
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Efficient asymptotic frame selection for binary black hole
spacetimes using asymptotic radiation

R. O’Shaughnessy, B. Vaishnav, J. Healy, Z. Meeks, and D. Shoemaker
Phys. Rev. D 84, 124002 — Published  1 December 2011

DOI: 10.1103/PhysRevD.84.124002

http://dx.doi.org/10.1103/PhysRevD.84.124002


DH10888

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Efficient asymptotic frame selection for binary black hole spacetimes using asymptotic

radiation

R. O’Shaughnessy
Center for Gravitation and Cosmology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA∗

B. Vaishnav,† J. Healy, Z. Meeks, and D. Shoemaker
Center for Relativistic Astrophysics, Georgia Tech, Atlanta, GA 30332, USA

Previous studies have demonstrated that gravitational radiation reliably encodes information
about the natural emission direction of the source (e.g., the orbital plane). In this paper, we demon-
strate that these orientations can be efficiently estimated by the principal axes of

〈

L(aLb)

〉

, an
average of the action of rotation group generators on the Weyl tensor at asymptotic infinity. Eval-
uating this average at each time provides the instantaneous emission direction. Further averaging
across the entire signal yields an average orientation, closely connected to the angular components
of the Fisher matrix. The latter direction is well-suited to data analysis and parameter estimation
when the instantaneous emission direction evolves significantly. Finally, in the time domain, the
average

〈

L(aLb)

〉

provides fast, invariant diagnostics of waveform quality.

I. INTRODUCTION

Ground-based gravitational wave detectors like LIGO and Virgo are likely to see many few-stellar-mass black hole
(BH) binaries formed through isolated [1, 2] and dynamical [3–5] processes. Additionally, advanced detectors could
see the merger signature of two intermediate-mass black holes (each M ∈ [100, 103]M⊙), perhaps formed in dense
globular clusters [6]. Black hole spin will significantly impact all phases of the signal to which these ground-based
detectors are sensitive: the late-time inspiral, merger signal, and (through the final BH spin) ringdown. Misaligned
spins break symmetry in the orbital plane, generally leading to strong modulations in the inspiral [7], merger, and
ringdown. At early times, these modulations can be easily estimated through separation of timescales: the emitted
inspiral waveforms are often well-described by quasistationary radiation from a circular orbit, slowly rotating with
time modulated with time as the orbital plane precesses [7–9]. In the extreme but astrophysically important case
of BH-NS binaries, the emission direction can precess about the total angular momentum through arbitrarily large
angles, leading to strong amplitude and phase modulations [7, 10]. At late times, numerical relativity simulations
of mergers can efficiently predict gravitational radiation from a variety of spins and orbits. A well-chosen static or
time-evolving frame makes it easier to compare their outputs to one another and to these analytic models.
Previous studies have demonstrated the gravitational radiation carried to infinity encodes information about the

instantaneous emission directions. For example, Schmidt et al. [8] track the precession of the orbital plane by selecting
a frame that maximizes the amplitude of the l = |m| = 2 modes at each time. In this paper, we propose an
invariant algebraic method to calculate the natural principal axes of asymptotic radiation. This method can be applied
independently at each time, at each frequency, or at each binary mass. As with previous studies [8] the diagonalized
time-domain representation may be useful in interpreting and modeling precessing signals as quasistationary circular
orbits. Data analysts, however, will benefit most from choosing an optimal frame at each binary mass. For example,
some signals like BH-NS binaries have an optimal time-domain emission orientation that evolves significantly. In these
cases, as well as when higher harmonics become significant at high mass, the frame relevant to data analysis must
suitably average over the relevant portion, frequency, and modal content of the signal. In this paper, we provide the
first algorithm to select a suitable orientation for the average signal.
In Section II we describe our algebraic method for determining an optimal orientation versus time, frequency, or

mass. In Section III we demonstrate our method provides a new way to efficiently and accurately determine the natural
orientation of a quasistationary quasicircular inspiral versus time, using both artificially generated quasistationary
sources (i.e., applying a rotation to a nonprecessing source) and waveforms from real precessing binaries. We also
discuss numerical limitations in our time-domain method during the merger and ringdown, where multiple harmonics
become increasingly important. In Section IV we demonstrate that a preferred frame versus mass arises naturally in
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data analysis applications, as the average of the Fisher matrix. Using a separation of timescales, we demonstrate this
frame roughly corresponds to a time- and bandpass-weighted average of the optimal time-dependent frame. We briefly
comment on the utility of mass-weighted frames for data analysis applications, such as mode-decomposed searches
for spinning binaries [11].

