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We present a new calculation of the D → π, lν semileptonic form factor fD→π
+ (q2) at q2 = 0

based on HISQ charm and light valence quarks on MILC Nf = 2 + 1 lattices. Using methods
developed recently for HPQCD’s study of D → K, lν decays, we find fD→π

+ (0) = 0.666(29). This
signifies a better than factor of two improvement in errors for this quantity compared to previous
calculations. Combining the new result with CLEO-c branching fraction data, we extract the CKM
matrix element |Vcd| = 0.225(6)exp.(10)lat., where the first error comes from experiment and the
second from theory. With a total error of ∼ 5.3% the accuracy of direct determination of |Vcd| from
D semileptonic decays has become comparable to (and in good agreement with) that from neutrino
scattering. We also check for second row unitarity using this new |Vcd|, HPQCD’s earlier |Vcs| and
|Vcb| from the Fermilab Lattice & MILC collaborations. We find |Vcd|

2 + |Vcs|
2 + |Vcb|

2 = 0.976(50),
improving on the current PDG2010 value.

PACS numbers: 12.38.Gc, 13.20.Fc

I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) matrix pro-
vides particle physicists with a wealth of opportunities
to carry out precision tests of the Standard Model (SM)
and look for New Physics. On the one hand each ma-
trix element can be determined in several ways, em-
ploying different experimental and theory inputs, and
the results compared with each other. Three gener-
ation unitarity can also be examined to see how well

V̂CKM × V̂ †
CKM = Î is satisfied. This leads to tests

such as 1st, 2nd or 3rd row/column unitarity. It also
gives rise to the important “Unitarity Triangle” relation
Vud ∗V ∗

ub+Vcd ∗V ∗
cb+Vtd ∗V ∗

tb = 0. Consistency checks of
the sides and angles of the Unitarity Triangle (UT) have
been the focus of much of the experimental and theo-
retical effort in Flavor Physics in recent years. Lattice
QCD is playing an increasingly important role in CKM
physics [1]. For instance, lattice calculations of the Kaon
semileptonic form factor fK→π

+ (0) [2, 3] and the decay
constant fK (or fK/fπ) [4–8] have contributed to preci-
sion determinations of |Vus| and 1st row unitarity tests
[9].
The HPQCD collaboration recently published a new

lattice calculation of the D → K, lν semileptonic de-
cay form factor fD→K

+ (q2) at q2 = 0 [10] which sig-
nificantly reduced the error on this quantity compared
to previous theory results. This led to a very precise
determination of the CKM matrix element |Vcs|. Fea-
tures in the HPQCD work that made this improvement
possible include the use of a relativistic quark action,
the “Highly Improved Staggered Quark” (HISQ) action
[11], to simulate both light and charm quarks, and bet-
ter data analysis tools. We also extended standard lat-
tice QCD approaches of combining continuum and chi-
ral extrapolations to semileptonic decays. Capitalizing

on these developments, we turn here in this article to
D → π, lν semileptonic decays. We focus on extracting
the CKM matrix element |Vcd| by combining theory re-
sults for fD→π

+ (0) with experimental input from CLEO-c
[12]. The first unquenched lattice studies of D semilep-
tonic decays were carried out several years ago by the
Fermilab Lattice & MILC collaborations [13]. In that
work lattice gauge theory was able to predict the shape of
f+(q

2) prior to subsequent confirmation by experiment.
The theory errors for fD→π

+ (0) in [13] were ∼10%, and
this has remained the dominant error in determinations
of |Vcd| from D semileptonic decays. More accurate de-
terminations have come from neutrino scattering experi-
ments so that the current PDG2010 [14] quotes |Vcd| from
neutrino charm production with an error of about ∼5%.
With the new lattice calculations described in this arti-
cle, the accuracy of |Vcd| from D semileptonic decays is
approaching that from neutrino scattering and this pro-
vides an important consistency check. We find,

|Vcd| = 0.225(6)exp.(10)lat., (1)

where the first error is from experiment [12] and the
second is the theory error from the Lattice QCD cal-
culation presented here. Eq.(1) is in excellent agree-
ment with the PDG value based on neutrino scattering
of |Vcd| = 0.230(11).
In the rest of this article we describe how the result of

