄x,x′ ]Îαβ [x, x′] (77)

with

Îαβ [x, x′] (78)

=
1

2

∫
S2

dΩ

4π
hα′′β′′

[
t+ t′

2
+
|~∆|
2

cos θ,
~x+ ~x′

2
+ ~x′′

]
.

The infinitesimal solid angle is dΩ = d cos θdφ, and the
Cartesian components of ~x′′ are given by

~x′′ ≡

(√
σ̄x,x′

2
sin θ cosφ,

√
σ̄x,x′

2
sin θ sinφ,

∆0

2
cos θ

)
.

(79)

To separate the light cone versus tail pieces of the Green’s
functions, we now carry out the necessary derivatives on

(77) as they occur in (58), (66) and (73). There is no
need to differentiate the Θ[t − t′], because that would
give us δ[t − t′] and its derivatives. Since this would be
multiplied by either Θ[σ̄x,x′ ] or possibly δ[σ̄x,x′ ], δ

′[σ̄x,x′ ],
etc., while σ̄x,x′ → −~∆2/2 < 0, these δ, δ′, . . . terms can
never be non-zero when t = t′. Schematically, therefore,

the derivatives now read Θ[t − t′]∂∂(Θ[σ̄]Î) (where the
two derivatives are both with respect to either x or x′

or one each), which in turn would yield two types of

terms. One is the tail term, proportional to Θ[σ̄]∂∂Î
and the other the null cone ones, proportional to either

δ[σ̄]∂σ̄∂Î, δ[σ̄]∂∂σ̄Î, or δ′[σ̄]∂σ̄∂σ̄Î. Following that, we
would impose the constraint σ̄x,x′ = 0 on the coefficients
of the δ[σ̄] and δ′[σ̄] terms. This requires that we develop

a power series in σ̄x,x′ of Îαβ . Since there is at most one

derivative acting on Î, however, we only need to do so up
to linear order. (Higher order terms would automatically
vanish once we put σ̄ = 0.) In appendix (A) we find

Îαβ = Î(0)αβ + σ̄x,x′ Î(1)αβ + . . . (80)

=
(

1− σ̄x,x′

2
ηµν∂µ∂ν′

) 1

2

∫ 1

0

hα′′β′′ [ξ̄]dλ+ . . . .

The Î(0)αβ = 1
2

∫ 1

0
hα′′β′′ [ξ̄]dλ has already been quoted pre-

viously in (38).
Scalar By pulling out one factor of (4π)−1 from one

of the Ḡs (see (32)), our result for the massless scalar
Green’s function in (58) can be written as

Gx,x′ ≈
Θ[t− t′]

4π

(
δ[σ̄x,x′ ]

+ ∂α∂β′

({
1

2
ηαβ Î − Îαβ

}
Θ[σ̄x,x′ ]

))
, (81)

with Î ≡ Îρκηρκ. Carrying out the derivatives using
(30) would give us, amongst other terms, the following δ′

terms:

−δ′ [σ̄x,x′ ]
(
σ̄x,x′ Î −∆α∆β Îαβ

)
. (82)

The first term is δ [σ̄x,x′ ] Î if we employ the identity
zδ′[z] = −δ[z]. The second term can be considered the

O[h] term of δ[σ̄ + ∆α∆β Îαβ ] = δ[σ̄] + δ′[σ̄]∆α∆β Îαβ +
. . . .

Moreover, invoking (45) and the chain rule also informs
us that one of the terms multiplying δ[σ̄x,x′ ] is

−1

2
∆κ(∂κ − ∂κ′)Î(0)αβ = −1

4
hαβ −

1

4
hα′β′ + Î(0)αβ . (83)

Altogether, the Born approximation, O[h]-accurate an-
swer, for the massless scalar Green’s function may now
be decomposed into its null cone and tail pieces as
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Gx,x′ ≈
Θ[t− t′]

4π

{
δ
[
σ̄x,x′ + ∆α∆β Î(0)αβ

](
1− 1

4
h− 1

4
h′ + Î(0) + ∆α

(
∂β − ∂β

′
)
Î(0)αβ −

1

2
∆α∆β∂µ

′
∂µÎ(0)αβ

)
+ Θ

[
σ̄x,x′ + ∆α∆β Î(0)αβ

](1

2
∂µ∂µ′ Î − ∂ρ∂κ′ Îρκ

)}
, h ≡ ηαβhαβ ; h′ ≡ ηαβhα′β′ . (84)

As already advertised earlier, comparison with (37) and
(40) tells us the null cone portion of our massless scalar
Green’s function is indeed consistent with the Hadamard
form in (4) and (20).

Photon and Graviton For the photon Gµν′ (66)
and graviton Gδερ′σ′ (73) Green’s functions, we first ob-
serve that they contain respectively ηµν and P̄δερ′σ′ mul-
tiplied by (84), the massless scalar Gx,x′ . (Specifically,
first term on the first line, and the second line of (66) for
the photon; and first term on the first line, and third line
of (73) for the graviton.) The light cone portions of these
terms therefore contain the first order van Vleck deter-
minant. For the rest of the integral terms, we first make
the observation that ∂µ + ∂µ′ acting on a function whose
argument is the difference x−x′, is identically zero. The
immediate corollary is that all the geometric terms, via
(70), do not contribute to the null cone piece of the pho-
ton and graviton Green’s function because the derivatives
acting on the Θ[σ̄] leads to zero. The remaining terms
containing derivatives take the form

1

2

(
∂τ − ∂τ

′
) (
∂[µ + ∂[µ′

) (
Θ[σ̄x,x′ ]Îν]τ

)

= δ[σ̄x,x′ ]
∆ρ

2

∫ 1

0

∂[µ′′hν′′]ρ′′ [ξ̄]dλ (85)

+ Θ[σ̄x,x′ ]
1

2

(
∂τ − ∂τ

′
) (
∂[µ + ∂[µ′

)
Îν]τ ,

where we have utilized (30) and the chain rule. Recalling
(46) tells us the δ[σ̄] terms on the right side of (85), when
added to the non-integral O[h] ones already multiplying
Ḡx,x′ – i.e., the first line of (66) and first two lines of
(73) – would give us the necessary first order parallel
propagators to once again ensure consistency with the
Hadamard form in (5), (21), (6) and (22). That is, we
may now use the expressions for σx,x′ (37),

√
∆x,x′ (40)

and gµν′ (46) and decompose the photon and graviton
Green’s function into their null cone and tail pieces. To
first order in hµν ,

Gµν′ ≈
Θ[t− t′]

