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If the conformal invariance of electromagnetism is broken during inflation, then primordial mag-
netic fields may be produced. If this symmetry breaking is generated by the coupling between
electromagnetism and a scalar field—e.g. the inflaton, curvaton, or the Ricci scalar—then these
magnetic fields may be correlated with primordial density perturbations, opening a new window
to the study of non-gaussianity in cosmology. In order to illustrate, we couple electromagnetism
to an auxiliary scalar field in a de Sitter background. We calculate the power spectra for scalar-
field perturbations and magnetic fields, showing how a scale-free magnetic field spectrum with rms
amplitude of ∼ nG at Mpc scales may be achieved. We explore the Fourier-space dependence of
the cross-correlation between the scalar field and magnetic fields, showing that the dimensionless
amplitude, measured in units of the power spectra, can grow as large as ∼ 500HI/M , where HI is
the inflationary Hubble constant and M is the effective mass scale of the coupling.

I. INTRODUCTION

The predictions of the simplest single-field slow-roll
models of inflation agree remarkably well with current
cosmological data, yet experience gained from effective
field theories suggests that this model is likely not the
whole story. A vast literature has now arisen to explore
ultraviolet completions and their predictions for future,
more sensitive, observations [1, 2]. One of the principle
lines of investigation has been the predictions for non-
gaussianity due to self-couplings, nontrivial inflaton ki-
netic terms or interactions between multiple fields asso-
ciated with inflation [3–5].

Another possibility for beyond single field slow roll
physics is coupling of the inflaton, or some other specta-
tor field, to electromagnetism. If such a coupling breaks
the conformal invariance of electromagnetism, then quan-
tum fluctuations in the electromagnetic field may be am-
plified into classical magnetic fields in much the same
way as quantum flucutations in the inflaton (graviton)
become density perturbations (gravitational waves). It
has been suggested that such inflation-produced mag-
netic fields may provide the seed fields required for galac-
tic dynamos [6–14], but it may also be that the signatures
of such magnetic fields may be observed in the cosmic mi-
crowave background [15–28], and thus shed light on in-
flation, even if they are unrelated to galactic magnetism.
Either way, the search for primordial magnetic fields pro-
vides an additional observational probe of the physics of
inflation to parallel that obtained from non-gaussianity
searches.

Here we explore the cross-correlation between primor-
dial magnetic fields and a scalar field in a toy model
in which the scalar field is coupled to electromagnetism,
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with no gravity, in a fixed de Sitter background. The ho-
mogeneous time evolution of the scalar field breaks the
conformal invariance of electromagnetism. We first cal-
culate the quantum mechanical spectrum of scalar- and
magnetic-field fluctuations produced, and we then cal-
culate the cross-correlation between the scalar and mag-
netic fields.

If the scalar field is a curvaton field, and if that cur-
vaton is responsible for primordial perturbations, then
the scalar-field–magnetic-field cross correlation we cal-
culate will be precisely the density–magnetic-field corre-
lation observed in the Universe today. Our calculation
also illustrates the principal ingredients that will arise in
a density-perturbation–magnetic-field correlation if the
scalar field is the inflaton.

In Section II we introduce our model, work out the
dynamical behavior, and evaluate the two-point statis-
tics of the scalar and magnetic fields. In Section III we
present the calculation of the cross-correlation, and we
analyze its behavior in Sec. IV. We conclude in Sec. V.
Throughout, we work in spatially-flat Robertson-Walker
coordinates, with line-element ds2 = a2(η)(−dη2 + d~x2).

II. MECHANISM OF MAGNETIC FIELD
AMPLIFICATION

The action for our model is

S =

∫
d4x
√
−g
(
−1

4
W (φ)FµνF

µν − 1

2
(∂φ)2 − V (φ)

)
,

where φ(~x, t) is the scalar field, and Fµν the electro-
magnetic field-strength tensor. The scalar-field poten-
tial is V (φ) = −3nMH2

Iφ, and the coupling function is

W (φ) = e2φ/M . We suppose that some other field is
driving inflation. In practice we consider a fixed de Sit-
ter background with Hubble constant HI , whereby the
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scale factor is a(η) = −1/(ηHI) for the run of conformal
times −∞ < η ≤ ηI < 0 and ηI marks the end of infla-
tion. Aspects of this model have previously been studied
[9, 12], but we revisit the details in preparation for our
later calculations.

A. Scalar Field

The scalar-field equation of motion is

�φ =
∂V

∂φ
+

1

4

∂W

∂φ
FµνF

µν , (1)

and it has a solution,

φ = c0 + c1η
3 − nM ln(η/ηI), (2)

where we assume there is no homogeneous electric or
magnetic field. We take the integration constants c0
and c1 to vanish so that W (φ) = 1 at the end of infla-
tion. In this way, the usual electromagnetic Lagrangian
is recovered for the post-inflationary epoch, and we as-
sume that some mechanism stops the subsequent evolu-
tion of φ, so that the standard Maxwell equations are
preserved at all times after inflation. We also define

I(η) ≡ [W (φ(η))]
1/2

= (η/ηI)
−n

, which will appear in
our analysis of the electromagnetic field.

