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When one splits spacetime into space plus time, the Weyl curvature tensor (vacuum Riemann
tensor) gets split into two spatial, symmetric, and trace-free (STF) tensors: (i) the Weyl tensor’s
so-called “electric” part or tidal field Ejk, which raises tides on the Earth’s oceans and drives geodesic
deviation (the relative acceleration of two freely falling test particles separated by a spatial vector ξk

is ∆aj = −Ejkξ
k); and (ii) the Weyl tensor’s so-called “magnetic” part or (as we call it) frame-drag

field Bjk, which drives differential frame dragging (the precessional angular velocity of a gyroscope
at the tip of ξk, as measured using a local inertial frame at the tail of ξk, is ∆Ωj = Bjkξ

k.)
Being STF, Ejk and Bjk each have three orthogonal eigenvector fields which can be depicted by

their integral curves. We call the integral curves of Ejk’s eigenvectors tidal tendex lines or simply
tendex lines, we call each tendex line’s eigenvalue its tendicity, and we give the name tendex to
a collection of tendex lines with large tendicity. The analogous quantities for Bjk are frame-drag
vortex lines or simply vortex lines, their vorticities, and vortexes.

These concepts are powerful tools for visualizing spacetime curvature. We build up physical intu-
ition into them by applying them to a variety of weak-gravity phenomena: a spinning, gravitating
point particle, two such particles side by side, a plane gravitational wave, a point particle with a
dynamical current-quadrupole moment or dynamical mass-quadrupole moment, and a slow-motion
binary system made of nonspinning point particles. We show that a rotating current quadrupole
has four rotating vortexes that sweep outward and backward like water streams from a rotating
sprinkler. As they sweep, the vortexes acquire accompanying tendexes and thereby become out-
going current-quadrupole gravitational waves. We show similarly that a rotating mass quadrupole
has four rotating, outward and backward sweeping tendexes that acquire accompanying vortexes as
they sweep, and become outgoing mass-quadrupole gravitational waves. We show, further, that an
oscillating current quadrupole ejects sequences of vortex loops that acquire accompanying tendex
loops as they travel, and become current-quadrupole gravitational waves; and similarly for an oscil-
lating mass quadrupole. And we show how a binary’s tendex lines transition, as one moves radially,
from those of two static point particles in the deep near zone, to those of a single spherical body in
the outer part of the near zone and inner part of the wave zone (where the binary’s mass monopole
moment dominates), to those of a rotating quadrupole in the far wave zone (where the quadrupolar
gravitational waves dominate).

In paper II we will use these vortex and tendex concepts to gain insight into the quasinormal modes
of black holes, and in subsequent papers, by combining these concepts with numerical simulations,
we will explore the nonlinear dynamics of curved spacetime around colliding black holes. We have
published a brief overview of these applications in Physical Review Letters [1]. We expect these
vortex and tendex concepts to become powerful tools for general relativity research in a variety of
topics.

PACS numbers: 04.25.dg, 04.25.Nx, 04.30.-w

I. MOTIVATION AND OVERVIEW

In the 1950s John Archibald Wheeler coined the phrase
geometrodynamics to epitomize his intuition that curved
spacetime must have a rich range of nonlinear dynam-
ical behaviors — behaviors that are important in our
universe and are worthy of probing deeply by both theo-
retical and observational means (see Ref. [2] and earlier
papers by Wheeler reprinted therein and also Ref. [3]).
It was obvious to Wheeler that analytical tools by them-
selves would not be sufficient to reveal the richness of
geometrodynamics, so he encouraged his colleagues and

students to begin developing numerical tools [4–6], and
he encouraged Joseph Weber to develop technology for
gravitational-wave observations [7].

Today, a half century later, numerical relativity has fi-
nally reached sufficient maturity (for a review, see Ref. [8]
and the references therein) that, hand in hand with ana-
lytical relativity, it can be used to explore nonlinear ge-
ometrodynamics in generic situations; and gravitational-
wave detectors are sufficiently mature [9–13] that they
may soon observe nonlinear geometrodynamics in black-
hole collisions.

Unfortunately, there is a serious obstacle to extract-
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ing geometrodynamical insights from numerical relativ-
ity simulations: a paucity of good tools for visualizing
the dynamics of curved spacetime. We are reasonably
sure that buried in the billions of numbers produced by
numerical-relativity simulations there are major discov-
eries to be made, but extracting those discoveries is ex-
ceedingly difficult and perhaps impossible with the tools
we have had thus far.

Until now, curved spacetime has been visualized pri-
marily via (isometric) embedding diagrams (Sec. 23.8 of
Ref. [14]): choosing spacelike two dimensional surfaces
in spacetime, and embedding them in flat 3-dimensional
Euclidean space or 2+1-dimensional Minkowski space-
time in a manner that preserves the surfaces’ intrinsic
geometry. (For some examples of embedding diagrams
applied to black-hole spacetimes, see, e.g., Refs. [15–17]).
Unfortunately, such embedding diagrams are of very lim-
ited value. They capture only two dimensions of space-
time, and the 2-surfaces of greatest interest often can-
not be embedded globally in flat Euclidean 3-space or
flat Minkowski 2+1-dimensional spacetime [15, 18–20].
Mixed Euclidean/Minkowski embeddings are often re-
quired (e.g. Fig. 4 of Ref. [15]), and such embeddings
have not proved to be easily comprehended. Moreover,
although it is always possible to perform a local embed-
ding in a flat 3-space (in the vicinity of any point on the
two-surface), when one tries to extend the embedding to
cover the entire two-surface, one often encounters discon-
tinuities analogous to shocks in fluid mechanics [18, 20].

A systematic approach to understanding the connec-
tion between nonlinear near-field dynamics in general rel-
ativity and emitted gravitational waves is being devel-
oped by Rezzolla, Jaramillo, Macedo, and Moesta [21–
24]. This approach focuses on correlations between data
on a surface at large radius (ideally null infinity) and data
on world tubes in the source region (such as black hole
horizons). The purpose is to use such correlations to infer
the dynamics of a black hole (e.g. the kick) directly from
data on its horizon. While we find this approach exciting
and attractive, in our own work we seek a more direct set
of tools: tools that can probe the dynamics of spacetime
curvature that cause such correlations in the first place,
and that can be more readily and intuitively applied to
a wider range of other geometrodynamic phenomena. It
is our hope that eventually our tools and those of Rez-
zolla et. al. [21–23] will provide complementary pictures
for understanding spacetime dynamics, and particularly
black hole kicks.

We have introduced our new set of tools in a recent
paper in Physical Review Letters [1]. They are tools for
visualizing spacetime curvature, called tidal tendex lines,
tendicities, and tendexes; and frame-drag vortex lines,
vorticities and vortexes. These tools capture the full
details of the Weyl curvature tensor (vacuum Riemann
tensor), which embodies spacetime curvature. They do
so in three dimensional, dynamically evolving pictures,
of which snapshots can be printed in a paper such as

this one, and movies can be made available online.1

Specifically, as of this writing two movies can be seen
at Refs. [26, 27]; one shows the vortex lines from a rotat-
ing current quadrupole, the other, vortex lines from two
particles that collide head on with transverse, antiparallel
spins.

We have found these tools to be an extremely powerful
way to visualize the output of numerical simulations. We
have also used them to obtain deep new insights into
old analytical spacetimes. We have applied them, thus
far, to pedagogical linear-gravity problems (this paper
and [28]), to stationary and perturbed black holes (Paper
II in this series), and to simulations of the inspiral and
mergers of spinning black holes ([1] and Paper III). We
plan to apply them in the future in a variety of other
geometrodynamical venues, such as black holes ripping
apart neutron stars and curved spacetime near various
types of singularities.

This is the first of a series of papers in which we will (i)
present these tools, (ii) show how to use them, (iii) build
up physical intuition into them, and (iv) employ them
to extract geometrodynamical insights from numerical-
relativity simulations. Specifically:

In this paper (Paper I), we introduce these vortex and
tendex tools, and we then apply them to weak-gravity sit-
uations (linearized general relativity) with special focus
on the roles of vortexes and tendexes in gravitational-
wave generation. In a closely related paper [28], three of
us have applied these tools to visualize asymptotic grav-
itational radiation and explore the topology of its vortex
and tendex lines, and also to explore a linearized grav-
ity model of an extreme-kick merger. In Paper II we
shall apply our new tools to quiescent black holes and
quasi-normal modes of black holes, with special focus
once again on the roles of vortexes and tendexes in gen-
erating gravitational waves. In Paper III and subsequent
papers we shall apply our tools to numerical simulations
of binary black holes, focusing on nonlinear geometro-
dynamics in the holes’ near zone and how the near-zone
vortexes and tendexes generate gravitational waves.

The remainder of this paper is organized as follows:

In Sec. II A we review the well-known split of the Weyl
curvature tensor into its “electric” and “magnetic” parts
Eij and Bij , and in Sec. II B we review the Maxwell-
like evolution equations for Eij and Bij and discuss the
mathematical duality between these fields. Then in Sec.
III we review the well known physical interpretation of

1 Just as there is no unique method to evolve field lines in elec-
tromagnetism, so too is there no unique way to match tendex or
vortex lines at one time with others at a later time. Nevertheless,
animations of field lines are useful for pedagogical purposes and
for building intuition [25]. While some of the authors and col-
leagues are investigating how to evolve tendex and vortex lines
in generic situations, the animations of the lines posted online all
have special symmetries that provide a natural way to connect
lines at one time with lines at the next.
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Eij as the tidal field that drives geodesic deviation and
the not so well known interpretation of Bij [29, 30] as the
frame-drag field that drives differential frame-dragging,
and we derive the equation of differential frame dragging.

In Sec. IV we introduce our new set of tools for visu-
alizing spacetime curvature. Specifically: In Sec. IVA
we introduce tendex lines and their tendicities, and we
quantify them by their stretching or compressional force
on a person; and we also introduce vortex lines and their
vorticities and quantify them by their twisting (preces-
sional) force on gyroscopes attached to the head and feet
of a person. Then in Sec. IVB we introduce vortexes and
tendexes (bundles of vortex and tendex lines that have
large vorticity and tendicity) and give examples.

In the remainder of this paper we illustrate these new
concepts by applying them to some well known, weak-
gravity, analytic examples of spacetime curvature. In
Sec. V we focus on the spacetime curvature of stationary
systems, and in Sec. VI we focus on dynamical systems
and develop physical pictures of how they generate grav-
itational waves.

More specifically, in Sec. VA, we compute Eij and
Bij for a static, gravitating, spinning point particle; we
explain the relationship of Bij to the particle’s dipolar
“gravitomagnetic field”, we draw the particle’s tendex
lines and vortex lines, and we identify two vortexes that
emerge from the particle, a counterclockwise vortex in its
“north polar” region and a clockwise vortex in its “south
polar” region. In Sec. VB, we draw the vortex lines for
two spinning point particles that sit side by side with
their spins in opposite directions, and we identify their
four vortexes. Far from these particles, they look like a
single point particle with a current quadrupole moment.
In Sec. VC, we draw the vortex lines for such a current-
quadrupole particle and identify their vortexes. Then
in Sec. VD, we show that the tendex lines of a mass-
quadrupole particle have precisely the same form as the
vortex lines of the current-quadrupole particle, and we
identify the mass quadrupole’s four tendexes.

Turning to dynamical situations, in Sec. VIA we com-
pute Eij and Bij for a plane gravitational wave, we ex-
press them in terms of the Weyl scalar Ψ4, and we draw
their vortex and tendex lines. In Sec. VIB we explore
the quadrupolar (l = 2, m = 0) angular pattern of grav-
itational waves from the head-on collision of two black
holes, and we draw their vortex lines and tendex lines,
intensity-coded by vorticity and tendicity, on a sphere
in the wave zone. In Sec. VIC we compute Eij and Bij

for a general, time varying current quadrupolar parti-
cle, and then in Secs. VID and VIE we specialize to
a rotating current quadrupole and an oscillating cur-
rent quadrupole, and draw their vortex and tendex lines.
Our drawings and the mathematics reveal that the par-
ticle’s outgoing gravitational waves are generated by its
near-zone vortexes. The rotating current quadrupole has
four vortexes that spiral outward and backward like four
water streams from a rotating sprinkler. As it bends
backward, each vortex acquires an accompanying ten-

dex; and the vortex and tendex together become a grav-
itational wave crest or gravitational wave trough. The
oscillating current quadrupole, by contrast, ejects vortex
loops that travel outward, acquiring accompanying ten-
dex loops with strong tendicity on the transverse segment
of each loop and weak on the radial segment—thereby
becoming outgoing gravitational waves.
In Sec. VI F we show that a time varying mass

quadrupole produces the same phenomena as a time
varying current quadrupole, but with vortexes and ten-
dexes interchanged.
In Sec. VIG we study the vortexes and tendexes of

a slow-motion binary made of nonspinning point parti-
cles. In the near zone, the tendex lines transition, as
one moves radially outward, from those of two individual
particles (radial and circular lines centered on each par-
ticle) toward those of a single spherical body (radial and
circular lines centered on the binary and produced by
the binary’s mass monopole moment). In the transition
zone and inner wave zone, the mass monopole contin-
ues to dominate. Then at radii r ∼ a2/M (where a is the
particles’ separation and M is the binary’s mass), the ra-
diative quadrupole moment begins to take over and the
tendex lines gradually transition into the outward-and-
backward spiraling lines of a rotating quadrupole.
We make some concluding remarks in Sec. VII.
Throughout this paper we use geometrized units with

c = G = 1, and we use the sign conventions of MTW [14]
for the metric signature, the Weyl curvature, and the
Levi-Civita tensor. We use Greek letters for spacetime
indices (0–3) and Latin letters for spatial indices (1–3),
and we use arrows over 4-vectors and bold-face font for
spatial 3-vectors and for tensors. In orthonormal bases,
we use hats over all kinds of indices.