eq.(1) was obtained. We work with HISQ valence charm
and light quarks on the MILC AsqTad Nf = 2+1 coarse
(a ∼ 0.12fm) and fine (a ∼ 0.09fm) lattices. Table I lists
the five MILC [15] ensembles employed in this work and
some simulation parameters. Compared to [10] we have
doubled the statistics on ensembles C1, C2 and F1. The
valence charm and light bare quark masses are the same
as in [10] with the former tuned to the ηc mass and the
latter chosen such that the ratio of mlight to the phys-
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TABLE I: The MILC Nf = 2+1 ensembles used in the D → π
semileptonic project. The fourth column gives the valence
HISQ light and charm quark masses in lattice units. Nconf is
the number of configurations and Ntsrc the number of time
sources used for each configuration.

Set r1/a ml(sea)/ms(sea) amvalence Nconf Ntsrc L3 ×Nt

C1 2.647 0.005/0.050 0.0070 1200 2 243 × 64

0.6207 1200 2

C2 2.618 0.010/0.050 0.0123 1200 2 203 × 64

0.6300 1200 2

C3 2.644 0.020/0.050 0.0246 600 2 203 × 64

0.6235 600 2

F1 3.699 0.0062/0.031 0.00674 1200 4 283 × 96

0.4130 1200 4

F2 3.712 0.0124/0.031 0.0135 600 4 283 × 96

0.4120 600 4

ical strange quark mass is approximately the same for
valence and sea quarks. In the next section we summa-
rize the formulas for hadronic matrix elements necessary
to extract fD→π

+ (0) and explain how they are related to
three- and two-point correlators evaluated numerically
on the lattice. These relations are the same as those
described in reference [10] so we will be brief. In sec-
tion III we describe our data analysis and fitting proce-
dures. We employ Bayesian fitting methods and carry
out multi-exponential fits to several three-point and two-
point correlators at the same time. Section IV discusses
chiral and continuum extrapolations of lattice results to
the physical limit. We apply the modified z-expansion
method developed for D → K semileptonic form factors
in [10]. Section V presents our results for fD→π

+ (0) and
|Vcd| and comparisons with other determinations of these
quantities. Section VI gives a brief summary and we also
include a 2nd row unitarity test with all theory inputs
coming from Lattice QCD.

II. RELEVANT MATRIX ELEMENTS

The most efficient way to calculate f+(q
2) at q2 = 0

is to focus on the scalar form factor f0(q
2) and use the

kinematic identity f+(0) = f0(0). The scalar form factor
can be determined from the matrix element of the scalar
current S = Ψq Ψc between the D meson and pion states.

fD→π
0 (q2) =

(m0c −m0l)〈π|S|D〉
M2

D −M2
π

. (2)

The combination in the numerator of eq.(2) does not get
renormalized. The use of absolutely normalized currents
is one of the reasons why we are able to significantly
reduce errors in our D semileptonic scalar form factor
calculations, both here and in [10].

Our goal is to determine the hadronic matrix element
〈π|S|D〉 in eq.(2) via numerical simulations. The starting
point is the three-point correlator,

C3pnt(t0, t, T, ~pπ) =
1

L3

∑

~x

∑

~y

∑

~z

ei~pπ ·(~z−~x)

〈Φπ(~x, t0) S̃(~z, t)Φ
†
D(~y, t0 − T )〉. (3)

In eq.(3) the interpolating operator Φ†
D creates a D me-

son at time slice t0 − T . At time t (t0 ≥ t ≥ t0 − T ) the
scalar current S converts the c quark inside the D into a
light quark and also inserts momentum ~pπ. The resulting
pion then propagates to time slice t0 where it is annihi-
lated by Φπ. In addition to the three-point correlator one
needs the pion and D meson two-point correlators,

C2pnt
D (t, t0) =

1

L3

∑

~x

∑

~y

〈ΦD(~y, t)Φ†
D(~x, t0)〉, (4)

and

C2pnt
π (t, t0; ~pπ) =

1

L3

∑

~x

∑

~y

ei~pπ·(~x−~y)〈Φπ(~y, t)Φ
†
π(~x, t0)〉. (5)

Details on how the above three- and two-point correlators
can be expressed in terms of single component staggered
quark propagators are given in section IV of reference
[10] and will not be repeated here. There we also show
how the sums

∑

~x in eqns.(3), (4) and (5) can be carried
out using U(1) random wall sources.