4π

{
gµν′

√
∆x,x′δ [σx,x′ ] (86)

+ Θ [σx,x′ ]

(
ηµν

(
1

2
∂α∂α′ Î − ∂α∂β′ Îαβ

)
+

1

2
(∂α − ∂α′)

(
∂[µ + ∂[µ′

)
Îαν] + (̂R|1)µν

)}
,

Gδερ′σ′ ≈
Θ[t− t′]

4π

{
Pδερ′σ′

√
∆x,x′δ [σx,x′ ]

+ Θ [σx,x′ ]

(
P̄δερσ

(
1

2
∂α∂α′ Î − ∂α∂β′ Îαβ

)
+

1

4

(
∂τ − ∂τ

′
)(

(∂[ε + ∂[ε′)Îρ′′]τ ′′ησδ + (∂[ε + ∂[ε′)Îσ′′]τ ′′ηρδ

+ (∂[δ + ∂[δ′)Îρ′′]τ ′′ησε + (∂[δ + ∂[δ′)Îσ′′]τ ′′ηρε
)

+ P̄δερσ (̂R|1) + ηεδ (̂R|1)ρ′′σ′′ + ηρσ (̂R|1)δ′′ε′′ −
1

2
ηρ{δ (̂R|1)ε′′}σ′′ −

1

2
ησ{δ (̂R|1)ε′′}ρ′′

+ (̂R|1)ρ′′{δ′′ε′′}σ′′

)}
. (87)

The geometric terms (̂R|1)αβµν , (̂R|1)µν , and (̂R|1) in (86) and (87) can be obtained by taking the correspond-
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ing linearized tensors in terms of the perturbation hαβ ,

and replacing all the hαβ with Îαβ and all derivatives
∂α′′ with ∂α+ .

(̂R|1)αβµν ≡
1

2

(
∂β+∂[µ+ Îν]α − ∂α+∂[µ+ Îν]β

)
(88)

(̂R|1)βν ≡
1

2

(
∂µ+∂{β+ Î µ

ν}

− ∂β+∂ν+ Î − ηαµ∂α+∂µ+ Îβν
)

(89)

(̂R|1) ≡ ∂α+∂β+

(
Îαβ − ηαβ Î

)
, (90)

with ∂α+ ≡ ∂α+∂α′ . Even though these terms involving
geometric curvature are best evaluated by differentiating

Îαβ , it is necessary to record here their analogs to (78).
For instance, if (R|1)αβ is the linearized Ricci tensor, we
have

1

4π
Θ[t− t′]Θ[σ̄x,x′ ](̂R|1)αβ

=

∫
d4x′′Ḡx,x′′(R|1)αβḠx′′,x′ , (91)

where

(̂R|1)αβ [x, x′] (92)

=
1

2

∫
S2

dΩ

4π
(R|1)α′′β′′

[
t+ t′

2
+
|~∆|
2

cos θ,
~x+ ~x′

2
+ ~x′′

]
.

At the first Born approximation, therefore, we see that
a concrete expression from the perturbative solution of
the scalar (84), photon (86), and graviton (87) can be

obtained once the matrix integral Îαβ in (78) is evalu-

ated. We also note that, suppose Îαβ in (78) has been
evaluated; then at least when hαβ is time-independent
(space-independent), there is no need to perform the line

integral Î(0)αβ in (80); rather, Î(0)αβ is gotten by replacing

t−t′ → |~x−~x′| (|~x−~x′| → t−t′). In such cases, the Born
series method advocated here allows one to read off, as
a byproduct of a single coherent calculation, the world
function and van Vleck determinant from, respectively,
the argument and coefficient of the δ-function in the
massless scalar Green’s function; while the parallel prop-
agator can be read off the coefficient of the δ-function in
the Lorenz gauge photon Green’s function.

Gauge dependence The skeptic may wonder if the
gauge dependence of the vector potential could render
the tail piece of the photon Green’s function in (86) un-
physical. To that end, we note that, for fixed x′, the only

pure gradient tail term in (86) is (1/2)∂µ(∂α − ∂α′)Îαν .
Hence, the rest of the tail terms do not have zero curl
– the corresponding electromagnetic fields are non-zero.
This provides strong theoretical evidence that the wake
effect is present for photons propagating in perturbed
Minkowski, and by conformal symmetry, in our universe
too.

Geometry and tails Let us notice that it was all
the differentiation that took place in our work on the
perturbative solution of the Green’s functions, which can
be traced to the � operator, that gave us both the terms
in the arguments and coefficients of the δ-functions in
the scalar, photon, and graviton Green’s function. In
turn, we have identified them as various terms in the
world function, the van Vleck determinant and the par-
allel propagator (in their perturbative guises). This re-
affirms our assertion earlier that it is the differential op-
erator � that is solely responsible for the behavior of
massless radiation on the light cone. On the other hand,
because of (70), at the level of the Born approximation,
we see that the geometric tensors contribute only to the
tail piece of the Green’s function.

V. SCHWARZSCHILD AND KERR
GEOMETRIES

As a concrete application of our formalism, in this sec-
tion we will calculate the null cone and tail pieces of the
Green’s functions in the weak field limit of the Kerr geom-
etry, to first order in the black hole’s mass M and angular
momentum S. Setting S to zero would then give us the
first order in mass result for the weak field Schwarzschild
geometry. These results, when pushed to higher orders in
M and S, would provide us with concrete expressions for
the Green’s functions to investigate the tail induced self
force and more generally, the gravitational n-body prob-
lem, in the weak field limit background of astrophysical
black holes. Strictly speaking, because S ≤ M2, a con-
sistent answer for the Green’s functions would require at
least a second order in M calculation, but since this con-
stitutes a significant computational effort, we shall leave
it for a future pursuit.
Schwarzschild We begin with a discussion of

the Schwarzschild case. If we choose to write the
Schwarzschild black hole metric in (Cartesian) isotropic
coordinates (t, ~x), so that there are no off diagonal terms,
we may express

gµν = ηµν + hµν (93)

where

h00 ≡

(
1− M

2r

1 + M
2r

)2

− 1 (94)

= −4
M

2r
+ 8

(
M

2r

)2

− 12

(
M

2r

)3

+ . . . ,

hij ≡ ηij

((
1 +

M

2r

)4

− 1

)
(95)

= ηij

(
4
M

2r
+ 6

(
M

2r

)2

+ 4

(
M

2r

)3

+ . . .