II. THE TIDAL FIELD Eij AND FRAME-DRAG

FIELD Bij

A. 3+1 split of Weyl curvature tensor into

Eij and Bij

For a given spacetime, the Weyl curvature tensor can
be calculated from the Riemann tensor by subtracting
Riemann’s trace from itself; i.e., by subtracting from Rie-
mann the following combinations of the Ricci curvature
tensor Rµ

ν , and Ricci curvature scalar R (Eq. (13.50) of
MTW [14]):

Cµν
ρσ = Rµν

ρσ − 2δ
[µ

[ρR
ν]
σ] +

1

3
δ
[µ

[ρδ
ν]

σ]R . (2.1)

Here δµρ is the Kronecker delta, and the brackets [ ]
represent antisymmetrization. Note that in vacuum,
Cµν

ρσ = Rµν
ρσ , and thus in vacuum the Weyl tensor con-

tains all information about the spacetime curvature.
Let us pick a foliation of spacetime into a family of

spacelike hypersurfaces. We shall denote by uµ the 4-
velocity of observers who move orthogonal to the folia-



4

tion’s space slices, and by γµν = gµν + uµuν the induced
spatial three metric on these slices, so that γ µ

α is the
projection operator onto the slices. As is well known,
e.g. [31], using this projection operator, we can split the
Weyl tensor covariantly into two irreducible parts, which
are symmetric, trace-free tensors that lie in the foliation’s
hypersurfaces (i.e. that are orthogonal to uµ). These
pieces are

Eαβ = γα
ργβ

σCρµσνu
µuν , i.e. Eij = Ci0̂j0̂ , (2.2a)

an even parity field called the “electric” part of Cµν
ρσ;

and

Bαβ = −γα
ργβ

σ ∗Cρµσνu
µuν , i.e. Bij =

1

2
ǫipqC

pq

j0̂
,

(2.2b)
an odd parity field known as the “magnetic” part of
Cµν

ρσ. Here the symbol * represents the (left) Hodge

dual, ∗Cρµσν = 1
2ǫρµηλC

ηλ
σν ; and for each field the sec-

ond expression is written in 3+1 notation: the Latin (spa-
tial) indices are components in the foliation’s hypersur-

face, and the 0̂ is a component on the foliation’s unit
time basis vector ~e0̂ ≡ ~u. Our normalization for the
Levi-Civita tensor is that of MTW: in a right-handed
orthonormal frame, ǫ0̂1̂2̂3̂ = +1, and the spatial Levi-
Civita tensor is defined by ǫipq = ǫ0̂ipq , with ǫ1̂2̂3̂ = 1 in

a right-handed orthonormal basis. Note that Eqs. (2.2)
are a direct and intentional analogy to the decomposition
of the Maxwell tensor of electromagnetism Fµν into the
familiar electric and magnetic fields Ei and Bi [31]:

Ei = Fi0̂ , Bi = − ∗Fi0̂ =
1

2
ǫipqF

pq. (2.3)

Note that our sign conventions differ from [31], where
ǫ0̂1̂2̂3̂ = −1, and so Eq. (2.2b) has an additional minus
sign in order to maintain a strict analogy with the mag-
netic field Bi of electromagnetism. This results in a Bij

defined with a different sign convention than, for exam-
ple, in [32, 33].

B. Evolution of Eij and Bij

The propagation equations for the Weyl tensor and its
gravito-electromagnetic representation are the Bianchi
identities. We shall write them down and discuss them
in three contexts: a general foliation and coordinate sys-
tem, the local Lorentz frame of a freely falling observer,
and the weak-gravity, nearly Minkowski spacetimes of the
current paper (Paper I in this series).

1. General foliation and coordinate system in the language
of numerical relativity

Because this paper is a foundation for using Eij and
Bij to interpret the results of numerical relativity sim-
ulations, we shall write their evolution equations (the

Bianchi identities) in a general coordinate system of the
type used in numerical relativity, and we shall discuss
these equations’ mathematical structure in the language
of numerical relativity.
We denote by t a time coordinate that is constant on

the foliation’s hypersurfaces, and by α and ~β the foli-
ation’s lapse and shift functions, so the orthogonal ob-

servers’ 4-velocity is ~u = α−1(~∂t − ~β). The 3+1 split di-
vides the Bianchi identities into evolution equations that
govern the time evolution of the spatial fields, and con-
straint equations that are obeyed by the fields on each
time slice. The evolution equations are [34, 35]

∂tEij =LβEij + α[DkBl(iǫ
kl
j) − 3Ek

(iKj)k

+Kk
kEij − ǫ kl

i EkmKlnǫ
mn
j + 2akBl(iǫ

kl
j) ] ,

∂tBij =LβBij + α[−DkEl(iǫ kl
j) − 3Bk

(iKj)k

+Kk
kBij − ǫ kl

i BkmKlnǫ
mn
j − 2akEl(iǫ kl

j) ] .

(2.4)

Here the extrinsic curvature, Lie derivative on a second
rank tensor, and acceleration of the slicing are respec-
tively defined by

Kij = − 1

2α
(∂tγij −Diβj −Djβi) , (2.5)

LβEij = βkDkEij + EikDjβ
k + EkjDiβ

k , (2.6)

ak = Dk lnα . (2.7)

The derivative Di is the covariant derivative associated
with the induced metric γij on the slices. The evolution
system (2.4) is closed by an additional evolution equation
for the 3-metric, which is Eq. (2.5), and evolution equa-
tions for the extrinsic curvature and the 3-dimensional
connection Γk

ij , which are

∂tKij =LβKij − α[∂kΓ
k
ij − Γk

ljΓ
l
ki + ∂i∂jq

+ ∂i lnα∂j lnα− Γk
ij∂kq − 2Eij +KKij ],

∂tΓ
k
ij =LβΓ

k
ij − αDkKij +KijD

kα− 2Kk
(iDj)α

+ 2αǫkl(iBj)l,

(2.8)

where we have defined

q = ln(αγ−1/2), (2.9)

LβΓ
k
ij = βl∂lΓ

k
ij + 2Γk

l(j∂i)β
l

−Γl
ij∂lβ

k + ∂i∂jβ
k. (2.10)

The above equations are symmetric hyperbolic if q and
βi are specified functions of time and space.
The constraint equations on each slice are the defini-

tions of Eij and Bij ,

Eij = (3)Rij +KKij −Kk
i Kjk,

Bij = ǫj
lkDkKli,

(2.11)
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from which the Einstein constraints follow from the con-
dition that Eij and Bij are symmetric and tracefree; and
the definition of Γk

ij ,

Γk
ij =

1

2
γkℓ (∂iγjℓ + ∂jγiℓ − ∂ℓγij) . (2.12)

The Bianchi identities imply derivative constraints on Eij
and Bij :

DiEij = BikK
i
lǫ

kl
j ,

DiBij = −EikKi
lǫ

kl
j .

(2.13)

These last equations are automatically satisfied if
Eqs. (2.11) are satisfied. Eqs. (2.13) are nonlinear, but
otherwise they have the same structure as the constraints
in simple electromagnetism.
Note also that the equations governing E and B,

Eqs (2.4) and (2.13) share another similarity with the
field equations of electromagnetism. Namely, just as the
Maxwell equations are invariant under the duality trans-
formation

E → B , B → −E ,

i.e. under a rotation in the complexified notation

E − iB → eiπ/2(E − iB) ,

so the exact Maxwell-like Bianchi identities (2.4) are also
invariant under the same duality transformation

E → B , B → −E . (2.14)

This duality in the structure of Eqs. (2.4) and
also (2.13) does not in general enable one to construct
one metric solution of Einstein’s equations from another,
known solution. However, as we shall see, we can utilize
this duality in weakly gravitating systems to find the E

and B generated by one set of source moments, given the
expressions for E and B for a dual set of moments.

2. Local Lorentz frame of a freely falling observer

When one introduces the local Lorentz frame of a freely
falling observer in curved spacetime, one necessarily spe-
cializes one’s foliation: (i) The local-Lorentz foliation’s
space slices are flat at first order in distance from the ob-
server’s world line, so its extrinsic curvature Kij vanishes
along the observer’s world line. (ii) Because the observer
is freely falling, her acceleration ak vanishes, which means
that successive hypersurfaces in the foliation are parallel
to each other along the observer’s world line.
These specializations, plus the vanishing shift βi = 0

and unit lapse function α = 1 of a local Lorentz frame,
bring the constraint and evolution equations (2.13) and
(2.4) into the following Maxwell-like form:

∇ · E = 0 , ∇ · B = 0 , (2.15)

∂E

∂t
− (∇×B)S = 0 ,

∂B

∂t
+ (∇× E)S = 0 .

Here the superscript S means “take the symmetric part”
and the remaining notation is the same as in the flat-
spacetime Maxwell equations (including changing from
D to ∇ for the spatial gradient).

3. Weak-gravity, nearly Minkowski spacetimes

In this paper’s applications (Secs. V and VI), we shall
specialize to spacetimes and coordinate systems that are
weakly perturbed from Minkowski, and we shall linearize
in the perturbations. In this case, the Bianchi identities
(2.4) take on precisely the same Maxwell-like form as in
a local Lorentz frame in strongly curved spacetime, Eqs.
(2.15). To see that this is so, note that βk, Kjk, ak, Ejk,
and Bjk are all first order perturbations and that α is one
plus a first-order perturbation; and linearize Eqs. (2.4) in
these first order quantities.
When the weak-gravity spacetime is also characterized

by slow motion, so its source regions are small compared
to the wavelengths of its gravitational waves, the evolu-
tion equations control how the near-zone Ejk and Bjk get
transformed into gravitational wave fields. For insight
into this, we specialize to harmonic gauge, in which the
trace-reversed metric perturbation h̄µν is divergence-free,
∂µh̄µν = 0.
Then in the near zone, Ejk and Bjk [which are diver-

gence free and curl free by Eqs. (2.15)] are expressible in
terms of the metric perturbation itself as

Eij = −1

2
∂i∂jh00 , Bij =

1

2
ǫ pq
i ∂q∂jhp0 . (2.16)

Because h00, at leading order in r/λ (ratio of radius to
reduced wavelength) contains only mass multipole mo-
ments (Eq. (8.13a) of [36]), so also Ejk contains only mass
multipole moments. And because hp0 at leading order in
r/λ contains only current multipole moments, so also Bjk

contains only current multipole moments.
In the wave zone, by contrast, Eqs. (2.15) show that

the locally plane waves are sustained by mutual induc-
tion between E andB, just like for electromagnetic waves,
which means that these two wave-zone fields must con-
tain the same information. This is confirmed by the
wave-zone expressions for Ejk and Bjk in terms of the
metric perturbation,

Eij = −1

2
∂2
0hij , Bij = −1

2
ǫ pq
i np∂

2
0hqj . (2.17)

Both fields are expressed in terms of the same quantity,
hij . In addition, in the wave zone, E and B are related to
each other through a π/4 rotation of their polarization
tensors (see Section VIA below). Correspondingly, we
will see in Section VI that, if a time-varying mass moment
produces + polarized radiation in the wave zone, then the
current moment that is dual to it produces × polarized
radiation of the same magnitude.
In the transition zone, the inductive coupling between

E and B, embodied in Eqs. (2.4), enables these equations
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to act like a blender, mixing up the multipolar informa-
tion that in the near zone is stored separately in these
two fields. After an infinite amount of inductive blend-
ing, we arrive at future null infinity, I+, where the mix-
ing has been so thorough that E and B contain precisely
the same information, though it is distributed differently
among their tensor components [Eqs. (2.17)].
The details of this transition-zone mixing, as embodied

in Eqs. (2.15), are in some sense the essence of gravita-
tional wave generation. We shall explore those details
visually in Sec. VI by tracking the tendex and vortex
lines (introduced in Sec IV) that extend from the near
zone, through the transition zone, and into the far zone.
Finally, note that the duality of E and B becomes espe-

cially convenient for slow-motion systems, where we can
relate E and B to source multipole moments that appear
in the weak-field near zone. In particular: to obtain the E
and B generated by a specific current moment Sℓ, we can
simply apply the duality transformation (2.14) to the E

and B for its dual moment, which is the mass moment Iℓ,
but with one caveat: The differing normalizations used
for mass moments and current moments [36] enforce the
duality relation

Iℓ →
2ℓ

ℓ+ 1
Sℓ , Sℓ → − ℓ+ 1

2ℓ
Iℓ , (2.18)

when making this duality transformation; note that both
transformations, Eqs. (2.14) and (2.18), must be made
at once to arrive at the correct expressions; see Sec. VI.

