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In this paper, a decay vacuum model ρ̄Λ = 3σM2
pH0H is revisited by detailed analysis of back-

ground evolution and perturbation equations. We show the imprints on CMB temperature and
matter power spectrum from the effective coupling terms between dark sectors by comparing to the
standard cosmological constant model and observational data points (WMAP7 and SDSS DR7).
We find that this model can describe the expansion rate at late times as well as the standard cos-
mological constant model but it fails to simultaneously reproduce the observed CMB and matter
power spectrum. Its generalization ρ̄Λ = 3M2

p (ξ1H0H + ξ2H
2) is also discussed. Detailed analysis

of the background evolution shows that the dimensionless parameter ξ2 would be zero to avoid the
unnatural ’fine tuning’ and to keep the positivity of energy density of dark matter and dark energy
in the early epoch.
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I. INTRODUCTION

Since the accelerating expansion of the universe has been found from the measures of the luminosity-redshift relation
dL(z) of type Ia supernovae (SN Ia) [1], a cosmic component called dark energy was often introduced to explain the
acceleration within the framework of general relativity. Now more and more evidences, such as cosmic microwave
background (CMB) [2, 3], baryon acoustic oscillations (BAO) [4], weak gravitational lensing [5] and x-ray clusters
[6, 7], indicated that the universe is spatially flat and dominated by dark energy at present. Apart from dark energy
models, modified gravity [9, 10] can also explain the acceleration of the present universe. However, we just focus
on dark energy model in this paper. Among the various dark energy models [8], including scalar field [11], vector
field[12, 13], holographic dark energy [14], Chaplygin gas [15] and so on. The cosmological constant model (ΛCDM)
[16] is the simplest one. However, as well known, the ΛCDM suffers from the fine tuning problem: the observed
vacuum energy density of order ∼ 10−47GeV4 is about 10121 orders of magnitude smaller than the value expected
by quantum field theory for a cut-off scale being the Plank scale, and is still about 1044 orders smaller even for a
cut-off scale being the QCD scale [8]. As an extension to ΛCDM, the decaying vacuum (DV) dark energy model
was proposed [17, 19], based on the incomplete quantum field theory in the curved 4-dimension space-time. In this
model, the vacuum serves as dark energy, whose energy density decays with the expansion of the universe leading to
an additional production of the matter component. In the late-time with a quasi-de Sitter background, the vacuum
density is proportional to the Hubble rate, ρΛ(t) ∝ H(t). However, the equation of state for the vacuum is a constant
value w = pΛ(t)/ρΛ(t) = −1, the same as that in the ΛCDM model. Moreover, as an interesting feature, the late-time
dynamics of the DV model is similar to ΛCDM [17, 19].
The quasar APM 08279+5255 at z = 3.91 was used to examine the DV model [20], and it was found that the DV

model can greatly alleviate the high redshift cosmic age problem existing in the ΛCDM model. In order to distinguish
the DV model from other dark energy models at the late-time Universe, the statefinder and Om diagnostics of the DV
model were also presented in [20]. Moreover, the DV model has been tested by χ2 analysis using the observational
data of SN Ia [21], a joint data from SN Ia, BAO and CMB[22, 23], and the joint data that the Gamma-ray bursts,
Hubble rate and x-rays in galaxy clusters were added [24]. It was found that, the DV model favors a relative larger
value of the matter density contrast, Ωm = (0.34 ∼ 0.43).
In this paper, comparing to the previous work [23, 24], we take the radiation component into account in a more

reasonable way. We will demonstrate the temperature anisotropies of CMB induced by the matter perturbations in

∗Electronic address: lxxu@dlut.edu.cn



2

the DV model with various value of Ωm. The matter power spectrum is investigated.
This paper is structured as follows. In section II, the background evolution equations are given in a spatially flat

FRW universe. We give a brief review of cosmological perturbation theory in section III. The main results of this paper
are presented in section IV. In section V, we give a brief discussion on a generalized form ρ̄Λ = 3M2

p (ξ1H0H + ξ2H
2)

and point out that this model is not viable. Section VI is the conclusion.