)
,

h0i = 0. (96)
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Here r ≡
√
δijxixj , M is the mass of the black hole, and

we have set Newton’s constant to unity, GN = 1. The
power series expansion of h00 and hij can be substituted

into the Î-integral in (78). At order (M/2r)2 and beyond,
the solution would of course receive contributions from
more iterations and high order h terms from the integral
equations (53), (62), and (69), and would likely involve

two or more overlapping Î-type integrals. Here we will
focus on the first Born approximation.

Within the one scattering approximation, the main
technical hurdle to overcome is therefore the class of in-
tegrals

Î(n) ≡
1

4π

∫ +1

−1

∫ 2π

0

d(cos θ′′)dφ′′

|~x′′[ρ, θ′′, φ′′]− ~z[s, θ+, φ+]|n
(97)

where n is a positive integer, ~x′′ has Cartesian compo-
nents defined in (79) (so that, in particular, ρ = ∆0 =
t− t′), and

~z ≡ −~x+ ~x′

2
. (98)

Because we choose our coordinate system such that ~x−
~x′ = |~∆|ê3, where ê3 is the unit vector in the 3-direction,
we have the following equalities (see (A4)),

~z[s, θ+, φ+] =
1

2

(√
s2 − |~∆|2 sin θ+ cosφ+,√

s2 − |~∆|2 sin θ+ sinφ+,

s cos θ+

)
=
|~∆|
2
ê3 − ~x, (99)

from which we can deduce that

s = r + r′, cos θ+ =
r′ − r
|~x− ~x′|

. (100)

(The other solution (s, cos θ+) = (|r− r′|,−(r+ r′)/|~x−
~x′|) is inadmissible because (r + r′)/|~x− ~x′| ≥ 1.) Here,
r ≡ |~x| and r′ ≡ |~x′|, and the azimuth angles of ~x and ~x′

are both equal to φ+ + π.
For the moment, it helps to think of ~x′′ and ~z as in-

dependent vectors which we have chosen to write their
Cartesian components in terms of ellipsoidal coordinates
(ρ, θ′′, φ′′) and (s, θ+, φ+); we will also take R in (A5) to

be simply a constant, not necessarily equal to |~∆|.
The n = 1 case has been evaluated by both DeWitt

and DeWitt [1] and Pfenning and Poisson [3] by perform-
ing a prolate ellipsoidal harmonics expansion of the in-
verse Euclidean distance |~x′′− ~z|−1. An alternate means
of getting the same result is, as already noted by De-

Witt and DeWitt, to recognize that Î(1) is the Columb
(electric) potential of a charged perfectly conducting el-
lipsoid defined by ~x′′.12 By definition, the conducting

12 The Columb potential at ~z can be obtained by the Green’s func-

surface is an equipotential one. This implies that the

answer to Î(1) has to depend on the s-coordinate of
~z only, for that would automatically be a constant on
the ellipsoidal surface. For ~z lying away from the ellip-
soidal surface, our integral must satisfy Poisson’s equa-

tion gij∇zi∇zj Î(1)[s] = 0 (with the inverse metric gij of
(A5)), which in turn is equivalent to the ordinary differ-
ential equation

0 = (1− κ2)
d2Î(1)[κ]

dκ2
− 2κ

dÎ(1)[κ]

dκ
, κ ≡ s/R. (101)

The general solution is a linear combination of a constant
and the Legendre function Q0[s/R] = (1/2) ln[((s/R) +
1)/((s/R)− 1)]. But the asymptotic boundary condition
implied by the integral representation in (97) is

lim
s→∞

Î(1) → lim
s→∞

1

4π|~z|

∫
S2

dΩ→ 2

s
. (102)

(When s � R, (A4) says s/2 ≈ |~z|; s/2 essentially be-
comes the spherical radial coordinate.) The asymptotic
limit

lim
s→∞

Q0[s/R]→ R

s
(103)

then tells us the solution for ~z located outside the ellip-
soid is

1

4π

∫ +1

−1

∫ 2π

0

d(cos θ′′)dφ′′

|~x′′[ρ, θ′′, φ′′]− ~z[s > ρ, θ+, φ+]|

= Î(1)[s > ρ] =
1

R
ln

[
s+R

s−R

]
. (104)

A conducting surface forms a Faraday cage, so for ~z lying
inside the ellipsoid, the potential is position independent
and the same as that on the surface,

1

4π

∫ +1

−1

∫ 2π

0

d(cos θ′′)dφ′′

|~x′′[ρ, θ′′, φ′′]− ~z[s ≤ ρ, θ+, φ+]|

= Î(1)[s ≤ ρ] =
1

R
ln

[
ρ+R

ρ−R

]
. (105)

Reinstating the relationships ~z = −(~x+ ~x′)/2, R = |~x−
~x′|, ρ = t− t′ and s = r + r′, we gather

Î(1) = |~x− ~x′|−1 (106)

×
(

Θ[r + r′ − (t− t′)] ln

[
r + r′ + |~x− ~x′|
r + r′ − |~x− ~x′|

]

tion type integral
∫

d2x′′
√
g′′2 Σ[~x′′]/(4π|~x′′ − ~z|), where g2 is

the determinant of the induced metric on the ellipsoidal surface
and the surface charge density Σ is the normal derivative of the
electric potential, Σ = N i∂iΨ, evaluated on the said surface. Be-
cause N i∂i is a unit normal, one would find that the combination
d2x′′

√
g′′2N

i∂iΨ is equal to the infinitesimal solid angle dΩ in 3
spatial dimensions, up to overall constant factors.



16

+ Θ[t− t′ − (r + r′)] ln

[
t− t′ + |~x− ~x′|
t− t′ − |~x− ~x′|

])
.

For later use, let us record the following symmetrized

spatial derivative on Î(1), keeping in mind that (∂i + ∂i′)
acting on any function that depends on the spatial coor-
dinates solely through the difference ~x− ~x′ is zero:

(∂i + ∂i′ )̂I(1) = |~x− ~x′|−1Θ[r + r′ − (t− t′)] (107)

× (∂i + ∂i′) ln

[
r + r′ + |~x− ~x′|
r + r′ − |~x− ~x′|

]
(Note that the two δ-function terms arising from differ-

entiating the Θ[r + r′ − (t − t′)] and Θ[t − t′ − (r + r′)]

in Î(1) cancel each other, upon setting t − t′ = r + r′ in
their respective coefficients.)

