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Abstract

We explore the phenomenology of an extra U(1) gauge boson which primarily couples to Standard

Model gauge bosons. We classify all possible parity-odd couplings up to dimension six operators.

We then study the prospects for the detection of such a boson at the LHC and show that the

electroweak decay channels lead to very clean signals, allowing us to probe couplings well into the

TeV scale.
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I. INTRODUCTION

One of the most natural possibilities for physics beyond the Standard Model is the exis-

tence of new gauge groups. In particular, new U(1) gauge groups which are Higgsed at the

TeV scale can lead to new massive gauge bosons (see e.g.[1–4]). Such massive gauge bosons

are a generic feature of many extensions of the Standard Model like grand unified theories [5].

String theoretic constructions can also lead to a plethora of new gauge groups [6–15].

The new gauge bosons can couple to the Standard Model in many ways. Usually they

are assumed to have direct couplings to the Standard Model fermions, and they can then be

directly produced as resonances in colliders. There has been great interest in collider searches

for such Z ′ gauge bosons, and strong constraints have been placed on such resonances [16–

18].

A more interesting possibility is if the new gauge boson has no direct couplings to the

Standard Model fermions (we will refer to such a gauge boson as being fermiophobic). The

new gauge boson (hereafter referred to as X) may then have loop-induced couplings to the

Standard Model if there are fermions charged under both the new gauge group and the

Standard Model. If the fermions are very heavy, then it may be kinematically impossible

to produce them on-shell; they would instead be integrated out to yield effective higher

dimensional operators coupling X to Standard Model gauge bosons. We will focus here on

this possibility.

There are several scenarios for a fermiophobic X. One commonly studied possibility is

that of kinetic mixing [19–26], in which there is a dimension 4 operator which mixes the

kinetic terms of X and the hypercharge gauge boson. This kinetic mixing induces suppressed

couplings between X and the Standard Model fermions, and the X then appears as a Z ′

with a small coupling. There are, however, many models where such a kinetic mixing term

is absent; for example if the heavy fermions are coupled to a non-Abelian Standard Model

group, then the kinetic mixing diagrams are forbidden. Effective operators must then couple

X to at least two Standard Model gauge bosons [27]. We would then need to search for X

through its couplings to two gauge bosons.

If the X couples only to electroweak gauge bosons, X can be produced at hadron col-

liders through vector boson fusion, followed by the decay X → ZZ → 4l. This possibility

was considered in [14], where the authors considered a fermiophobic gauge boson coupled
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to electroweak gauge bosons through dimension six operators. This was further extended

in [28], where it was pointed out that X can couple to electroweak gauge bosons through

dimension four operators as well, enhancing the production cross-section.

Here we consider the more general case where X couples both to gluons as well as to

electroweak gauge bosons (as would happen if the heavy fermions couple to SU(3)qcd as

well as SU(2)L). We examine the prospects for an LHC search for a massive spin-1 boson

coupled to gluons and electroweak gauge bosons through all possible parity-odd couplings up

to dimension 6. We find that the on-shell production of X arises through a unique dimension

6 operator coupling X to gluons. However, there is greater freedom in writing operators

coupling X to electroweak gauge bosons. As a result, decay can arise through a variety of

dimension 4 and 6 operators, the coefficients of which determine the branching fraction to

the final states ZZ, Zγ and W+W−. Interestingly, X cannot decay to γγ. This follows from

the Landau-Yang theorem [29], which asserts that a massive spin-1 boson cannot decay to

two massless vector bosons.

The organization of the paper is as follows. In section II we present the effective operator

description of the coupling of the hidden sector gauge boson to Standard Model gauge

bosons. In section III we describe our analysis of LHC detection prospects for this signal,

assuming
√
s = 7 TeV. We conclude with a discussion of our results in section IV.

II. EFFECTIVE THEORY OF THE FERMIOPHOBIC GAUGE BOSON

We consider a theory with a new gauge group U(1)X spontaneously broken by the expec-

tation value of a charged scalar field Φ, which is eaten by the Higgs mechanism giving the

gauge boson X a mass. We will consider the case where the gauge boson X has only neg-

ligible couplings to Standard Model fermions, but couples non-trivially to Standard Model

gauge bosons. We will further specialize to the case where X is a pseudovector; the vector

case will be considered elsewhere.