II. BACKGROUND EVOLUTION EQUATIONS

The energy density of decay vacuum is given as [17]

ρ̄Λ = 3σM2
pH0H. (1)

Here M−2
p = 8πG is the reduced Plank mass. An extra H0 is introduced for convenience. And σ is a positive

dimensionless parameter. The energy-momentum conservation equation implies the interaction between dark matter
and decay vacuum,

˙̄ρc + 3Hρ̄c = −Q̄, (2)

˙̄ρΛ + 3H(ρ̄Λ + p̄Λ) = Q̄. (3)

where Q̄ denotes an interaction bewteen dark sectors. In this paper, a non-gravitational interaction between dark
sectors is considered only. The other case where the non-gravitational interaction between dark sectors and radiation
is considered by other authors, for example [18]. The remained energy components ρ̄b and ρ̄r respect the usual
conservation equation ˙̄ρi +3H(1+wi)ρ̄i = 0, where i = b, r and wb = 0, wr = 1/3 are the equation of state of baryon
and radiation respectively. The Friedmann equation in a spatially flat FRW universe is given as

H2 =
1

3M2
p

(ρ̄r + ρ̄b + ρ̄c + ρ̄Λ) , (4)

where the subscripts r, b, c,Λ denote radiation, baryon, cold dark matter and vacuum energy density respectively. One
can rewrite the Friedmann equation into

H2 = H2
0

[

Ωr0a
−4 + Ωb0a

−3 +Ωc0fc(a) + (1− Ωr0 − Ωb0 − Ωc0)fde(a)
]

, (5)

where Ωi = ρi

3M2
pH

2 is the dimensionless energy parameter of i = r, b, c,Λ component, fc(a) = ρ̄c/ρ̄c0 and

fde(a) = ρ̄de/ρ̄de0 are fractions of dark matter and dark energy respectively. Hereafter, the subsript ’0’ denotes
the corresponding value at present, i.e., the corresponding value at scale factor a = 1. And the terms Λ and dark
energy are exchangeable. Clearly, one has the present values of these fractions fc(1) ≡ 1 and fde(1) ≡ 1 respectively.
For a spatially flat universe, one has Ωde0 = σ = 1− Ωr0 − Ωb0 − Ωc0, i.e., the relation

σ = 1− Ωr0 − Ωb0 − Ωc0. (6)

Considering the interaction between dark sectors, one has the evolution equations of fc(a) and fde(a)

dfc
d ln a

+ 3fc = −
Q̄

3M2
pH

2
0HΩc0

, (7)

dfde
d ln a

+ 3(1 + wde)fde =
Q̄

3M2
pH

2
0HΩde0

, (8)

where wde = p̄de/ρ̄de is the equation of state (EoS) of dark energy. For cosmological constant, wde ≡ −1. It means
that the interaction term is

Q̄ = ˙̄ρΛ = 3σM2
pH0Ḣ = 3σM2

paH0H
dH

da
, (9)

and the fraction of dark energy is

fde =
ρ̄de
ρ̄de0

≡ H/H0. (10)
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Substituting the above relation of fde into Eq. (5), one has a quadratic equation of H/H0. After a simple algebra,
one obtains

H =
1

2
H0

[

Ωde0 +
√

Ω2
de0 + 4(Ωr0a−4 +Ωb0a−3 +Ωc0fc(a))

]

. (11)

Here, the other solution is removed for its negativity. The function fc(a) is a solution of the differential equation

dfc(a)

d ln a
=

Ωde0(3Ωb0a
−3 + 4Ωr0a

−4)− 3Ωc0fc(a)
√

Ω2
de0 + 4(Ωr0a−4 +Ωb0a−3 +Ωc0fc(a))

Ωc0

[

Ωde0 +
√

Ω2
de0 + 4(Ωr0a−4 +Ωb0a−3 +Ωc0fc(a))

] (12)

with current value fc(1) ≡ 1. It is easy to obtain the conventional dark matter evolution equation fc(a) = a−3, when
the cosmological constant is a real constant. From the Friedmann equation, one has

dH

da
= −

H0

(

3Ωb0a
−3 + 3Ωc0fc(a) + 4Ωr0a

−4
)

a
(

Ωde0 +
√

Ω2
de0 + 4(Ωr0a−4 +Ωb0a−3 +Ωc0fc(a))

) . (13)

When one omits the radiation and baryon components the Friedmann equation

H = H0(1− Ωc0 +Ωc0a
−3/2) (14)

is recovered [20]. In the previous study, when one considers the early stage of universe, the approximated Friedmann
equation