The scalar field has fluctuations δφ(~x, η), about its ho-
mogeneous component, described by the evolution equa-
tion,

δφ′′ + 2Hδφ′ + (a2Vφφ −∇2)δφ = 0, (3)

where H = a′/a and ∇2 is the spatial Laplace operator.
To be clear, we fix the background to be pure de Sitter
spacetime and subsequently “turn off” gravity, so that
there are no fluctuations of the spacetime metric. Fol-
lowing standard procedures, the quantized scalar field is
decomposed in terms of time-dependent mode functions
δφk,

δφ(~x, η) =

∫
d3k

(2π)3

[
ei
~k·~xδφk(η)âk + h.c.

]
, (4)

where âk and â†k are respectively annihilation and cre-

ation operators that satisfy [âk, â
†
k′ ] = (2π)3δ(~k − ~k′).

The uncertainty relation for the scalar field and its con-
jugate momentum δφ′,

[δφ(~x, η), δφ′(~y, η)] = iδ(~x− ~y)/a2(η), (5)

results in a constraint to the two linearly independent
solutions to the mode equation. Because the effective
mass is zero, Vφφ = 0, we obtain the solution,

δφk(η) =
HI√

2

i− kη
k3/2

e−ikη, (6)

corresponding to the Bunch-Davies state, having positive
frequency in the remote past, η → −∞ for k|η| � 1.

The requirement δφ� φ that the fluctuations are small
translates into the bound HI/M � 1. Finally, the two-
point correlation function is

〈δφ(~x, η)δφ(~y, η)〉 =

∫
d3k

(2π)3
ei
~k·(~x−~y)Pδφ(k) (7)

where the scalar-field power spectrum—defined by〈
δφ~kδφ

∗
~k′

〉
= (2π)3δD(~k − ~k′)Pδφ(k) and δD is the Dirac

delta function—is Pδφ(k) = H2
I /2k

3, valid for modes out-
side the horizon at the end of inflation.

The root-mean-squared amplitude—the correlation
function at zero lag (at ~x = ~y)—is divergent at both
the infrared and ultraviolet limits. Hence, we bound the
run of wavenumbers to [kmin, kmax], so that

δφrms ≡
〈
(δφ)2

〉1/2
=
HI

2π
(ln kmax/kmin)

1
2 (8)

gives the rms scalar-field fluctuation. In practice, we as-
sociate the minimum wavenumber with the present-day
Hubble radius—i.e., kmin = 2πH0—and the maximum
wavenumber with an astrophysical scale that we indicate
by λ.

B. Electromagnetism

The full action for electromagnetism includes not only
the free Maxwell field, but also the coupling to charged
particles as well as the action for the charged particles
themselves. Including these additional terms, we may
write

Sem = −
∫
d4x
√
−g
[

1

4
I2(φ)FµνF

µν +AµJµ + Lq
]
,

(9)
where Lq is the Lagrangian for charged particles. The
electromagnetic coupling, or electric charge, is inversely
proportional to I(η). Consequently, in the case n > 0
the coupling is strong at early times [12]. Such a strong-
coupling scenario has previously been dismissed [12],
since the free-field behavior of electromagnetic waves
would no longer be valid. We therefore consider here
the alternative Lagrangian,

Sem = −
∫
d4x
√
−g I2(φ)

[
1

4
FµνF

µν +AµJµ + Lq
]
,

(10)
in which the conformal factor I2(φ) is moved outside
the entire electromagnetic-sector Lagrangian. With this
modification, the strong-coupling problem is alleviated.
This Lagrangian could arise if φ is a dilaton field, al-
though in that case we would not expect the conformal
factor I2(φ) to also multiply the mass term of the charged
particle.

The effect of the coupling function on Maxwell’s equa-
tions is straightforward. In the absence of charges or
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currents, only Ampere’s equation is modified, to

~∇× ~B =
1

a2W

∂

∂η

(
a2W ~E

)
, (11)

where we have assumed W is solely a function of (con-
formal) time. Faraday’s law remains unaltered:

~∇× ~E = − 1

a2
∂

∂η

(
a2 ~B

)
. (12)

The curl in each of the above two equations vanishes for

homogeneous fields, implying that | ~B| ∝ a−2 ∝ η2 and

| ~E| ∝ W−1a−2 ∝ η2+2n. The magnetic- and electric-
field energy densities therefore scale as ρB = WB2/8π ∝
η4−2n and ρE = WE2/8π ∝ η4+2n. Recalling that the
conformal time runs from a large and negative value at
the beginning of inflation to a small and negative value
close to zero at the end of inflation, then for n = 2
and n = −3 (special cases we will consider below), the
magnetic-field energy density remains constant or decays,
respectively. The electric-field energy density decays for
n = 2, but it grows, as ρE ∝ η−2, for n = −3. In
this latter case, the energy density in the electric-field
component of the quantum-mechanically induced elec-
tromagnetic fields will, if inflation goes on long enough,
ultimately dominate the energy density, ∼ 3H2

I /(8πG),
in the inflaton. As we will see below (see also Ref. [12]),
this then severely restricts the number of e-foldings of
inflation. We will thus ultimately discard the n = −3
case.