III. PHYSICAL INTERPRETATIONS OF Eij

AND Bij

It is rather well known that in vacuum2 the elec-
tric part of the Weyl tensor, Eij , describes tidal grav-
itational accelerations: the relative acceleration of two
freely falling particles with separation vector ξk is ∆ai =
E i

jξ
j . For this reason Eij is often called the tidal field, a

name that we shall adopt.
Not so well known is the role of the magnetic part of the

Weyl tensor Bjk as governing differential frame dragging,
i.e. the differential precession of inertial reference frames:
in vacuum2 a gyroscope at the tip of the separation vector
ξk, as observed in the local Lorentz frame of an observer
at the tail of ξk, precesses with angular velocity ∆Ωj =
Bj

kξ
k. For this reason, we call Bjk the frame-drag field.

2 In a non-vacuum region of spacetime, the local stress-energy
tensor also contributes to tidal accelerations via its algebraic re-
lation to the Ricci tensor which in turn contributes to the Rie-
mann tensor. In this case, Eij describes that portion of the tidal
acceleration due to the “free gravitational field”, i.e. the portion
that is sourced away from the location where the tidal acceler-
ation is measured; and similarly for Bjk and differential frame
dragging. In this paper we shall ignore this subtle point and
focus on tidal forces and differential frame-dragging in vacuum.

u u

ξ

ξ

σ
∇

ξ 
σ

→

→ →

→

→

→

P P’

→
→

A B

σ

FIG. 1: Spacetime geometry for computing the precession of a
gyroscope at one location P

′, relative to gyroscopic standards
at a nearby location P .

We deduced this frame-drag role of Bjk during our re-
search and then searched in vain for any reference to it
in the literature, while writing our Physical Review Let-
ter on vortexes and tendexes [1]. More recently we have
learned that this role of Bjk was known to Frank Es-
tabrook and Hugo Wahlquist [29] 46 years ago and was
rediscovered two years ago by Christoph Schmidt [30]
(who states it without proof).

For completeness, in this section we shall give a precise
statement and proof of the frame-drag role of Bjk, and a
corresponding precise statement of the tidal-acceleration
role of Ejk.

A. Physical setup

Consider an event P in spacetime and an observer la-
beled A whose world line passes through P and has 4-
velocity ~u there; see Fig. 1. Introduce an infinitesimally

short 4-vector ~ξ at P , that is orthogonal to ~u and thus is
seen as spatial by observer A. Denote by P ′ the event at

the tip of ~ξ. Introduce a second observer B whose world
line passes through P ′ and is parallel there to the world
line of observer A, so if we denote B’s 4-velocity by the
same symbol ~u as that of A and imagine a vector field ~u
that varies smoothly between the two world lines, then

∇~ξ~u = 0 at P . Let ~ξ be transported by observer A in

such a way that it continues to reach from world line A

to world line B. Then the vectors ~u and ~ξ satisfy the
following three relations at P :

~ξ · ~u = 0 , [~u, ~ξ] = 0, ∇~ξ~u = 0 . (3.1)

The first says that the separation vector is purely spatial
at P in the reference frame of observer A; the second says

that ~ξ continues to reach between world lines A and B,

so the quadrilateral formed by ~u and ~ξ in Fig. 1 is closed;
the third says that the two observers’ world lines are
parallel to each other at P—i.e., these observers regard
themselves as at rest with respect to each other.
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B. Interpretation of Eij as the tidal field

Let the two observers A and B fall freely, i.e. move on
geodesics. Then for this physical setup, the equation of
geodesic deviation states that [e.g. [14] Eq. (11.10)]

∇~u∇~u
~ξ = −R( , ~u, ~ξ, ~u) , (3.2)

where R is the Riemann tensor. In physical language,
the left side is the acceleration ∆~a of observer B at P ′,
as measured in the local Lorentz frame of observer A at
P . This relative acceleration is purely spatial as seen by
observer A, and the right side of Eq. (3.2) tells us that
in spatial, 3-dimensional vector and tensor notation (and
in vacuum so Rαβγδ = Cαβγδ), it is given by

∆aj = −Rj
0̂k0̂ξ

k = −Ej
kξ

k ; i.e. ∆a = −E( , ξ) .
(3.3)

Since (as is well known) this relative acceleration pro-
duces the Earth’s tides when Ejk is caused by the moon
and sun, Ejk is called the tidal field, and Eq. (3.3) is
known as the tidal acceleration equation.

C. Interpretation of Bij as the frame-drag field

Next let the two observers A and B in Fig. 1 be ac-
celerated if they wish (with the same 4-acceleration ~a up

to differences proportional to ~ξ), and give each of them a
spatial unit vector ~σ that is tied to an inertial-guidance
gyroscope, so the following relations are satisfied:

~σ · ~u = 0 , ~σ · ~σ = 1 , ∇~u~σ = (~a · ~σ)~u , ~a ≡ ∇~u~u .
(3.4)

The first of these says that ~σ is purely spatial as seen
in the observer’s reference frame; the second says that ~σ
has unit length; the third is the Fermi-Walker transport
law for an inertial-guidance gyroscope.
The local-frame-dragging-induced rate of change of ~σ

at P ′, as measured using inertial-direction standards at
P , is ∇~u∇~ξ~σ. We can write this as

∇~u∇~ξ~σ = ∇~ξ∇~u~σ + [∇~u,∇~ξ]~σ

= ∇~ξ∇~u~σ + R( , ~σ, ~u, ~ξ) , (3.5)

where R is the Riemann tensor and we have used the fact
that [~u, ~ξ] = 0; cf. Eqs. (11.8) and (11.9) of MTW [14].
Evaluating the first term ∇~ξ∇~u~σ using the Fermi-

Walker transport law [the third of Eqs. (3.4)] and the
fact that the observers are momentarily at rest with re-
spect to each other [the third of Eqs. (3.1)], we bring Eq.
(3.5) into the form

∇~u∇~ξ~σ = R( , ~σ, ~u, ~ξ) + ~u∇~ξ(~a · ~σ) . (3.6)

We are only interested in the spatial part of this rate of
change, so we can ignore the second term on the right
side of the equation. We switch to the 3-dimensional

viewpoint of the observer at P (where our calculation is
being done) and we denote the spatial part of ∇~u∇~ξ~σ by

σ̇:

σ̇ ≡
[

∇~u∇~ξ~σ
]

project orthogonal to ~u
. (3.7)

Eq. (3.6) tells us that this rate of change is not only
orthogonal to ~u (spatial) but also orthogonal to σ; it
therefore can be written as a rotation

σ̇ = ∆Ω× σ (3.8)

Here ∆Ω is the frame-dragging angular velocity at P ′ as
measured using inertial standards at P . We can solve for
this angular velocity ∆Ω by crossing σ into Eq. (3.8) and
using σ · σ = 1:

∆Ω = σ × σ̇ . (3.9)

Inserting expression (3.6) for σ̇ and switching to index
notation, we obtain

∆Ωi = ǫijkσ
jRk

p0̂qσ
pξq . (3.10)

Rewriting the Riemann tensor component in terms of the
gravitomagnetic part of the Weyl tensor (in vacuum),
Rk

p0̂q = −ǫkpsBs
q, performing some tensor manipula-

tions, and noticing that because ∆Ω is crossed into σ

when computing the precession, any piece of ∆Ω along
σ is irrelevant, we obtain

∆Ωi = Bijξ
j , i.e. ∆Ω = B( , ξ) . (3.11)

In words: in vacuum the frame-dragging angular velocity
at P ′, as measured using inertial directions at the adja-
cent event P, is obtained by inserting the vector ξ (which
reaches from P to P ′) into one slot of the gravitomagnetic
part of the Weyl tensor.
Because of the role of Bij in this equation of differential

frame dragging, we call Bij the frame-drag field.

IV. OUR NEW TOOLS: TENDEX AND

VORTEX LINES; THEIR TENDICITIES AND

VORTICITIES; TENDEXES AND VORTEXES

A. Tendex lines and their tendicities; vortex lines

and their vorticities

As symmetric, trace free tensors, the tidal field E and
frame-drag field B can each be characterized completely
by its three principal axes (eigendirections) and its three
associated eigenvalues.
If p is a (smoothly changing) unit eigenvector of the

tidal field E (or of the frame-drag field B), then the inte-
gral curves of p can be regarded as “field lines” associated
with E (or B). For E we call these integral curves tidal
tendex lines, or simply tendex lines3, because E tidally

3 The word tendex was coined by David Nichols.
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FIG. 2: (color online). Tendex lines outside a spherically
symmetric, gravitating body. The lines are colored by the
sign of their tendicity: red lines have negative tendicity (they
stretch a person oriented along them); blue lines have positive
tendicity (they squeeze).

stretches objects it encounters, and the Latin word ten-
dere means “to stretch”. For B we call the integral curves
frame-drag vortex lines, or simply vortex lines, because B
rotates gyroscopes, and the Latin word vertere means “to
rotate”. At each point P in space there are three orthog-
onal eigendirections of E (and three of B), so through
each point there pass three orthogonal tendex lines and
three orthogonal vortex lines.
Outside a spherically symmetric gravitating body with

mass M , such as the Earth or a Schwarzschild black hole,
the tidal field, in a spherical polar orthonormal basis, has
components

Er̂r̂ = −2M

r3
, Eθ̂θ̂ = Eφ̂φ̂ = +

M

r3
(4.1)

(e.g. Sec. 1.6 and Eq. (31.4) of [14]). The tidal accel-
eration equation ∆aj = −Ej

kξ
k tells us that this tidal

field stretches objects radially and squeezes them equally
strongly in all tangential directions (see the people in
Fig. 2). Correspondingly, one eigenvector of E is radial,
and the other two are tangential with degenerate eigen-
values. This means that one set of tendex lines is radial
(the red tendex lines in Fig. 2), and any curve lying on
a sphere around the body is a tendex line. If we break
the tangential degeneracy by picking our tangential unit
eigenvectors to be the basis vectors eθ̂ and eφ̂ of a spher-

ical polar coordinate system, then the tangential tendex
lines are those vectors’ integral curves — the blue curves
in Fig. 2.
When the spherical body is weakly gravitating and is

set rotating slowly, then it acquires a nonzero frame-drag
field given by Eqs. (5.11) below. The corresponding vor-

S

FIG. 3: (color online). Vortex lines outside a slowly spin-
ning, spherically symmetric, gravitating body with spin an-
gular momentum S. The lines are colored by the sign of their
vorticity: red lines have negative vorticity (they produce a
counterclockwise differential precession of gyroscopes); blue
lines have positive vorticity (clockwise differential precession).

tex lines are shown in Fig. 3. (See Sec. VA below for
details.)
To any tendex (or vortex) line, with unit eigenvector

p, there is associated an eigenvalue Epp = Ejkpjpk which
is called the line’s tendicity (or Bpp = Bjkp

jpk which is
called the line’s vorticity). The physical meaning of this
tendicity (or vorticity) can be read off the tidal accelera-
tion equation (3.3) [or the equation of differential frame
dragging (3.11)]. Specifically, if a person’s body (with
length ℓ) is oriented along a tidal tendex line (Fig. 2), she
feels a head-to-foot stretching acceleration ∆a = −Eppℓ.
If the line’s tendicity Epp is negative (red tendex line),
her body gets stretched; if the tendicity is positive (blue
tendex line), she gets compressed.
If her body is oriented along a vortex line (Fig. 3),

then a gyroscope at her feet precesses around the vortex
line with an angular speed, relative to inertial frames at
her head, given by ∆Ω = Bppℓ. If the line’s vorticity is
negative (red vortex lines in Fig. 3), then the gyroscope
at her feet precesses counterclockwise relative to inertial
frames at her head, and (because Bpp is unchanged when
one reverses the direction p), a gyroscope at her head
precesses counterclockwise relative to inertial frames at
her feet. Correspondingly, we call the (red) vortex line
a counterclockwise vortex line. If the line’s vorticity is
positive (blue vortex lines in Fig. 3), the precessions are
clockwise and the vortex line is said to be clockwise.
For any spacetime, the tendex lines color coded by

their tendicities (e.g. Fig. 2) and the vortex lines color
coded by their vorticities (e.g. Fig. 3) depict visually all
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details of the Weyl curvature tensor.
Since E and B are trace free, at any point in space

the sum of the three tendex lines’ tendicities vanishes,
and the sum of the three vorticities vanishes. Because E

and B are also symmetric, each is characterized by five
numbers at any point in space. The direction of one ten-
dex line fixes two numbers and its tendicity fixes a third,
leaving only two numbers to be specified. The direction
of a second tendex line, in the plane orthogonal to the
first, fixes a fourth number and the second line’s tendic-
ity fixes the fifth and final number — leaving the last
line’s direction and tendicity fully determined. Similarly
for vortex lines and their vorticities.

