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Abstract

We report a direct lattice calculation of theK to ππ decay matrix elements for both the ∆I = 1/2

and 3/2 amplitudes A0 and A2 on 2+1 flavor, domain wall fermion, 163 × 32 × 16 lattices. This

is a complete calculation in which all contractions for the required ten, four-quark operators are

evaluated, including the disconnected graphs in which no quark line connects the initial kaon and

final two-pion states. These lattice operators are non-perturbatively renormalized using the Rome-

Southampton method and the quadratic divergences are studied and removed. This is an important

but notoriously difficult calculation, requiring high statistics on a large volume. In this paper we

take a major step towards the computation of the physical K → ππ amplitudes by performing a

complete calculation at unphysical kinematics with pions of mass 422MeV at rest in the kaon rest

frame. With this simplification we are able to resolve Re(A0) from zero for the first time, with a

25% statistical error and can develop and evaluate methods for computing the complete, complex

amplitude A0, a calculation central to understanding the ∆ = 1/2 rule and testing the standard

model of CP violation in the kaon system.

PACS numbers: 11.15.Ha, 12.38.Gc 14.40.Be 13.25.Es
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I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) theory for the weak interactions of the quarks

when combined with QCD provides a framework describing in complete detail all the prop-

erties and interactions of the six quarks. This framework incorporates the most general

assignment of masses and couplings and appears able to explain all observed phenomena

in which these quarks participate. However, to date, the non-perturbative character of low

energy QCD has obscured many of the consequences of the CKM theory. In particular, both

the direct CP violation seen in K meson decay and the factor of 22.5 enhancement of the

I = 0, K → ππ decay amplitude A0 relative to the I = 2 amplitude A2 (the ∆I = 1/2 rule)

lack a quantitative explanation.

Wilson coefficients evaluated at a QCD scale of about 2 GeV represent the short distance

physics and can be evaluated from the CKM theory using QCD and electro-weak perturba-

tion theory. However, these factors explain only a factor of two enhancement of the I = 0

amplitude [1, 2]. The remaining enhancement must arise from the hadronic matrix elements

which require non-perturbative treatment.

Direct CP violation in kaon decays provides a critical test of the standard model’s CKM

mechanism of CP violation. While forty years of experimental effort have produced the

measured result Re(ǫ′/ǫ) = 1.65(26) × 10−3 [3], with only a 16% error, there is no reliable

theoretical calculation of this quantity based on the standard model. A previous lattice

QCD calculation using 2+1 dynamical domain wall fermions failed to give a conclusive

result because of the large systematic errors associated with the use of chiral perturbation

theory at the scale of the kaon mass [4]. (However, there are on-going efforts using chiral

perturbation theory [5].) Earlier quenched results [6, 7] are subject to this same difficulty

together with uncontrolled uncertainties associated with quenching [8–10].

A direct lattice calculation of K → ππ decay is extremely important to provide an ex-

planation for the ∆I = 1/2 rule and to test the standard model of CP violation from first

principles. This is an unusually difficult calculation because of the presence of disconnected

graphs. However, with the continuing increase of available computing power and the devel-

opment of improved algorithms, calculations with disconnected graphs are now no longer

out of reach. In fact, our recent successful calculation of the masses and mixing of the

η′ and η mesons [11] was carried out in part to develop and test the methods needed for
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the calculation presented here. In this paper, we present a first direct calculation of the

complete K0 → ππ decay amplitude. At this stage, we work with the simplified kinematics

of a threshold decay in which the kaon is at rest and decays into two pions each with zero

momentum and with mass one-half that of the kaon. The calculation with this choice of

kinematics still contains the main difficulties we need to overcome in order to be able to

compute the physical K → ππ decay amplitudes; i.e. the presence of disconnected diagrams

coupled with the need to subtract ultraviolet power divergences. However, as explained

below, with the pions at rest we are able to generate sufficient statistics to explore how to

handle these difficulties. We stress that at this simplified choice of kinematics, we compute

the K → ππ amplitudes directly and completely.

In order to calculate the decay amplitudes, we perform a direct, brute force calculation

of the required weak matrix elements. The isospin zero π−π final state implies the presence

of disconnected graphs in correlation functions and makes the calculation very difficult.

For these graphs, the noise does not decrease with increasing time separation between the

source and sink, while the signal does. Therefore, substantial statistics are needed to get

a clear signal. This difficulty is compounded by the presence of diagrams which diverge as

1/a2 as the continuum limit is approached (a is the lattice spacing). While these divergent

amplitudes must vanish for a physical, on-shell decay they substantially degrade the signal

to noise ratio even for an energy-conserving calculation such as this one. Studying the

properties of the 1/a2 terms and learning how to successfully subtract them is one of the

important objectives of this calculation. The chiral symmetry needed to control operator

mixing is provided by our use of domain wall fermions.

Recognizing the difficulty of this problem, we choose to perform this first calculation on

a lattice which is relatively small compared to those used in other recent work and to use a

somewhat heavy pion mass (mπ ≈ 421MeV) so we can more easily collect large statistics.

We concentrate on exploring and reducing the statistical uncertainty since the primary goal

of this work is to extract a clear signal for these amplitudes. Therefore, the quoted errors

on our results are statistical only.

The main objective of this paper is to calculate the ∆I = 1/2 decay amplitude A0. A

calculation of the ∆I = 3/2 part is included here for comparison and completeness. A much

more physical calculation of this ∆I = 3/2 amplitude alone can be found in [12]. In the case

of the I = 2 final state no disconnected diagrams appear, there are no divergent eye diagrams
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and isospin conservation requires that four valence quark propagators must join the kaon

and weak operator with the operators creating the two final-state pions. This allows physical

kinematics with non-zero final momenta to be achieved by imposing anti-periodic boundary

conditions on one species of valence quark [13, 14]. As a result, the preliminary calculation

of A2 reported in Ref. [12] is performed at almost physical kinematics on a lattice of spatial

size 4.5 fm and determines complex A2 with controlled errors of O(10%). The present work is

intended as the first step toward an equally physical but much more challenging calculation

of A0.

While we do not employ physical kinematics, the final results for the complex ampli-

tudes A0 and A2 presented in this paper are otherwise physical. In particular, we use

Rome-Southampton methods [15] to change the normalization of our bare lattice four-quark

operators to that of the RI/MOM scheme. A second conversion to the MS scheme is then

performed using the recent results of Ref. [16]. Finally these MS-normalized matrix elements

are combined with the appropriate Wilson coefficients [17], determined in this same scheme,

to obtain our results for A0 and A2. Because of our unphysical, threshold kinematics and fo-

cus on controlling the statistical errors associated with the disconnected diagrams, we do not

estimate the size of possible systematic errors. Similarly we do not include the systematic

or statistical errors associated with the Rome-Southampton renormalization factors, both

of which could be made substantially smaller than our statistical errors when required.

This paper is organized as follows. We first summarize our computational setup, including

our strategy to collect large statistics. Next we discuss our results for π−π scattering which

are a by-product of the necessary characterization of the operator creating the π − π final

state and are also needed to evaluate the Lellouch-Lüscher, finite-volume correction [18].

After a section giving the details of the K0 → ππ contractions, we provide our numerical

results for the K0 → ππ decay amplitudes for both the ∆I = 3/2 and 1/2 channels. The

details of the operator renormalization required by the Wilson coefficients which we use are

presented in Appendix A. Finally we present our conclusions and discuss future prospects.