C. Quantum Fluctuations of the Magnetic Field

The action for the free field theory is

Sem = −
∫
d4x
√
−g 1

4
I2(φ)FµνF

µν

=

∫
dη d3x [I(η)]

2

(
1

2
A′2i −

1

4
(∂iAj − ∂jAi)2

)
,

(13)

in the Coulomb gauge, where Ai is the vector potential.
The Latin indices here are contracted using the spatial
part of the Minkowski metric. Defining the vector field
Vi = I(η)Ai we can bring the kinetic term to canonical
form, whereby

Sem =

∫
dη d3x

1

2

[
V ′2i − (∂iVj)

2 +
I ′′

I
V 2
i

]
, (14)

after some integrations by parts. The quantized field Vi
is expanded in terms of time-dependent mode functions
vk(η),

Vi(~k, η) =

2∑
σ=1

∫
d3k

(2π)3

[
ei
~k·~xvk(η)e

(σ)
i (k̂)b̂σ(k) + h.c.

]
,

(15)

where b̂, b̂† are annihilation and creation operators sat-

isfying [b̂σ(~k), b̂†σ′(~k)] = (2π)3δσ,σ′δD(~k − ~k′), where e
(σ)
i

is the polarization vector, σ sums over the two linear-

polarization states, and
∑
σ e

(σ)
i (k̂)e

(σ)
j (k̂) = δij − k̂ik̂j

which further ensures transversality as a consequence of
the gauge choice. Canonical quantization means that the
vector field and its conjugate momentum V ′i satisfy the
commutation relation,

[Vi(~x, η), V ′j (~y, η)] = iδijδ(~x− ~y), (16)

which results in a constraint to the two linearly inde-
pendent solutions to the mode equation. The scalar field
contributes an effective time-dependent mass term to the
vector field, so that the mode functions obey the equa-
tion,

v′′k +

(
k2 − I ′′

I

)
vk = 0, (17)

where I ′′/I = n(n + 1)/η2, is positive for n > 0 or n′ =
n+1 < 0. At high frequencies, k|η| � 1, the solutions are
oscillatory, but at low frequencies the scalar field causes
solutions to grow as vk ∝ |η|−n, |η|1+n. The normalized
solution, having positive frequency in the remote past,
η → −∞, for k|η| � 1, is

vk(η) =

√
π

2

(−kη)1/2√
2k

eiπ(1+n)/2H
(1)
1
2+n

(−kη), (18)

where Hn(x) is a Hankel function. In this case, the two-
point correlation function for the magnetic field is

〈 ~B(~x, η) · ~B(~y, η)〉 =
1

a(η)4

(
δij

∂2

∂xk∂yk
− ∂2

∂xj∂yi

)
×〈Ai(~x, η)Aj(~y, η)〉

=

∫
d3k

(2π)3
ei
~k·(~x−~y)PB(k), (19)

where

PB(k) =
π

2

H4
I

k3

(
η

ηI

)2n

(−kη)5H
(1)
1
2+n

(−kη)H
(2)
1
2+n

(−kη),

(20)
is the magnetic-field power spectrum. In the unamplified

case, corresponding to n = 0, we have P
(0)
B = k(HIηI)

4 at
the end of inflation; the correlations in this case are then
the usual vacuum-fluctuation correlations. Production of
classical long-wavelength magnetic fields occurs for n > 0
or for n′ = n + 1 < 0. To treat both cases with a single
expression, we define nB = 4− 2n for the case n ≥ 0 and
nB = 4+2n′ for n′ = n+1 < 0. Consequently, the power
spectrum is

PB '
Γ( 5−nB

2 )2

π
(−kηI/2)

nB−4 P
(0)
B , (21)

for modes outside the horizon at the end of inflation.
Since k|ηI | � 1 for modes outside the horizon at the end
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of inflation, and since nB − 4 < 0, the amplified ratio

PB/P
(0)
B can grow quite large.

The mean-squared magnetic-field power in long-
wavelength modes at the end of inflation, per logarithmic
interval, is

d

d ln k
〈B2〉 '

(
2

π

)3

Γ

(
5− nB

2

)2

H4
I (−kηI/2)nB . (22)

A scale-free spectrum nB = 0 can be achieved for
n = 2, −3. Using (Gauss)2/8π = 1.91 × 10−40 GeV4,
Mpc = 1.56 × 1038 GeV−1, estimating |ηI | ∼ 10−27 Gpc
(consistent with HI ' 1014 GeV and zI ' 1028 for the
redshift to the end of inflation), and then redshifting to
the present day, we find

d

d ln k
〈B2〉 ' 10−18−24.3nB

Γ( 5−nB

2 )2

Γ(5/2)2

(
k

Mpc−1

)nB

G2.