SU(3) gauge invariance constrains the coupling of X to gluons to be a combination of
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three effective operators:

O1
Xgg =

1

Λ2
εµραβXµD

νGa
ανG

a
βρ

O2
Xgg =

1

Λ2
εµραβ∂νXµG

a
ανG

a
βρ

O3
Xgg =

1

Λ2
εαβνρ∂µX

µGa
αβG

a
νρ,

(1)

where Dµ is a covariant derivative and Ga
αβ is a gluon field-strength. The operator O3

Xgg

cannot contribute to any process where the X is on-shell, since the momentum of X is

orthogonal to its physical polarizations. Thus we can ignore this term if the narrow-width

approximation is valid (and we will find that it is). O2
Xgg also cannot contribute to any

process where the X is on-shell. One can see this by assuming without loss of generality

that X is in the rest frame (pX = (MX , 0, 0, 0)) with polarization εX = (0, 1, 0, 0). The only

non-vanishing terms are thus ε1ραβ∂0X1G
a
α0G

a
βρ, and it is easy to verify that this expression

will vanish due to the antisymmetric property of the epsilon tensor.

The only operator which contributes to on-shell production of X is O1
Xgg. The corre-

sponding vertex for this operator is

ΓXggµνρ (kX , k1, k2) =
1

Λ2

[
εµνρσ(−k21kσ2 + k22k

σ
1 ) + εµρστk1νk

σ
2k

τ
1 − εµνστk2ρkσ2kτ1

]
. (2)

Note that in this case the vertex is only non-vanishing if at least one gluon is off-shell. This

is a consequence of the Landau-Yang Theorem.

Since electroweak symmetry is broken, it is not necessary for operators to exactly satisfy

the SU(2)L Ward Identity. As a result, we may write operators in the effective Lagrangian

in terms of the Z and W gauge fields as well as the field strengths. The most general XZZ

coupling can be derived from 4 effective operators (see also [30]):

O1
XZZ = εµνρσXµZνZρσ = εµνρσ

XµH
†DνHZρσ
|H|2

O2
XZZ =

1

Λ2
εµραβXµ∂

νZανZβρ

O3
XZZ =

1

Λ2
εµραβ∂νXµZανZβρ

O4
XZZ =

1

Λ2
εαβρσ∂µX

µZαβZρσ,

(3)

where Zαβ is the Z-boson field strength.

Using the same arguments as for the gluon coupling, it is clear that O3
XZZ and O4

XZZ

cannot contribute to any process involving an on-shell X. The vertices for the other two
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effective operators are

ΓXZZ,1µνρ (kX , k1, k2) = εµνρσ(kσ2 − kσ1 )

ΓXZZ,2µνρ (kX , k1, k2) =
1

Λ2

[
εµνρσ(−k21kσ2 + k22k

σ
1 ) + εµρστk1νk

σ
2k

τ
1 − εµνστk2ρkσ2kτ1

] (4)

Note that if the Zs are on-shell, as we require, the dimension 4 operator yields the same

vertex as the dimension 6 operator:

ΓXZZ,2µνρ ≈ −M
2
Z

Λ2
ΓXZZ,1µνρ . (5)

Thus we need only consider the dimension 6 operator in the remainder of this paper. In

the case where interactions are mediated by a dimension 4 operator, the coupling of X to

electroweak states can be easily obtained using the expression above.

The XZγ vertex does not have a symmetry between the two field strengths. For the

photon only the field strength can appear, while the field Zµ can appear by itself. The most

general such interaction is a combination of the operators

O1
XZγ = εµνρσXµZνFρσ

O2
XZγ =

1

Λ2
εµραβ∂νXµ(ZανFβρ + FανZβρ)

O3
XZγ =

1

Λ2
εµραβ∂νXµ(ZανFβρ − FανZβρ)

O4
XZγ =

1

Λ2
εµραβXµ∂

νZανFβρ

O5
XZγ =

1

Λ2
εµραβXµ∂

νFανZβρ

O6
XZγ =

1

Λ2
εαβνρXµ∂µZαβFνρ

O7
XZγ =

1

Λ2
εαβνρ∂µX

µZαβFνρ

(6)

where Fαβ is an electromagnetic field strength. The operators O2
XZγ, O5

XZγ and O7
XZγ do

not contribute to any process in which X and the photons are on-shell.