The meson creation operators Φ†
D and Φ†

π create not
only the ground state D and pion we are interested in
but also an arbitrary number of excited states with the
same quantum numbers. Hence the t dependence of the
two- and three-point correlators is complicated especially
for staggered quarks. For two-point correlators it is given
by,

C2pnt
D (t) =

ND−1
∑

j=0

bDj (e
−ED

j t + e−ED
j (Nt−t))

+

N ′

D−1
∑

k=0

dDk (−1)t(e−E′D
k t + e−E′D

k (Nt−t)),

(6)

and similarly for C2pnt
π (t), except that there is no oppo-

site parity terms for zero momentum. For three-point
correlators one has

C3pnt(t, T ) =

Nπ−1
∑

j=0

ND−1
∑

k=0

Ajke
−Eπ

j te−ED
k (T−t)

+

Nπ−1
∑

j=0

N ′

D−1
∑

k=0

Bjke
−Eπ

j te−E′D
k (T−t)(−1)(T−t)
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+

N ′

π−1
∑

j=0

ND−1
∑

k=0

Cjke
−E′π

j te−ED
k (T−t)(−1)t

+

N ′

π−1
∑

j=0

N ′

D−1
∑

k=0

Djke
−E′π

j te−E′D
k (T−t)(−1)t(−1)(T−t).

(7)

We are interested in the ground state contributions with
amplitudes,

bD0 ≡ |〈ΦD|D〉|2
2MDa3

, (8)

bπ0 ≡ |〈Φπ |π〉|2
2Eπa3

, (9)

and

A00 ≡ 〈Φπ |π〉 〈π|S|D〉 〈D|ΦD〉
(2Eπa3) (2MDa3)

a3. (10)

So the hadronic matrix element 〈π|S|D〉 that enters into
the formula for fD→π

0 (0) in (2) is given by,

〈π|S|D〉 = 2
√

MDEπ

A00
√

bπ0 b
D
0

. (11)

We have accumulated simulation data for zero momen-
tum D correlators and for pion correlators with momenta
2π
L
(0, 0, 0), 2π

L
(1, 0, 0), 2π

L
(1, 1, 0) and 2π

L
(1, 1, 1). The

corresponding three-point correlators were calculated for
T = 15, 16 on the coarse and for T = 19, 20, 23 on the
fine ensembles. In the next section we describe how the
combination on the right-hand-side of (11) is obtained
from three- and two-point correlators.

III. FITS AND DATA ANALYSIS

Extracting energies and amplitudes from numerical
data on two- and three-point correlators is one of the
more challenging but at the same time very important
aspect of lattice calculations. For the past decade the
HPQCD collaboration has been employing fitting meth-
ods based on Bayesian statistics and involving multi-
exponential fits [16]. For instance, in order to obtain the
ground state energy and amplitude from a two-point cor-
relator, we drop the first 1 ∼ 4 time slices and then fit to
the form of eq.(6) for several values of N ≡ ND (or Nπ)
and N ′. One continues to increase the number of expo-
nentials until the fit results for E0 and b0 including their
errors and the chisquared per degree of freedom of the
fit have stabilized. Fig.1 shows an example of aEπ ver-
sus Nexp = Nπ for momentum 2π

L
(1, 1, 1) with N ′

π = Nπ.
One sees that fits have stabilized after Nexp = 3. It
should be noted that as one increases the number of ex-
ponentials and with it the number of fit parameters, the
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FIG. 1: Ground state pion energy in lattice units for mo-
mentum 2π

L
(1, 1, 1) versus the number of exponentials in the

fit.
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FIG. 2: The form factor f0(q
2) for pion momentum 2π

L
(1, 1, 1)

from simultaneous fits to two- and three-point correlators ver-
sus Nexp = ND = N ′

D = Nπ = N ′

π . The “sequential fitting”
method was employed to go from one Nexp value to the next.
In this method the fit results from the Nexp exponential fit
is inserted as initial conditions for the subsequent [Nexp + 1]
exponential fit.

number of data points is growing as well. Each new fit
parameter adds another prior term, i.e. additional data,
to the fit function and the number of data points minus
the number of fit parameters remains constant [16].