(23)
If nB = 0 or n = 2 or −3, then the field strength is
roughly 10−9 G, which may be sufficient to explain the
observed astrophysical and cosmological magnetic fields
[8]. The dependence of the field strength at 1 Mpc as a
function of the index nB is shown in Fig. 1.

-2 -1 0 1 2
n

B

-30

-20

-10

0

10

lo
g

1
0
(B

M
p
c /

 G
)

FIG. 1: The magnetic field strength BMpc =(
d〈B2〉/d ln k

)1/2
at 1 Mpc is shown by the solid line

as a function of the index nB . Horizontal and vertical
short-dashed lines indicate the nG field strength obtained
for nB = 0. The effect of the Γ function in Eq. (23) is
negligible compared to the exponential factor 10−18−24.3nB .
The long-dashed lines rotated clockwise and counterclockwise
show the magnetic field strength at Gpc and kpc scales,
respectively.

D. Energy Density of the Magnetic and Electric
Fluctuations

The same magnetic-field spectrum is obtained for two
values of the index n. However, the time evolution of the
coupling function I(η) breaks the usual duality between
electric and magnetic fields, and the electric-field energy
density may in some cases increase, as discussed above.
We require the energy density in superhorizon modes of
the electromagnetic fields to be smaller than the energy
density of the inflaton, and thereby derive now a restric-
tion on the allowed values of n and HI .

The stress-energy tensor that appears as a source for
the Einstein equations is

Tµν = I2(φ)

(
gαβF

µαF νβ − 1

4
gµνFαβF

αβ

)
. (24)

The energy density observed in the cosmic rest frame is

ρEB =
I2(η)

2a4(η)
〈A′iA′i + (∂iAj)(∂iAj)− (∂iAj)(∂jAi)〉

= lim
~x→~y

∫
d3k

(2π)3
ei
~k·(~x−~y)Pρ(k), (25)

where the final term in the top line ultimately vanishes

due to the transversality condition k̂ · ~e. The energy-
density power spectrum consists of two terms, a kinetic
term due to the electric field and a spatial-gradient term
due to the magnetic field,

Pρ(k) =
3(2π)3

2a4(η)

∣∣∣∣∣I(η)

(
vk(η)

I(η)

)′∣∣∣∣∣
2

+ k2 |vk(η)|2
 .

(26)
The integral over wavenumbers runs from kmin = −1/ηS
to kmax = −1/η, where ηS = ηIe

NI is the conformal time
at the beginning of NI e-foldings of inflation, thereby
spanning the range of wavelengths that have exited the
horizon by the time η. The pattern of behavior distin-
guishes two regimes,

ρEB = H4
I ×

O(1), for |n| ≤ 2,

O(1)×
(
ηS
η

)2(|n|−1)
, for |n| > 2.

(27)
In the first case, which includes the scale-free solution
n = 2, the energy density is simply proportional to H4

I
which is always subdominant to the inflaton energy den-
sity. However, the second case, which includes the other
scale-free solution n = −3, places severe restrictions,

|n| < 2 +
1

NI
ln
MP

HI
, (28)

on the index n. Since observational constraints limit
HI . 10−5MP , then to achieve at least 60 e-foldings
of inflation, the index is bounded by |n| < 2.2, thereby
eliminating the case n = −3. At the value n = −2.2,
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Eq. (23) tells us that the magnetic-field strength on Mpc
scales is roughly 10−30G. The case n = 2, however, safely
satisfies the above bound and yields a nG magnetic field
as we have shown.

III. CORRELATION OF MAGNETIC FIELDS
AND SCALAR FLUCTUATIONS

We now evaluate the (δφ)BB correlation making use of
the in-in formalism [29]. After splitting the Hamiltonian

into a free part plus an interaction part Ĥint, we may
evaluate, to first order in perturbation theory,

〈
δφ

M
(~x, η)Ai(~y, η)Aj(~z, η)

〉
= −

∫ ηI

−∞
dη1 2 Im

[〈
Ĥint(η1)

δφ

M
(~x, η)Ai(~y, η)Aj(~z, η)

〉]
. (29)

The interaction Hamiltonian is

Ĥint = −
∫
d3x

(
η

ηI

)−2n
δφ

M

(
(A′i)

2 − 1

2
(∂iAj − ∂jAi)2

)
. (30)

Using Eqs. (4) and (15), we find that the expectation value on the right hand side of Eq. (29) is〈
Ĥint(η

′)
δφ

M
(~x, ηI)Ai(~y, ηI)Aj(~z, ηI)