We can further assume that the only operators we generate are at most dimension 6 when

written in manifestly SU(2)-covariant notation. In this case, the only electroweak operators

we can write are

O1 =
C1

Λ2
εµραβXµTr[∂

νCανCβρ]

O2 =
C2

2Λ2
εµραβXµ∂

νBανBβρ

(7)

where C is the SU(2) gauge field-strength, and B is the hypercharge field-strength.
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These operators then completely determine the vertices for XZZ, XZγ XWW and Xγγ

(for on-shell X). Defining

Γµνρ(kX , k1, k2) = (k2ρεµνστk
σ
1k

τ
2 − k1νεµρστkσ1kτ2 + εµνρσk

σ
1k2 · k2 − εµνρσkσ2k1 · k1),

we have

ΓXZZµνρ (kX , k1, k2) =
1

Λ2
(C1 cos2 θW + C2 sin2 θW )Γµνρ(kX , k1, k2) (8)

ΓXZγµνρ (kX , k1, k2) =
1

Λ2
(C1 − C2) sin θW cos θWΓµνρ(kX , k1, k2) (9)

ΓXW
+W−

µνρ (kX , k1, k2) =
C1

Λ2
Γµνρ(kX , k1, k2) (10)

ΓXγγµνρ (kX , k1, k2) =
1

Λ2
(C1 sin2 θW + C2 cos2 θW )Γµνρ(kX , k1, k2). (11)

If all particles are on-shell, these vertices simplify considerably;

ΓXZZµνρ (kX , k1, k2) =
M2

Z

Λ2
(C1 cos2 θW + C2 sin2 θW )εµνρσ(kσ1 − kσ2 ) (12)

ΓXZγµνρ (kX , k1, k2) =
M2

Z

Λ2
(C2 − C1) sin θW cos θW εµνρσk

σ
2 (13)

ΓXWW
µνρ (kX , k1, k2) = C1

M2
W

Λ2
εµνρσ(kσ1 − kσ2 ) (14)

ΓXγγµνρ (kX , k1, k2) = 0. (15)

III. X PRODUCTION AND DECAY

We will be considering processes in which the X boson is produced on-shell in hadron

collisions. As we have seen, the Landau-Yang theorem prohibits the decay of a massive

spin-1 particle to two massless vector particles and also prohibits resonance production of a

massive spin-1 particle from two massless vectors. QCD processes therefore always produce

the X boson in association with a jet. Note that this is only true for on-shell production

of X; if X is not on-shell, it can be produced without extra jets. For the moment we

neglect this possibility; it would be interesting to see if off-shell production of X can lead to

nontrivial results.

The parton-level process gg → Xg also vanishes. The only relevant parton-level produc-

tion channels are therefore qg → qX, q̄g → q̄X and qq̄ → gX.

The branching fractions for X decay can also be calculated. The branching fraction for

X → gg and X → ggg turn out to be zero. As a result, the only hadronic decay of X
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FIG. 1. X production through qg, q̄g, and qq̄.

to fewer than four jets is through the process X → gqq̄. Depending on the relative values

of the coefficients for the gluon and electroweak operators, this can be an important decay

channel.

In this paper we are interested in the electroweak decay channels only. For the purposes of

illustrating relative branching fractions to these channels, we will assume that the operator

coefficients are chosen such that the partial width for X → gqq̄ is negligible. (Our final

result will be independent of this assumption.) In this case the primary decay modes are

ZZ, Zγ and WW . We find

Γ(X → WW ) = (42 MeV)

(
TeV

Λ

)4(
MX

TeV

)3(
1− 4M2

W

M2
X

)5/2

C2
1

Γ(X → ZZ) = (16 MeV)

(
TeV

Λ

)4(
MX

TeV

)3(
1− 4M2

Z

M2
X

)5/2

(C1 + C2 tan2 θW )2

Γ(X → γZ) = (4.9 MeV)

(
TeV

Λ

)4(
MX

TeV

)3(
1− M2

Z

M2
X

)3(
1 +

M2
Z

M2
X

)
(C2 − C1)

2.

(16)

Note that for MX ,Λ ∼ TeV, the decay width of X is indeed much smaller than its mass,

justifying our use of the narrow-width approximation.