B. Vortexes and tendexes

We give the name frame-drag vortex, or simply vortex,
to a bundle of vortex lines with large vorticity. In Fig.
3, the red vortex lines near the north polar axis, that are
enclosed by blue circles, constitute a negative-vorticity
(counterclockwise) vortex; the blue vortex lines near the
south polar axis, that are enclosed by red circles, con-
stitute a positive-vorticity (clockwise) vortex. These two
vortexes emerge from the north and south poles of the
spinning point particle.
Similarly, we give the name tidal tendex, or simply ten-

dex, to a strong concentration of tendex lines. We shall
meet our first example at the end of Sec. VD below.

V. WEAK-GRAVITY, STATIONARY SYSTEMS

A. One stationary, weakly gravitating, spinning

body

When gravity is weak and slowly changing (e.g., out-
side a slowly precessing, spinning, weakly gravitating
body such as the Earth), one can write the spacetime
metric in the form

ds2 = −α2dt2 + δjk(dx
j + βjdt)(dxk + βkdt) (5.1a)

(e.g. Sec. 23.9.3 of [37]; or Chap. 10 of MTW [14] with
the spatial coordinates changed slightly). Here

α2 =

(

1− 2M

r

)

, β = −2S

r2
× n , (5.1b)

are the squared lapse function and the shift function, M
is the body’s mass, S is its spin angular momentum, and

r =
√

x2 + y2 + z2 , n = er̂ (5.1c)

are radius and the unit radial vector, with {x1, x2, x3} =
{x, y, z}. In spherical polar coordinates (associated with

the Cartesian coordinates {x, y, z} in the usual way), the
metric (5.1a) becomes

ds2 = −α2dt2 + dr2 + r2dθ2 + r2 sin2 θ(dφ− ωdt)2 ,

ω = 2S/r3 . (5.1d)

It is conventional to rewrite general relativity, in this
weak-field, slow-motion situation, as a field theory in flat
spacetime. In this language, the geodesic equation for a
test particle takes the form

d2x/dt2 = g + v ×H , (5.2)

which resembles the Lorentz force law in electromagnetic
theory; see, e.g., [38] and references therein, especially
[39]. Here v = dx/dt is the particle’s velocity [Cartesian
components (dx/dt, dy/dt, dz/dt)] and

g = −1

2
∇α2 = −M

r2
n ,

H = ∇× β = 2

[

S − 3(S · n)n
r3

]

(5.3)

are the body’s gravitoelectric field (same as Newtonian
gravitational acceleration) and its gravitomagnetic field.
Note that these fields have the same monopole and dipole
structures as the electric and magnetic fields of a spin-
ning, charged particle.
In this paper we shall adopt an alternative to this

“gravito-electromagnetic” viewpoint. For the gravita-
tional influence of the mass M , we shall return to the
Newtonian viewpoint of a gravitational acceleration g

and its gradient, the tidal gravitational field (“electric”
part of the Weyl tensor)

E = −∇g , i.e., Eij = −gi,j = Φ,ij =
1

2
α2

,ij . (5.4)

Here the comma denotes partial derivative (actually, the
gradient in our Cartesian coordinate system) and Φ is the
Newtonian gravitational potential, which is related to the
lapse function by α2 = 1 + 2Φ in the Newtonian limit.
The components of this tidal field in the spherical coor-
dinates’ orthonormal basis er̂ = ∂/∂r, eθ̂ = (1/r)∂/∂θ,
eφ̂ = (1/r sin θ)∂/∂φ are easily seen to be

Er̂r̂ = −2M

r3
, Eθ̂θ̂ = Eφ̂φ̂ = +

M

r3
, (5.5)

[Eqs. (4.1) above], which are symmetric and trace-free as
expected. The field lines associated with this tidal field
are easily seen to be those depicted in Fig. 2 above.
For the effects of the spin angular momentum, we shall

think of the spinning body as “dragging space into mo-
tion” with a velocity and angular velocity (relative to our
Cartesian coordinates) given by

dxspace

dt
≡ vspace = −β =

2S

r2
×n; ,

dφspace

dt
= ω =

2S

r3
(5.6)
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S

FIG. 4: For a weakly gravitating, slowly rotating body with
spin angular momentum S: the dipolar frame-dragging an-
gular velocity relative to inertial frames at infinity, Ωfd. The
arrows are all drawn with the same length rather than pro-
portional to the magnitude of Ωfd.

[cf. the δjk(dx
j + βjdt)(dxk + βkdt) term in the metric

(5.1a) and the (dφ − ωdt)2 term in the metric (5.1d)].
Just as the vorticity ∇× v of a nonrelativistic fluid with
velocity field v(x) is twice the angular velocity Ω of ro-
tation of a fluid element relative to an inertial reference
frame, so the vorticity associated with the “space mo-
tion”, ∇× vspace, turns out to be twice the vectorial an-
gular velocity of an inertial-guidance gyroscope relative
to inertial reference frames far from the body (“at infin-
ity”) — or equivalently, relative to our spatial Cartesian
coordinates {x, y, z}, which are locked to inertial frames
at infinity. In formulas: Let σ be a unit vector along the
spin angular momentum vector of an inertial-guidance
gyroscope. Viewed as a vector in our Cartesian basis, it
precesses

dσ/dt = Ωfd × σ , (5.7)

with a frame-dragging vectorial angular velocity equal to
half the vorticity of space viewed as a fluid:

Ωfd =
1

2
∇× vspace = −1

2
∇× β = −1

2
H

= −
[

S − 3(S · n)n
r3

]

; (5.8)

see e.g. Eq. (25.14) of [37], or Eq. (40.37) of [14]. This
dipolar frame-dragging angular velocity is shown in Fig.
4.
For dynamical black holes and other strong-gravity,

dynamical situations, it is not possible to measure gyro-

scopic precession with respect to inertial frames at infin-
ity, since there is no unambiguous way to compare vectors
at widely separated events.4

On the other hand, we can, in general, measure the
precession of inertial-guidance gyroscopes at one event,
with respect to inertial frames at a neighboring event —
i.e., we can measure differential frame dragging as em-
bodied in the frame-drag field (magnetic part of the Weyl
tensor) Bij . In our weak-gravity, slow-motion situation,
this frame-drag field is equal to the gradient of Ωfd (Eq.
(5.45b) of [42]):

B = ∇Ωfd , i.e. Bjk = Ωfd j,k . (5.9)

For our weakly gravitating, spinning body, Ωfd has the
dipolar form (5.8), so the frame-drag field is

Bjk =
3

r4
[

2S(jnk) + (S · n)(δjk − 5njnk)
]

. (5.10)

Here the parentheses on the subscripts indicate sym-
metrization. In spherical polar coordinates, the compo-
nents of this frame-drag field are:

Br̂r̂ = −2Bθ̂θ̂ = −2Bφ̂φ̂ =
−6S cos θ

r4
,

Br̂θ̂ = Bθ̂r̂ = −3S sin θ

r4
. (5.11)

For this (and any other axially symmetric) frame-drag
field, one of the three sets of vortex lines is along the φ
direction (i.e. the S×x direction), i.e. it is axial; and the
other two are poloidal. By computing the eigenvectors of
the tensor (5.10) and then drawing the curves to which
they are tangent, one can show that the body’s vortex
lines have the forms shown in Fig. 3 above.
Notice that the poloidal, negative vorticity vortex lines

(the poloidal red curves in Fig. 3) all emerge from the
north polar region of the spinning body, encircle the
body, and return back to the north polar region.
Why do these have negative rather than positive vor-

ticity? Choose the eigendirection p at the body’s north
pole to point away from the body. The body drags iner-
tial frames in a right-handed manner (counterclockwise
as seen looking down on the north pole), and the frame
dragging is stronger at the tail of p (nearer the body)
than at the tip, so the frame-dragging angular velocity
decreases from tail to tip, which means it is more left-
handed (clockwise) at the tip than the tail; it has nega-
tive vorticity.

4 There is an exception: One can introduce additional geometric
structure, e.g, an auxiliary flat spacetime, that provides a way
of carrying a reference frame inward from infinity to all other
locations and thereby compare vectors at different events. Some
of us have used this approach to localize linear momentum in
the gravitational field around black holes [40, 41]. However the
auxiliary structure has great arbitrariness, and for the vortex and
tendex concepts of this paper there is no need for such auxiliary
structure, so we eschew it.



11

The poloidal, positive vorticity vortex lines (the
poloidal blue curves in Fig. 3) all emerge from the body’s
south polar region, swing around the body, and return to
the south polar region.
The azimuthal vortex lines have negative vorticity

above the hole’s equatorial plane (blue azimuthal circles)
and positive vorticity below the hole’s equatorial plane
(red azimuthal circles).

B. Two stationary, weakly gravitating, spinning

point particles with opposite spins

Consider, next, two weakly gravitating, spinning point
particles with opposite spins, sitting side-by-side. Place
the particles (named A and B) on the x-axis, at locations
{xA, yA, zA} = {+a, 0, 0}, {xB, yB, zB} = {−a, 0, 0} and
give them vectorial spins SA = Sez, SB = −Sez. Then
the frame-drag angular velocity relative to inertial frames
at infinity is

Ωfd = −SA − 3(SA · nA)nA

rA3

−SB − 3(SB · nB)nA

rB3
, (5.12)

where rA = |x − xA| and rB = |x − xB| are the dis-
tances to the particles and nA = (x − xA)/rA and
nB = (x − xB)/rB are unit vectors pointing from the
particles’ locations to the field point; cf. Eq. (5.8). This
vector field is plotted in Fig. 5(a). It has just the form
one might expect from the one-spin field of Fig. 4.
For these two spinning particles, the frame-drag field

(gradient of Eq. (5.12)] is

Bjk =
3

rA4

[

2S
(j
A n

k)
A + (SA · nA)(δ

jk − 5nj
An

k
A)
]

+
3

rB4

[

2S
(j
Bn

k)
B + (SB · nB)(δ

jk − 5nj
Bn

k
B)
]

(5.13)

[cf. Eq. (5.10)], where we have moved the vector and ten-
sor indices up for simplicity of notation. (In our Carte-
sian basis, there is no difference between up and down
indices.)
The best two-dimensional surface on which to visualize

vortex lines of this B is the x-z plane (the plane formed
by the particles’ spins and their separation vector). The
system is reflection symmetric through this plane. On
this plane, one of the principal directions of B is orthog-
onal to it (in the y direction); the other two lie in the
plane and are tangent to the in-plane vortex lines. By
computing the eigendirections of B [i.e., of the tensor
(5.13)] and mapping out their tangent vortex lines, and
checking the sign of Bpp along their tangent directions p,
we obtain Fig. 5.
Note that, as for a single spinning particle (Fig. 3) , so

also here for two spins, the negative-vorticity vortex lines

(a)

(b)

FIG. 5: For two stationary point particles sitting side by side
with their spins in opposite directions (thick black arrows):
two types of streamlines in the plane of reflection symme-
try formed by the particles’ spins and their separation vec-
tor. Top: The frame-dragging angular velocity Ωfd and its
streamlines, with the arrows all drawn at the same length
rather than proportional to the magnitude of Ωfd. Bottom:
The two sets of vortex lines of the frame-drag field B. The
negative-vorticity vortex lines are solid and colored red, and
the positive-vorticity ones are dashed and blue. In this fig-
ure, as in preceding figures, the colors are not weighted by
the lines’ vorticities, but only by the signs of the vorticities.

(solid red curves) emerge from the tips of the spins and
the positive-vorticity vortex lines (dashed blue curves)
emerge from their tails. For a single spin, the negative-
vorticity vortex lines emerge from the tip, travel around
the body, and return to the same tip. Here, the lines
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close to each spinning body leave and enter the same
body’s tip, but the majority emerge from one body’s tip,
travel around that body and enter the other body’s tip.
Similarly the positive-vorticity vortex lines (dashed and
blue) emerge from one body’s tail, travel around that
body, and enter the other body’s tail (aside from the
lines near each body that exit and return to the same
body’s tail).
The collection of solid red vortex lines near each arrow

tip in Fig. 5(b) constitutes a negative-vorticity frame-
drag vortex, and the collection of dashed blue vortex lines
near each arrow tail is a positive-vorticity vortex.

C. The two spinning particles viewed from afar:

Stationary, quadrupolar frame-drag field

When viewed from afar, the two spinning bodies
produce a current-quadrupole gravitational field with
quadrupole moment (e.g. Eq. (5.28b) of [36])

Spq =

(∫

jpxqd
3x

)STF

= (Spaq + (−Sp)(−aq))
STF

= Spaq + Sqap −
2

3
(S · a)δpq . (5.14)

Here jp = Spδ(x − a) − Spδ(x + a) is the angular mo-
mentum density. Since the only nonzero components of
S and a are Sz = S and ax = a, the only nonzero com-
ponents of the current quadrupole moment are

Sxz = Szx = Sa . (5.15)

The frame-drag-induced velocity of space (negative of
lapse function) for this current quadrupole, and the
frame-drag angular velocity and frame-drag tensor field
are

vspace = −β =
4n× S · n

r3
,

Ωfd =
1

2
∇× vspace , B = ∇Ωfd . (5.16)

[e.g. Eq. (10.6b) of [36]; also Eqs. (5.8) and (5.9) above].
Inserting Eq. (5.15) for the quadrupole moment into Eqs.
(5.16), and plotting Ωfd and the vortex lines of B in the
x-z plane, we obtain the graphs shown in Fig. 6.
Notice that the current-quadrupolar frame-drag angu-

lar velocity in Fig. 6a is, indeed, the same as that for two
oppositely directed spins (Fig. 5a) in the limit that the
spins’ separation goes to zero — i.e., as seen from afar;
and the current-quadrupolar vortex lines of the frame-
drag tensor field (Fig. 6b) is the vanishing-separation
limit of that for the two oppositely directed spins (Fig.
5b).
Here, as for finitely separated spinning particles, there

are two red frame-drag vortexes, one emerging from the
origin in the upper right direction, the other in the lower-
left direction; and similarly, there are two blue frame-
drag vortexes, one emerging in the upper left direction
and the other in the lower right direction.