II. NATURAL WAVEFORM FRAMES

Gravitational radiation carried away to infinity is well-known to encode certain preferred orientations, such as
the radiated linear and angular momenta. More generally, given a one-parameter family of inner products 〈a|b〉ξ =
∫

a∗(t′)Kξ(t, t
′)b(t′)dtdt′ on pairs of complex-valued functions of time, generated by Kξ(t, t

′) and parameterized by ξ,
and a tensor operator Qa1...an acting on the asymptotic Weyl scalar, the orientation average of 〈ψ4|Qa1...anψ4〉 defines
an asymptotic tensor

〈Qa1...an〉ξ ≡

∫

dΩ
∫

dtdt′Kξ(t, t
′)ψ4

∗Qa1...anψ4
∫

dΩ
∫

dtdt′Kξ(t, t′)ψ4
∗ψ4

. (1)

The principal axes of this tensor in turn define preferred directions. Depending on the inner product and reference
tensor, very different orientations can be selected; this formula, for example, includes as a special case both recoil
kicks and radiated angular momentum.
In this paper we consider

〈

L(aLb)
〉

, the average of products of rotation group generators Lk.
1 For example, adopting

a kernel Kt(τ1, τ2) = δ(τ1 − t)δ(τ2 − t) (i.e., using a quantum-mechanics-motivated state notation, K = |t〉 〈t|), an
average orientation at each time t can be calcualted from the principal axes of

〈

L(aLb)
〉

t
=

∫

dΩψ4
∗(t)L(aLb)ψ4(t)
∫

dΩ|ψ4|2
(2a)

=

∑

lmm′ ψ4
∗
lm′ψ4lm

〈

lm′
∣

∣L(aLb)
∣

∣ lm
〉

∫

dΩ|ψ4|2

where in the second line we expand ψ4 =
∑

lm ψ4lm(t)Y
(−2)
lm (θ, φ) and perform the angular integral. In this case,

the average tensor
〈

L(aLb)
〉

t
at each time t can be calculated algebraically, from the mode amplitudes ψ4lm and the

well-known action of SU2 generators Lk on rotational eigenstates. The principal axes follow by diagonalizing this
3 × 3 matrix. The same construct can be applied to any kernel K. In particular, we define the average of LaLb at
any frequency f or over all frequencies by

〈

L(aLb)
〉

f
=

∫

dΩψ̃4
∗
(f)L(aLb)ψ̃4(f)

∫

dΩ|ψ̃4(f)|2
(2b)

〈

L(aLb)
〉

M
=

∫

dΩ
∫

df
ψ̃4

∗

(f)L(aLb)ψ̃4(f)

(2πf)4Sh(f)
∫

dΩ
∫

df |ψ̃4|2/[(2πf)4Sh(f)]
(2c)

where Sh is the strain noise power spectral density of a gravitational wave detector. The subscript M in the second
expression denotes the binary mass, used to connect the scale-free output of a numerical relativity simulation to
physical time t (i.e., rMψ4(t) depends only on t/M). For context, in gravitational wave data analysis, the inner
product 〈a|b〉 = 2

∫

a∗(f)b(f)/Sh(f) characterizes the natural optimal-filtering-induced metric for a noise power
spectrum Sh; the denominator in the final expression thus corresponds to the inner product 〈h+|h+〉+ 〈h×|h×〉 where
the strain

∫ ∫

ψ4dtdt
′ ∝ h+ − ih× is reconstructed from ψ4 by integration.