II. COMPUTATIONAL DETAILS

Our calculation uses the Iwasaki gauge action with β = 2.13 and 2+1 flavors of domain

wall fermions (DWF). While the computational costs of DWF are much greater than those
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of Wilson or staggered fermions, as has been shown in earlier papers [6, 7, 19, 20], accurate

chiral symmetry at short distances is critical to avoid extensive operator mixing, which

would make the lattice treatment of ∆S = 1 processes much more difficult.

We use a single lattice ensemble with space-time volume 163 × 32, a fifth-dimensional

extent of Ls = 16 and light and strange quark masses of ml = 0.01, ms = 0.032, respec-

tively. This ensemble is similar to the ml = 0.01 ensemble reported in Ref. [21] except we

use the improved RHMC-II algorithm of Ref. [22] and a more physical value for the strange

quark mass. The inverse lattice spacing for these input parameters was determined to be

1.73(3)GeV and the residual mass is mres = 0.00308(4) [22]. The total number of configura-

tions we used is 800, each separated by 10 time units. We initially generated an ensemble

one-half of this size. When our analysis showed a non-zero result for ReA0, we then doubled

the size of the ensemble to assure ourselves that the result was trustworthy and to reduce the

resulting error. We have performed the analysis described below both by treating the results

from each configuration as independent and by grouping them into blocks. The resulting

statistical errors are independent of block size suggesting that the individual configurations

are essentially uncorrelated for our observables.

We use anti-periodic boundary conditions in the time direction, and periodic boundary

conditions in the space directions for the Dirac operator. The propagators (inverses of the

Dirac operator) are calculated using a Coulomb gauge fixed wall source (used for meson

propagators) and a random wall source (used to calculate the loops in the type3 and type4

graphs shown in Figs. 5 and 6 below) for each of the 32 time slices in our lattice volume.

The details of our choice of sources are provided in Appendix B. For each time slice and

source type, twelve inversions are required corresponding to the possible 3 color and 4 spin

choices for the source. Thus, all together we carry out 768 inversions for each quark mass on

a given configuration. As will be shown below, this large number of inversions, performed

on 800 configurations, provides the substantial statistics needed to resolve the real part of

the I = 0 amplitude A0 with 25% accuracy.

The situation described above in which 768 Dirac propagators must be computed on a

single gauge background is an excellent candidate for the use of deflation techniques. The

overhead associated with determining a set of low eigenmodes of this single Dirac operator

can be effectively amortized over the many inversions in which those low modes can be used.

Our ml = 0.01, light quark inversions are accelerated by a factor of 2-3 by using exact,
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TABLE I. Masses of pion and kaons and energies of the two-pion states. Here the subscript I = 0

or 2 on the π − π energy, Eππ
I , labels the isospin of the state and Eππ′

0 represents the isospin zero,

two-pion energy obtained when the disconnected graph V is ignored. The superscript (0), (1) or

(2) on the kaon mass distinguishes our three choices of valence strange quark mass, ms = 0.066,

0.099 and 0.165 respectively.

mπ Eππ
0 Eππ′

0 Eππ
2 m

(0)
K m

(1)
K m

(2)
K

0.24373(47) 0.443(13) 0.4393(41) 0.5066(11) 0.42599(42) 0.50729(44) 0.64540(49)

low-mode deflation [23] in which we compute the Dirac eigenvectors with the smallest 35

eigenvalues and limit the conjugate gradient inversion to the remaining orthogonal subspace.

In order to obtain energy-conserving K0 → ππ decay amplitudes, the mass of the valence

strange quark in the kaon is assigned a value different from that appearing in the fermion

determinant used to generate the ensembles, i.e. the strange quark is partially quenched.

Since the mass of the dynamical strange quark is expected to have a small effect on ampli-

tudes of the sort considered here [22, 24], this use of partial quenching is appropriate for the

purposes of this paper. Valence strange quark masses are chosen to be ms = 0.066, 0.099

and 0.165, which are labeled 0, 1 and 2 respectively. The resulting kaon masses are shown

in Tab. I. In the following section we will see that by using these values for ms we can

interpolate to energy-conserving decay kinematics for both the I = 2 and I = 0 channels.

III. TWO-PION SCATTERING

The π − π scattering calculation requires 4 contractions which we have labeled direct

(D), cross (C), rectangle (R), and vacuum (V) as in Ref. [25] and which are shown in Fig. 1.

For convenience, the minus sign arising from the number of fermion loops is not included

in the definition of these contractions. The vacuum contraction should be accompanied by

a vacuum subtraction. These contractions can be calculated in terms of the light quark

propagator L(tsnk, tsrc) for a Coulomb gauge fixed wall source located at the time tsrc and a

similar wall sink located at tsnk. The resulting complete vacuum amplitude, including the
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FIG. 1. The four diagrams which contribute to π − π scattering: direct (D), cross (C), rectangle

(R), and vacuum (V), arranged from the left top to right bottom.

vacuum subtraction, is given by

V (t) =
1

32

31
∑

t′=0

{

〈

tr[L(t′, t′)L(t′, t′)†]tr[L(t + t′, t+ t′)L(t + t′, t+ t′)†]
〉

(1)

−
〈

tr[L(t′, t′)L(t′, t′)†]
〉〈

tr[L(t + t′, t+ t′)L(t + t′, t+ t′)†]
〉

}

,

where the indicated traces are taken over spin and color, the hermiticity properties of the

domain wall propagator have been used to eliminate factors of γ5 and we are explicitly

combining the results from each of the 32 time slices.

Our results for each of these four types of contractions are shown in the left panel of

Fig. 2. Notice that the disconnected (vacuum) graph has an almost constant error with

increasing time separation between the source and sink, so it appears to have an increasing

error bar in the log plot, while the signal decreases exponentially.

These four types of correlators can be combined to construct physical correlation functions

for two-pion states with definite isospin:

〈

Oππ
2 (t+ t′)†Oππ

2 (t′)
〉

= 2
(

D(t)− C(t)
)

(2)
〈

Oππ
0 (t+ t′)†Oππ

0 (t′)
〉

= 2D(t) + C(t)− 6R(t) + 3V (t). (3)

Here the operator Oππ
I (t) creates a two-pion state with total isospin I and z-component of

isospin Iz = 0 using two quark and two anti-quark wall-sources located at the time-slice t.
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FIG. 2. Left: Results for the four types of contractions, direct (D), cross (C), rectangle (R),

and vacuum(V) represented by the graphs in Fig. 1. Right: Effective mass plots for correlation

functions for states with isospin two (I2), isospin zero (I0), isospin zero without the disconnected

graph (I ′0) and twice the pion effective mass (2mπ).

As in Eq. 1 we will average over all 32 possible values of common time displacement t′ to

improve statistics.

The two-pion correlation functions for isospin I and Iz = 0 are fit with a functional form

CorrI(t) = N2
I {exp(−Eππ

I t) + exp(−Eππ
I (T − t)) + CI}, where the constant CI comes from

the case in which the two pions propagate in opposite time directions. The fitted energies

are summarized in Tab. I. In order to see clearly the effect of the disconnected graph, we

also perform the calculation for the I = 0 channel without the disconnected graphs. This

result is given in Tab. I with a label with an additional prime (′) symbol. The resulting

effective mass plots for each case are shown in the right panel of Fig. 2. For comparison, a

plot of twice the pion effective mass is also shown. This figure clearly demonstrates that the

two-pion interaction is attractive in the I = 0 channel with the finite volume, I = 0 π − π

energy Eππ
0 lower than 2mπ. In contrast, the I = 2 channel is repulsive with Eππ

2 larger than

2mπ. The fitted parameters Nππ
I and Eππ

I will be used to extract weak matrix elements from

the K0 → ππ correlation functions discussed below in which these same operators Oππ
I (t)

are used to construct the two-pion states.
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FIG. 3. Diagrams representing the eight K0 → ππ contractions of type1, where ΓV±A = γµ(1±γ5).