When n > 1, this conducting ellipsoid interpretation
for the n = 1 case does not continue to hold; but one may
attempt to derive a partial differential equation in terms
of the variables (s, θ+, φ+), such that some differential
operator D acting on the kernel |~x′′−~z|−n is zero. (Note
that if ~x′′ and ~z lived in n+2 spatial dimensions, D would
be the (n+ 2)-dimensional Laplacian, but implementing
this scheme would involve introducing an additional n−1
fictitious angles and Cartesian components for ~x′′ and ~z.)
The general solutions of this partial differential equation
may either help lead to a physical interpretation – just
as one was found for the n = 1 case – or a harmon-
ics expansion analogous to the one used by DeWitt and
DeWitt, so that the resulting series can be integrated
term-by-term. Because of the cylindrical symmetry of

the integral Î(n), the final result should not depend on
φ+. We shall leave these pursuits for future work, and

merely sum up the O[M/|~∆|] results here. Recalling the

relationship between hαβ and Îαβ from (78):

Îαβ = −δαβM Î(1) +O
[
(M/|~x− ~x′|)2

]
, (108)

with Î(1) given by (106).
Kerr Let us now turn our attention to a Kerr black

hole with mass M and angular momentum S, with its
spin axis aligned along the 3-direction.13 Starting from
the Kerr metric written in Boyer-Lindquist coordinates
(see equation 33.2 of [6]), we first perform the following
transformation on the r coordinate

r → r

(
1 +

M

2r

)2

. (109)

(This coordinate transformation would yield, when S =
0, the Schwarzschild metric in isotropic coordinates.) De-
noting the unit vector in the 3-direction as ê3 and further

13 This 3-direction is not to be confused with the 3-direction of the
prolate ellipsoidal coordinate system invoked during the evalua-
tion of Îαβ in (78).

define

~S ≡ Sê3, (110)

to first order in both S and M , we may then write the
Kerr metric as

gµν = ηµν + hµν (111)

where

hαβ [t, ~x] ≈ −2

(
Mδαβ + δ0{αδ

i
β}

(
~S × ∂

∂~x

)
i

)
1

r
. (112)

In a Cartesian basis,(
~S × ∂

∂~x

)
i

= S

(
− ∂

∂x2
,
∂

∂x1
, 0

)
i

. (113)

The off diagonal nature of δ0{αδ
i
β} implies that the first

order in mass Î00 and Îij for the Kerr black hole are

identical to that of the Schwarzschild case. As for Î0i, by
referring to (74), integrating by parts the spatial gradient
acting on r−1, and using (57) to pull the resulting two
derivatives out of the integral, we observe that it can be
gotten by acting

Ji ≡
{
~S ×

(
∂

∂~x
+

∂

∂~x′

)}
i

(114)

on the n = 1 integral in (97). That is,

Î0i = −JiÎ(1) + . . . (115)

Altogether, to first order in mass M and angular momen-
tum S, the Kerr spacetime hands us

Îαβ = −
(
Mδαβ + δ0{αδ

i
β}Ji

)
Î(1), (116)

with Î(1) given by (106).

We will now construct the null cone portion of the
Green’s functions by computing the world function, van
Vleck determinant, and the parallel propagator. From
(37), (40) and (48), we recall that these objects may be

gotten once Î(0)αβ is known. Î(0)αβ is related to Îαβ , as can

be inferred from (78), by replacing the |~x−~x′| in the time
argument of hα′′β′′ with t − t′; and replacing the t − t′
in the spatial arguments of hα′′β′′ with |~x − ~x′|. Since
the hα′′β′′ at hand does not have any time dependence,

this means Î(0)αβ is given by replacing every t − t′ with

|~x − ~x′| in (116). Because |~x − ~x′| ≤ r + r′, this means
the Θ[t− t′− (r+ r′)] term in (106) may be dropped and



17

the Θ[r + r′ − (t− t′)] set to unity.14

Î(0)αβ = − 1

|~x− ~x′|

(
Mδαβ + δ0{αδ

i
β}Ji

)
× ln

[
r + r′ + |~x− ~x′|
r + r′ − |~x− ~x′|

]
(117)

World Function The world function is σx,x′ ≈ σ̄x,x′+
∆α∆β Î(0)αβ . Some calculus reveals

σx,x′ ≈ σ̄x,x′ −
(

1

r
+

1

r′

)
2(t− t′)~S · (~x× ~x′)
rr′ (1 + x̂ · x̂′)

(118)

− M

|~x− ~x′|
(
(t− t′)2 + (~x− ~x′)2

)
ln

[
r + r′ + |~x− ~x′|
r + r′ − |~x− ~x′|

]
,

with ~S · (~x× ~x′) = S(x1x′2−x′1x2), x̂ ≡ ~x/r, x̂′ ≡ ~x′/r′
and x̂ · x̂′ ≡ δij x̂ix̂′j being the Euclidean dot product.
van Vleck Determinant Because the Kerr spacetime

is a vacuum solution to Einstein’s equations Rµν = 0, the
Ricci tensor to first order in mass and angular momentum
must vanish, at least away from the spatial origin ~x 6= ~0.
Visser’s result (41) then informs us that the van Vleck
determinant must remain unity to this order,

∆x,x′ ≈ 1. (119)

We may also confirm this by computing the van Vleck
determinant from the world function in (118) using (11),
or by a direct differentiation (see (40))(

ηαβ + ∆β
(
∂α − ∂α

′
)
− 1

2
∆α∆β∂µ∂µ′

)
Î(0)αβ

=
1

4
(h[x] + h[x′]) = M

(
1

r
+

1

r′

)
. (120)

Parallel Propagator According to (46), the symmet-
ric portion of the parallel propagator can be read off the
metric perturbations, namely

1

2
(gµν′ + gνµ′) (121)

= ηµν −M
(

1

r
+

1

r′

)
δµν

+ δ0{µδν}i

(
1

r3

(
~S × ~x

)i
+

1

r′3

(
~S × ~x′

)i)
At this point, it is convenient to define

Vj ≡
x̂j + x̂′j

rr′ (1 + x̂ · x̂′)
. (122)

14 The following remark is in order. Because |r − r′| ≤ |~x − ~x′| ≤
r + r′, the only way r + r′ = t − t′ = |~x − ~x′| can be satisfied
simultaneously is when a null signal is sent from ~x′ to ~x with the
spatial origin (i.e. the spatial location of the black hole) lying on
the straight line joining them (as viewed in Euclidean 3−space),
so that ~x ·~x′ = −rr′. But we do not expect any signal to be able
to pass through the black hole; hence, all terms implying such a
configuration may be discarded.