The components, eigenspaces, and eigenvalues of this tensor characterize the emitted radiation, averaged over
orientation and the specified quantity ξ (= t, f,M, . . .). As components of this matrix are associated with averages of
mode orders weighted by |ψ4|

2, such as
〈

L2
z

〉

=
〈

m2
〉

(3)

Tr 〈LaLb〉 = 〈l(l + 1)〉 (4)

1 Explicit coordinate forms for the generators Lk acting on functions with spin weight s are provided by [12], denoted as Jk. As the

algebra of generators acting on the representation Y
(s)
lm

is unchanged, only the usual action of Lk on rotation eigenstates is needed to
perform the calculations described in this paper.
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the components of
〈

L(aLb)
〉

identify both the dominant emission direction and the dominant emission mode. In the

special case of quasistationary emission along an l = |m| = 2 mode aligned with ẑ, the eigenspaces of
〈

L(aLb)
〉

t
are are

ẑ (eigenvalue m2 = 4) and the x − y plane (eigenvalue
〈

l(l + 1)−m2
〉

/2 = 1). As quadrupolar emission dominates,

these statements are a good approximation for all time-domain averages
〈

L(aLb)
〉

t
.

Small errors in high-order modes can be amplified by the factor l2, particularly during the merger phase where
higher harmonics become significant both physically and through numerical error. However, since higher-order l
subspaces can be invariantly removed from ψ4, a similar average can also be constructed for any subset of l. To the
extent that the dominant emission orientation is well-resolved, the directions derived from restricted averages should
agree.

III. OPTIMAL ORIENTATION VERSUS TIME

The dominant principal axis of
〈

L(aLb)
〉

t
invariantly determines a preferred orientation Ẑ(t) versus time. Moreover,

by design, any waveform that is well-approximated by quasistationary emission of a l = |m| = 2 mode along Ẑ(t)

must have Ẑ(t) correspond to that instantaneous emission symmetry direction. On the contrary, though a priori the
eigensystem of the symmetric tensor

〈

L(aLb)
〉

provides a frame, empirically the directions associated with the two
smaller eigenvalues cannot be trusted. During the inspiral the perpendicular directions are degenerate; small numerical
asymmetries in each timestep cause the two smaller eigenvectors to jump chaotically in the plane perpendicular to
the dominant eigenvector. Given the empirical degeneracy of the smaller two eigenvalues, we adopt a preferred
frame at time t by a fiducial rotation: starting with a cartesian frame aligned with the initial simulation’s coordinate
frame, rotate by R = Rz(φ)Ry(θ), which takes ẑ to Ẑ if θ, φ are the spherical polar coordinates for Ẑ. In terms
of this rotation, the waveform in the instantaneous “aligned” frame at each time can be expressed in terms of the

instantaneously “aligned” eigenstates Y
(−2)
LM (R−1n) and the simulation-frame expansion coefficients ψ4LM using the

representation theory of SU(2) [13]:

ψ4(t, n̂) =
∑

LM

ψ4
′
LMY

(−2)
LM (R−1n̂) (5)

ψ4
′
LM = e2iχ(R)

∑

M ′

DL
MM ′(R)ψ4LM ′ (6)

The overall phase χ does not enter into any calculation we perform and will be ignored.
As a concrete example, in Figure 1 we compare the difference between a generic time-dependent rotation and the

reconstructed orientation, obtained by applying that rotation to a nonprecessing black hole binary simulation and
reconstructing the optimal direction versus time. The quasicircular orientation is recovered to δθ ≃ 10−6 deg (i.e.,
δθ2 comparable to working machine precision). As another example, in Figure 2, we compare the mode amplitudes
for a spinning, precessing binary in an asymptotic inertial frame (top) and in the “corotating” frame implied by this
transformation (bottom). The transformed modes resemble the modes of a spin-aligned binary (Fig 1, right panel).
Note that in going from the generic-spin to “corotating” frame, the m = 1 and m = 0 modes have been reduced by
more than an order of magnitude during the inspiral.
Schmidt et al. [8] have previously reconstructed optimal orientations from the emitted waveform. By contrast to

their maximization-based method for tuning ψ4, our algebraic method is fast, accurate, and invariant. This method
can also be applied to any constant-l subspace. For example, using the GT/PSU equal-mass, generic spin simulation
set summarized by O’Shaughnessy et al. [14] we have reconstructed

〈

L(aLb)
〉

for all l ≤ 4 modes; for l = 2 only; and

for l = 4 only.2 All agree during the inspiral and at least some of the merger.3

Finally, as this method operates on each l subspace as well as independently and algebraically at each timestep, it
provides valuable, fast, invariant diagnostics of the quality of numerical waveforms. For example, numerical simulations
can evaluate their waveform quality by the following three constructs: (a) eigenvalues of