H(a) ≈ H0

[

(

1− Ωm0 +Ωm0a
−3/2

)2

+Ωr0a
−4

]1/2

(15)

is adopted [20]. As a contrast, in this paper, an exact one is obtained. We plot the evolution curves for illustrating
the relative deviation from ΛCDM model with different values of Ωc0 in the left panel of Fig. 1. The corresponding
right panel shows the evolution of dimensionless energy parameters Ωi, i = b, c, r,Λ with respect to scale factor a.
It shows that the relative deviation from ΛCDM model. One can read that the Hubble parameter is less than that
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FIG. 1: Left panel: The relative deviations of Hubble parameter H(a) to ΛCDM model, i.e. (H(a)−HΛCDM (a))/HΛCDM (a)
with respect to scale factor a. Central and Right panels: the evolutions of dimensionless energy components with respect to
scale factor a. The thick (red), dotted (green), dashed (blue) and dot-dashed (dark green) lines correspond to the values of
Ωc0 = 0.23, 0.30, 0.37, 0.44 respectively. Here H0 = 72, Ωb0 = 0.04 and Ωr0 = 0.00008 are adopted.

of ΛCDM model in almost the whole history of the universe, with the exception of recent epoch. In this case, the
geometric probes, for example the luminosity distance, would not distinguish it from ΛCDM model due to the negative
and positive mixture of relative deviations. The central panel shows the evolutions of dimensionless parameters Ωr,
Ωm = Ωc + Ωb and ΩΛ. From the central panel, when the cold dark matter and baryon are combined as a whole
matter component Ωm, one may see that the components evolve as usual naively. However, from the right panel,
one sees that the evolution of Ωb is almost comparable to Ωc when Ωc0 ∼ 0.23. One can also read the difference
from the left panel of Fig 1. The right panel implies the lower abundance of Ωb and high Ωc is favored in this decay
vacuum model. But, the higher abundance of Ωb and lower one of Ωc will make the dynamic evolution different. To
distinguish this decay vacuum model from ΛCDM model, one should consider high redshift observational data points
and dynamical evolution. The observation of CMB is a good indicator for its high redshift (z ∼ 1089) and precision
(∆T/TCMB ∼ 10−5). So, in this paper, we are going to investigate the observational effects under this decay vacuum
model. On the other aspect, if the geometric evolution history is very similar, but the dynamic evolution would be
very different. In this decay vacuum case, an effective interaction is introduced for keeping the conservation of energy
and momentum. In this sense, the matter power spectrum is also investigated.
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III. COSMOLOGICAL PERTURBATION EQUATIONS

In this section, at first, we give a brief review of cosmological perturbation theory with an arbitrary interaction
between dark sectors. For the cosmological perturbation theory, please see [25] and references therein. For the gauge
ready formalism about the perturbation theory, please see [26]. Here, we follow the work [27] closely. For considering
decay vacuum, we assume the dark energy is a smooth energy component. It means that the dark matter perturbation
equation is modified due to an interaction between dark sectors.
Scalar perturbations of the flat FRW metric are given in the following form [27]

ds2 = a2
{

−(1 + 2φ)dτ2 + 2∂iBdτdx
i + [(1 − 2ψ)δij + 2∂i∂jE] dxidxj

}

. (16)

ūµ = a−1(1, 0, 0, 0) is the background four-velocity. Its spatial part is the perturbation, we can set it as ∂ivA for the
corresponding scalar perturbation only. Then using the equality gµνu

µ
Au

ν
A = −1, one has the four-velocity of A-fluid

[27]

uµA = a−1(1 − φ, ∂ivA), uAµ = gµνu
ν
A = a(−1− φ, ∂i[vA +B]), (17)

where vA is the peculiar velocity potential. The local volume expansion rate is θ =
−→
∇ ·−→v which is θA = −k2(vA +B)

in Fourier space.
The perturbed energy-momentum tensor is given as

δ∇µT
µ0
A =

1

a2
{

δρ′A + 3H(δρA + δpA)− 3(ρ̄A + p̄A)ψ
′ + (ρ̄A + p̄A)∇

2(vA + E′)

−2 [ρ̄′A + 3H(ρ̄A + p̄A)]φ} , (18)

δ∇µT
µi
A =

1

a2
∂i

{

[(ρ̄A + p̄A)(vA +B)]
′

+ 4H(ρ̄A + p̄A)(vA +B) + (ρ̄A + p̄A)φ+ δpA

+
2

3
p̄A∇

2πA − [ρ̄′A + 3H(ρ̄A + p̄A)]B

}

. (19)

where prime ’′’ denotes derivative with respect to the conformal time dη = dt/a(t), and H = a′/a is the confor-
mal Hubble parameter. When the interaction between the fluids is introduced, the energy-momentum conservation
equation becomes [27]