〉
=

∫
d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

(2π)3δ(~k1+~k2+~k3)ei
~k1·~x+i~k2·~y+i~k3·~z(K

(1)
ij +K

(2)
ij ). (31)

The functions K
(1)
ij and K

(2)
ij are defined as

K
(1)
ij = − 2

M2
δij

(
η′

ηI

)−2n
δφk1(η′)δφ∗k1(ηI)

(
d

dη′
Ak2(η′)

)
A∗k2(ηI)

(
d

dη′
Ak3(η′)

)
A∗k3(ηI), (32)

K
(2)
ij = − 2

M2
(~k2 · ~k3δij − k2jk3i)

(
η′

ηI

)−2n
δφk1(η′)δφ∗k1(ηI)Ak2(η′)A∗k2(ηI)Ak3(η′)A∗k3(ηI), (33)

where we indicate the scalar mode functions of the vector potential as Ak(η) = vk(η)/I(η). Plugging Eqs. (32)–(33)
into Eq. (31), we find〈

δφ

M
(~x, ηI)Ai(~y, ηI)Aj(~z, ηI)

〉
=

∫ 3∏
i=1

d3ki
(2π)3

ei(
~k1·~x+~k2·~y+~k3·~z)(2π)3δ(~k1 + ~k2 + ~k3)Uij , (34)

Uij = −2 Im

∫
dη′

(
K

(1)
ij +K

(2)
ij

)
= −π

2

8

(
HI

M

)2
1

k41

(
δijI1 + (k̂2 · k̂3δij − k̂2j k̂3i)I2

)
, (35)

where we introduce the integrals

I1 = Im

∫ ∞
1

dµu1(i+ µu1)(−i+ u1)eiu1(µ−1)µ−2n

× d

dµ

[
µ

1
2+nH

(1)
1
2+n

(µu2)
]
H

(2)
1
2+n

(u2)
d

dµ

[
µ

1
2+nH

(1)
1
2+n

(µu3)
]
H

(2)
1
2+n

(u3), (36)

I2 = Im

∫ ∞
1

dµu1(i+ µu1)(−i+ u1)eiu1(µ−1)u2u3µ

× H
(1)
1
2+n

(µu2)H
(2)
1
2+n

(u2)H
(1)
1
2+n

(µu3)H
(2)
1
2+n

(u3). (37)

While I2 and the magnetic-field power spectrum are both invariant under n→ 1 +n, I1 is not. This is not surprising
since the interaction Hamiltonian is not invariant under this operation. In the above, we have defined µ = η/ηI and
ui = −kiηI for i = 1, 2, 3.
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The three-point correlation function for the scalar field with the magnetic field is obtained from〈
δφ

M
(~x, ηI) ~B(~y, ηI) · ~B(~z, ηI)

〉
= −2 Im

∫ ηI

−∞
dη

〈
Hint(η)

δφ

M
(~x, ηI) ~B(~y, ηI) · ~B(~z, ηI)

〉
(38)

=
1

a(ηI)4

(
δij

∂2

∂yk∂zk
− ∂2

∂yj∂zi

)〈
δφ

M
(~x, η)Ai(~y, η)Aj(~z, η)

〉
. (39)

After some calculations, the final result is〈
δφ

M
(~x, ηI) ~B(~y, ηI) · ~B(~z, ηI)

〉
=

∫
d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

ei(
~k1·~x+~k2·~y+~k3·~z)(2π)3δ(~k1 + ~k2 + ~k3)P3(k1, k2, k3), (40)

where

P3(k1, k2, k3) =
π2

8

(
HI

M

)2
1

a(ηI)4
k2k3
k41

(
2k̂2 · k̂3 I1 + (1 + (k̂2 · k̂3)2) I2

)
. (41)

From statistical isotropy, the function P3(k1, k2, k3) de-
pends only on the magnitudes of the three wavevectors,

and we have used k̂2 · k̂3 = (k21 − k22 − k23)/(2k2k3) in
Eq. (41). Eqs. (40) and (41), along with Eqs. (36)–(37),
form the main results on which our subsequent analysis
is based.

IV. ANALYSIS OF CROSS-CORRELATION

We would like to analyze the cross-correlation between
the primordial magnetic field and the scalar field to de-
termine if there is any imprint or unique signature that
would indicate the scalar field’s role in the amplification.

A. The Amplified Cross-Correlation Power
Spectrum

To start, we calculate the cross-correlation power spec-
trum for several trial cases. The integrals I1,2 can be
evaluated analytically for integer values of n. In most
cases, the results are cumbersome, so we assume ui � 1
after carrying out the integrals in order to shorten the
expressions. For example, for n = 0,

I1 = −I2 = − 4

π2

u1(u1 + ω)

ω2
, (42)

where ω = u1 + u2 + u3. Plugging in these results, we
find

P3(k1, k2, k3) =
(HI/M)2

a(ηI)4
(2k1 + k2 + k3)(k1 − k2 − k3)2

8k31k2k3
,

(43)

where we have used cos θ = k̂2·k̂3 = (k21−k22−k23)/(2k2k3)
for the angle between the vectors k2 and k3.