The black dot indicates a γ5 matrix, which is present in each operator creating or destroying a

pseudoscalar meson.

IV. CONTRACTIONS FOR K0 → ππ DECAYS

The effective weak Hamiltonian describing K0 → ππ decay including the u, d, and s

flavors as dynamical variables is

Hw =
GF√
2
V ∗
udVus

10
∑

i=1

[(zi(µ) + τyi(µ))]Qi. (4)

Throughout this paper we follow the conventions and notation of Ref. [6]. In Eq. 4 the Qi

are the ten conventional four-quark operators, zi and yi are the Wilson coefficients, and τ

represents a combination of CKM matrix elements: τ = −V ∗
tsVtd/VudV

∗
us. To calculate the

decay amplitudes A2 and A0, we need to calculate the matrix elements 〈ππ|Qi|K0〉 on the

lattice.

We list all of the possible contractions contributing to the matrix elements 〈ππ|Qi|K0〉
in Figs. 3-6. There are 48 different contractions which are labeled by circled numbers

ranging from 1 to 48, and grouped into four categories labeled as type1, type2, type3, and

type4 according to their topology. Once we have calculated all of these contractions, the

correlation functions 〈Oππ
I (tπ)Qi(top)K

0(tK)〉 are then obtained as combinations of these
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FIG. 4. Diagrams for the eight type2 K0 → ππ contractions.

contractions. In order to simplify the following formulae, we use the amplitude AI,i(tπ, t, tK)

to represent three point function 〈Oππ
I (tπ)Qi(top)K(tK)〉. Using this notation, the I = 2

amplitudes can be written,

A2,1(tπ, top, tK) = i

√

2

3
{ 1©− 5©} (5a)

A2,2(tπ, top, tK) = i

√

2

3
{ 2©− 6©} (5b)

A2,3(tπ, top, tK) = 0 (5c)

A2,4(tπ, top, tK) = 0 (5d)

A2,5(tπ, top, tK) = 0 (5e)

A2,6(tπ, top, tK) = 0 (5f)

A2,7(tπ, top, tK) = i

√

3

2
{ 3©− 7©} (5g)

A2,8(tπ, top, tK) = i

√

3

2
{ 4©− 8©} (5h)

A2,9(tπ, top, tK) = i

√

3

2
{ 1©− 5©} (5i)

A2,10(tπ, top, tK) = i

√

3

2
{ 2©− 6©} (5j)

and in the I=0 case,
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FIG. 5. Diagrams for the 16 type3 K0 → ππ contractions.

A0,1(tπ, top, tK) = i
1√
3
{− 1©− 2 · 5©+ 3 · 9©+ 3 · 17©− 3 · 33©} (6a)

A0,2(tπ, top, tK) = i
1√
3
{− 2©− 2 · 6©+ 3 · 10©+ 3 · 18©− 3 · 34©} (6b)

A0,3(tπ, top, tK) = i
√
3{− 5©+ 2 · 9©− 13©+ 2 · 17©+ 21© (6c)

− 25©− 29©− 2 · 33©− 37©+ 41©+ 45©}

A0,4(tπ, top, tK) = i
√
3{− 6©+ 2 · 10©− 14©+ 2 · 18©+ 22© (6d)
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FIG. 6. Diagrams for the sixteen type4 K0 → ππ contractions.

− 26©− 30©− 2 · 34©− 38©+ 42©+ 46©}

A0,5(tπ, top, tK) = i
√
3{− 7©+ 2 · 11©− 15©+ 2 · 19©+ 23© (6e)

− 27©− 31©− 2 · 35©− 39©+ 43©+ 47©}

A0,6(tπ, top, tK) = i
√
3{− 8©+ 2 · 12©− 16©+ 2 · 20©+ 24© (6f)

− 28©− 32©− 2 · 36©− 40©+ 44©+ 48©}

A0,7(tπ, top, tK) = i

√
3

2
{− 3©− 7©+ 11©+ 15©+ 19© (6g)

− 23© + 27©+ 31©− 35©+ 39©− 43©− 47©}

A0,8(tπ, top, tK) = i

√
3

2
{− 4©− 8©+ 12©+ 16©+ 20© (6h)

− 24© + 28©+ 32©− 36©+ 40©− 44©− 48©}

A0,9(tπ, top, tK) = i

√
3

2
{− 1©− 5©+ 9©+ 13©+ 17© (6i)

− 21© + 25©+ 29©− 33©+ 37©− 41©− 45©}
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A0,10(tπ, top, tK) = i

√
3

2
{− 2©− 6©+ 10©+ 14©+ 18© (6j)

− 22© + 26©+ 30©− 34©+ 38©− 42©− 46©},

where the factor i comes from our definition of the interpolation operator for the mesons,

e.g. K0 = i(dγ5s).

A few notes about the contractions shown in the Figs. 3 - 6 may be useful:

1. The contractions identified by circled numbers do not carry the minus sign required

when there is an odd number of fermion loops. Instead, the signs are included explicitly

in Eqs. 5 and 6.

2. The routing of the solid line indicates spin contraction while that of the dashed line

indicates the contraction of color indices. If there is no dashed line, then solid line

indicates connections implied by the trace over both color and spin indices. (This will

be explained in more detail below.)

3. A line represents a light quark propagator if it is not explicitly labeled with ’s’. Up

and down quarks and particular flavors of pion are not distinguished in Figs. 3 - 6.

Instead these specific contractions of strange and light quark propagators are combined

in Eqs. 5 and 6 to give the I = 2 and I = 0 amplitudes directly.

4. Using Fierz symmetry, it can be shown that there are 12 identities among these con-

tractions:

6© = − 1©, 5© = − 2©, 14© = − 9©, 13© = − 10©, (7a)

26© = − 17©, 25© = − 18©, 29© = − 22©, 30© = − 21©, (7b)

42© = − 33©, 41© = − 34©, 45© = − 38©, 46© = − 37©. (7c)

A consequence of these identities is that Eq. 6 is consistent with only seven of the ten

operators Qi being linearly independent and with the three usual relations:

Q10 −Q9 = Q4 −Q3 (8a)

Q4 −Q3 = Q2 −Q1 (8b)

2Q9 = 3Q1 −Q3. (8c)
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5. Based on charge conjugation symmetry and γ5 hermiticity, the gauge field average of

each of these contractions is real.

6. The loop contractions of type3 and type4 are calculated using the Gaussian, stochastic

wall sources described in Sec. II.