∇µT
µν
A = Qν

A, δ∇µT
µν
A = δQν

A. (20)

The background evolution equation of fluid-A is

ρ̄′A + 3H(ρ̄A + p̄A) = aQ̄A, (21)

where Q̄A is the background term of the general interaction [27]

Qµ
A = QAu

µ + Fµ
A, (22)

where

QA = Q̄A + δQA, Fµ
A = a−1(0, ∂ifA). (23)

are energy and momentum transfer rates respectively. Then, one has the components

Q0
A = (Q̄A + δQA)u

0 = a−1(1 − φ)(Q̄A + δQA), (24)

δQ0
A = a−1(δQA − φQ̄A), (25)

and

Qi
A = (Q̄A + δQA)u

i + a−1fA = a−1(Q̄A + δQA)∂
iv + a−1∂ifA, (26)

δQi
A = a−1∂i(Q̄Av + fA). (27)

Considering the interaction between the fluids, the perturbed energy and momentum balance equations are [27]

δρ′A + 3H(δρA + δpA)− 3(ρ̄A + p̄A)ψ
′ + (ρ̄A + p̄A)∇

2(vA + E′)

= aQ̄Aφ+ aδQA, (28)

δpA + [(ρ̄A + p̄A)(vA +B)]
′

+ 4H(ρ̄A + p̄A)(vA +B) + (ρ̄A + p̄A)φ+
2

3
p̄A∇

2πA

= aQ̄A(B + v) + afA. (29)
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To solve the above equations or make them complete, one needs the relations between δpA and δρA. The sound
speed c2sA of A fluid is defined in the A rest frame [27]

c2sA =
δpA
δρA

|rf , (30)

where ’|rf ’ denotes the rest frame. The ’adiabatic sound speed’ for any medium is defined as [27]

c2aA =
p′A
ρ′A

= wA +
w′

A

ρ′A/ρA
. (31)

In the A rest frame one has [27]

T i
0|rf = 0 = T 0

i |rf . (32)

To obtain the expression in a general gauge, one makes a gauge transformation, xµ → xµ + (δτA, ∂
iδxA) [27] ,

vA +B = (vA +B)|rf + δτA, δpA = δpA|rf − p′AδτA, δρA = δρA|rf − ρ′AδτA. (33)

Thus, one has τA = vA + B and [27]

δpA = δpA|rf − p′AδτA

= c2sAδρA + (c2sA − c2aA)ρ
′

A(vA +B)

= c2aAδρA + δpnadA, (34)

where δpnadA = (c2sA − c2aA) [δρA + ρ′A(vA +B)] is the intrinsic non-adiabatic perturbation in the A-fluid. When the
interaction is introduced, the conservation equation becomes ρ̄′A = −3H(ρ̄A + p̄A) + aQ̄A. By using the relation
θA = −k2(vA +B) in Fourier space, one has [27]

δpA = c2sAδρA + (c2sA − c2aA)ρ
′

A(vA +B)

= c2sAδρA + (c2sA − c2aA)
[

3H(1 + wA)ρ̄A − aQ̄A

] θA
k2
. (35)

Defining the density contrast δA = δρA/ρ̄A, one has the evolution equations for density perturbation and velocity
perturbations for a generic fluid [27]

δ′A + 3H(c2sA − wA)δA + 3H
[

3H(1 + wA)(c
2
sA − wA) + w′

A

] θA
k2

+ (1 + wA)θA + k2(1 + wA)(B − E′)− 3(1 + wA)ψ
′

= a
Q̄A

ρ̄A

[

φ− δA + 3H(c2sA − wA)
θA
k2

]

+ a
δQA

ρ̄A
, (36)

θ′A + H(1− 3c2sA)θA −
c2sA

(1 + wA)
k2δA +

2wA

3(1 + wA)
k4πA − k2φ

=
aQ̄A

(1 + wA)ρ̄A

[

θ − (c2sA + 1)θA
]

− k2fA
a

(1 + wA)ρ̄A
. (37)

In our decay vacuum case, one has the interaction and its corresponding perturbed term by comparing the back-
ground evolution equations of dark matter and dark energy

Q̄c = −Q̄de = −ρ̇de = −3M2
paH

dH

da
σH0, (38)

δQc = −δQde = 0, (39)

fc = −fde = 0. (40)

Then the perturbed dark matter density contrast and velocity equations are given in longitudinal gauge as follows