Amplification occurs for n > 0 and n < −1, so that for
comparison we consider integer cases n = 1 and n = −2

whereupon the integration simplifies. For n = 1, we find

I1 =
4

π2

u1(u1 + ω)

u2u3ω2
, (44)

I2 =
4

π2

u1(ω3 + u21ω − u1ω2 − u2u3ω − u1u2u3)

u22u
2
3ω

2
.

(45)

For n = −2,

I1 = − 4

π2

u1
u32u

3
3ω

2

(
3u31ω

2(γ + lnω) + 3u31u2u3

+3u21(u22u3 + u2u
2
3 − ω3)− u22u23(ω + u1)

)
,(46)

I2 =
4

π2

u1(ω3 + u21ω − u1ω2 − u2u3ω − u1u2u3)

u22u
2
3ω

2
.

(47)

In the case of most interest, n = 2, the integrals yield

I1 '
36

π2

u1
u32u

3
3ω

2

(
ω3 − u1u2u3 − ω(u1u2 + u1u3 + u2u3)

)
,

(48)

I2 '
36

π2

u1
u42u

4
3ω

2

(
−3u31ω

2(γ + lnω) + ω5 − 3u1ω
4

+3(2u21 − u2u3)ω3 + (3u1u2u3 − u31)ω2

+(u22u
2
3 − 3u21u2u3)ω + u1u

2
2u

2
3

)
. (49)

Since |kηI | � 1 we have discarded subdominant terms
from the above results. We note that the lnω term above
results in a large numerical coefficient, since −kηI ∼
10−27 for modes that are just entering the horizon to-
day. These expressions are inserted into Eq. (41) to find
the cross-correlation power spectrum.

B. The Real-Space Cross-Correlation Coefficient

Our next step is to determine the dimensionless magni-
tude of the cross-correlation; i.e., how strongly does the
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magnetic-field energy density correlate with the scalar-
field perturbation? We thus now calculate the zero-lag

cross-correlation
〈
(δφ)B2

〉
in units of

〈
(δφ)2

〉1/2 〈
B2
〉
.

This cross-correlation amplitude, evaluated in the co-
incidence limit, can be evaluated as follows. Starting

from Eqs. (40)–(41), we evaluate the ~k1 integration to
eliminate the delta function. The remaining integrand
depends only on the magnitudes k2, k3, and θ, the angle
between the two vectors:〈

(δφ)B2
〉

=
M

8π4

∫
k22dk2 k

2
3dk3 d(cos θ)P3(k1, k2, k3)

(50)
where k1 = (k22 + k23 + 2k2k3 cos θ)1/2. However, we can

replace the θ integral by k1, whereby

〈
(δφ)B2

〉
=

M

8π4

∫
k2dk2 k3dk3

∫ k2+k3

|k2−k3|
k1dk1 P3(k1, k2, k3).

(51)
Since the integrand is invariant under the exchange of k2
and k3, we can replace P3 → 2P3θ(k2 − k3) and remove
the absolute-value sign from the lower limit of integra-
tion. We implement cutoffs at both large and small k,
for the ultraviolet and infrared divergences that arise in
both the scalar and magnetic-field spectra. The cross-
correlation for n = 0 and n = 2 are

〈
(δφ)B2

〉
' M

16π4a4(ηI)

(
HI

M

)2

×

{
k4max

(
ln r − 25

12

)
, n = 0,

η−4I
(
100 + 24 ln3 r − 72 ln2 r ln(−kmaxηI)

)
, n = 2,

(52)

where r = kmax/kmin, and kmax and kmin are upper and lower bounds on the run of wavevectors. In practice, we
expect to link the minimum wavevector with the Hubble scale, kmin ' 2πH0, and the maximum wavevector with
some galactic scale, kmax ' 2π/λ where λ ∼kpc. Since |kηI | � 1, we have discarded subdominant terms from the
above results. The dimensionless cross-correlation coefficient XδφB2 , formed from the ratio of the cross-correlation
with the root-mean-square amplitudes of the scalar and magnetic fields gives

XδφB2 ≡
〈
δφB2

〉
(δφ)rmsB

2
rms

'

{
1
π

(
HI

M

) (
ln r − 25

12

)
/
√

ln r, n = 0,
4
9π

(
HI

M

) (
25 + 6 ln3 r − 18 ln2 r ln(−kmaxηI)

)
/
√

ln3 r, n = 2.
(53)

Considering a sufficiently wide range of scales, e.g. r &
104, then X(n = 0) ' (HI/M)

√
ln r/π and X(n = 2) '

8(HI/M)
√

ln r ln(−kmaxηI)/π. Using −kmaxηI ∼ 10−27

then the cross-correlation coefficient in the presence of
the amplification mechanism is enhanced by a factor
of ∼ 500 over the case without the magnetic-field am-
plification mechanism. When the full range of infla-
tionary length scales is taken, r ∼ 1027, then X(n =
2) ' 2 × 103(HI/M). Since the cross-correlation coef-
ficient cannot exceed unity, we infer an upper bound of
HI/M . 5× 10−4 which is consistent with naive expec-
tations based on an inflationary scenario.