〈

L(aLb)
〉

t
should evolve

smoothly and remain near their predicted values (i.e., near 4, 1, 1 if the l = 2 subspace is included); (b) the recovered

2 We have also tested the behavior of
〈

L(aLb)

〉

t
using only the l = 3 mode subspace. During inspiral, this tensor has a well-defined

dominant principal axis that agrees with the l = 2 result. However, at and beyond merger,
〈

L(aLb)

〉

t
becomes nearly isotropic and does

not provide a natural emission direction.
3 A few tens of M after the merger, owing to their low and rapidly decaying amplitude, the l = 4 modes previously available are not
resolved to the precision needed for directional reconstruction.
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FIG. 1: Recovering a synthetic rotation: Starting with a equal-mass nonspinning (a = 0.0) binary waveform (bottom panel:
ψ4lm for ℓ ≤ 2, extracted at r = 60M), we apply a rotation taking ẑ to the polar angles (θ, φ), where θ(t) = θo(1+0.1 cos 2πt/P )
and φ(t) = 2πt/P for P = 80M and θo = π/20. The bottom panel shows ψ4lm after (dashed) and before (solid) this rotation,

for the modes l = 2 and m = 2 (red), 1 (blue), and 0 (green). Using
〈

L(aLb)

〉

t
, we recover an orientation Ẑ(t) from the rotated

waveform that agrees with the imposed rotation to within 5 × 10−6 deg (top panel: θ(Z(t)) − θ(t)). Applying this rotation
recovers the unperturbed waveform. A vertical dotted line indicates the peak l = |m| = 2 emission in both figures.
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FIG. 2: Aligning a precessing binary: Starting with a precessing equal mass binary (a1 = 0.6ẑ, a2 = 0.6(x̂ + ẑ)/
√
2;

top panel), we derive the principal axis orientation from
〈

L(aLb)

〉

t
, restricted to l = 2 modes. The bottom panel shows the

transformed harmonics. The orientation transformation is derived and applied at all times shown. To illustrate this method’s
robustness, in this figure we retain initial transients and late-time errors.
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dominant eigendirection of
〈

L(aLb)
〉

t
should be smooth in time; and (c) phenomenologically speaking, the recovered

paths from different multipole orders should agree.

IV. OPTIMAL ORIENTATION VERSUS MASS

In many cases of astrophysical interest, the emission direction changes significantly during the merger. As an
example, BH-NS binaries can have their dominant emission direction, the orbital angular momentum direction L̂,
precess one to several times in a cone around the total angular momentum [10]. In this case in particular and for
high mass ratio binaries in general, the instantaneous emission direction averages out. Instead, the natural direction
encoded by the signal is the total angular momentum. Generally, however, a suitable average is not intuitively
self-evident.
A detector with comparable and coherent sensitivity to both gravitational wave polarizations is naturally character-

ized with a complex inner product that coherently accounts for both polarizations [15]. Specifically, two gravitational
waveforms A,B expressed as curvature (ψ4) along a particular line of sight n̂ are naturally compared by a complex
inner product

(A,B) ≡

∫ ∞

−∞

2
df

(2πf)4Sh
Ã(f)∗B̃(f) (7)

Taking derivatives with respect to angle and expanding out the generators of the rotation matrix, the Fisher matrix
(Γab = | (∂aψ4, ∂bψ4) |/|(ψ4, ψ4)|) reduces to

Γab =
|(L(aψ4, Lb)ψ4)|

|(ψ4, ψ4)|
(8)

The tensor
〈

L(aLb)
〉

M
therefore corresponds to the orientation-averaged Fisher matrix.4 In other words,

〈

L(aLb)
〉

M
characterizes how well we can determine a binary’s orientation, averaged over all possible directions along which we
could see it.
Moreover, for quasistationary precession dominated by a single mode at frequency f(t), the signal-weighted average