(a)

(b)

FIG. 6: Current-quadrupolar streamlines associated with the
two stationary spinning particles of Fig. 5, for which the
current quadrupole moment has nonzero components Sxz =
Szx = Sa. (a) The frame-dragging angular velocity Ωfd and
its streamlines, and (b) the two sets of vortex lines, in the x-z
plane. Figure (b) also describes the tendex lines for a static
mass-quadrupolar particle whose only nonzero quadrupole-
moment components are Ixz = Izx.

D. Static, quadrupolar tidal field

and its tendex lines and tendexes

For an idealized static particle with time independent
mass quadrupole moment Ipq and all other moments (in-
cluding the mass) vanishing, the squared lapse function
is α2 = 1 + 2Φ = −(Ipq/r),pq [36], where Φ is the New-
tonian gravitational potential. Therefore, the particle’s
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tidal field Ejk = Φ,jk [Eq. (5.8)] is

Ejk = −1

2

(Ipq
r

)

,pqjk

. (5.17)

For comparison, for a particle with time-independent
current quadrupole moment Spq, the shift function is
βj = (−4/3)ǫjpq(Spk/r),kq , which implies that the frame-
drag field is [Eqs. (5.16)]

Bjk = −2

3

(Spq

r

)

,pqjk

. (5.18)

Notice that, once the differing normalization conven-
tions (2.18) are accounted for, Eqs. (5.17) and (5.18) are
the same, as required by the duality relations (2.14) and
(2.18). This means that, for a static current quadrupole
whose only nonzero components are Ixz = Izx, the ten-
dex lines will have precisely the same forms as the vortex
lines of the static current quadrupole (5.15); i.e., they
will have the forms shown in Fig. 6b. In this case there
are two negative-tendicity (solid red) tidal tendexes, one
emerging from the origin in the upper right direction,
and the other in the lower-left direction; and there are
two positive-tendicity (dashed blue) tidal tendexes, one
emerging in the upper left direction and the other in the
lower right direction.

VI. GRAVITATIONAL WAVES AND THEIR

GENERATION

We turn now to dynamical situations, which we de-
scribe using linearized gravity. We first discuss the ten-
dex and vortex structure of plane gravitational waves.
We then examine wave generation by time varying mul-
tipolar fields, and the accompanying tendex and vortex
structures of these systems.

A. Plane gravitational wave

In this section, we will describe the features of E and
B for plane gravitational waves, and connect our obser-
vations to the linearized-gravity and Newman-Penrose
(NP) formalisms. In Appendix A we review the Newman-
Penrose formalism and its connection to the spatial ten-
sors E and B.
Consider gravitational wave propagation in an asymp-

totically flat spacetime, in transverse-traceless (TT)
gauge. Near future null infinity, I+, we can linearize
around a Minkowski background and obtain

Eij = −1

2
∂2
0hij , Bij = −1

2
ǫ pq
i np∂

2
0hqj . (6.1)

It is convenient to expand these expressions in terms of
the two gravitational wave polarization tensors, e+ij and

e×ij ,

Eij = −1

2
(ḧ+e

+
ij + ḧ×e

×

ij) ,

Bij = −1

2
(ḧ+e

×

ij − ḧ×e
+
ij) ,

(6.2)

where e+ij and e×ij are symmetric, trace-free, and orthog-
onal to the waves’ propagation direction. Letting the
unit-norm vector e1̂ denote the direction of propagation
of the gravitational wave, then one can expand the po-
larization tensors in terms of the remaining two vectors
of an orthonormal triad, e2̂ and e3̂, as

e+ = e2̂ ⊗ e2̂ − e3̂ ⊗ e3̂ , (6.3)

e× = e2̂ ⊗ e3̂ + e3̂ ⊗ e2̂ . (6.4)

Consider first a + polarized wave. We have that

E = −1

2
ḧ+e

+ =
1

2
[(−ḧ+)e2̂ ⊗ e2̂ + ḧ+e3̂ ⊗ e3̂] , (6.5)

so we see that ∓ḧ+/2 are the two eigenvalues of E (the
two tendicities), and e2̂ and e3̂ are the two corresponding
eigenvectors. Now, define a second basis locally rotated
at each point by π/4 = 45o,

(

ẽ2̂
ẽ3̂

)

=

(

cos π
4 sin π

4
− sin π

4 cos π
4

)(

e2̂
e3̂

)

. (6.6)

Then, a simple calculation shows that

e× = ẽ2̂ ⊗ ẽ2̂ − ẽ3̂ ⊗ ẽ3̂ , (6.7)

and one can immediately see that B is diagonal in this
new basis

B = −1

2
ḧ+e

× = −1

2
[ḧ+ẽ2̂ ⊗ ẽ2̂ − ḧ+ẽ3̂ ⊗ ẽ2̂] . (6.8)

The eigenvalues of B (the vorticities), like those of E

(the tendicities), are∓ḧ+/2, but B’s eigenvectors, ẽ2̂ and
ẽ3̂, are locally rotated by π/4 compared to those of E.
Correspondingly, the vortex lines of h+ must be locally
rotated by π/4 with respect to the tendex lines.
The local rotation of the tendex and vortex lines is

most transparent for a plane gravitational wave. In Fig.
7, we show the tendex and vortex lines of a plane gravi-
tational wave propagating out of the page (i.e. e1̂ = eẑ is
the propagation direction). Because the eigenvectors of E
are e2̂ = ex̂ and e3̂ = eŷ, the tendex lines are the lines of
constant x and y, illustrated by red (solid) lines and blue
(dashed) lines, respectively, on the left of Fig. 7. Simi-
larly, the vortex lines are lines of constant x ± y, again
drawn as blue (dashed) lines and red (solid) lines, respec-
tively. The tendicity (vorticity) has constant magnitude
along the lines, but the two sets of tendex (vortex) lines
have opposite sign; consequently, the tidal (frame-drag)
field produces a stretching (counterclockwise differential
precession) along the solid red direction and a squeezing
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y

x

FIG. 7: The tendex lines (left) and vortex lines (right) of a
plane gravitational wave propagating in the z-direction (out
of the picture). The tendex lines are lines of constant x and
y, and the vortex lines are rotated by π/4 (lines of constant
x±y). The blue (dashed) curves correspond to positive tendic-
ity and vorticity (squeezing and clockwise differential precess-
ing, respectively) and the red (solid) curves denote negative
tendicity and vorticity (stretching and counterclockwise pre-
cessing). The tendicity (vorticity) is constant along a tendex
line (vortex line), and the tendicity (vorticity) of a red line
is equal in magnitude but opposite in sign to that of a blue
(dashed) line.

(clockwise differential precession) of the same magnitude
along the dashed blue direction.
More generally, gravitational waves will contain both

+ and × polarizations, and to study their vortex and ten-
dex lines, it will be useful to express the electric and mag-
netic tensors in the spatial orthonormal basis (e1̂, e2̂, e3̂).
They can be written conveniently as matrices:

Eâb̂ =
1

2





0 0 0

0 −ḧ+ −ḧ×

0 −ḧ× ḧ+



 , (6.9a)

Bâb̂ =
1

2







0 0 0

0 ḧ× −ḧ+

0 −ḧ+ −ḧ×






. (6.9b)

It is useful to introduce an associated Newman-Penrose
null tetrad consisting of two real null vectors, ~l (along the
waves’ propagation direction) and ~n, and a conjugate pair
of complex null vectors ~m and ~m∗ given by

~l =
1√
2
(~e0̂ + ~e1̂) , ~n =

1√
2
(~e0̂ − ~e1̂) ,

~m =
1√
2
(~e2̂ + i~e3̂) , ~m∗ =

1√
2
(~e2̂ − i~e3̂) (6.10)

[Eqs. (A1) of Appendix A]. For plane waves on a
Minkowski background, the NP curvature scalar that
characterizes the radiation is

Ψ4 = Cµνρσn
µm∗νnρm∗σ = −ḧ+ + iḧ× , (6.11)

so we can compactly rewrite Eqs. (6.9) as

Eâb̂ + iBâb̂ =
1

2







0 0 0

0 Ψ4 iΨ4

0 iΨ4 −Ψ4






. (6.12)

This expression holds for any plane gravitational wave
propagating in the ~e1̂ direction.
For any outgoing gravitational wave in an asymptot-

ically flat space, as one approaches asymptotic null in-
finity the general expression (A3) for Eâb̂ + iBâb̂ reduces
to expression (6.12), because all the curvature scalars ex-
cept Ψ4 vanish due to the peeling property of the Weyl
scalars near null infinity. Further discussion of the tidal
and frame-drag fields of radiation near null infinity and
their tendex and vortex lines is given in [28].
It is helpful to draw some simple analogies between

gravitational and electromagnetic plane waves. For a
generic mixture of + and × polarizations, the magni-
tudes of the nonvanishing eigenvalues of both E and B

are simply

1

2

√

ḧ2
+ + ḧ2

×
=

1

2
|Ψ4| . (6.13)

This mirrors plane waves in electromagnetism, where

| ~E| = | ~B| is equal to the sum in quadrature of the mag-
nitudes of the two polarizations. The absent longitudinal
components in an electromagnetic plane wave correspond
to the vanishing of the eigenvalues for the eigenvectors of
E and B along the propagation direction. The orthog-
onality of the vectorial electromagnetic field strengths
~E⊥ ~B becomes the π/4 rotation between the meshes (Fig.
7) formed by the two transverse eigenvectors of the ten-
sorial quantities E and B.

B. Gravitational waves from a head-on collision

of two black holes

As an example of the usefulness of this approach, we
calculate the tendex and vortex lines at large radii for
gravitational waves emitted by the head-on collision of
two equal-mass nonspinning black holes. If the holes
move along the z-axis and we use as our spatial triad the
unit vectors of spherical polar coordinates, (e1̂, e2̂, e3̂) =
(er̂, eθ̂, eφ̂) = (∂r, r

−1∂θ, (r sin θ)
−1∂φ), and choose our

null tetrad in the usual way (6.10), then we can apply the
results described by Fiske et al. [43]; namely that ℜ[Ψ4] is
axisymmetric (and, when decomposed into spin-weighted
spherical harmonics, is dominated by the l = 2, m = 0
harmonic, −2Y2,0(θ, φ)); and that ℑ[Ψ4] = 0. Then the
electric and magnetic parts of the Weyl tensor are given
by

Eâb̂ =
1

2







0 0 0

0 ℜ(Ψ4) 0

0 0 −ℜ(Ψ4)






,

Bâb̂ =
1

2







0 0 0

0 0 ℜ(Ψ4)

0 ℜ(Ψ4) 0






,

(6.14)

and the eigenvalues of both E and B are ±ℜ(Ψ4)/2. The
eigenvectors of E are the unit vectors eθ̂ and eφ̂, and
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FIG. 8: Tendex lines (left) and vortex lines (right) for the
gravitational waves that would arise from the merger of equal-
mass black holes falling together along the z-axis. The posi-
tive tendicity and vorticity lines are shown in blue (dashed)
and the negative lines are depicted in red (solid). Each line’s
intensity is proportional to its tendicity (or vorticity), which
varies over the sphere as the dominant spin-weighted spheri-
cal harmonic, −2Y2,0(θ, φ) ∝ sin2 θ. Dark red and blue near
the equator correspond to large-magnitude tendicity and vor-
ticity, and light nearly white colors at the poles indicate that
the tendicity and vorticity are small there.

those of B are eθ̂ ± eφ̂. Thus, the radiation is purely +

polarized in this basis. The tendex lines are the lines of
constant θ and φ on a sphere, and the vortex lines are
rotated relative to the tendex lines by π/4 = 45o.

We show these lines in Fig. 8; the tendex lines on the
left, and the vortex lines on the right. As in Fig. 7, the
red (solid) lines correspond to negative tendicity and vor-
ticity, and the blue (dashed) lines denote positive values.
The intensity of each line is proportional to the mag-
nitude of its tendicity (or vorticity), which varies over
the sphere as −2Y2,0(θ, φ) ∝ sin2 θ (the dominant spher-
ical harmonic). Correspondingly, the dark blue and red
regions near the equator represent strong tendicity and
vorticity, whereas the light off-white colors near the poles
indicate that the tendicity and vorticity are small there.