In order to make our approach more explicit, we will discuss some examples. First

consider the two contractions of type1 identified as 1© and 2© and shown in the top half of

Fig. 3:

1© = Tr
{

γµ(1− γ5)L(xop, tπ)L(xop, tπ)
†
}

(9)

·Tr
{

γµ(1− γ5)L(xop, tπ)γ
5

[

∑

~xπ

L((~xπ, tπ), tK)

]

S(xop, tK)
†
}

2© = Trc

{

Trs

{

γµ(1− γ5)L(xop, tπ)L(xop, tπ)
†
}

(10)

·Trs
{

γµ(1− γ5)L(xop, tπ)γ5

[

∑

~xπ

L((~xπ, tπ), tK)

]

S(xop, tK)
†
}

}

,

where tK is the time of the kaon wall source, tπ the time at which the two pions are absorbed

and xop = (~xop, top) the location of the weak operator. The function L(xsink, tsrc) is the

light quark propagator, a 12× 12 spin-color matrix, while S(xsink, tsrc) is the strange quark

propagator. The hermitian conjugation operation, †, operates on these 12×12 matrices. We

use Trc to indicate a color trace, Trs a spin trace, and Tr, with no subscript, stands for both a

spin and color trace. We have also used the γ5 hermiticity of the quark propagators to realize

the combination of quark propagators given in Eqs. 9 and 10, allowing both contractions

to be constructed from light and strange propagators computed using Coulomb gauge fixed

wall sources located only at the times tπ and tK . Note the sum over the spatial components

of the sink ~xπ creates a symmetrical wall sink provided that the appropriate Coulomb gauge

transformation matrix has been applied to the sink color index of this propagator to duplicate

the Coulomb gauge transformation that was used to create the Coulomb gauge fixed wall

source. We will sum over the spatial location, ~xop, of the weak operator, to project onto

zero spatial momentum and improve statistics. Below we will show results as a function of

the separations between tπ, top and tK .

14



As a third example, which illustrates the use of random wall sources, consider contraction

19© shown in Fig. 5. Using the notation introduced above, this contraction is given by

19© = Tr
{

γµ(1 + γ5)L
R(xop, top)

}

η(xop)
∗ (11)

·Tr
{

γµ(1− γ5)L(xop, tπ)

[

∑

~x′

π

L
(

(~x′
π, tπ), tπ

)†

][

∑

~xπ

L
(

(~xπ, tπ), tK

)

]

S(xop, tK)
†
}

.

Here η(x) is the value of the complex, Gaussian random wall source at the space-time

position x, while LR(xsink, tsrc) is the propagator whose source is η(x)δ(x0 − tsrc). The Dirac

delta function δ(x0 − tsrc) restricts the source to the time plane t = tsrc. In the usual way,

the average over the random source η(~x) which accompanies the configuration average, will

set to zero all terms in which the source and sink positions for the propagator LR(xop, top)

in Eq. 11 differ, giving us the contraction implied by the closed loop in the top left panel of

Fig. 5. By using 32 separate propagators each with a random source non-zero on only one

of our 32 time slices we obtain more statistically accurate results than would result from a

single random source spread over all times.

An important objective of this calculation is to learn how to accurately evaluate the

quark loop integration that is present in type3 and type4 graphs and which contains a 1/a2,

quadratically divergent component. As can be recognized from the structure of the diagrams,

these divergent terms can be interpreted as arising from the mixing between the dimension-

six operators Qi (for all i but 7 and 8) and a dimension-3 “mass” operator of the form

sγ5d. Such divergent terms are expected and do not represent a breakdown of the standard

effective Hamiltonian written in Eq. 4. In fact, given the good chiral symmetry of domain

wall fermions all other operators with dimension less than six which might potentially mix

with those in Eq. 4 will vanish if the equations of motion are imposed. Therefore these

operators cannot contribute to the Green’s functions evaluated in Eqs. 5 and 6 where the

operators in HW are separated in space-time from those operators creating the K meson and

destroying the π mesons, a circumstance in which the equations of motion can be applied.

The problematic operator sγ5d is not explictly removed from the effective Hamiltonian

because, again using the equations of motion, sγ5d can be written as the divergence of an

axial current and hence will vanish in the physical case where the weak operator HW carries

no four-momentum and is evaluated between on-shell states. While we can explicitly sum

the effective Hamiltonian density HW over space to ensure HW carries no spatial momentum,
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to ensure that no energy is transferred we must arrange that the kaon mass and two-pion

energy are equal. We may achieve this condition, at least approximately, but there will be

contributions from heavier states, which are normally exponentially suppressed, but which

will violate energy conservation and hence will be enhanced by this divergent sγ5d term.

Since sγ5d will not contribute to the physical, energy-conserving K → ππ amplitude,

there is no theoretical requirement that it be removed. The coefficient of this sγ5d piece

is both regulator dependent and irrelevant. The contribution of these terms in a lattice

calculation of K → ππ decay amplitudes will ultimately vanish as the equality of the initial

and final energies is made more precise and as increased time separations are achieved.

However, the unphysical effects of this sγ5d mixing are much more easily suppressed by

reducing the size of this irrelevant term than by dramatically increasing the lattice size and

collecting the substantially increased statistics required to work at large time separations.

A direct way to remove this 1/a2 enhancement is to explicitly subtract an αisγ5d term

from each of the relevant operators Qi where the coefficient αi can be fixed by imposing the

condition:

〈0|Qi − αisγ5d|K〉 = 0, (12)

a condition that is typically required in the chiral perturbation theory for K → ππ [6]. Of

course, this arbitrary condition will leave a finite, regulator-dependent sγ5d piece behind in

the subtracted operator Qi − αisγ5d. However, this unphysical piece will not contribute to

the energy-conserving amplitude being evaluated. Since it is no longer 1/a2-enhanced its

effects on our calculation will be similar to those of the many other energy non-conserving

terms which we must suppress by choosing equal energy K and ππ states and using sufficient

large time separation to suppress the contributions of excited states.

Following Eq. 12 we will choose the coefficient αi from the ratio

αi =
〈0|Qi|K0〉
〈0|sγ5d|K0〉 . (13)

(Note, with this definition the coefficient αi is proportional to the difference of the strange

and light quark masses.) Thus, we will improve the accuracy when calculating graphs of

type3 and type4 by including an explicit subtraction term for those operators Qi where

mixing with sγ5d is permitted by the symmetries (all but Q7 and Q8):

〈

Oππ
0 (tπ)Qi(top)K

0(tK)
〉

sub
=

〈

Oππ
0 (tπ)Qi(top)K

0(tK)
〉

− αi

〈

Oππ
0 (tπ)sγ5d(top)K

0(tK)
〉

.

(14)
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FIG. 7. Diagrams showing the contractions needed to evaluate the subtraction terms. These are

labeled mix3 and mix4 and constructed from the type3 and type4 contractions by replacing the

operator Qi and fermion loop with the vertex sγ5d.

We should recognize that there is a second, divergent, parity-even operator sd which mixes

with our operators Qi. However, we choose to neglect this effect because parity symmetry

prevents it from contributing to either the K → ππ or K → |0〉 correlation functions being

evaluated here.

The amplitude 〈Oππ
0 (tπ)sγ5d(top)K

0(tK)〉 includes two contractions, one connected and

one disconnected as shown in Fig. 7. These terms, which arise from the mixing of the

operators Qi with sγ5d, are labeled mix3 and mix4. To better visualize the contributions

from different types of contractions, we can write the right hand side of Eq. 14 symbolically

as

type1 + type2 + type3 + type4− α · (mix3 +mix4)

= type1 + type2 + sub3 + sub4, (15)

where sub3 = type3 − α · mix3 and sub4 = type4 − α · mix4. Note, here and in later

discussions we refer to the term being subtracted as “mix” and the final difference as the

subtracted amplitude “sub”.