The combination A00√
bπ
0
bD
0

is obtained from simultane-

ous fits to C2pnt
D (t), C2pnt

π (t) and C3pnt(t, T ) for 2 (or 3)
T values. In order to be able to include a large number
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of exponentials in these complicated fits we proceed as
follows. We set Nπ = N ′

π = ND = N ′
D ≡ Nexp and

start out with a small value, Nexp = 2 or Nexp = 3. The
fit results are then inserted as initial conditions for the
subsequent Nexp + 1 exponential fit. This procedure is
repeated until one has completed multi-exponential fits
with Nexp much larger than 2. Fig. 2 shows results for
f0(q

2) on ensemble C2 at pion momentum 2π
L
(1, 1, 1) ver-

sus Nexp using this “sequential fitting” procedure. One
sees that, similar to in Fig.1, fit results have stabilized
for Nexp > 3 [17].
In ongoing work we are investigating further methods

to deal with complicated fits with large number of param-
eters, in particular fits to collections of sums of exponen-
tials [18]. For the calculations of this article, however,
we have found that the “sequential fitting” method de-
scribed above works well for all our data [19]. We are
even able to fit data on a given ensemble for all four
pion momenta simultaneously and this allows us to ob-
tain correlations between form factor results at different
q2. These simultaneous fit results for f0(~pπ) are given in
Table II for several pion momenta ~pπ (the latter in units
of 2π

L
).

IV. CHIRAL AND CONTINUUM

EXTRAPOLATION

The next step is to extrapolate the data of Table II to
the chiral/continuum limit. We do so using the “modified
z-expansion fit” developed in [10]. The scalar form factor
is parameterized as

f0(q
2) =

1

P (q2)Φ0

(

a0D0 + a1D1z + a2D2z
2
)

×
(

1 + b1(aEπ)
2 + b2(aEπ)

4
)

, (12)

with

Di = 1 + ci1xl + ci2xllog(xl) + di(amc)
2 + ei(amc)

4

+fi

(

1

2
δM2

π + δM2
K

)

, (13)

xl =
M2

π

(4πfπ)2
, (14)

δM2
π =

1

(4πfπ)2
(

(M sea
π )2 − (Mvalence

π )2
)

, (15)

δM2
K =

1

(4πfπ)2
(

(M sea
K )2 − (Mvalence

K )2
)

. (16)

The kinematic variable z is defined as [20–22],

z(q2, t0) =

√

t+ − q2 −√
t+ − t0

√

t+ − q2 +
√
t+ − t0

, (17)

TABLE II: Results for f0(~pπ) for each ensemble

Set f0(0, 0, 0) f0(1, 0, 0) f0(1, 1, 0) f0(1, 1, 1)

C1 1.1557(74) 0.9155(93) 0.8119(68) 0.7384(209)

C2 1.1014(38) 0.8700(59) 0.7801(43) 0.7315(87)

C3 1.0398(28) 0.8787(36) 0.7922(31) 0.7326(66)

F1 1.1053(29) 0.8652(52) 0.7586(53) 0.7112(108)

F2 1.0443(28) 0.8613(31) 0.7645(53) 0.7097(70)
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f
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 at q

2
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FIG. 3: Chiral/continuum extrapolation of fD→π
0 versus E2

π.
The data points are from the coarse ensembles (C1, C2 and
C3). The three individual curves and the extrapolated band
are from a fit to all five ensembles.

with t0 a free parameter (which we set equal to 1.95GeV2

) and t± = (MD ±Mπ)
2. We take Φ0 from [21] and set

P (q2) = 1, where the latter relation reflects the absence
of subthreshold poles in the scalar channel.