δ′c = −θc + 3ψ′ −
3a3M2

p

ρ̄c

dH

da
σH0H(φ− δc), (41)

θ′c = −Hθc + k2φ. (42)

For decay vacuum, it is not perturbed.
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IV. INFLUENCE ON CMB AND MATTER POWER SPECTRA

Now, we are in the position to study the CMB and matter power spectrum in this decay vacuum model. We
modified the CAMB package [28] to include the effective interaction between cold dark matter and time variable
cosmological constant, and set to the adiabatic initial conditions. For comparison to ΛCDM model, we borrow the
cosmological parameters values from WMAP7 [3]. As outputs, the evolution of cold dark matter density contrast
(Fig. 2) on different scale k = 0.001, 0.05Mpc−1 and the CMB and matter power spectra (Fig. 3) are shown for
different values of with different values of Ωch

2 = 0.112, 0.147, 0.1813, 0.2156, where h = 0.70, ωb = 0.0226, ns = 0.96
and other relevant parameter values are fixed.
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FIG. 2: The evolutions of cold dark matter density perturbation δc on scales k = 0.001Mpc−1, k = 0.05Mpc−1 with different
values of ωc.
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FIG. 3: The CMB temperature power spectrum and matter power spectrum with different values of ωc. The red solid lines
correspond to ΛCDM model with ωc = 0.112. The other lines correspond to time variable cosmological constant model with
different values ωc = 0.112, 0.47, 0.1813, 0.2156 respectively.

As shown in Fig 1, decreasing the cold dark matter abundance ωc will delay the matter-radiation equality time, the
resultant acoustic peak will be enhanced Fig. 3. In our case, the acoustic peak is enhanced also due to the interaction
between dark sectors. From Fig. 3, one can see that the CMB temperature spectrum favors a large abundance of cold
dark matter. At low l part where the integrated Sachs-Wolfs effect is dominated, one can read from figure that the
ISW effect can not distinguish the decay vacuum model from ΛCDM model. As expected, the matter (baryon) power
spectra are really different from ΛCDM model for its large abundance of Ωb during the evolution as shown in the
right panel of Fig. 1. With these observations, one can conclude that CMB observations and matter power spectrum
can distinguish the decay vacuum model from ΛCDM model remarkably.
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V. A GENERALIZED FORM ρ̄Λ = 3M2
p (ξ1H0H + ξ2H

2)

A generalized form, dubbed as a time variable cosmological constant or vacuum energy, is assumed [29, 30]

ρ̄Λ = 3M2
p (ξ1H0H + ξ2H

2), (43)

Here an extraH0 is introduced in the first coupling term for convenience. Then, ξ1 and ξ2 are dimensionless parameters.
ξ1 = 0 case corresponds to Holographic dark energy model with IR cut-off H2 [31]. And when ξ2 = 0, it reduces to
decay vacuum model [17]. Following the calculations in section II, one has the relation

ξ1 + ξ2 = 1− Ωr0 − Ωb0 − Ωc0. (44)

and the fraction of dark energy

fde =
ρ̄de
ρ̄de0

≡
ξ1H/H0 + ξ2H

2/H2
0

ξ1 + ξ2
. (45)

Substituting the above relation of fde into Eq. (5), one has a quadratic equation of H/H0. After a simple algebra,
one obtains

H =
1

2α
H0(ξ1Ωde0 + γ), (46)

where

α = ξ1 + ξ2(Ωr0 +Ωb0 +Ωc0) (47)

γ =
√

ξ21Ω
2
de0 + 4α(ξ1 + ξ2)(Ωr0a−4 +Ωb0a−3 +Ωc0fc(a)). (48)

Here, the negative solution is removed. Solving quadratic equation of H/H0 and keeping the positivity of root, the
constraint condition ξ2 ≤ 2 − Ωde0 or ξ1 + 2ξ2 ≤ 2 is respected. Also, the positivity of Eq. (46) requires α > 0, i.e
ξ2 < 1. At last, one has 0 < ξ1 + ξ2 < 1 and ξ2 < 1. The function fc(a) is a solution of the differential equation

dfc
d ln a

=
[ξ1αΩde0 + ξ2(ξ1Ωde0 + γ)Ωde0](3Ωb0a

−3 + 4Ωr0a
−4)− 3αγΩc0fc

αγΩc0 + ξ1αΩc0Ωde0 + ξ2Ωc0Ωde0(ξ1Ωde0 + γ)
(49)

with current value fc(1) ≡ 1. It is easy to obtain the conventional dark matter evolution equation fc(a) = a−3, when
the cosmological constant is a real constant.
At very early epoch (for example a ∼ 10−6), the differential equation of fc reduces to

dfc
d ln a

≈
4ξ2Ωr0a

−4 − 3Ωc0(1− ξ2)fc(a)