V. K0 → ππ ∆I = 3/2 AMPLITUDE

As Eqs. 5 and 7a show, the ∆I = 3/2 K0 → 2π decay amplitude includes only type1

contractions and four of the correlation functions are related

A2,10 = A2,9 =
3

2
A2,1 =

3

2
A2,2. (16)
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FIG. 8. Plots of the ∆I = 3/2 K0 → π − π correlation functions for kaon source and π − π sink

separations of ∆ = 12 (left panel) and 16 (right panel). The x-axis gives the time t specifying the

time slice over which the operator, Qi(~x, t), i = 1, 7, 8, is averaged. The results for the operator

Q7 are divided by 12, and those for Q8 by 48 to allow the results to be shown in the same graph.

The correlators C2,i(∆, t) are fit using the ∆ = 12 data with a fitting range 5 ≤ t ≤ 7. The

resulting constants are shown as horizontal lines in both the ∆ = 12 and 16 graphs. We can see

that the ∆ = 16 data are consistent with those from ∆ = 12, but receive large contributions from

the around-the-world paths.

Therefore, we need only to calculate A2,1, A2,7 and A2,8. The corresponding three correlation

functions, C2,i(∆, t) for i = 1, 7 and 8, with the choice of m
(1)
K for the kaon mass, are shown

in Fig. 8. Here we exploit our propagator calculation for sources on each of the 32 time

slices to compute C2,i(∆, t) from an average over all 32 source positions:

C2,i(∆, t) =
1

32

31
∑

t′=0

A2,i(tπ = t′ +∆, top = t + t′, tK = t′). (17)

In Fig. 8 we plot C2,i(∆, t) for 0 < t < ∆ at fixed ∆ = 12 or 16. Table I shows that m
(1)
K is

almost equal to the energy of I = 2, π−π state, so the 3-point correlation function C2,i(∆, t)

should be approximately independent of t in the central region where the time coordinate

of the operator is far from both the kaon and the two-pion sources, 0 ≪ t ≪ ∆.

We fit the correlators C2,i(∆, t) using a single free parameter M
3/2,lat
i :

C2,i(∆, t) = M
3/2,lat
i NππNKe

−Eππ∆e−(mK−Eππ)t, (18)
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TABLE II. Results for the lattice ∆I = 3/2, K → ππ transition amplitudes obtained from fitting

the 3-point correlation functions to the functional form given in Eq. 18 for the six operators with

∆I = 3/2 components. The second column gives the lattice matrix elements M
3/2,lat
i (×10−2) while

the third and fourth column give their contributions to the real and imaginary parts of A2.

i M
3/2,lat
i (×10−2) Re(A2)(GeV) Im(A2)(GeV)

1 0.4892(16) -1.737(11)e-08 0

2 = M1 6.665(42)e-08 0

7 6.080(18) 2.422(16)e-11 4.070(26)e-14

8 21.26(6) -1.979(13)e-10 -9.646(61)e-12

9 =1.5M1 -7.917(50)e-15 5.185(24)e-13

10 =1.5M1 6.103(38)e-12 -1.448(9)e-13

Total - 4.911(31)e-08 -5.502(40)e-13

where NK , mK and Nππ, Eππ are determined by fitting the kaon and two-pion correlators

respectively:

1

32

31
∑

t′=0

〈K(t+ t′)K(t′)〉 = N2
K

(

e−mK t + e−mK(T−t)
)

(19)

1

32

31
∑

t′=0

〈Oππ
2 (t+ t′)Oππ

2 (t′)〉 = N2
ππ

(

e−Eππt + e−Eππ(T−t) + C
)

. (20)

The constant C arises when the two pions join the source at t′ and sink at t+ t′ by traveling

in opposite time directions as discussed below. The fitted results for the matrix elements

M
3/2,lat
i from ∆ = 12 are listed in Tab. II in lattice units.

Figure 8 shows that for the operators Q7 and Q8 the larger separation, ∆ = 16, between

the kaon source and π−π sink gives a much shorter plateau region than the case ∆ = 12. This

behavior is inconsistent with the usual expectation that it is the contributions from excited

states of the kaon and pion, contributions which should be suppressed for larger ∆, that cause

the poor plateau. An alternative, consistent explanation attributes the shortened plateau

region seen for ∆ = 16 to the ‘around-the-world’ effect. This is the contribution to the

correlation function in which the two-pion interpolating operator at the sink annihilates one

pion and creates another (instead of annihilating two pions as in the K → ππ contribution

we are seeking) and the process at the weak operator is Kπ → π (instead of K → ππ).
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FIG. 9. Diagrams showing the dominant around-the-world paths contributing to graphs of type1.

The space-time region between the kaon wall source at tK and its periodic recurrence at tK + T is

shown, where T = 32 is the extent of the periodic lattice in the time direction. For this around-

the-world path, one pion travels directly from the pion wall source at tπ to the weak operator,

represented by the grey dot at top. However, the second pion propagates in the other direction in

time, passes through the periodic boundary and combines with the kaon before reaching the weak

operator at top.

While one pion travels from the weak operator to the π−π sink the second is created at the

sink and travels forward in time, passing through the periodic boundary to reach the weak

operator together with the kaon. The corresponding dominant path is shown in Fig. 9. The

time dependence of this behavior can be estimated as

∼ M
3/2,lat
i N2

πNKe
−mπT e−(EKπ−mπ)t (21)

which is ∆ independent but suppressed by the factor exp(−mπT ), where Nπ is the analogue

of NK for the case of single pion production and T = 32 is the temporal extent of the lattice.

In contrast, the physical contribution in Eq. 18 is suppressed by exp(−Eππ∆). Thus, the

second, standard term falls with increasing ∆ and the two factors are of similar size when

∆ = T/2. Therefore, we should expect to see a large contamination from such around-

the-world effects in the ∆ = 16 case, consistent with Fig. 8. In both panels of that figure,

we plot as three horizontal lines the fitted result from ∆ = 12 for the three amplitudes

M
3/2,lat
i NππNK exp−∆Eππ for i = 1, 7 and 8. The agreement between these lines and the

short plateaus seen in the right-hand, ∆ = 16 panel indicates consistency between these two

values of ∆.
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Additional evidence supporting this explanation for the short plateau in the case of

∆ = 16 can be obtained by examining the explicit dependence on t given by Eq. 21 for

the around-the-world contribution. Examining the exponential decay with t in the ∆ = 16

correlators plotted in the right panel of Fig. 8, for operators Q7 and Q8 we find a value for

EKπ−mπ varying between 0.4 and 0.5 depending on the choice of fit range. A more accurate

value of 0.498(2) can be obtained by fitting the corresponding correlator for ∆ = 20 and a

fit range of 5 to 11. The strangeness-carrying state whose mass we have labeled EKπ can be

formed from two quarks and must be parity even. Direct calculation of EKπ from a scalar

sd correlator yields EKπ = 0.752(12) which is consistent with the sum of the result above,

EKπ − mπ = 0.498(2), and the pion mass mπ = 0.2437(5). (This energy difference is also

close to the kaon mass m
(1)
K = 0.50729 given in Tab. I.) Thus, the time dependence expected

from the around-the-world path is quite consistent with that seen in Fig. 8.

We conclude that it is important to increase the lattice extent in the time direction

both to suppress this around-the-world effect and to permit the use of a larger source-sink

separation giving a longer plateau. We will return to discussion of the around-the-world

effect below for the ∆I = 1/2 kaon decay where it creates even greater difficulties. However,

here we can begin to appreciate the severity of this effect in the K0 → ππ system for our

temporal lattice extent of 32, given our values of the lattice spacing and meson masses.