In Fig. 2 we plot the branching fractions BR(X → ZZ,W+W−, Zγ) as a function of

C2/C1 for MX = 250 GeV and MX = 1000 GeV.

IV. COLLIDER ANALYSIS

In this analysis we will study potential signals at the 7 TeV LHC. We will focus on the

case of X production through QCD couplings via the operator

OXgg = O1
Xgg =

1

Λ2
εµραβXµD

νGa
ανG

a
βρ (17)
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FIG. 2. Branching ratios for X decaying to Standard Model electroweak gauge bosons for MX =

250 GeV (left) and for MX = 1000 GeV (right). We have assumed that the branching fraction to

gqq̄ is negligible.

followed by X → ZZ and X → Zγ decays, which are the cleanest. We will further specialize

to the case where the Z decays to leptons. We have simulated the signal and Standard

Model background in MadGraph 5 [31], showered the partons using Pythia 6.4.22 [32], and

performed a detector simulation in PGS4 [33]. We consider each final state separately.

A. Cuts

(a) ZZ decays : For X → ZZ decays the signal is 4 leptons plus a jet. The primary

background is ZZ + jet production. We impose the following cuts:

• One jet with pT ≥ 50 GeV, |η| < 2.5

• 4 leptons with pT ≥ 20 GeV, |η| < 2.5, and pairwise invariant masses in the range

80-100 GeV

(b) Zγ decays : For X → Zγ decays the signal is 2 leptons, a photon and a jet. The

primary background is Zγ + jet production. We impose the following cuts:

• One jet with pT ≥ 50 GeV, |η| < 2.5

• 2 leptons with pT ≥ 20 GeV, |η| < 2.5, and invariant mass in the range 80-100 GeV

• 1 photon with pT ≥ 10 GeV
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To look for the X resonance, we can study the total invariant mass of the 4 leptons

(or 2 leptons and photon). The invariant mass distributions for the signal vs. background

(assuming the only electroweak coupling is through operator O1) are shown in Fig. 3 for

MX = 250 GeV and for various values of Λ. The Standard Model background events give a

smooth distribution over the relevant invariant mass combinations (see also [34, 35]). The

cross sections for the signal are well above background for Λ as high as 2 TeV.
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 = 2TeVΛ

FIG. 3. Invariant mass spectrum for signal (MX = 250 GeV) and background for the LHC at

√
s = 7 TeV, assuming the only electroweak coupling is through operator O1. Left: Signal and

background for X → ZZ, for different values of Λ. Right: Signal and background for X → Zγ.

Both signal and background cross-sections are generally lower for the ZZ process due to the extra

factor of the dilepton branching ratio.

Since signal events will exhibit a narrow invariant mass peak, our analysis will compare the

number of observed events to the number of expected background events with an invariant

mass within ±10% of a given central value mcentral. For both ZZ and Zγ channels, this

invariant mass cut drastically lowers background cross-sections. In Table I we present the

signal and Standard Model background cross-sections for events satisfying the cuts with 4

lepton (or 2 lepton plus photon) invariant mass within 10% of the given mcentral.

B. Detection Prospects

We find the number B of background events with 4l (2l+γ) invariant mass within ±10%

of any given mcentral and compare this to the number S of signal events within the same
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TABLE I. Table of signal and Standard Model background production cross-sections (in fb) for

the LHC at
√
s = 7 TeV, for 4 leptons and for 2 leptons and a photon, as labeled. The signal

cross-sections are normalized by taking Λ/BR(X → V V )
1
4 = TeV for each final state. We assume

the cuts described in the text and the assumption that the invariant mass is within 10% of mcentral.

mcentral σBG(fb) σBG(fb) σsig/BR(ZZ)(fb) σsig/BR(Zγ)(fb)

(GeV) pp→ jl+l−l+l− pp→ jγl+l− pp→ jl+l−l+l− pp→ jγl+l−

250 0.26 6.4 18 690

500 0.050 0.76 5.5 140

750 0.010 0.17 1.3 36

1000 0.0021 0.034 0.26 9.6

1250 0.0004 0.014 0.054 2.5

1500 0.0001 0.0051 0.012 0.66

1750 <0.0001 <0.0010 0.0032 0.18

2000 <0.0001 <0.0010 0.0008 0.049

invariant mass window, assuming MX = mcentral. The significance is defined as s = S√
B

.