(One may need to recognize (r+r′)−|~x−~x′|2 = 2rr′(1+
x̂ · x̂′).) By a direct calculation, one may show that Vj is
divergence-less.

∂iVi = ∂i
′
Vi = 0 (123)

and it also satisfies

~S ·
(
∂

∂~x
× ∂

∂~x′

)
Vj = 0. (124)

The antisymmetric portion of the parallel propagator is
given by

1

2
(gµν′ − gνµ′) = ∆α∂[µ+ Î(0)ν]α. (125)

In terms of Vi, its non-zero components are

1

2
(g0j′ − gj0′) =

(
M(t− t′) + ∆iJi

)
Vj (126)

and

1

2
(gjk′ − gkj′) =

(
M∆[k − (t− t′)J[k

)
Vj]. (127)

Tails in Kerr By recalling (107), Î0i = −JiI(1) reads

Î0i = −|~x− ~x′|−1Θ[r + r′ − (t− t′)]

× Ji ln

[
r + r′ + |~x− ~x′|
r + r′ − |~x− ~x′|

]
+O

[(
S/|~x− ~x′|2

)2]
(128)

To first order in angular momentum S, therefore, the
Kerr spacetime does add non-trivial terms to the null
cone portion of the Green’s functions of massless fields
in a Schwarzschild spacetime. However, the tail part
of these Green’s functions only receives additional con-
tributions from the Kerr spacetime within the region
r + r′ ≥ t − t′ > |~x − ~x′| near the null cone; no con-
tributions due to angular momentum arise deeper inside
the null cone, t − t′ > r + r′. This latter observation is
consistent with Poisson’s findings in [12]. In fact, we shall
find that the tail of the scalar and photon Green’s func-
tions are only altered by angular momentum precisely at
t− t′ = r+ r′, corresponding to the reflection of null rays
off the black hole. Only the tail of the graviton Green’s
function, which is sensitive not only to the Ricci curva-
ture but to Riemann as well, experience angular momen-
tum effects throughout the region |~x−~x′| < t−t′ ≤ r+r′.

Let us now proceed to compute the various pieces of
the tail portion of the Green’s functions. Equations (84),
(86), and (87) tell us there are only three distinct building
blocks. Employing (116), these are as follows. The first
is

Î(S) ≡ 1

2
∂µ∂µ′ Î − ∂ρ∂κ′ Îρκ

=
1

2
(∂t − ∂t′)

(
4MΘ[t− t′ − (r + r′)]

(t− t′)2 − |~x− ~x′|2

)
(129)

+
2~S · (x̂× x̂′)
rr′ (1 + x̂ · x̂′)

δ′[t− t′ − (r + r′)],
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The second is

Î(A)
µν ≡

1

2
∂α
−
∂[µ+ Îν]α, (130)

where ∂µ± ≡ ∂µ ± ∂µ′ . In terms of Vj in (122), the non-

zero components of Î(A)
µν are then

Î(A)
0j = −Mδ[r + r′ − (t− t′)]Vj , (131)

where (124) was used to set the angular momentum terms
to zero, and

Î(A)
jk =

M

2
∂[k−

(
Θ[r + r′ − (t− t′)]Vj]

)
(132)

+ J[k
(
δ[r + r′ − (t− t′)]Vj]

)
.

The third and final building blocks are the geometric cur-
vature terms. The non-zero components of the Riemann
terms are

(̂R|1)0i0j =
M

4
∂{i+

(
Θ[r + r′ − (t− t′)]Vj}

)
, (133)

(̂R|1)0ijk = −1

2
∂[j+Jk] (Θ[r + r′ − (t− t′)]Vi) , (134)

(̂R|1)ijkl = −M
2
∂[k+

(
δl]iΘ[r + r′ − (t− t′)]Vj

)
− (i↔ j) (135)

where the (i ↔ j) means one has to take the preceding
term and swap the indices i and j. Performing the ap-
propriate contractions and utilizing (123) yields the Ricci
tensor and scalar terms

(̂R|1)αβ =
(
Mδαβ + δ0{αδ

i
β}SJi

) δ[t− t′ − (r + r′)]

rr′
(136)

(̂R|1) = −2M
δ[t− t′ − (r + r′)]

rr′
(137)

We note that these δ-functions (the δ[t − t′ − (r + r′)]
and its derivative) arise from null rays scattering off the
point mass (i.e., the black hole) at the spatial origin. For
instance, one may also arrive at (136) by recalling from

(91) and (92) that the (̂R|1)αβ is an integral involving the

Ricci tensor over a prolate ellipsoid centered at (~x+~x′)/2
and whose foci are at ~x and ~x′. Since the linearized Ricci
tensor for the metric in (111) and (112) is

(R|1)αβ [~x] = 4π

(
Mδαβ + δ0{αδ

i
β}

(
~S × ∂

∂~x

)
i

)
δ(3)[~x]

(the 4πδ(3)[~x] comes from −δij∂i∂jr−1) we have

(̂R|1)αβ = 4π
(
Mδαβ + δ0{αδ

i
β}Ji

)
× 1

2

∫
dΩ′′

4π
δ(3)

[
~x+ ~x′

2
+ ~x′′

]
,

with the ~x′′ in (79). This integral leads us to (136), if we
re-express δ(3)[~x′′ − ~z] = δ[s− ρ]δ[cos θ′′ − cos θ+]δ[φ+ +
π − φ′′](

√
det gij/ sin θ′′)−1, using (A6).

Green’s Functions We may now put together the
minimally coupled massless scalar Green’s function in a
weak field Kerr spacetime, with the geometry described
in (111) and (112), to first order its mass M and angular
momentum S.

Gx,x′ ≈
Θ[t− t′]

4π

{
δ [σx,x′ ] + Θ [σx,x′ ] Î(S)

}
(138)

The Lorenz gauge photon counterpart is

Gµν′ ≈
Θ[t− t′]

4π

{
gµν′δ [σx,x′ ] (139)

+ Θ [σx,x′ ]
(
ηµν Î(S) + Î(A)

µν + (̂R|1)µν

)}
,

while the de Donder gauge graviton’s is

Gδερ′σ′ ≈
Θ[t− t′]

4π

{
Pδερ′σ′δ [σx,x′ ] + Θ [σx,x′ ]

(
P̄δερσÎ(S) +

1

2

(
Î(A)
ερ ησδ + Î(A)

εσ ηρδ + Î(A)
δρ ησε + Î(A)

δσ ηρε

)
+ P̄δερσ (̂R|1) + ηεδ (̂R|1)ρ′′σ′′ + ηρσ (̂R|1)δ′′ε′′ −

1

2
ηρ{δ (̂R|1)ε′′}σ′′ −

1

2
ησ{δ (̂R|1)ε′′}ρ′′ + (̂R|1)ρ′′{δ′′ε′′}σ′′

)}
.