The Wilson coefficients and operators which appear in Eq. 4 are typically expressed in

the MS scheme. Thus, we must change the normalization of our lattice operators Qi to that

of the MS scheme. We begin by converting our bare lattice operators into the regularization

invariant momentum (RI/MOM) scheme of Ref. [15]. Here we use the earlier results of

Ref. [26] which were obtained for the present lattice action using the methods of Ref. [6].

In this previous work off-shell, Landau-gauge-fixed Green’s functions containing the lattice

operators Qi are evaluated at specific external momenta characterized by an energy scale µ.

These results determine a renormalization matrix ZRI
ij (µ, a) which can be used to convert

the lattice normalization into that of the RI scheme:

QRI(µ)i =
7

∑

j=1

Z lat→RI
ij (µ, a)Q′

j . (22)

As explained in Appendix A, these equalities hold only when the operators appear in phys-

ical matrix elements. The indices i and j take on seven values corresponding to the seven

independent operators in what will be called the chiral basis. (The primes in this equation
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indicate lattice operators defined in that basis.) This is referred to as nonperturbative renor-

malization (NPR) because the matrix Z lat→RI
ij (µ, a) is computed using a lattice evaluation

of off-shell Green’s functions and perturbation theory is not used.

Next these QRI(µ)i operators are converted to the MS scheme in which the Wilson coeffi-

cients are evaluated by applying a conversion matrix RRI→MS
ij discussed in detail in Ref. [16].

Finally the matrix elements of these MS operators are combined with the Wilson coefficients

obtained in the MS scheme [17] using the scale µ = 2.15 GeV to determine the results given

later in this section for the ∆I = 3/2 amplitude A2 and in the following section for the

∆I = 1/2 A0. These procedures are described in greater detail in Appendix A.

A good approximation to the infinite volume decay amplitude can be obtained by includ-

ing the Lellouch-Lüscher factor (F ) [18] which relates the K → ππ matrix element M of

the effective weak Hamiltonian of Eq. 4 calculated using finite volume states normalized to

unity to the infinite volume amplitude A: |A|2 = F 2M2 where

F 2 = 4π

(

E2
ππmK

p3

){

p
∂δ2(p)

∂p
+ q

∂φ(q)

∂q

}

. (23)

Here p is defined through Eππ = 2
√

m2
π + p2, q = Lp/2π and δ2(p) is the s-wave, I = 2,

π − π scattering phase shift for pion relative momentum p. The function φ(q) is known

analytically and given, for example, in Ref. [18]. The I = 2 phase shift δ2(p) is determined

from the measured two-pion energy Eππ = 0.443(13) given in Tab. I and the finite volume

quantization condition [27]

φ(q) + δ2(p) = nπ. (24)

For our threshold case we set the integer n to zero and obtain δ2(p) = −0.0849(43). Because

of the small value of p we assume that δ2(p) is a linear homogenous function of p and write

δ2(p) = p∂δ2(p)/∂p, the quantity required in Eq. 23 and given in Tab. III. (Equation 23

differs by a factor of two from the expression given in the Lellouch-Lüscher paper because of

our different conventions for the decay amplitude A. With our conventions the experimental

value of Re(A2) = 1.48× 10−8 GeV.)

In the limit of non-interacting pions, the factor F becomes F 2
free = 2(2mπ)

2mKL
3, which

reflects the different normalization of states in a box and plane wave states in infinite volume.

Results for F in this I = 2 case and the quantities used to determine it are given in Tab. III.

We should note that applying the finite volume correction of Eq. 23 gives us a finite-volume
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TABLE III. The calculated quantities which appear in the Lellouch-Lüscher factor F for I = 2.

The corresponding factor for the case of non-interacting particles is Ffree = 31.42. The difference

reflects the final two-pion scattering in a box.

p q ∂φ(q)
∂q p∂δ(p)

∂p F

0.0690(13) 0.221(10) -0.0849(43) 26.01(18)

corrected amplitude for a ∆I = 3/2, K → ππ decay that is slightly above threshold by the

amount Eππ
2 − 2mπ = 33(1) MeV.

We can now combine everything and calculate the K0 → ππ decay amplitudes,

A2/0 = F
GF√
2
VudVus

10
∑

i=1

7
∑

j=1

[(

zi(µ) + τyi(µ)
)

Z lat→MS
ij M

3

2
/ 1

2
,lat

j

]

, (25)

where the construction of the 10×7 renormalization matrix Z lat→MS
ij is explained in Appendix

A. For later use we have written Eq. 25 in a way which is applicable for ∆I = 1/2 decays

as well as for the ∆I = 3/2 transitions considered in this section. The results for the

complex ∆I = 3/2 decay amplitude A2 are summarized in Tab. IV, including those for

the other two, energy-non-conserving choices of kaon mass. Since m
(1)
K differs from the

isospin-2 π−π energy by only 0.2 percent, we quote this case as our energy-conserving kaon

decay amplitude. Therefore, in physical units, we obtain the energy-conserving ∆I = 3/2,

K0 → ππ complex, threshold decay amplitude for mK = 877 MeV and mπ = 422 MeV:

Re(A2) = 4.911(31)× 10−8GeV (26)

Im(A2) = −0.5502(40)× 10−12GeV. (27)

This result for Re(A2) can be compared with the experimental value of 1.48 × 10−8 GeV

given above. The larger result found in our calculation is likely explained by our unphysically

heavy kaon and pions.

VI. K0 → ππ ∆I = 1/2 AMPLITUDE

Following the prescription given by Eq. 6 we have calculated all of the ∆I = 1/2 kaon

decay correlation functions,

C0,i(∆, t) =
1

32

31
∑

t′=0

A0,i(tπ = t′ +∆, top = t + t′, tK = t′), (28)
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TABLE IV. The complex, K0 → ππ, ∆I = 3/2 decay amplitudes in units of GeV.

mK Re(A2)(×10−8) Im(A2)(×10−12)

m
(0)
K 4.308(28) -0.5596(40)

m
(1)
K 4.911(31) -0.5502(40)

m
(2)
K 5.916(38) -0.5316(39)

for each of the ten effective weak operators. In the calculation we treat each of these ten

operators as independent and then verify that the identities shown in Eq. 8 are automatically

satisfied. Figures 10 and 11 show two examples of the resulting correlation functions for the

operators Q2 and Q6, in the case of the lightest kaon m
(0)
K . Table I shows that the mass of

this kaon is very close to the energy of the I=0 two-pion state. Therefore, we expect to get

a reasonably flat plateau when the operator is far from both the source and sink.

Given this good agreement between the energies of the K and π − π states, we might

expect that the unphysical, dimension three operator, sγ5d which mixes with the (8, 1)

operators in Eq. 4 and is itself a total divergence, will also give a negligible contribution to

such an energy and momentum conserving matrix element. However, as can be seen from

Figs. 10(a) and 11(a), the matrix element of this term is large and the explicit subtraction

described in Sec. IV is necessary.