We remark in passing that the duality of E and B

implies that, if there were a source of gravitational waves
which had a Ψ4 that is purely imaginary and equal to the
iℜ[Ψ4] for our colliding black holes, then those waves’
vortex lines would be the same as the tendex lines of
Fig. 8, and the tendex lines would be the same as the
vortex lines of the same figure (but with the sign of the
lines’ vorticity flipped). One can see this because (i) Eq.
(6.11) shows we would have a pure × polarized wave, and
(ii) when we apply the rotation of basis (6.6) to (6.12)
under the condition of ℜ(Ψ4) = 0 we get once again
the matrices (6.14), but with (ẽ2̂, ẽ3̂) as basis vectors
and with all instances of ℜ(Ψ4) replaced by ℑ(Ψ4). This
duality does not address, however, how to construct a
source with a purely imaginary Ψ4.

C. Wave generation by a time varying current

quadrupole

A dynamical current quadrupole moment Spq(t) gener-
ates a metric perturbation described by the Spq(t− r)/r
terms in Eqs. (8.13) of [36]. It is straightforward to show
that the corresponding frame-drag field is

Bij =
2

3

[

−
(Spq

r

)

,pqij

+ ǫipq

(

(2)Spm

r

)

,qn

ǫjmn

+2

(

(2)Sp(i

r

)

,j)p

−
(

(4)Sij

r

)



 . (6.15)

Here Spq is to be regarded as a function of retarded time,

t− r, and the prefixes (2) and (4) mean two time deriva-
tives and four time derivatives. This equation shows ex-
plicitly how Bij in the near zone transitions into Bij in
the wave zone — or equivalently, how rotating (or other-
wise time-changing) frame-drag vortexes in the near zone
generate gravitational waves.
This transition from near zone to far zone can also be

described by the linear approximation to the Maxwell-
like equations for the frame-drag field B and the tidal
field E, Eqs. (2.15). These equations govern the man-
ner by which the current-quadrupole near-zone frame-
drag field (5.18) acquires an accompanying tidal field as
it reaches outward into and through the transition zone,
to the wave zone. That accompanying tidal field is most
easily deduced from the Spq(t− r)/r terms in the metric
perturbation, Eqs. (8.13) of [36]. The result is:

Eij =
4

3
ǫpq(i



−
(

(1)Spk

r

)

,j)kq

+

(

(3)Sj)p

r

)

,q



 . (6.16)

In the near zone, the current quadrupole’s tidal field
[first term of (6.16)] behaves differently from its frame-
drag field [first term of (6.15)]: it has one additional time
derivative and one fewer space derivative. As a result,
the tidal field is smaller than the frame-drag field in the
near zone by a factor of r/λ, where λ is the reduced
wavelength of the emitted gravitational waves.
As one moves outward through the near zone to the

transition zone, where r ∼ λ, the tidal field increases in
magnitude to become the same strength as the frame-
drag field. The frame-drag and tidal fields behave this
way, because it is the near-zone vortexes that generate
the gravitational waves, as discussed above.
In the wave zone, the general current-quadrupole

(outgoing-wave) frame-drag field (6.15) reduces to

Bâb̂ =
4

3r

[

(4)Sâb̂(t− r)
]TT

. (6.17)

Here the indices are confined to transverse directions (the
surface of a sphere of constant r) in the orthonormal ba-
sis eθ̂, eφ̂, and “TT” means “take the transverse, trace-
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less part”. From the third of the Maxwell-like equa-
tions (2.15), or equally well from the general current-
quadrupole tidal field, Eq. (6.16), we infer the wave-zone
tidal field:

Eâb̂ =
4

3r

[

ǫĉ(â
(4)Sb̂)ĉ(t− r)

]TT

, (6.18)

where ǫĉd̂ is the 2-dimensional Levi-Civita tensor on the

sphere. Since Eâb̂ = Râ0̂b̂0̂ = − 1
2

(2)
hTT
âb̂

, where hTT
âb̂

is the

transverse, traceless gravitational-wave field, our wave-
zone tidal distortion (6.18) agrees with the standard re-
sult for the wave-zone current-quadrupole gravitational-
wave field (Eq. (4.8) of [36]).

D. Rotating current quadrupole

In this section, we will discuss the vortex and tendex
lines of a rotating current quadrupole.

A large rotating current quadrupole moment arises
during the merger and ringdown of the extreme-kick con-
figuration of a binary black hole (a quasi-circular bi-
nary made of identical black holes, whose spins are anti-
aligned and lie in the orbital plane). During the merger,
the four vortexes associated with the initial holes’ spins
get deposited onto the merged horizon’s equator, and
they then rotate around the final Kerr hole’s spin axis at
the same rate as their separation vector rotates, generat-
ing a large, rotating current quadrupole moment (paper
III in this series).

As a simple linearized-gravity model of this late time
behavior, imagine that at an initial time t = 0, the two
vortex-generating spins, of magnitude S, are separated
by a distance a along the x axis and are pointing in
the ±y direction — i.e. they have the same configura-
tion as the static current quadrupole discussed in Sec.
VC above. Then at t = 0, the spins’ current quadrupole
moment has as its nonzero components Sxy = Syx = Sa
[Eq. (5.15) with the spin axes changed from z to y]. As
time passes, the spins’ separation vector and the spins’
directions rotate at the same angular velocity ω so the
configuration rotates rigidly. Then it is not hard to show
that the current quadrupole moment evolves as

Sxy = Syx = Sa cos(2ωt) ,

Sxx = −Syy = −Sa sin(2ωt) . (6.19)

It is straightforward to calculate the frame drag field
produced by this quadrupole moment using Eq. (6.15),
and to then compute the vortex lines and their vorticities.

The explicit expressions for these lines are somewhat
lengthy, and not particularly instructive; but the shapes
of the vortex lines and the values of their vorticities are
quite interesting.

FIG. 9: For a rotating current quadrupole in linearized the-
ory: two families of vortex lines in the plane of reflection sym-
metry (the x-y plane). The red (solid) curves are lines with
negative vorticity, and the blue (dashed) curves are lines of
positive vorticity. The color intensity of the curves represents
the strength of the vorticity, but rescaled by (kr)5/[1+ (kr)4]
(with k the wave number) to remove the vorticity’s radial
decay. We see the quadrupolar near zone pattern and the
transition into the induction zone. In the induction zone, the
pattern carries four “triradius” singular points [44] in each
family of curves, necessitated for the transition from the static
quadrupole pattern to the spiraling radiation pattern. This
same figure also describes the tendex lines of a rotating mass
quadrupole (see the end of Sec. VIF).

1. Vortex and tendex lines in the plane of reflection
symmetry

There are two sets of vortex lines that lie in the x-
y plane (the plane of reflection symmetry) and one set
that passes orthogonally through this plane. We show
the in-plane vortex lines in Figs. 9 and 10. The two
figures depict the negative-vorticity vortex lines by red
(solid) curves and the positive-vorticity lines by blue
(dashed) curves. The darkness of the lines is propor-
tional to the vorticity; dark red (blue) indicates strong
negative (positive) vorticity, and light red (blue) indi-
cates weaker vorticity. To remove the effects of the radial
dependence in the coloring, we have scaled the vorticity
by (kr)5/[1 + (kr)4], where k = 1/λ = 2ω is the wave
number of the radiation. Figure 9 shows the region of
the near zone that is difficult to see in Fig. 10, an equiv-
alent figure that spans a larger region of the x-y plane.
As one can see from the figures, the two sets of lines have
the same pattern, but are rotated with respect to each
other by π/2 = 90o.

In the near zone (inner region of Fig. 9), the vortex-line
pattern is the same as for the static current quadrupole
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FIG. 10: Same as Fig. 9 but zoomed out to show the wave
zone. In the wave zone, the lines generically collect into spi-
rals, which form the boundaries of vortexes (regions of con-
centrated vorticity).

of Fig. 6b. At the transition to the wave zone, the vortex
lines fail to curve back into the central region and instead
bend outward, joining a wave-zone spiral pattern.

That spiral pattern consists of four vortexes (regions
of concentrated vorticity) that spiral outward and back-
ward as the quadrupole rotates. These four regions of
alternating positive and negative vorticity are bounded
by tight clusters of vortex lines, just outside of which the
sign of the dominant vorticity changes.

This same rotating vortex structure occurs in the case
of an l = 2, m = 2, odd-parity (current quadrupolar)
perturbation of a Schwarzschild black hole (Paper II in
this series). There the horizon vorticity pattern takes the
place of the current quadrupole.

In Fig. 11 we indicate the structure of the tendex lines
on the equatorial plane. Because the symmetry prop-
erties of the system imply different constraints on the
tendex field than on the vortex field, some explanation
is needed. The plane in which this and the previous two
figures are drawn is a plane of reflection symmetry for
the problem. However, because the source is a pure cur-
rent quadrupole, it must be antisymmetric under reflec-
tion across this plane (as such a reflection is a parity
inversion). The vorticity, which itself has an odd parity
relationship with its source, is symmetric under this re-
flection, constraining the vortex lines to be either tangent
or orthogonal to the plane, as noted above. The tendic-
ity is antisymmetric under this reflection, so one family
of lines can be tangent to the plane, so long as it has
zero tendicity, and two other families of lines must cross
the plane at equal and opposite inclinations, with equal
and opposite tendicities, such that they are exchanged

FIG. 11: Tendex lines in the equatorial plane for a rotating
current quadrupole in linearized theory. The curves shown
are lines of identically zero tendicity, enforced by symmetry.
The lines are shaded by the absolute value of the tendicity
of the other two tendex lines that cross the lines shown, but
are not tangent to the plane, and have equal and opposite
tendicities.

under the reflection. The diagram in Fig. 11 shows the
single family of tendex lines tangent to the symmetry
plane. As these curves have exactly zero tendicity, they
are physically relevant only in that they denote the orien-
tation of the other two families of tendex lines, which are
not tangent to the plane, but whose projection onto the
plane must be orthogonal to the curves shown (because
all three curves are mutually orthogonal). The shading of
the lines in Fig. 11 does not represent the tendicity of the
lines drawn (which is identically zero), but rather of the
other two tendex lines, which intersect the lines drawn
with mutually equal and opposite tendicity. Again, this
shading is rescaled by (kr)5/[1 + (kr)4]. Though it isn’t
apparent to the eye, the strength of the tendicity grows
only as r4 near the singular point (origin), rather than r5

as for the vorticity. As argued early in Sec. VIC, this can
be interpreted intuitively as meaning that the vorticity is
sourced directly from the current quadrupole, while the
tendicity is sourced by induction from the time-varying
vortex field.

For a rotating mass quadrupole (e.g. the quadrupole
moment of an equal mass binary), the tendex lines in the
plane of reflection symmetry will have precisely the same
form as the rotating-current-quadrupole vortex lines of
Figs. 9 and 10; see Sec. VI F.
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FIG. 12: For the same rotating current quadrupole as in Figs.
9 and 10: the family of vortex lines that pass orthogonally
through the x-y plane of reflection symmetry, color coded as
in Fig. 9. In the wave zone, lines with approximately zero vor-
ticity extend away from the source nearly radially, while lines
with significant vorticity are dragged into tangled spirals by
the rotation of the source. In the first inset, we see the transi-
tion between the near and wave zones. Here, lines with nearly
zero vorticity escape to infinity as in the wave zone, but those
with significant vorticity are drawn toward the source. The
second inset delves down into the near zone, where the lines
are approximately those of a stationary current quadrupole.
This same figure also describes the tendex lines of a rotating
mass quadrupole (see the end of Sec. VIF).

2. Vortex lines outside the plane of reflection symmetry:
transition from near zone to wave zone

Outside the plane of reflection symmetry and in the
wave zone, the extrema of the vorticity show a spiral-
ing pattern that is the same at all polar angles. More
specifically, at all polar angles θ, the magnitude of the
vorticity, as a function of azimuthal angle φ, has four
maxima; and the locations of those maxima are the same
as in the equator (θ = π/2). As in the equator, the
maxima at fixed time t spiral around at an angular rate
dφmax/dr = −ω as one moves outward in radius; and as
in the equator, vortex lines collect near these spiraling
maxima, and those lines too undergo spiraling behavior.

Figure 12 shows the development of this spiraling
structure as one moves outward from the near zone (in-
nermost inset) into the wave zone (outer region of figure).
This figure focuses on the family of vortex lines that pass
orthogonally through the x-y plane of reflection symme-
try. After entering the wave zone, the lines with non-
negligible vorticity (the blue and red lines) collect into
a somewhat complicated spiral pattern, tangling among
themselves a bit as they spiral. The gray lines with very
low vorticity, by contrast, point radially outward. An an-
imation of this rotating system can be seen at Ref. [26].

It should be noted Fig. 12, and the animation at

FIG. 13: (color online). Vortex lines of a time-varying cur-
rent quadrupole at very large r. The lines are colored by the
vorticity scaled by r, to remove the 1/r falloff, but the color
coding is the same as in previous figures. At very large dis-
tances from the source, the lines are transverse and live on
a sphere. The third vortex line not shown is radial and has
vanishing eigenvalue.