We remind the reader that the van Vleck determinant is
unity; whereas the world function σx,x′ can be found in
(118), the parallel propagator gµν′ components in (121),

(126) and (127), Î(S) in (129); the components of Î(A)
µν

in (131) and (132); and the components of the geometric

terms such as (̂R|1)αβµν in (133) through (137). As a

consistency check of the building blocks Î(S), Î(A)
µν and

(̂R|1)µν , by employing the identities,

δ[−z] = δ[z], δ′[−z] = −δ′[z], δ′′[−z] = δ′′[z], (140)

we have verified that the tail part of our massless scalar
and photon Green’s functions satisfy (17), or equiva-
lently,

∂ν+ Î(S) + ∂µ
(
Î(A)
µν + (̂R|1)µν

)
= 0. (141)
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r'
r

r'

t-t'

FIG. 3: Time elapsed (t − t′) vs. radial distance (r) view of
the causal structure of the Green’s functions in the weakly
curved limit of Kerr spacetime. The spacetime point source
is located at radial coordinate distance r′ from the black hole.
The dark grey area represents the early time tail |r − r′| ≤
|~x− ~x′| ≤ t− t′ ≤ r + r′; and the light grey region is the late
time tail t− t′ ≥ r+ r′. The dashed line is t− t′ = r+ r′; the
two solid black lines are t − t′ = |r − r′|. As already noted
by DeWitt and DeWitt [1] and Pfenning and Poisson [3], the
Green’s functions undergo an abrupt change in behavior when
time elapsed transitions from t− t′ < r+ r′ to t− t′ > r+ r′.

The region t−t′ ≥ r+r′ only receives contribution from Î(S) in
(129), which contains angular momentum S terms only when
t − t′ is exactly equal to r + r′; while the dark grey region

|r − r′| ≤ t− t′ ≤ r + r′ only receives contribution from Î(A)
µν

in (130) and the geometric curvature terms in (133) through
(137). The tail part of the massless scalar Green’s functions is
only non-zero for t−t′ ≥ r+r′, because it is entirely governed

by Î(S). Because the photon and graviton Green’s functions

depend on Î(A)
µν and the geometric terms, they are non-zero

within |r− r′| ≤ t− t′ ≤ r+ r′. However, their behaviors are
altered once t − t′ ≥ r + r′, since they too become governed

solely by Î(S).

Causal structure Notice the Î(S) in (129) is zero
close to the light cone, and only non-zero for late times:
t − t′ ≥ r + r′. This in turns indicates the tail part
of the massless scalar Green’s function is non-zero only
after the time elapsed t − t′ equals or exceeds the time
needed for a null ray to travel from the source at x′,
reflect off the black hole, and reach the observer at x.
Furthermore it is sensitive to first order spin effects only
exactly at t− t′ = r+ r′. On the other hand, the photon

Green’s functions contain, in addition to Î(S), the Î(A)
µν

in (131) and (132) and (̂R|1)αβ in (136); the graviton

Green’s function contain all three building blocks, Î(S),

Î(A)
µν and the curvature terms in (133) through (137).

The Î(A)
µν and curvature terms are non-zero only at early

times |r − r′| ≤ |~x − ~x′| < t − t′ ≤ r + r′; mathemati-
cally this is because all these terms contain the deriva-

tive ∂j+ Î(1) ∝ Θ[r + r′ − (t − t′)]Vj . However, it may
be worthwhile to search for a more physical explanation,
for it could lead us to a deeper understanding of the tail
effect. In any case, this means both the photon and gravi-
ton Green’s functions carry non-zero tails throughout the
entire interior of the future null cone of x′, though their
behaviors are altered abruptly when the time elapsed t−t′
changes from t − t′ < r + r′ to t − t′ > r + r′. This
is because, in the former, they contain effects described

by Î(A)
µν and geometric curvature; while in the latter re-

gion they are, like their scalar cousin, governed solely by

Î(S). (We illustrate this abrupt change in behavior of
the Green’s functions in Figure (3).) Finally, we observe
that spin effects are present on the null cone and, in the
tail, exactly at t− t′ = r + r′, for the scalar and photon
Green’s functions. Only the graviton is sensitive to the
full Riemann curvature of spacetime, which unlike the
Ricci tensor and scalar, is non-zero everywhere. This is
why the tail of the graviton Green’s function contain spin
effects within the whole region of |~x−~x| < t− t′ ≤ r+r′.

VI. SUMMARY AND CONCLUDING
THOUGHTS

In this paper, we have developed a general Born se-
ries expansion for solving the minimally coupled mass-
less scalar, photon, and graviton Green’s function in
perturbed spacetimes described by the metric gµν =
ḡµν + hµν . The key starting points are the integral
equations for the scalar (53), photon (62) and graviton
(69) cases, which were gotten from the quadratic por-
tions of the actions of the respective field theories. From
these, one performs a power series in the perturbation
hµν and iterate these equations (followed by dropping
the remainder terms) however many times necessary to
achieve the desired accuracy. We derived a first order in-
tegral representation for the scalar (56) and photon (65)
Green’s functions in generic backgrounds, and for scalar
(58), photon (66) and graviton (73) in a Minkowski back-
ground. Furthermore, in (84), (86), and (87), we decom-
posed these perturbed Minkowski results into their light
cone and tail pieces, showing their consistency with the
Hadamard form. We reiterate that, at first order in met-
ric perturbations, the solution of the scalar, photon and
graviton Green’s functions is reduced to the evaluation
of the single matrix integral in (78); the remaining work
is mere differentiation. Even though we have applied our
perturbation theory only to massless scalars, photons and
gravitons, because all we have exploited are the quadratic
actions of the field theories involved, our methods should
in fact apply to any field theory whose quadratic action
is hermitian.
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As a concrete application of our formalism, we have
calculated the Green’s functions of the massless scalar
(138), photon (139), and graviton (140) in the weak field
limit of the Kerr black hole geometry, to first order in its
mass M and angular momentum S. A subset of these
weak field results for the Schwarzschild case have pre-
viously been obtained by DeWitt and DeWitt [1], and
Pfenning and Poisson [3]. Our Kerr calculation shows
that, to first order in angular momentum S, there will
be rotation-induced corrections to these Schwarzschild
Green’s functions, only on and near the null cone, namely
|~x − ~x′| ≤ t − t′ ≤ r + r′ (where r ≡ |~x| and r′ ≡ |~x′|).
Beyond that, t− t′ > r + r′, the behavior of the Green’s
functions changes abruptly and is governed solely by the
mass of the black hole.