This difficulty is created by the combination of two phenomena. First the mixing coef-

ficient which multiplies the sγ5d operator when it appears in our weak (8, 1) operators is

large, of order (ms − ml)/a
2. Second, in our lattice calculation the necessary energy con-

serving kinematics (needed to insure that this total divergence does not contribute) is only

approximately valid. The required equality of the spatial momenta of the kaon and π − π

states is assured by our summing the location of the weak vertex over a complete temporal

hyperplane. On the other hand, the equality of the energies of the initial and final states

results only if we have adjusted the kaon mass to approximately that of the two-pion state

and chosen the time extents sufficiently large that other states with different energies have

been suppressed. However, as can be seen in Figs. 10(a) and 11(a) the subtraction terms

mix3 and mix4 show strong dependence on the time at which they are evaluated. This

implies that there are important contributions coming from initial and final states which

have significantly different energies. One or both of these states is then not the intended K

24



-1e+09

-8e+08

-6e+08

-4e+08

-2e+08

 0

 2e+08

 4e+08

 0  2  4  6  8  10  12  14  16

type3
αi*mix3

sub3

-4e+09

-2e+09

 0

 2e+09

 4e+09

 0  2  4  6  8  10  12  14  16

type4
αi*mix4

sub4

(a) (b)

-4e+08

-2e+08

 0

 2e+08

 4e+08

 0  2  4  6  8  10  12  14  16

type1
type2
sub3
sub4

-4e+08

-2e+08

 0

 2e+08

 4e+08

 0  2  4  6  8  10  12  14  16

Q’2
Q2

(c) (d)

FIG. 10. Plots showing the t dependence of the various contractions which contribute to the

∆I = 1/2 correlation function C0,2(∆ = 16, t) for the operator Q2. (a) Contractions of type3, the

divergent mixing term mix3 that will be subtracted and the result after subtraction, sub3. (b)

Contractions of type4, the divergent mixing term mix4 that will be subtracted and the result after

subtraction, sub4. (c) Results for each of the four types of contraction after the needed subtractions

have been performed. (d): Results for the complete Q2 correlation function C0,2(∆ = 16, t)

obtained by combining these four types of contractions. The solid points labeled Q2 are the

physical result while the open points labeled Q′
2 are obtained by omitting all the vacuum graphs,

sub4. The solid and dotted horizontal lines indicate the corresponding fitting results and the time

interval, 5 ≤ t ≤ 11 over which the fits are performed.
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FIG. 11. The result for each type of contraction contributing to the 3-point correlation function

C0,6(∆ = 16, t) for the operator Q6 following the same conventions as in Fig. 10.

or π−π state but instead an unwanted contribution which has been insufficiently suppressed

by the time separations between source, weak operator and sink.

Thus, instead of relying on large time extents and energy conserving kinematics to sup-

press this unphysical, O(1/a2) term we must explicitly remove it. As explained in Sec. IV

this can be done by including an explicit subtraction which we fix by the requirement that

the kaon to vacuum matrix element of the complete subtracted operator vanishes as in

Eq. 12. Thus, we determine the divergent coefficient of this mixing term from the ratio

αi = 〈0|Qi|K〉/〈0|sγ5d|K〉 and then perform the explicit subtraction of the resulting terms,

labeled αi ·mix3 and αi ·mix4 in Figs. 10 and 11.

Of course, the finite part of such a subtraction is not determined from first principles

26



and our choice, specified by Eq. 12 is arbitrary. Thus, we must rely on our identification

of a plateau and the approximate energy conservation of our kinematics to make the arbi-

trary part of this subtraction small, along with the other errors associated with evaluating

the decay matrix element of interest between initial and final states with slightly different

energies.

We now examine the very visible time dependence in Figs. 10(a) and 11(a) for both the

original matrix elements and the subtraction terms in greater detail. As discussed above one

might expect these divergent subtraction terms to contribute to excited state matrix elements

in which the energies of the initial and final states are very different. Typical terms should

be exponentially suppressed as the separation between the weak operator and the source or

sink is increased, with the time behavior exp{−(m∗
K −mK)t} or exp{−(E∗

ππ−Eππ)(∆− t)},
which ever is larger. (The ∗ denotes an excited state.) However, by carefully examining

the time behavior of the mix3 amplitude, we find that the time dependence, at least in the

vicinity of the central region, is less rapid than might be expected from such excited states

suggesting that it is probably not due primarily to contamination from excited states.

We believe that the dominant, energy-nonconserving matrix elements which cause the

significant time dependence in Figs. 10 and 11 arise from the around-the-world effects iden-

tified and discussed in the previous ∆I = 3/2 section. In fact, for the reasons just discussed

associated with divergent operator mixing, such around-the-world effects are a more serious

problem in the ∆I = 1/2 case. The dominant around-the-world graphs are shown in Fig. 12.

An estimate of the time dependence of these graphs gives,

< K0π|Qi|π > NπNKNπe
−mπT e−(EKπ−mπ)t

+ < 0|Qi|K0ππ > NπNKNπe
−mK((T−∆)+(∆−t)) , (29)

where the first term comes from the first two graphs of Fig. 12, while the second term comes

from the third graph. (Recall that t = top − tK and ∆ = tπ − tK). Notice that these two

terms involve amplitudes which are far from energy conserving and therefore contain large

divergent contributions from mixing with the operator sγ5d which will be removed only when

combined with the corresponding around-the-world paths occuring in the mix3 contraction.

We conclude that it is these around-the-world matrix elements which are the reason

for the observed large divergent subtraction in the type3 graph. The largest divergent

contribution is thus not the subtraction for the matrix element we are trying to evaluate,
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tK + TtK top tπ

s

tK top tπ tK + T

stK top tπ tK + T

FIG. 12. The dominant around-the-world paths contributing to graphs of type3. As in Fig. 9

we show the space-time region between the kaon source at t = tK and its periodic recurrence at

t = tK +T . The gray circle represents the four quark operator Qi. For the first two graphs, one of

the two pions created at the t = tπ source travels directly to the operator Qi while the second pion

travels in the other direction in time and reaches the kaon and weak operator by passing through

the periodic lattice boundary. In the third diagram it is the kaon which travels in the opposite to

the expected time direction.

< ππ|Qi|K0 >; rather, it is the divergent subtraction for the matrix elements < K0π|Qi|π >

and < 0|Qi|K0ππ > which arise from the around-the-world paths which are not sufficiently

suppressed by our lattice size. Two important lessons can be learned from this analysis.

First, it is important to perform an explicit subtraction of the divergent mixing with the

operator sγ5d. While this term will not contribute to the energy conserving matrix element

of interest, in a Euclidean space lattice calculation there are in general, other, unwanted,

energy non-conserving terms which may be uncomfortably large if this subtraction is not

performed. Second it would be wise to work on a lattice with a much larger size T in time

direction in order to suppress further the around-the-world terms which give such a large

contribution in the present calculation. Using the average of propagators computed with

periodic plus anti-periodic boundary conditions to effectively double the length in the time

direction would be a good solution.
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We should emphasize that these divergent, around-the-world contributions do not pose a

fundamental difficulty. The largest part of these amplitudes are removed by the correspond-

ing subtraction terms constructed from the operator sγ5d. The remaining finite contribu-

tions from this and other around-the-world terms are suppressed by the factor exp(−mπT ) or

exp(−mK(T −∆)). Fortunately, the large divergent subtraction also reduces the statistical

errors substantially, especially for the type4 vacuum graphs, which indicates the expected

strong correlation between the divergent part of the weak operator and the corresponding

sγ5d subtraction. Our results suggest that the separation of ∆ = 16 gives a relatively longer

plateau region, so we use that K − ππ time separation in the analysis below.

The lattice matrix elements are determined by fitting the I = 1/2 correlators C i
0(∆, t)

given in Eq. 28 using the fitting form:

C0,i(∆, t) = M
1/2,lat
i NππNKe

−Eππ∆e−(mK−Eππ)t. (30)

The fitted results for the weak, ∆I = 1/2 matrix elements of all ten operators are sum-

marized in Tab. V. To see the effects of the disconnected graph clearly, a second fit is

performed to the amplitude from which the disconnected, type4 graphs have been omitted

and the calculated results are shown with an additional ′ label, as in the earlier two-pion

scattering section.