〈

L(aLb)
〉

M
has a natural physical interpretation as a power-weighted average of

〈

L(aLb)
〉

t
. Substituting the stationary

phase approximation to the Fourier transform

ψ̃4(f) =
1

√

idf/dt
ψ4(t(f))e

−i2πft(f) (9)

into the overlap (Laψ4, Lbψ4) leads to an amplitude-weighted integral over
〈

L(aLb)
〉

t

(Laψ4, Lbψ4) ≃

∫

2dt

(2πf(t))4Sh(f(t))
(Laψ4(t))

∗(Lbψ4(t)) (10)

The orientation average of the Fisher matrix is therefore

∫

ΓabdΩ/(4π) ≃
1

|(ψ4, ψ4)|

∫

2dt

〈

L(aLb)
〉

t

(2πf(t))4Sh(f(t))
(11)

In other words, for sufficiently steady quasicircular precession,
〈

L(aLb)
〉

M
is precisely the power-weighted average of

〈

L(aLb)
〉

t
. The principal eigenvector of

〈

L(aLb)
〉

M
therefore corresponds to our intuition about an “average frame”.

V. CONCLUSIONS

In terms of orientation-averaged tensors, we have introduced an efficient algebraic method to extract fiducial
orientations from waveforms extracted to infinity. Specifically, we have demonstrated that one natural orientation of

4 For brevity, we do not discuss maximization over coalescence time and phase; see [15] for a more extensive discussion of the Fisher
matrix derived from a complex overlap.
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the emitted beampattern is associated with the dominant principal axis of
〈

L(aLb)
〉

. The average can be calculated at
any time or averaged, at any mass. In the time domain, our method accurately, efficiently, and smoothly reconstructs
the emission direction throughout the inspiral. As with [8], if we retroactively align the waveform with this optimal
direction at each timestep, the dominant modes become smoother and the subdominant modes significantly smaller.
Conversely, if applied at each mass, our method also has close, provable connections to data analysis: it corresponds

to the Fisher matrix for orientation angles, averaged over all possible lines of sight. In the case of extreme mass ratio,
except for rare high-symmetry nonprecessing inclined orbits, our preferred direction reduces to the total angular
momentum, about which the orbit precesses. This invariant approach to the preferred orientation will benefit search
strategies for numerical relativity waveforms from strongly precessing binaries that coherently employ multiple modes,
analagous to the proposal by Pan et al. [11] for strongly precessing BH-NS binaries.
We have proposed one of many possible definitions for the “instantaneous emission direction.” Of course, other

plausible generating tensors Q can be constructed with La alone, each corresponding to a different way of weighting
the mode amplitudes ψ4lm. Still more can be added by broadening the space of operators. That said, our definition
offers a so-far unique feature: a provable connection to an astrophysically relevant quantity (the Fisher matrix).
Other astrophysically significant features of numerical relativity waveforms could be employed to determine pre-

ferred directions. For example, a “generalized equatorial plane” could consist of the set of directions along which
gravitational radiation is locally linearly polarized (e.g., as the surface ∂t lnψ4/ψ4

∗ = 0). Like the average
〈

L(aLb)
〉

,
these directions can be defined in the time, frequency, and mass domain. These emission directions lead to parameter
estimation degeneracies: equal amount of left- and right-handed radiation imply two possible binary orientations
are consistent with that signal. Though intriguing and invariant, these symmetry directions depend sensitively on
delicate cancellations of all available modes. Less invariant but equally significant is a direct comparison (“overlap”)
of waveforms emitted in all possible directions, as would be seen by a gravitational wave detector. This method will
be discussed in a subsequent paper [15], in the broader context of generic waveforms from spinning binaries.
Finally and as discussed previously by Schmidt et al. [8], both radiation and merger physics are more easily modeled

in an “aligned” frame. For example, at present, hybrid waveforms have been constructed primarily for spin-aligned
binaries for a handful of harmonics [16, 17] (cf. Sturani et al. [18]). By tabulating and modeling the “aligned”-frame
waveforms and the corotating frame itself, hybrids can be constructed for generic precessing waveforms. As another
example, previous studies of nonspinning and aligned-spin binaries suggest that their low-order modes evolve in phase
with each other (argψ4lm ∝ m argψ422) through inspiral and merger [19, 20]. By analogy, when expressed in a an
“aligned” frame, low-order modes of generic precessing binaries also seem to evolve in phase. We will address these
and other physical properties of “aligned”-frame waveforms in a subsequent publication.
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