C. The Behavior in Fourier-Space

We now evaluate the triangle-shape dependence of the
full three-point correlation function in Fourier space. To
do so, we evaluate a ratio of the form,

P3(k1, k2, k3)√
Pδφ(k1)PB(k2)PB(k3)

, (54)

to normalize the cross-correlation power spectrum. How-
ever, since this ratio is not dimensionless, given our

Fourier conventions, we go to a discretized Fourier trans-
form,

∫
d3k

(2π)3
→ 1

V

∑
~n

, (55)

and likewise replacing the Dirac delta function with a
Kronecker delta,

(2π)3δ(~k1 + ~k2)→ V δ~n1,~n2
. (56)

We presume a maximum length, L, so that the volume
is V = L3 and mode numbers are ki = 2πni/L. The
scalar-field and magnetic-field power spectra are now

〈
(δφ/M)2

〉
=
∑
~n

ei~n·(~x−~y)/LP̃δφ, (57)

P̃δφ = V −1Pδφ/M
2, (58)〈

B2
〉

=
∑
~n

ei~n·(~x−~y)/Lδ~n1,~n2
P̃B , (59)

P̃B = V −1PB , (60)
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so that P̃δφ is dimensionless and P̃B has units of
(energy)4. The three-point function becomes〈

δφ

M
B2

〉
=

∑
~n1+~n2+~n3=0

ei(~n1·~x+~n2·~y+~n3·~z)/LP̃3,

P̃3 = V −2P3, (61)

where P̃3 has units of (energy)4. We can now build a
dimensionless cross-correlation coefficient,

Cn =
P̃3(n1, n2, n3)√

P̃δφ(n1)P̃B(n2)P̃B(n3)
, (62)

where ni for i = 1, 2, 3 are the magnitudes of vectors ~ni
that form a closed triangle.

For isosceles triangles with n2 = n3, the correlation Cn
obtained for the case n = 0 and n = 1 is

C0 =
1

8π3/2

HI

M

(n1 + n2)(n1 − 2n2)2

n
3/2
1 n32

,

C1 =
1

16π3/2

HI

M

N

(n1 + 2n2)n
3/2
1 n52

,

N = n61 + 2n51n2 − 2n41n
2
2 − 6n31n

3
2

+4n21n
4
2 + 8n1n

5
2 + 16n62, (63)

where −1 ≤ cos θ = 1
2
n2
1

n2
2
− 1 ≤ 1. An expression for C2

is easily calculated, but the result is rather long and un-
enlightening. The behavior of Cn(cos θ) for n = 0, 1, 2,
and −2 is illustrated in Fig. 2.

We find that there are two interesting limits for isosce-
les triangles with n2 = n3, first a squeezed triangle, with
1 ≤ n1 � n2 or θ = π, and second a flattened triangle,
with n2 = n1/2 or θ = 0. For the squeezed triangle we
find the universal result,

Cn(cosπ) =

√
2

(2πn1)3/2
HI

M
, (64)

for all values of n, as borne out by numerical integration
for non-integer n. We suspect that this triangle con-
figuration, with small n1 and large n2, n3, dominates the
integration in Eq. (53), as a way to help explain the simi-
larities seen in the real-space cross-correlation coefficients
for different values of the index n.

The result, Eq. (64), suggests a natural reference point,
so that a general expression for the discretized Fourier-
space dependence of the cross-correlation is

Cn(cos θ)/Cn(cosπ) =
π

4εn1

2 cos θI1 + (1 + cos2 θ)I2
|H(1)

1/2+n(εn2)H
(1)
1/2+n(εn3)|

,

(65)
where ε ≡ −2πηI/L� 1.

For a flattened triangle, we have C0(cos 0)/Cn(cosπ) =
0, C1(cos 0)/Cn(cosπ) = 3, and C−2(cos 0)/Cn(cosπ) =
12 (2− γ − ln(2ε)), where γ is the Euler-Mascheroni con-
stant. Note that the cross-correlation vanishes for the un-
amplified case (n = 0), but grows large for n = −2, where

the argument of the log is ∼ 10−27 for modes entering the
horizon today. The behavior of Cn(cos 0)/Cn(cosπ) as a
function of n is shown in Fig. 3.