We show results of fits to the form of eq.(12) in Figs.3
& 4. We plot separately the coarse and fine data points in
order to be able to better distinguish individual curves.
However, the fit was done simultaneously to all the data
in Table II, coarse and fine. The χ2/dof = 0.85 for
this fit. In Fig.5 we show both fD→K

0 (q2) (results from
[10]) and fD→π

0 (q2) versus q2 in the physical region
0 ≤ q2 ≤ q2max = (MD −Mπ(K))

2. Note that we consider
the correlations between the momenta in the fits which
we did not consider in [10]. However, we find that includ-
ing or excluding correlations in our chiral/continuum ex-
trapolations has minimal effect on fD→π

0 (0) at the phys-
ical point, namely a ∼ 0.04σ shift in the central value
and a ∼ 0.02σ change in the error.

The motivation for the “modified z-expansion fit” is ex-
plained in more detail in [10]. Form factors at q2 = 0 are
needed to extract the CKMmatrix elements |Vcd| or |Vcs|.
The pion energy approaches 1GeV in this kinematic re-
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FIG. 4: Same as for Fig.3 showing, however, the fine data
points.
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FIG. 5: fD→K
0 (q2) and fD→π

0 (q2) versus q2 in the physical
limit.

gion and so chiral perturbation theory might cease to be
valid. The z-expansion, on the other hand, is applica-
ble throughout the physical kinematic region, and our
new “modified z-expansion” allows for the expansion co-
efficients to be mass and lattice spacing dependent. We
have checked that fits to eq.(12) are stable with respect to
adding further terms such as x2

l , (amc)
6, (aEπ)

6 or keep-
ing just the ci1 and ci2 terms in eq.(13) (the Di’s). Such
changes in the fit ansatz led to minimal changes in both
the central value and the error for f0(0) in the physical
limit. We have also verified that traditional ChPT ex-
trapolations (see Appendix C & D of [10] and references
therein for relevant ChPT formulas) lead to f+(0) in the

TABLE III: Error Budget for fD→π
+ (0)

Type Error (%)

Statistical 3.1

Scale (r1 and r1/a) 0.7

Expansion coeff. ai 0.3

Ep 0.6

Light quark dependence 1.9

Sea quark dependence 0.6

amc corrections 2.0

aEπ corrections 1.0

Finite volume 0.04

Charm mass tuning 0.05

Total 4.4%

physical limit consistent with the z-expansion result and
with comparable errors, however with worse χ2/dof . In
addition, we test the extrapolations to q2 = 0 with the
BK (Becirevic-Kaidalov) parameterization [23] to indi-
vidual ensembles, and obtain almost the same results as
with the z-expansion method.

V. RESULTS FOR fD→π
+ (0) AND |Vcd| IN THE

PHYSICAL LIMIT

Our final result for the D → π form factor at q2 = 0
averaged over D0 → π− and D+ → π0, is,

fD→π
+ (0) = 0.666(20)stat.(21)sys., (18)

where the first error is statistical and the second sys-
tematic. Fig.6 plots our new result together with other
theory calculations [13, 24, 25] and experimental deter-
minations [12, 26] (the latter use CKM unitarity values
for |Vcd| to extract fD→π

+ (0)).

The total error in our fD→π
+ (0) is 4.4%, signifying a

better than factor of 2 improvement over previous lattice
determinations. The full error budget is given in Table
III. The largest error is statistical followed by amc and
light quark mass dependence errors. All but the last
two entries in Table III were obtained using the methods
described in reference [27] and Appendix B of [10]. For
instance, the “light quark dependence” errors come from
the ci1 and ci2 terms in the fit ansatz eq.(13), the “amc

corrections” from the di and ei terms etc.
Finite volume errors were estimated by calculating a

pion tadpole integral both at finite and at infinite volume.
The charm mass tuning error is taken to be the same as
forD → K, lν for which calculations at two values of amc

were carried out explicitely to estimate this error. Effects
from electromagnetism/isospin breaking and charm sea
are expected to give negligible contribution to the error
budget compared to our other errors (see [10]). Also note
that errors due to using different fermion actions on the



6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f
+

D->π
(q

2
=0)

Fermilab/MILC (2005)

Sum Rules (2009)

CLEO-c (2009)

Experiment + CKM Unitarity

4 % error

Belle (2006)

HPQCD (2011)

f
+

D->π
(0) = 0.666 (20)

stat.
(21)

sys.

