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In their Comment, Grientschnig and Lira derive a Bayesian reference prior for cross section mea-
surements that turns out to be identical to one obtained by L. Demortier, S. Jain, and H. B. Prosper
[Phys. Rev. D 80, 034002 (2010)]. Since the new derivation uses a different sequence of compact
sets to normalize the reference prior, this result points to a certain robustness of posterior infer-
ences in this approach. However, Grientschnig and Lira make some additional claims about their
methodology, which we show to be unwarranted.

PACS numbers: 06.20.Dk,02.50.Tt

I. INTRODUCTION

In the abstract and introduction of their Comment, Grientschnig and Lira assert that the reference prior and
posterior derived in our paper [1] were found to depend on the sequence of compact subsets of parameter space used
for a normalization procedure. This is an incorrect reading of our paper. Indeed, we merely discovered that a simple,
plausible choice of subsets leads to a posterior that is improper for some realizations of the underlying model and must

therefore be dismissed. We then proposed a different sequence of subsets, found the resulting posterior to be proper,
and presented the latter as a usable reference posterior for the problem at hand. We did not address the notoriously
difficult question of the uniqueness of this posterior with respect to changes in compact set sequence. The fact that
Grientschnig and Lira have now derived the same posterior from a different sequence is of course an encouraging result
from the point of view of uniqueness.
In our opinion however, Grientschnig and Lira go one step too far by stating that their analysis “questions the

manner in which [our result] was achieved.” They base this statement on the fact that we did not make use of “a
sufficient condition for uniquely defining the reference prior”, and on their belief that “if [the reference prior] were
not unique an unsatisfactory ambiguity of the interpretation of measurement results would arise”. They subsequently
address the uniqueness problem by making two claims, (1) that in every problem of inference one can identify an
“original parametrization”, and (2) that it is this original parametrization that should be used to construct the
compact sets. They refer to this second claim as a “principle”, and as the “original parametrization rule”. As we will
show, these claims are neither compelling nor supported by the literature on reference priors. We briefly review what
this literature has to say about compact sets in Sec. II, expand on the motivation for our choice of compact sets in
Sec. III, and return to the claims of Grientschnig and Lira in Sec. IV.

II. COMPACT SETS IN THE LITERATURE ON REFERENCE PRIORS

Although compact sets are technically not needed to obtain reference priors for single-parameter models [2], there
seems to be no way to avoid them in multi-parameter settings. This feature can be traced back to the stepwise nature
of the general reference prior construction [3]. In brief, when multiple parameters are present, they must first be sorted
by order of inferential importance. Next, at each step of the algorithm one constructs a conditional reference prior
for one parameter given all the remaining ones in the ordered sequence. If the parameter space Θ is unbounded, this
conditional prior is typically improper, and therefore only defined up to a proportionality constant that may depend
on the parameters that were conditioned on. To fix this dependence, one introduces a sequence of nested compact
sets Θℓ that converges to the whole space Θ, and normalizes the conditional prior over an arbitrary Θℓ. After all
steps are completed, the reference posterior on Θℓ is obtained from Bayes’ theorem, and the limit Θℓ → Θ is taken.
Whereas the compact set normalization procedure arises as a purely mathematical device to resolve an indeterminacy

in the reference prior construction, the compact sets themselves do have a more general meaning, regardless of whether
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the model has one parameter or many. Indeed, in all practical measurement problems, the physical parameter space
that one is trying to model is actually bounded. However, it is usually not easy to specify its boundary, and one
therefore uses the unbounded space as an approximation to the physical space [2]. Thus Bernardo writes that “one
should always consider a probability model endowed with an appropriate compact approximation to its parameter
space, which should then be kept fixed, via the appropriate transformations, for all inference problems considered
within that model” [4, p. 187 (emphasis in the original)].
How then should the compact sets be chosen? Berger and Bernardo admit they “have no clear-cut answer to this

question, precisely because a dependence of the solution on the Θℓ is essentially an indication that some subjective
input is needed; one cannot unambiguously define a reference prior” [5, p. 205]. Nevertheless, in Ref. [6, p. 42]
they provide the following guideline: “Choosing the Θℓ to be natural sets in the original parametrization has always
worked well in our experience. Indeed, the way we think of the Θℓ is that there is some large compact set on which
we are really noninformative, but we are unable to specify the size of this set. We might, however, be able to specify
a shape, Ω, for this set, and would then choose Θℓ = ℓΩ ∩ Θ, where ℓΩ consists of all points in Ω multiplied by
ℓ.” In situations more complex than location-scale problems however, Bernardo introduces approximate location
parametrizations, which he defines as parametrizations for which the reference prior is uniform. He then suggests
that “reparametrization to asymptotically independent parameters and approximate location reparametrizations [. . . ]
may be combined to choose appropriate approximating sequences” [3, §3.8] (see also Ref. [4, p. 187], which points
to [7]).
As the above summary indicates, the problem of choosing compact sets, while not a major issue in the theory of

reference priors, is far from settled. Describing directions for further research in Ref. [4, p. 171], Bernardo lists in first
place the need to obtain “a general definition of the appropriate bounded approximation”. Later in the same paper
he adds that “the necessary approximation of open parameter spaces by convergent compact sequences in order to
derive the reference distributions certainly requires further work” [4, p. 187].