To show the full Fourier-space triangle dependence of
the cross-correlation, we define the quantity

R ≡
(
n2
n3

)2
Cn(cos θ)

Cn(cosπ)
(66)

and introduce the variables x23 ≡ n2/n3 and x13 ≡
n1/n3, where 0 ≤ x23 ≤ 1 and 1 − x23 ≤ x13 ≤ 1 + x23
covers the full set of triangles. The behavior for the cases
n = 0, 1, 2, and −2 are shown in Fig. 4. The Figure helps
illustrate the difference between the amplified and unam-
plified (n = 0) cases, and also shows that the maximum
value of R in the amplified case occurs for the flattened
triangles, corresponding to the line x13 = 1 + x23, along
which θ = 0. Squeezed triangles, where θ = π, are lo-
cated along x13 = 1− x23.

The amplitude of the zero-lag, real-space cross-
correlation is dominated by the cut-offs to the range of
Fourier modes. At finite Fourier mode, however, the
flattened isosceles triangle produces the largest cross-
correlation amplitude and hence the best opportunity to
observe the signature of the mechanism responsible for
amplifying the primordial magnetic field.

V. CONCLUSIONS

We have considered a toy model in which a scalar field
is coupled to electromagnetism in a fixed de Sitter back-
ground. The homogeneous time evolution of the scalar
field breaks the conformal invariance of electromagnetism
resulting in quantum production of magnetic fields in
addition to quantum production of scalar-field fluctua-
tions. We then calculated the cross-correlation between
the scalar field and the magnetic-field energy density.
The dimensionless cross-correlation coefficient is propor-
tional to the ratio HI/M , which must be small if the
effect of the scalar-field perturbation on the electromag-
netic part of the Lagrangian can be considered small.
However, this small quantity may be multiplied by a nu-
merically large (. 500) coefficient suggesting a possibly
strong (even order-unity) cross-correlation.

We also studied the full triangle-shape dependence of
the three-point correlation function in Fourier space. We
find that it is nonzero for squeezed triangles (wherein
the short Fourier component is that associated with the
scalar-field mode), but may be considerably larger for
flattened triangles (where the long Fourier mode is as-
sociated with the scalar field and twice as long as those
associated with the magnetic field). These shape depen-
dences may be useful if such correlations are to be sought
in the data.

Although we treat it as a toy model, our calculation
provides the correlation between the curvaton and mag-
netic fields if the scalar field is identified as the curvaton.



9

FIG. 2: The ratio Cn(cos θ)/Cn(−1) is shown for n = 0, 1, 2, and −2, as functions of cos θ. In the n = −2 panel, the dashed
line indicates where the absolute value has been taken. In the n = 2, −2 cases we have used 2πn1|ηI/L| ∼ 10−27 corresponding
approximately to a Gpc length scale. Note that the case of cosmological interest is n = 2.

If primordial perturbations are further due to curvaton
fluctuations, then the scalar-field–magnetic-field cross-
correlations derived here describe density-perturbation–
magnetic-field correlations in the Universe today. If the
scalar field is the inflaton, then there are additional steps
to relate the scalar-field perturbation to the density-
perturbation amplitude in the Universe today [36].

The cross-correlation between primordial-seeded den-
sity perturbations and magnetic fields may be amenable
to detection through the cosmic microwave background
(CMB). Cosmic magnetic fields present during the re-
combination era contribute to the CMB temperature and
polarization signals. (See Ref. [15] for a detailed study.)
Magnetic fields along the line of sight further distort the
CMB by converting E-mode polarization into B-mode po-
larization, through Faraday rotation [16–20]. Primordial
magnetic fields may also leave a non-Gaussian imprint on
the statistics of the anisotropy pattern [21–25]. Current
observations set the upper bound on a primordial mag-

netic field at the nG level [26–28]. (We also note that
there have been claims of a lower bound on an extra-
galactic field [30].)

The correlation may also be accessible through a com-
bined survey of large-scale structure and Faraday rota-
tion [31]. The proposed SKA telescope, which is pro-
jected to be sensitive to variations of 0.1 nG across 100
Mpc, and LOFAR, which aims to explore the nG fields in
intergalactic media [32–35], may offer more direct means
to probe for the cross correlation. The detectability of
the effect studied here will be the subject of future work
[36].
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FIG. 3: The ratio Cn(1)/C(−1), the ratio of the discretized Fourier-space cross-correlation coefficients for the flattened triangle
to that of the universal result for the squeezed triangle, is shown as a function of n. No amplification, n = 0, yields zero
cross-correlation. Hence, the flattened triangle may be used as an indicator of an amplification mechanism. The ratio is
negative along the dashed line, where we have taken the absolute value. We have set 2πn1|ηI/L| ∼ 10−6 for ease of numerical
computation; using 2πn1|ηI/L| ∼ 10−27 to represent Gpc scales boosts the curve up to 103 near n = ±2. Note that the case
of cosmological interest is n = 2.



11

FIG. 4: The quantity R, defined in the text as the ratio of the Fourier-space cross-correlation coefficient to that of the
universal result for the squeezed triangle, times a factor x223, is shown as a function of the triangle side lengths. We have set
2πn3|ηI/L| ∼ 10−27 for the cases n = ±2. Note that the case of cosmological interest is n = 2.
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