For each point in parameter space, we can find the luminosity required to achieve discovery.

When the number of expected background events at a certain luminosity is less than one, we

define discovery as S ≥ 5; otherwise, we define discovery as s ≥ 5. For all of the parameter

space considered one finds S/B ≥ 0.2 at discovery.

In a realistic experimental analysis the actual signal significance would be reduced by

a trials factor associated with the freedom in choosing mcentral, the center of the invariant

mass analysis window.

Since we have seen that the narrow-width approximation is valid for X, the detection

prospects of the LHC depend on the electroweak coupling operator coefficients (C1 and C2)

only through the branching fraction for X to decay to each channel. Since the minimum

cross-section for discovery scales as the production cross-section times the branching ratio,

σpp→X+jet→V V jet = σprod ×B(X → V V ) (18)

∝ Λ−4 ×B(X → V V ), (19)

we define the mass reach in terms of the quantity Λ/[B(X → V V )]
1
4 . This mass reach is

then independent of the relative strengths of couplings to the strong and electroweak sectors,
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as encoded by the factors C1 and C2. We plot the mass reach accessible at the LHC for

various luminosities at collider energy 7 TeV in both the ZZ and Zγ channel in Fig. 4.
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FIG. 4. Discovery reach of the LHC at
√
s = 7 TeV for the X → ZZ channel (left) and the

X → Zγ channel (right). Λ is the mass scale of the dimension 6 operator coupling X to gluons.

Note that, for large MX and L = 35 pb−1, the discovery reach can drop as low as

Λ ∼ 40 GeV. For typical models, this would imply that particles which have been integrated

out to generate the higher-dimensional effective operator are in fact lighter than the energy

of the hard process, rendering the effective operator analysis inconsistent. Moreover, one

might expect additional operators with dimension greater than 6 to provided contributions

which are suppressed by additional powers of M2
Z/Λ

2; if this factor is large, then one cannot

ignore the effect of these contributions. While these issues would hold with typical models,

one can also have models in which the degrees of freedom which have been integrated out

are indeed heavy, but have a large multiplicity which serves to reduce Λ (see also [14]).

Moreover, the contribution of operators with dimension > 6 depends on the details of the

heavy degrees of freedom. Thus, we have plotted the discovery reach even if Λ < MZ,X for

completeness, but in those cases the effective operator analysis may not be valid.

V. CONCLUSIONS

We see that the best detection prospects arise from the X → Zγ channel, because the

X → ZZ channel suffers from the small branching fraction for two Zs to decay to 4 leptons.

In both channels Standard Model backgrounds become significant for relatively light MX
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and large luminosities. As expected, the sensitivity of the LHC to resonant X production

is greatly enhanced when production through QCD processes is possible. Comparing to the

results in [14], we see that if MX = 1000 GeV, then gluon couplings allow the LHC to probe

operators suppressed by a mass scale Λ which is 10 times larger than the scale which could be

probed if only electroweak couplings were allowed. Note again that our analysis has focused

on a 7 TeV center of mass energy; detection prospects would be improved significantly if the

center of mass energy were upgraded to
√
s = 14 TeV. For example, for MX = 1000 GeV,

a 100 fb−1 LHC run at
√
s = 14 TeV will have roughly twice the mass reach of a run at 7

TeV (in either the ZZ or Zγ channels).

It is worth noting that a resonance which decays to ZZ and W+W− is a characteristic

signature of a relatively heavy Higgs boson. A new pseudovector coupling to Standard Model

gauge bosons can thus “counterfeit” standard Higgs signals [36]. It may be especially difficult

to distinguish these possibilities, since a heavy Higgs decays to light fermions with a very

small branching fraction. The features of a pseudovector which can be used to distinguish

it from a Higgs include the absence of the γγ channel and the fact that production through

QCD processes requires the presence of an additional jet. It would be interesting to study in

detail the prospects for distinguishing the spin of any resonance which couples to Standard

Model gauge bosons.

It is also worth noting that we have focused only on effective coupling operators which

are non-trivial when the X and the Standard Model gauge bosons are both on-shell. If these

operators vanish (or have very small couplings), then the production and decay of X may

be dominated by operators which only yield non-trivial vertices when X is off-shell. This

would imply that X production is not associated with a resonance peak. A detailed collider

study of such operators would be very interesting.
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