Of the previous approaches we have studied – DeWitt
and DeWitt [1], Kovacs and Thorne [2] and Pfenning
and Poisson [3] – DeWitt and DeWitt’s seems to be the
most general. They utilized Julian Schwinger’s perspec-
tive that the Green’s function is an operator in a ficti-

tious Hilbert space, for example, Gx,x′ = 〈x|Ĝ|x′〉, from
which they found its variation. However, on the level
of classical field theory, the main concern of this paper,
our methods do not require any additional structure than
the quadratic action of the field theory at hand. Hence,
we hope it is accessible to a wider audience.15 Our null
cone versus tail decomposition was modeled after the
work of Pfenning and Poisson [3] (except we generalized
it to arbitrary metric perturbations), who in turn state
that their work was based on calculations by Kovacs and
Thorne [2]. In Pfenning and Poisson’s work, they wrote
down a perturbative version of the differential equations
in (15), (16) and (18) for a weakly curved spacetime
with only scalar perturbations Φ, and derived integral
representations of the solutions using the flat spacetime
Green’s function Ḡx,x′ ; their methods can very likely
be generalized to arbitrary perturbations. However, re-
peated (and un-necessary) use was made of the equations
obeyed by the gravitational potential Φ. We feel this ob-
scures the fact that the solution of the Green’s function
of some field theory depends on the geometry but not on
the underlying dynamics of the geometry itself.

Cosmology We close with some thoughts on apply-
ing our work to cosmological physics. We have already
shown that the classical theory of light in a spatially flat
inhomogeneous FLRW universe is equivalent to that in
a perturbed Minkowski spacetime. Consider a source of
photons that turns on for a finite duration of time, say

15 At the same time, we should mention that Schwinger’s [10] initial
value formulation of quantum field theory (nowadays known as
the Schwinger-Keldysh formalism), has in fact been employed to
tackle the post-Newtonian program in general relativity, itself a
weak field, perturbative problem about flat spacetime. See, for
instance, Galley and Tiglio [11]. There is very likely a position-
space diagrammatic calculation one can do to reproduce (58),
(66) and (73).

t
Tail

X

FIG. 4: At ‘X’, let there be a burst of photons from a source
of finite duration. If there were no tails, these photons would
sweep out a light cone of non-zero thickness proportional to
the duration of the event itself. Because of the metric pertur-
bations hµν , we have shown via our photon Green’s function
calculation that light develops a tail in a spatially flat inho-
mogeneous FLRW universe. The dark oval represents the tail

of the photon field A
(tail)
µ at the present time t. Deep within

the light cone, we argue that the size of the tail effect in our
universe is primarily governed by the power spectrum of the
metric perturbations, which is currently being probed by large
scale structure observations.

a gamma ray burst at redshift z = 6. We display in Fig.
(4) that not only would these photons sweep out a null
cone of finite thickness proportional to the duration of
the burst, but they will also fill its interior. If t is the
present time, the dark oval represents the light that has
leaked off the light cone. From our calculation in (86),
the tail part of the Green’s function and hence the vector

potential A
(tail)
µ begins at O[h]. Because the components

of the stress energy tensor of the electromagnetic fields
in an orthonormal frame Tµ̂ν̂ (which is what an observer
can measure) is quadratic in the derivatives of the poten-
tial, Tµ̂ν̂ ∼ a−4(∂A)2, this means deep in the interior of
the null cone Tµ̂ν̂ itself must be quadratic in the metric
perturbations hµν .16 In cosmology, because the metric
perturbations hµν are believed to be sourced by quan-
tum fluctuations of fields in the very early universe, the
hµν at a particular point in spacetime is a random vari-
able and to obtain concrete results one would have to
discuss the statistical average of the product of hµν with
itself, i.e. 〈hµν [x′]hαβ [x′′]〉, the power spectrum. The
scalar sector of this power spectrum is being probed by

16 A consistent O[h2] calculation of the stress energy tensor that
is valid everywhere, both near the light cone and deep within
it, would therefore require the knowledge of the photon Green’s
function to O[h2].
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the observations currently underway of large scale struc-
ture in the universe, and one would have to fold these
data into a theoretical investigation of how large the tail
effect is in our universe.

One way to proceed is perhaps, following Poisson [12],
to start with some generic localized wave packet to mimic
the light from a finite duration event such as our gamma
ray burst at z = 6. We may then invoke the Kirchhoff
representation in (2) (with no current, Jν

′
= 0) to evolve

this wave packet forward in time. At some later time,
one can compute the ratio of energies in the tail piece to
that still remaining on the null cone∫

T
(tail)

0̂0̂

√
−det[ηij + hij ]d

3x∫
T

(light cone)

0̂0̂

√
−det[ηij + hij ]d

3x

∣∣∣∣∣
t

. (142)

This will indicate if there is a significant correction fac-
tor that needs to be applied to observations of objects at
cosmological distances, when inferring their true bright-
ness. Because of the integrals encountered in (2) and the
complicated terms in (86), however, this is a difficult cal-
culation. We hope to report on this line of investigation
in a future publication.
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Appendix A: The Matrix Iαβ

The primary objective in this section is the analysis
of Iαβ in (74), including its behavior near the null cone
σ̄x,x′ = 0. A similar discourse may be found in Pfen-
ning and Poisson [3], but ours is more general because
we performed it for arbitrary metric perturbations.

Let us first display the integral in its most explicit
form, using the second equality of (32):

Iαβ =
1

4π

∫
d4x′′hα′′β′′ [t

′′, ~x′′]

× δ[t− t′′ − |~x− ~x′′|]δ[t′′ − t′ − |~x′′ − ~x′|]
|~x′′ − ~x′||~x− ~x′′|

. (A1)

We may integrate over t′′ immediately, so that t′′ = t −
|~x−~x′′| = t′+|~x′′−~x′|. This in turns yields the constraint
that, viewed in Euclidean 3-space, the observer at ~x and
the emitter at ~x′ form the foci of a prolate ellipsoid, with
semi-major axis ∆0/2, defined by

t− t′ = |~x− ~x′′|+ |~x′′ − ~x′|. (A2)

This implies, to get a non-zero Iαβ , x needs to lie in the
future light cone of x′,

t− t′ ≥ |~x− ~x′|. (A3)

For by Cauchy’s inequality, |~x − ~x′| ≤ |~x − ~x′′| + |~x′ −
~x′′|, which means, outside the light cone t − t′ < |~x −
~x′| ≤ |~x − ~x′′| + |~x′ − ~x′′| and no solution can be found.
Fig. (2) illustrates the situation at hand: we see that the
product Ḡx,x′′hα′′β′′Ḡx′′,x′ , due to the causal structure
of the Green’s function, is non-zero if and only if the x′′

lie both on the future null cone of x′ and on the past null
cone of x. This can be satisfied if and only if x′ lies on
or within the past light cone of x or equivalently, if and
only if x lies on or within the future light cone of x′.