Ref. [26], represent somewhat incomplete descriptions of
the structure of these field lines. The red and blue helical
spirals shown in Fig. 12 do not cross one another. How-
ever, at any point in space, there must be three mutually
orthogonal vortex lines, with vorticities summing to zero.
Since at all points in the wave zone there is a field line
of nearly zero vorticity directed in a nearly radial direc-
tion, through any point along these spirals of positive or
negative vorticity, field lines of opposite vorticity must lie
orthogonal to the spiral and to the approximately radial
lines. As shown in the following subsection, these lines
form closed loops in the far-field region.

3. Vortex lines in the far wave zone

In the far wave zone (strictly speaking at future null
infinity), the frame-drag field becomes transverse and
traceless, and takes the simple form (6.17). Of its three
sets of vortex lines, one is radial (with vanishing vortic-
ity) and the other two are tangent to a sphere of constant
radius r (with vorticity of equal and opposite sign). The
two sets of vortex lines on the sphere have an interesting
angular pattern that is shown in Fig. 13. The vortex line
that lies in the equator alternates between positive and
negative vorticity, going to zero at four points (one of
which is shown at the front of the sphere). This line is
just the limit of the spirals where vortex lines collect in
Fig. 10 at very large r. [Further discussion of the vor-
tex and tendex lines of radiation at large r is given in
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[28], where the dual figure to Fig. 13 (tendex lines of a
rotating mass quadrupole) is discussed in detail.]
How the vortex lines transition to the transverse pat-

tern of Fig. 13 at very large r, from the spiraling pattern
of Fig. 12 in the inner wave zone, is of considerable in-
terest. We can explore this by examining the frame-drag
field at sufficiently large radii that the 1/r piece domi-
nates over all other components, and that the 1/r2 part
of the frame-drag field may be thought of as a pertur-
bation to the leading-order 1/r part. In this region, the
vortex lines show two kinds of qualitative behavior. Some
of the vortex lines continue to form spirals that meander
out and do not close, as in Fig. 12. There also are lines
that form closed loops similar to the leading-order vortex
lines of Fig. 13. We show both of these types of lines in
Fig. 14. The red, solid, spiralling lines continue to collect
on the maximum-vorticity spirals in the far wave zone.
These lines begin to resemble the transverse lines of Fig.
13 more than the spiralling lines in the near wave zone
of Fig. 12 do, because they rise and fall in polar angle
as they wind around the maximum-vorticity spiral. It
is only in the limit of infinite radius that these spirals
close to form loops. The blue, dashed, closed lines, on
the other hand, resemble the closed lines at infinity in
Fig. 13 much more closely. The lines at finite r do have
some subtle differences between the corresponding lines
at infinity: At finite radii, each individual line passes
from one maximum-vorticity spiral to the other; in do-
ing so the line must slightly increase in radius and rotate
in azimuthal angle. At the large radii shown in Fig. 14,
this effect is very subtle. We finally note that there are
also spiralling, positive vorticity lines and closed, nega-
tive vorticity lines that we do not show to avoid visual
clutter.

E. Oscillating current quadrupole

The vortex lines of an oscillating current quadrupole
(this section) have a very different structure from those
of the rotating current quadrupole (last section). This
should not be surprising, because the two quadrupoles
arise from very different physical scenarios; e.g., for the
oscillating quadrupole, the ringdown following a head-
on collision of black holes with anti-aligned spins; and
for the rotating quadrupole, the ringdown following the
inspiral and merger of an extreme-kick black-hole binary.
See Papers II and III of this series.
In linearized theory, one can envision an oscillating cur-

rent quadrupole as produced by two particles, separated
by a distance a along the x axis, whose spins, antialigned
and pointing in the ±y direction, oscillate in magnitude
as S cosωt. The resulting quadrupole moment is [cf. Eq.
(5.14)]

Sxy = Syx = Sa cosωt . (6.20)

The frame-drag and tidal fields, and thence vortex and

FIG. 14: (color online). Vortex lines of a rotating current
quadrupole at sufficiently large r that the 1/r2 part of the
frame-drag field may be thought of as a perturbation to the
transverse vortex lines of Fig. 13. The lines are colored by the
vorticity as in that figure. We also show a black dotted circle
in the equatorial plane to identify this plane. The red lines
shown here continue to collect on the maximum-vorticity spi-
ral, but they oscillate much more in polar angle than do the
similar lines shown in the near wave zone in Fig. 12. The blue
lines shown here form closed loops that pass from one positive
vorticity spiral to the next. This family of lines more closely
resembles the transverse lines of Fig. 13, though in the limit
of infinite radius, the spiralling lines will also close to form
transverse lines on the sphere. There are also spiralling pos-
itive vorticity (blue) lines and closed-loop, negative vorticity
(red) lines, but to keep the figure from appearing muddled,
we do not show them.

tendex lines, for this current quadrupole can be com-
puted from Eqs. (6.15) and (6.16).

As for the rotating quadrupole, the x-y plane of reflec-
tion symmetry contains two families of vortex lines, and
a third family passes orthogonally through that plane.
The in-plane vortex lines are depicted in Figs. 15 and
16 using the same color conventions as for the rotating
quadrupole (Figs. 9 and 10). Figure 15 shows the re-
gion of the near zone that is difficult to see in Fig. 16,
an equivalent figure that spans a larger region of the x-y
plane. As one can see from the figures, the two families
of vortex lines, solid red (negative vorticity) and dashed
blue (positive vorticity) have the same pattern, but are
rotated by π/2 = 90o.

The way in which the gravitational waves are gener-
ated differs greatly from the rotating current quadrupole
of the previous section. In the near zone, the two sets of
vortex lines form a static quadrupole pattern (identical
to the near-zone rotating quadrupole of Fig. 9, but ro-
tated by π/4 due to the orientation of the spins). In the
transition zone, the vortex lines form distorted loops that
head away from the origin, along the lines y = ±x, in al-
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FIG. 15: (color online). For an oscillating current quadrupole
in linearized theory: two families of vortex lines in the plane
of reflection symmetry (the x-y plane). The color coding is
the same as for the rotating current quadrupole, Fig. 9. The
vortex lines begin, near the origin, like the static quadrupole
pattern of Fig. 6. The effects of time retardation cause the
pattern to stretch making larger rectangular loops in the tran-
sition zone. As time passes and the quadrupole oscillates,
these loops detach from the origin and propagate out into the
wave zone. This same figure also describes the tendex lines
of an oscillating mass quadrupole (see the end of Sec. VIF).
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FIG. 16: (color online). Same as Fig. 15, but zoomed out
to show the wave zone. Further from the source, the loops
take on a more regular alternating pattern of gravitational
waves. The coloring shows that the vorticity is strongest at
the fronts and backs of the loops, where the vortex lines are
transverse to the direction of propagation. In the regions of
the closed loops that extend radially, the field is weak (as one
would expect for a transverse gravitational wave).

ternating fashion. As they extend into the wave zone, the
lines form two qualitatively different kinds of loops. The
majority of the loops reside only in one of the four quad-
rants of the equatorial plane, but there are also loops that
pass through all four quadrants, staying near the regions
of maximum vorticity, where lines collect at the gravita-
tional wave crests. For both types of loops, they maintain
the same wavelength, but the wave front becomes wider
at larger radii, as they become gravitational waves. The
portion of a loop transverse to the radial direction (the di-
rection of propagation) has strong vorticity, as one would
expect for a gravitational wave; in the radial portion of
the loop, the vorticity is weak. Each cycle of the oscil-
lating quadrupole casts off another set of vortex loops as
the near zone region passes through zero vorticity, and
the loops travel outward towards infinity. This illustrates
clearly the manner in which the near zone vortex pattern
generates gravitational waves in the far zone through its
dynamics.

As with the rotating current quadrupole, one can en-
vision the equatorial vortex line of Fig. 13 as the limit
of the wavefronts of the planar vortex lines in Fig. 16 at
large distances. It is again of interest to understand how
the vortex lines outside the equatorial plane become the
remaining vortex lines in Fig. 13. To do so, we will make
reference to Fig. 17, which shows the vortex lines at a
distance sufficiently large that the 1/r2 portions of the
frame-drag field can be thought of as a small perturba-
tion to the transverse vortex lines of Fig. 13. We show
only the three-dimensional analog of the lines that pass
through all four quadrants in the equatorial plane, and do
not show the lines that remain in just one octant (anal-
ogous to the loops that remain in one quadrant in the
equatorial plane) to keep the figure as simple as possible.

Near the poles, these vortex lines have nearly the same
structure as the purely transverse lines of Fig. 13; it is
only near the equator that the lines begin to differ. As
the lines approach the equator, they also increase in ra-
dius, due to the 1/r2 parts of the frame-drag field. In
doing so, they pass from one gravitational wave crest to
the next, and the lines sharply turn during their passage
between successive crests. The portion of the line on
this next crest runs nearly parallel to the equator, until
it begins moving slightly inward (again due to the 1/r2

parts of the frame-drag field). As it then sharply turns
again, it returns to the original crest and begins head-
ing back toward the poles. This sharp turning happens
on both sides of the sphere, which causes the lines to
form the closed loops that reside in either the northern
or the southern hemisphere in Fig. 17. Only in the limit
that r goes to infinity do the radial perturbations vanish,
and the loops in the northern and southern hemisphere
connect to form the transverse pattern in Fig. 13.
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FIG. 17: (color online). Vortex lines of an oscillating current
quadrupole at sufficiently large r that the 1/r2 part of the
frame-drag field may be thought of as a perturbation to the
transverse vortex lines of Fig. 13. The lines are colored in
the same way as that figure, and the pattern of the lines
around the poles is nearly identical to the transverse lines of
Fig. 13. Near the equator, the 1/r2 perturbation causes the
lines to bend and form closed loops that reside in either the
northern or the southern hemisphere. The blue horizontal
lines in the blow up inset should be compared with dense
blue (dashed) bundles in Fig. 16, and red lines with the red
bundles immediately outside of the blue ones.

F. Wave generation by a time varying mass

quadrupole

A time varying mass quadrupole moment Ipq(t) gives
rise to metric perturbations of flat space given by the
terms proportional to Ipq(t− r)/r and its derivatives in
Eqs. (8.13) of [36]. It is straightforward to calculate that
the frame-drag field for these metric perturbations is

Bij = ǫpq(i





(

(1)Ipk
r

)

,j)kq

−
(

(3)Ij)p
r

)

,q



 . (6.21)

Notice that this mass-quadrupolar frame-drag field is the
same as the current-quadrupolar tidal field (6.16), with
the current quadrupole moment Spq replaced by − 3

4Ipq;
cf. the duality relations (2.14) and (2.18). Correspond-
ingly, the vortex lines of this mass quadrupole will be
the same as the tendex lines of the equivalent current
quadrupole.
The mass quadrupole’s tidal field can be deduced from

its frame-drag field (6.21) by using the third of the
Maxwell-like equations (2.15). The result is

Eij =
1

2

[

−
(Ipq

r

)

,pqij

+ ǫipq

(

(2)Ipm
r

)

,qn

ǫjmn

+2

(

(2)Ip(i
r

)

,j)p

−
(

(4)Iij
r

)



 . (6.22)

Alternatively, this mass quadrupolar tidal field can be
deduced from the current quadrupolar frame-drag field

(6.15) by using the duality relation Spq → + 3
4Ipq [Eqs.

(2.14) and (2.18)].
As a result, the tendex lines of this mass quadrupole

will be the same as the vortex lines of the current
quadrupole, Figs. 9 - 10 and 12 - 16, with the red (solid)
lines describing tidal stretching, and the blue (dashed)
lines, tidal squeezing.