III. THE CHOICE OF COMPACT SETS IN OUR PAPER

In [1] we wrote: “The theory of reference priors currently does not provide guidelines for choosing the compact sets
Θℓ, other than to require that the resulting posterior be proper. In most cases this choice makes no difference and one
is free to base the choice of compact sets on considerations of simplicity and convenience.” Simplicity and convenience
were our way to summarize Berger and Bernardo’s suggestion that “most frequently it would probably be natural to
choose the Θℓ to be simple sets (rectangles, spheres, etc.) in the original parametrization of the problem; initially
chosen parametrizations are often ones in which the analyst is roughly noninformative over natural sets” [5, p. 205].
Since our initial parametrization was in terms of the signal cross section σ, the effective integrated luminosity ǫ, and
the background contamination µ, we simply constructed rectangular sets of the form

Θℓ =
{

(σ, ǫ, µ) : σ ∈ [0, uℓ], ǫ ∈ [0, vℓ], µ ∈ [0, wℓ]
}

, (1)

where {uℓ}, {vℓ}, and {wℓ} are increasing sequences of positive constants. This led to the following conditional
reference prior for σ given ǫ and µ:

πR(σ | ǫ, µ) dσ ∝
√

ǫ

ǫ σ + µ
dσ. (2)

When we discovered that this prior leads to an improper posterior for some form of the evidence-based prior for ǫ,
we asked Berger and Sun, the authors of [8], for advice. They did not find fault with our interpretation of “original
parametrization”, but noted that the resulting prior (2) depends on the parameter of interest σ only through the
product ǫσ. Any proper prior with this property would be invariant under multiplication of σ and division of ǫ by
the same constant, that is, it would be of the form ǫ f(ǫσ) dσ, which (2) isn’t. Berger and Sun then suggested that
we construct rectangular sets in the parametrization {σ̃, ǫ, µ}, where σ̃ ≡ ǫσ. As indicated in our paper, the resulting
prior,

πR1(σ | ǫ, µ) dσ ∝ ǫ√
ǫσ + µ

dσ, (3)

has the desired invariance property and leads to a posterior that is proper regardless of the form of the evidence-based
prior for the problem.
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IV. EVALUATION OF THE CLAIMS MADE IN THE COMMENT

Our overview of the literature on compact sets failed to find a compelling and unambiguous “principle” or “general
rule” to settle their choice. What we did find is an admission that some subjective input may be needed, a statement
that further work is required, and a couple of guidelines, namely to try a “natural” parametrization, or perhaps an
approximate location-scale parametrization. The exact meaning of “natural” is left largely unspecified. On the other
hand, Grientschnig and Lira claim to have identified a family of models where the concept of natural parametrization
is unambiguous. They write, unequivocally, “If the parameter of interest is a function of parameters originating from
different sampling distributions that have no parameters in common, the original parametrization consists of these
parameters.” This is the basis of their derivation of the reference prior for cross section measurements.
As shown in Sec. III, we started from a different interpretation of “natural parametrization”, but eventually obtained

the same result as Grientschnig and Lira. They claim that their derivation questions the manner in which our result
was achieved. For this to be true, it seems to us that Grientschnig and Lira should demonstrate that their definition of
original parametrization has special merits, for example that it can be derived from foundational considerations or that
it is guaranteed to deliver a posterior with good properties within the family of models they identified. Unfortunately
they do not go beyond re-deriving our original result.
In the final analysis, if two sequences of compact sets were to lead to different posteriors for the same problem (see

Ref. [5] for an example), how should one decide which sequence is best? Would it be acceptable to prefer one sequence
simply because it is based on a general principle? Or should the decision be based instead on an objective assessment
of the properties of the resulting posteriors: whether they are proper, have acceptable repeated sampling properties,
yield posterior expectations that are consistent, etc. It is the latter approach that Berger and Bernardo followed in
Ref. [5] and that we took in our paper. Thus, while the adoption of a single general rule for the construction of
compact sets would guarantee the uniqueness of the resulting posterior, it would be premature to do this without a
better theoretical understanding of the effect of various rules on posterior inferences. Given the current lack of such
understanding, we caution users of reference priors against the mindless application of general guidelines.
Finally, we are puzzled by the criticism Grientschnig and Lira direct against a prior of the form exp(−ǫ)/

√
πǫ for

the effective luminosity ǫ (Sec. III of the Comment). They correctly point out that the prior probability density of ǫ
is infinite at ǫ = 0, and that the cross section σ cannot be measured when ǫ = 0. However, the occurrence of ǫ = 0 has
zero prior probability and will therefore almost surely not happen. In any case the density exp(−ǫ)/

√
πǫ is a valid prior.

For an evidence-based interpretation, one can think of it as the reference posterior of an auxiliary measurement of ǫ,
derived from the Poisson likelihood exp(−ǫ)ǫx/x! and Jeffreys’ rule 1/

√
ǫ, in the (admittedly undesirable) situation

where no events are observed in the time allotted to the measurement (x = 0). Once the acceptability of exp(−ǫ)/
√
πǫ

as a prior is recognized, any method that claims to be broadly applicable and general ought to be able to deal with
it. As we showed in [1], this is the case of the reference prior method, provided one uses the compact set sequence we
proposed.
Grientschnig and Lira subsequently express concern that a different choice of evidence-based prior may require a

change in compact set sequence in order to achieve posterior propriety, and that this “contradicts a basic property of
reference priors with partial information, namely that they do not depend on the probability distribution encoding
the partial information.” This objection puts the cart before the horse: the basic property it refers to only applies
after an appropriate sequence of compact sets has been found [8]; hence the supposed contradiction cannot take place.
In summary, we still do not have a general rule for constructing a compact set sequence that guarantees a proper

and well-behaved posterior. Fortunately, given the large number of problems to which the reference prior methodology
has been successfully applied, this compact set difficulty appears to be of minor consequence in practice.
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