ETMC (2011, preliminary)

FIG. 6: The D → π form factor fD→π
+ (0) from this work and

comparisons with other determinations [12, 13, 24–26].

0.1 0.15 0.2 0.25
|V

cd
|

(Fermilab/MILC 2005)

PDG 2010: Neutrino exp.

HPQCD 2011

PDG 2010: Semileptonic decay

|V
cd

| = 0.225 (6)
exp.

(10)
lat.

PDG 2010: Unitarity

FIG. 7: Comparison of |Vcd| from this work with values in
PDG2010 [14].

sea and valence quarks are partially contained in the sea
quark dependence errors and the discretization errors in
Table III.

Finally one can combine our result for fD→π
+ (0) with

CLEO-c’s measurement of |Vcd|×fD→π
+ (0) [12] to extract

a precision value for |Vcd| from D semileptonic decays.
This leads to the result quoted already in eq.(1), which
is shown in Fig.7 together with values from PDG2010.

VI. SUMMARY

In this article we have presented a new calculation of
the D → π, lν semileptonic form factor fD→π

+ (q2) at
q2 = 0, with errors a factor of two better than in the
past. This combined with recent precision measurement
of the branching fraction for this process by CLEO-c has
allowed for an accurate determination of the CKM ma-
trix element |Vcd|. Direct determination of |Vcd| from D
semileptonic decays is becoming competitive with that
from neutrino scattering. The fact that these two very
different processes lead to the same |Vcd| is a nontrivial
consistency check of the Standard Model.
Finally using our values for |Vcd| and |Vcs| [10] plus

the most recent |Vcb|excl. = 0.0397(10) from the Fermilab
Lattice & MILC collaborations [28], the most up-to-date
test of second row unitary from Lattice QCD becomes,

|Vcd|2 + |Vcs|2 + |Vcb|2 = 0.976(50). (19)

This improves on the PDG2010 value 1.101(74) [14].
In the future we will be reducing the largest errors

in Table III by increasing statistics and simulating on
finer lattices [29]. Calculations of the full q2 dependence
of fD→K

+ (q2) and fD→π
+ (q2) are also already underway

[29]. Furthermore we are working on updating HPQCD’s
result for the D meson decay constant fD [5] and on
carrying out an independent extraction of |Vcd| from D
leptonic decays [30].
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Appendix A: Priors and Prior Widths for Two- and

Three-Point Correlators

In this appendix we give sample priors and prior widths
used in the fits of section III (the reader is referred to ref-
erence [16] for definitions of these terms). All energies in
Table IV are given in lattices units and are appropri-
ate for ensemble C2. Numbers for other ensembles can
be obtained by rescaling with corresponding lattice spac-
ings. Prior widths for amplitudes are fixed based on ex-
ploratory initial fits. One might notice that these priors
and prior widths are not exactly the same as the setting
used at our previous work [10]. This is because we try to
use more consistent priors and prior widths across all en-
sembles than ref. [10]. We tested the current set against
the previous set and found consistency between the two.
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TABLE IV: Sample priors and prior widths for two- and three-
point correlator fits. Energies are in lattice units, and this
example corresponds to priors used for ensemble C2. The
notation is the same as in equations (6) and (7).

prior prior width

ED
0 1.16 0.58

ED
j>0 − ED

j−1 0.36 0.36

E′D
0 1.52 1.52

E′D
k>0 − E′D

k−1 0.36 0.36
√

bDj 0.01 0.5
√

dDk 0.01 0.5

Eπ
0 (000) 0.21 0.11

Eπ
0 (100) 0.38 0.19

Eπ
0 (110) 0.49 0.25

Eπ
0 (111) 0.60 0.30

Eπ
1 (all mom)− Eπ

0 (all mom) 0.61 0.31

Eπ
j>1(all mom)− Eπ

j−1(all mom) 0.36 0.36

E′π
0 (100) 0.74 0.74

E′π
0 (110) 0.85 0.85

E′π
0 (111) 0.96 0.96

E′π
k>0(mom > 0)− E′π

k−1(mom > 0) 0.36 0.36
√

bπj (all mom) 0.01 0.5
√

dπk (mom > 0) 0.01 0.5

Ajk, Bjk, Cjk, Djk 0.01 0.1
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