G. Slow-Motion Binary system made of identical,

nonspinning point particles

As a final example of a weakly gravitating system, we
investigate the tendex lines of a Newtonian, equal mass
binary made of nonspinning point particles in a circular
orbit. We assume a separation a between particles that is
large compared to their mass M , so the orbital velocity
v = 1

2

√

M/a is small compared to the speed of light
(“slow-motion binary”).
Close to the binary, where retardation effects are negli-

gible, the tidal field is given by the Newtonian expression
Ejk = Φ,jk [Eq. (5.4)], with Φ the binary’s Newtonian
gravitational potential

Φ = − MA

|x− xA|
− MB

|x− xB|
. (6.23)

Here MA = MB = M/2 are the particles’ masses with
M the total mass, and xA and xB are the locations of
particles, which we take to be on the x axis, separated
by a distance a.
In Fig. 18, we show the near-zone tendex lines associ-

ated with this potential’s tidal field, color coded in the
usual way (see the figure’s caption). Close to each parti-
cle, the tendex lines resemble those of a static, spherically
symmetric object. Moving further from the particle, one
can see the effects of the particle’s companion, bending
and compressing the lines. At radii r & a, the Newtonian
potential and tidal field can be expanded in multipole
moments with the monopole and quadrupole dominat-
ing. At r >> a, the monopole dominates and the tendex
lines become those of a single spherical body.
The binary’s orbital angular velocity is ω =

√

M/a3

(Kepler’s formula), and the binary emits gravitational
waves with angular frequency 2ω, reduced wavelength
λ = 1/(2ω) = 1

2

√

a3/M , and wavelength λ = 2πλ. As a
concrete example, we choose the particles’ separation to
be a = 20M ; then λ =

√
5a ≃ 2.24a, and λ = 2π

√
5a ≃

14a.
Figure 19 shows tendex lines in this binary’s orbital

plane, focusing on the transition and wave zones r & λ =
2.24a (outside the solid black circle). The shapes and
colors of the tendex lines in this figure can be understood
in terms of the binary’s multipole moments:
In the transition zone and wave zone, r & λ, the tidal

field is the sum of a nonradiative monopolar piece with
magnitude EM ≃ M/r3, and a quadrupolar piece with
magnitude (1/r)∂4I/∂t4 ≃ (2ω)4(14Ma2)/r ≃ 4M3/a4r;
higher order moments are negligible. The two moments
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FIG. 18: (color online). For a weak-gravity binary made of
identical nonspinning point particles, in the near zone where
retardation is negligible: two families of tendex lines lying in
a plane that passes through the two particles (e.g. the orbital
plane). The red (solid) curves are lines with negative tendic-
ity, and the blue (dashed) curves have positive tendicity. The
color intensity of the curves represents the magnitude of the
tendicity, rescaled by r3Ar

3

B/[M
3(r3A + r3B)], where rA and rB

are the distances to the particles, to remove the tendicity’s
radial die out. Near each particle, the tendex lines resemble
those of an isolated spherical body; as one moves closer to the
particle’s companion, the lines bend in response to its pres-
ence. At radii large compared to the particles’ separation a,
the binary’s monopole moment comes to dominate, and the
tendex lines resemble those of a single isolated spherical body.

contribute about equally at radius r = 1
2a

2/M = 10a
(dotted black circle in the figure). The (nonradiative)
monopole moment, with its red radial and blue circular
tendex lines, dominates inside this circle. The (radia-
tive) quadrupole moment dominates outside the circle,
so there the tendicity is significant (strong red and blue)
only when the tendex lines are transverse; and strong red
alternates, radially, with strong blue as the waves propa-
gate radially. Ultimately, at very large radii (far outside
the domain of Fig. 19), the quadrupole moment will to-
tally dominate, and the tendex-line pattern will become
that of a rotating quadrupole, depicted in Fig. 10.

Figure 20 shows the tendex lines for this same binary,
with the same parameters, in three dimensions, i.e. above
and below the equatorial plane. In the inner region, the
monopole moment dominates so the red (stretching) ten-
dex lines are nearly radial, and the blue (squeezing) ten-
dex lines are nearly circular, centered on the binary. As
one moves outward, the radiative quadrupole moment
begins to distort these radial and circular tendex lines,
and then at large radii, the now-dominant quadrupole

FIG. 19: (color online). Tendex lines in the orbital plane
of the same binary as Fig. 18, with separation a = 20M
(where M is the total mass), focusing on the transition and
wave zones r & λ = 2.24a. The solid black circle has
radius λ. The colors are fixed by the tendicity weighted
by ωr so as to scale out the 1/r falloff in the wave zone
(with dark blue strongly positive, dark red strongly nega-
tive, and light green near zero). Inside the dotted black curve
(r = 1

2
a2/M = 10a), the binary’s (nonradiative) monopole

moment dominates, E ≃ M/r2 , and the red (stretching) ten-
dex lines are nearly radial. Outside the dotted black curve,
the (radiative) quadrupole moment dominates, E ≃ 4M3/a4r,
and the tendex lines are strong (significant tendicity) only
where they are approximately transverse to the radial direc-
tion.

moment drives them into the same spiraling pattern as
we have seen in Fig. 12 for the tendex lines of a rotating,
pure mass quadrupole.

VII. CONCLUSIONS

In this paper, we have focused on the “electric” and
“magnetic” parts of the Weyl curvature tensor, Eij and
Bij , and have given them the names tidal field and frame-
drag field, based on their roles in producing tidal gravita-
tional accelerations and differential frame dragging. Be-
ing parts of the Riemann tensor, these fields are well
defined (though slicing dependent) in strong-gravity sit-
uations such as the near zone of colliding black holes.
For this reason, and because they embody the full vac-
uum Riemann tensor and are easily visualized, Eij and
Bij are powerful tools for exploring the nonlinear dynam-
ics of spacetime curvature (geometrodynamics).
As tools for visualizing Eij and Bij , we have introduced

tendex and vortex lines (the integral curves of the eigen-
vectors of Eij and Bij), along with their tendicities and
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FIG. 20: (color online). Tendex lines outside the (central,
horizontal) orbital plane, for the same binary and parameters
as Fig. 19. In the inner region, the binary’s monopole moment
dominates, E ≃ M/r2, so the red (stretching) tendex lines are
nearly radial and the blue (squeezing) tendex lines are nearly
circular. At larger radii, the (radiative) quadrupole moment
begins to be significant and then dominate, so the tendex lines
begin to spiral outward as for the rotating quadrupole of Fig.
12.

vorticities (the eigenvectors’ eigenvalues). The tendex
and vortex lines are gravitational analogs of electric and
magnetic field lines. Moreover, just as the electromag-
netic field tensor is fully determined by its electric and
magnetic field lines, together with their field-line densi-
ties (which encode the lengths of the electric and mag-
netic vectors), so the vacuum Riemann curvature tensor
is fully determined by its tendex and vortex lines, to-
gether with their colors (which encode the tendicities and
vorticities as in Fig. 19).

In terms of their transformation properties, the (Eij ,
Bij) pair is strictly analogous to the pair of electric and
magnetic 3-vector fields: they are components of a 4-
tensor, divided into two groups in a slicing dependent
manner. We are confident that this mild and transpar-
ent form of frame dependence will not prevent our ten-
dex and vortex concepts from becoming useful tools for
studying geometrodynamics, any more than the frame
dependence of electric and magnetic fields and field lines
have been impeded from being useful tools for studying
electromagnetism in flat or curved spacetime.

Using various examples from linearized gravity, for
which analytical formulas are available, we have plotted
color-coded tendex and vortex lines, and thereby we have
gained insight into the behaviors of the tidal and frame-
drag fields. This intuition from weak-gravity examples
will be of great value when studying strongly gravitat-
ing systems in asymptotically flat spacetimes, e.g. binary
black holes. This is because, in the weak-gravity region of
spacetime outside such strong-gravity systems, linearized

gravity is a good approximation. More specifically:

For stationary, strongly gravitating systems (e.g. sta-
tionary black holes and neutron stars), the tendex and
vortex lines in their asymptotic, weak-gravity regions will
be well approximated by our linearized-theory results in
Sec. V (and, perhaps in some cases, extensions to higher
multipoles).

For oscillatory, strongly gravitating systems (e.g. bi-
nary black holes and oscillating neutron stars), the wave
zones’ tendex and vortex lines will be well approximated
by those of our examples in Sec. VI, and their extensions.
Whether the system has strong gravity or weak gravity,
its wave-zone field lines are controlled by radiative mul-
tipole moments that are tied to the system’s near-zone
dynamics.

As one moves inward through the weak-gravity wave
zone into the near zone and the region of strong gravity,
the details of the field lines and the system’s dynamics
may be quite different for strong-gravity systems than for
our weak-gravity examples. Nevertheless it seems likely
that in all cases, the gravitational waves will be generated
by dynamical motions of near-zone tendexes and vortexes
(regions of strong tendicity and vorticity). By exploring
that near-zone tendex/vortex dynamics, we can gain deep
physical insight into nonlinear spacetime curvature. This
will be a central theme of Papers II and III in this series.

Whatever may be a source’s strong-field dynamics,
it will be useful to focus on the imprints that the
strong-field dynamics leaves on the tendex/vortex struc-
tures in the strong-to-weak-gravity transition region.
Those transition-region tendex/vortex imprints will gov-
ern spacetime curvature throughout the asymptotic,
weak-gravity region, and in particular will govern the
radiative multipole moments that control the emitted
gravitational waves. Moreover, the imprinted structures
in the strong-to-weak-gravity transition region may turn
out to have some sort of effective dynamics that can be
captured by simple analytical models and can become
a powerful tool for generating approximate gravitational
waveforms, e.g. for use in gravitational-wave data analy-
sis.
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Appendix A: The Newman Penrose Formalism

In this appendix we give the connection between
the electric and magnetic parts of the Weyl tensor E

and B, and the five Newman-Penrose (NP) curvature
scalars [46].
The NP formalism [46] is especially useful for express-

ing the gravitational wave content of a dynamical space-
time at asymptotic null infinity. It is also a crucial
foundation for the study of black hole perturbations and
for the Petrov classification of vacuum spacetimes, both
of which will naturally make contact with the study of
vortexes and tendexes. In order to make contact with
numerical simulations, we will need to understand the
connection between the NP formalism and gravitational
waves propagating on a flat background, as discussed in
Sec. VIA.
Because we use the opposite metric signature to that of

the original Newman-Penrose paper [46] and the widely
used Penrose-Rindler book [32], our sign conventions for
the NP quantities and for Eqs. (A3) and (A8) below differ
from theirs. Ours are the same as in [33].
To begin with, we define an orthonormal tetrad ~eα̂ =

(~e0̂, ~e1̂, ~e2̂, ~e3̂) with time basis vector ~e0̂ = ~u orthogonal to
our chosen foliation’s spacelike hypersurfaces, and with
the spatial basis vectors ~e1̂, ~e2̂, ~e3̂ lying in those hypersur-
faces. We use this tetrad to build a complex null tetrad
for use in the NP formalism:

~l =
1√
2
(~e0̂ + ~e1̂) , ~n =

1√
2
(~e0̂ − ~e1̂) ,

~m =
1√
2
(~e2̂ + i~e3̂) , ~m∗ =

1√
2
(~e2̂ − i~e3̂) . (A1)

By projecting the Weyl tensor onto this null basis, we
construct the complex Weyl scalars,

Ψ0 = Cµνρσ l
µmν lρmσ , (A2a)

Ψ1 = Cµνρσ l
µnν lρmσ , (A2b)

Ψ2 = Cµνρσ l
µmνm∗ρnσ , (A2c)

Ψ3 = Cµνρσ l
µnνm∗ρnσ , (A2d)

Ψ4 = Cµνρσn
µm∗νnρm∗σ . (A2e)

Using the null tetrad (A1) built from our orthonormal
tetrad, we can express the spatial orthonormal compo-
nents of the electric and magnetic parts of the Weyl ten-
sor in terms of the Weyl scalars as follows:

Eâb̂ + iBâb̂

=











2Ψ2 −(Ψ1 −Ψ3) i(Ψ1 +Ψ3)

∗ Ψ0 +Ψ4

2
−Ψ2 − i

2
(Ψ0 −Ψ4)

∗ ∗ −Ψ0 +Ψ4

2
−Ψ2











,(A3)

(cf. Eq (3.65) of [33], where the differences are due to
differing conventions on both B and our null tetrad). In

Eq. (A3), the rows and columns are ordered as 1̂, 2̂, 3̂ and
the entries indicated by ∗ are given by the symmetry of
the matrix.
The entries in Eq. (A3) can be derived in a straightfor-

ward manner from the definitions of E and B, Eqs. (2.2a)
and (2.2b), and the definitions of the Weyl scalars,
Eqs. (A2a)-(A2e). For example, we have

E1̂1̂ = R1̂0̂1̂0̂ =
1

2
(Rr̂lr̂l + 2Rr̂lr̂n +Rr̂nr̂n)

=
1

4
(Rnlnl − 2Rnlln +Rlnln) = Rlnln , (A4)

where we have used the symmetry properties of the Rie-
mann tensor to eliminate and combine many terms. This
result is not obviously equal to any of the Weyl scalars,
but note that

Rlnln = −Rn
nln = Rn

nnl = −(Rl
nll +Rm

nml +Rm∗

nm∗l)

= −Rm∗nml −Rmnm∗l = Rlmm∗n +Rlm∗mn

= Ψ2 +Ψ∗

2 , (A5)

where we have used the fact that in the null tetrad ba-
sis {~l, ~n, ~m, ~m∗}, indices are raised and lowered with the
metric components

gαβ = gαβ =











0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0











, (A6)

and the fact that the Ricci tensor vanishes in vacuum
spacetimes. Similar manipulations give

B1̂1̂ =
1

2
ǫ1̂

p̂q̂Rp̂q̂1̂0̂ = R2̂3̂1̂0̂ = −iRm∗mln

= i(Rlmnm∗ +Rlm∗mn) = i(−Ψ2 +Ψ∗

2) , (A7)

so we see that E1̂1̂ + iB1̂1̂ = 2Ψ2. Similar computations
give all of the entries of Eq. (A3).
We will often have reason to consider the “horizon ten-

dicity” and “horizon vorticity.” These are the values of
E and B projected normal to the 2-dimensional event
horizon of a spacetime containing a black hole, evaluated
at the horizon. If the inward normal to the horizon is
denoted N and we choose the vector e1̂ such that it co-
incides with −N at the horizon, then we immediately
have the useful result

Ψ2 =
1

2
(ENN + iBNN)

=
1

2
(Eij + iBij)N

iN j , (A8)

which we will use in our studies of analytic and numerical
spacetimes containing horizons (papers II and III in this
series).
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