Ωc0
(50)

which has solution

fc(a) ≈ a3(−1+ξ2)C −
4ξ2Ωr0a

−4

(1 + 3ξ2)Ωc0
, (51)

where C > 0 is an integration constant. To keep the positivity of fc(a), the stringent constraint −1/3 < ξ2 ≤ 0 is
respected. However, when ξ2 is a negative dimensionless parameter, the second term of ρΛ will be dominated in the
early universe. And a negative vacuum energy or dark energy density will appear. That is prohibited. Actually, in
this case, to keep the positivity of vacuum energy density ρΛ > 0, one has

Ωde0

1−H/H0
< ξ2 ≤ 0. (52)

So, the parameter space of ξ2 depends on the Hubble parameter values in the early epoch. Then, a fine tuning problem
would be committed. It means that the value of ξ2 is a very small negative parameter, i.e. ξ2 ∼ 0. In this sense, it
would not be a viable dark energy model with the exception of ξ2 = 0. Of course, one may argue that in that early
epoch the assumption of this time variable cosmological constant model is blown up. The above analysis is based on
a basic physical reality that is the positivity of energy density ρi > 0 in the whole evolution of the universe. If one
can accept the fine tuning, the parameter space of ξ2 would be in the range [−ǫ, ǫ] where ǫ is very small dimensionless
constant to keep the positivity of energy densities of ρc and ρΛ, for example ǫ ∼ 10−6. So, to avoid the ’unnatural’
fine tuning, ξ2 would be zero. Then the time variable cosmological constant model reduces to the so-called decay
vacuum model

ρ̄Λ = 3M2
p ξ1H0H. (53)

In this sense, this generalized form is not a viable dark energy model.
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VI. CONCLUSION

In this paper, a decay vacuum model ρ̄Λ = 3σM2
pH0H and its generalization ρ̄Λ = 3M2

p (ξ1H0H + ξ2H
2), a time

variable cosmological constant model, are revisited. At first, the background evolution equation in a spatially flat FRW
universe containing cold dark matter, radiation, baryon and time variable cosmological constant is given. The relative
departure from ΛCDM model is minor, please see the left panel of Fig. 1. So to discriminate the decay vacuum model
from ΛCDM model, high redshift observations are needed. In the decay vacuum model case, an effective interaction
between cold dark matter and vacuum can be introduced. Then the evolution of cold dark matter will depart from the
conventional power law a−3. And the large scale structure formation will be strongly different from that of ΛCDM
model. Though the baryon component evolves in the scaling a−3, the background evolves different from ΛCDM
model for the effective interaction between cold dark matter and decay vacuum. Then the dynamic evolution would
be modified. So the cosmological perturbations are taken into account. As results, the angular power spectrum of
CMB and matter power are presented with different parameter values of cold dark matter abundance ωc, please see
Fig. 3. From this figure, one can conclude that CMB observations and matter power spectrum can distinguish the
decay vacuum model from ΛCDM model markedly. When Ωch

2 = 0.2158, i.e. Ωc0 = 0.4404, the purple dashed line in
Fig. 3 is close to observational data points. It means that increasing the abundance of cold dark matter will depress
the acoustic peaks to cosmic observational data points in this model. However, in the right panel of Fig. 3, one sees
that increasing the abundance of cold dark matter will enhance the matter power spectrum at small scale but depress
that at large scale. That makes it difficult to match observational data points. With these observations, this model
would be ruled out. But to know in what kind of levels to rule out this model, testing this model with current available
cosmic observational data sets, for example type Ia supernovae, baryon acoustic oscillation, full CMB and SDSS DR7
etc, would be interesting. Furthermore, a generalized vacuum model ρ̄Λ = 3M2

p (ξ1H0H + ξ2H
2) was discussed. From

a detailed analysis, one can find that the parameter space of ξ2 is a very small negative dimensionless parameter. To
keep the positivity of energy density of dark matter and dark energy at early epoch, the parameter ξ2 suffers from
the fine tuning problem. So to avoid this unnatural condition, the ξ2 would be set to zero. Then it reduces to the
decay vacuum model. In this sense, it would not be a viable dark energy model.
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