If we now assume that (A3) holds, then it is the surface
of the ellipsoid in (A2) that we need to integrate over,
weighted by hα′′β′′ [t

′′, ~x′′]. To see this, let us employ
ellipsoidal coordinates centered at (1/2)(~x+ ~x′), i.e. put
~x′′ ≡ (1/2)(~x′ + ~x) + ~x′′′, with

~x′′′[s, θ, φ] =

(√
(s/2)2 − (R/2)2 sin θ cosφ,√
(s/2)2 − (R/2)2 sin θ sinφ,

(s/2) cos θ

)
. (A4)

These coordinates fix the foci to be at ~x and ~x′ but al-
low the size of the ellipse to vary with s. (The 1- and

2-components of ~x′′′ tell us
√

(s/2)2 − (R/2)2 act as the
radial coordinate in the 12-plane, and hence we shall re-
quire s ≥ R. This means all volume integrals involve s
would have limits

∫∞
R

ds.) The Euclidean spatial metric
in 3 dimensions goes from gij = δij for Cartesian coordi-
nates to

gij = diag

[
(s/2)2 − (R/2)2 cos2 θ

s2 −R2
,

(s/2)2 − (R/2)
2

cos2 θ,(
(s/2)

2 − (R/2)
2
)

sin2 θ

]
,

(s, θ, φ), s ≥ R, (A5)

where R ≡ |~∆| = |~x − ~x′|. The Euclidean volume mea-
sure is√

det[gij ] =
1

2

(
(s/2)

2 − (R/2)
2

cos2 θ
)

sin θ. (A6)
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Using the expressions for the components of ~x′′ in (A4),
we may obtain

|~x′′ − ~x| = s

2
− R

2
cos[θ], |~x′′ − ~x′| = s

2
+
R

2
cos[θ].

This means the argument in the remaining δ-function of
the I-integrand is t−t′−s, and the

√
det gij |~x−~x′′|−1|~x′−

~x′′|−1 = (sin θ)/2. The integral over s can be performed
immediately, and because the lower limit is R, it gives
us Θ[t− t′ −R] = Θ[t− t′]Θ[σ̄x,x′ ] multiplying hαβ with
s = t− t′. We are left with the angular integration,

Iαβ ≡ Θ[t− t′]Θ[σ̄x,x′ ]Îαβ
= Θ[t− t′]Θ[σ̄x,x′ ] (A7)

× 1

2

∫
S2

dΩ

4π
hα′′β′′

[
t+ t′

2
+
R

2
cos[θ],

~x+ ~x′

2
+ ~x′′′

]
,

where now ~x′′′ = ~x′′′[t− t′, θ, φ].
Small σ̄x,x′ expansion For small σ̄x,x′ , we may de-

velop Îαβ as a series expansion in powers of σ̄x,x′ . Right
on the null cone t− t′ = |~x−~x′|, and if we lie ~x−~x′ along
the positive 3-axis, the spacetime arguments of hαβ take
on the Cartesian components

ξ̄α ≡
(
t+ t′

2
+

∆0

2
cos θ, 0, 0,

x3 + x′3

2
+
R

2
cos θ

)α
(A8)

which is equivalent to ξ̄[cos θ] = (1/2)(x+x′)+(1/2)(x−
x′) cos θ. This is a straight line joining x′ to x. Let us
expand about this straight line by expressing the time
component (1/2)(t+ t′ +R cos θ) as

t+ t′

2
+

√(
t− t′

2

)2

− σ̄x,x′

2
cos θ (A9)

and the 3-component (1/2)(x3 + x′3 + ∆0 cos θ) as

x3 + x′3

2
+

√(
R

2

)2

+
σ̄x,x′

2
cos θ. (A10)

Perform a change of variables in (A7) cos θ ≡ 2λ− 1 and
Taylor expand hαβ in powers of σ̄x,x′ in the time and
3-components and in powers of

√
σ̄x,x′ in the remaining

orthogonal directions. One would find it is necessary to
expand the orthogonal directions up to second order to
achieve a non-zero result. With ξ̄ = x′ + λ(x − x′), the
expansion of (A7) is

Îαβ =
1

2

∫ 1

0

dλhα′′β′′
[
ξ̄
]

(A11)

+
σ̄x,x′

4

∫ 1

0

dλ

(
2λ− 1

R
∂3′′hα′′β′′ −

2λ− 1

t− t′
∂0′′hα′′β′′

)
+
σ̄x,x′

4

∫ 1

0

dλ(1− λ)λ
(
∂21′′ + ∂22′′

)
hα′′β′′ + . . .

where ∂21′′+∂
2
2′′ is the Laplacian involving only the direc-

tions orthogonal to ~x− ~x′. The arguments of the hα′′β′′s
on the second and third lines have been suppressed; they
are the same as that of the first line. The single deriva-
tive terms can be converted into double derivatives by
using (45) and integrating-by-parts. Up to a remainder
that is of O[σ̄2], one can show

σ̄x,x′

4

∫ 1

0

dλ

(
2λ− 1

R
∂Z′′hα′′β′′ −

2λ− 1

t− t′
∂t′′hα′′β′′

)
≈ σ̄x,x′

4

∫ 1

0

dλ(1− λ)λ
(
∂2Z′′ − ∂2t′′

)
hα′′β′′ . (A12)

By the chain rule,

(1− λ)ληµν
∂2hα′′β′′ [ξ̄]

∂ξ̄µ∂ξ̄ν
= ηµν

∂2hα′′β′′ [ξ̄]

∂xµ∂x′ν
, (A13)

and hence we gather, as σ̄x,x′ → 0,

Îαβ ≈
(

1− σ̄x,x′

2
ηµν∂µ∂ν′

)(1

2

∫ 1

0

hα′′β′′ [ξ̄]dλ

)
.

(A14)
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