The calculation of the ∆I = 1/2 decay amplitude A0 from the lattice matrix elements

M
1/2,lat
i given in Tab. V is very similar to the ∆I = 3/2 case: the values of M

1/2,lat
i are

simply substituted in Eq. 25. However, the attractive character of the I = 0, π − π in-

teraction and resulting negative value of p2 makes the Lellouch-Lüscher treatment of finite

volume corrections inapplicable. For the repulsive I = 2 case, we could apply this treatment

to obtain the decay amplitude for a two-pion final state which was slightly above threshold

corresponding to the actual finite volume kinematics. In the present case there is no corre-

sponding infinite-volume decay into two pions below threshold and an unphysical increase of

mπ to compensate for the finite volume π − π attraction will introduce an O(1/L3) error in

the decay amplitude of the same size as that which the Lellouch-Lüscher treatment corrects.

Thus, for this ∆I = 1/2 we do not include finite volume corrections and simply use the

free-field value for the factor F in Eq. 25.

While we believe that we cannot consistently apply the Lellouch-Lüscher finite volume

correction factor to improve our result for the I = 0, K → ππ decay amplitude, we might
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TABLE V. Fitted results for the weak, ∆I = 1/2 kaon decay matrix elements using the kaon

mass m
(0)
K . The column M lat

i shows the complete result from each operator. The column M ′ lat
i

shows the result when the disconnected graphs are omitted while the 4th and 5th columns show

the contributions of each operator the real and imaginary parts of the physical decay amplitude

A0. These results are obtained using a source-sink separation ∆ = 16, and a fit range 5 ≤ t ≤ 11.

i M
1/2,lat
i (×10−2) M

′1/2,lat
i (×10−2) Re(A0)(GeV) Im(A0)(GeV)

1 -1.6(16) -1.10(37) 7.6(64)e-08 0

2 1.52(61) 1.92(15) 2.86(97)e-07 0

3 -0.3(41) 0.3(10) 2.1(136)e-10 1.1(76)e-12

4 2.7(33) 3.32(78) 4.2(44)e-09 1.4(14)e-11

5 -3.3(38) -6.81(86) 3.1(53)e-10 1.6(28)e-12

6 -7.8(48) -19.6(9) -5.6(33)e-09 -3.3(20)e-11

7 10.9(14) 15.20(42) 5.2(12)e-11 8.8(20)e-14

8 35.7(28) 47.2(10) -3.66(28)e-10 -1.79(14)e-12

9 -2.2(12) -1.79(29) 3.1(15)e-14 -2.01(96)e-12

10 0.9(12) 1.24(29) 1.2(11)e-11 -2.7(27)e-13

Total - - 3.46(78)e-07 -2.4(23)e-11

still be able to use the quantization condition of Eq. 24 to determine the I = 0 π − π

scattering phase shift δ0(p). Even though Eq. 24 can be analytically continued to imaginary

values of the momentum p, its application for large negative p2 is uncertain since the function

φ(q) becomes ill defined. In fact, our value of p2 sits very close to a singular point of φ(q).

We believe this happens because the condition on the interaction range R ≪ L/2 used to

derive the quantization condition in Eq. 24 is not well satisfied for our small volume. This

impediment to determining δ0(p) will naturally disappear once we work with lighter pions

in a larger volume.

The results for Re(A0) and Im(A0) are summarized in Tab. VI and the individual contri-

bution from each of the operators is detailed in the last two columns of Tab. V. Within a

large uncertainty Tab. V shows that the largest contribution to Re(A0) comes from operator

Q2, and that to Im(A0) from Q6 as found, for example, in Refs. [6, 7].

Since the choice m
(0)
K for the kaon mass is not precisely equal to the energy of the I = 0 ππ
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TABLE VI. Amplitudes for ∆I = 1/2 K0 → ππ decay in units of GeV. The energy conserving

amplitudes are obtained by a simple linear interpolation between m
(0)
K =0.42599 and m

(1)
K =0.50729

to the energy of two-pion state. As in the previous tables, the ′ indicates results from which the

disconnected graphs have been omitted.

mK Re(A0)(×10−8) Re(A′
0)(×10−8) Im(A0)(×10−12) Im(A′

0)(×10−12)

mK(0) 36.1(78) 42.3(20) -21(21) -66.1(43)

mK(1) 45(10) 48.8(24) -41(26) -74.6(47)

mK(2) 65(15) 58.6(32) -69(39) -89.6(63)

Energy conserving 38.0(82) 43.4(21) -25(22) -67.5(44)

state, we carried out a simple linear interpolation between m
(0)
K and m

(1)
K to obtain an energy

conserving matrix element, which is shown in the last row of Tab VI. In terms of physical

units, therefore, our full calculation gives the energy conserving, K0 → ππ, ∆I = 1/2,

complex decay amplitude A0 for mK = 766 MeV and mπ = 422 MeV:

Re(A0) = 3.80(82)× 10−7GeV (31)

Im(A0) = −2.5(2.2)× 10−11GeV. (32)

These complete results can be compared with those obtained when the disconnected graphs

are neglected given in Tab. VI and the experimental value for Re(A0) = 3.3× 10−7 GeV.

VII. DISCUSSION AND CONCLUSIONS

Comparing the results of Re(A2) in Tab. IV and Re(A0) in Tab. VI, we find the ∆I = 1/2

enhancement ratio Re(A0)/Re(A2) to be roughly 7-9. This comparison is degraded by our

threshold kinematics which, since the I = 0 and I = 2 two-pion states have different energies

in a finite volume, causes us to use a different kaon mass in the calculations of (A2) and

(A0) in order to have energy conserving decays in each case. These two energy conserving

amplitudes have a ratio of 38.0/4.911 = 7.7, while if we ignore energy conservation and use

the same m
(1)
K value for kaon mass, the ratio becomes 45.0/4.911 = 9.2. Of course, both

estimates are far from the experimental ratio of 22.5 suggesting that our 422 MeV pion mass

and small lattice volume are far from physical.
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For completeness, we also calculate the measure of direct CP violation,

Re

(

ǫ′

ǫ

)

=
ω√
2|ǫ|

[

Im(A2)

Re(A2)
− Im(A0)

Re(A0)

]

, (33)

where ω = Re(A2)/Re(A0) is the inverse of the ∆I = 1/2 enhancement factor. Using

our kinematics, the kaon mass m
(1)
K and substituting the experimental value for ǫ, we get

Re(ǫ′/ǫ) = (2.7 ± 2.6) × 10−3. If we instead use the experimental value for ω, we get

Re(ǫ′/ǫ) = (1.11± 0.91)× 10−3.

Our calculation is sufficiently far from physical kinematics, that it is not appropriate

to compare these results with experiment.1 Instead, our objective is to show how well our

method performs. We have been able to calculate Re(A0), the key element needed to explain

the ∆I = 1/2 rule, with a 25% statistical error. Comparing our results for Re(A0) obtained

on sub-samples of N=100, 400 and all 800 configurations we find that the statistical errors

on the quantities we measure do indeed scale as 1/
√
N . Therefore, we believe that our non-

zero signal for Re(A0) is real and that we could reduce this statistical error to 10 percent by

quadrupling the size of our sample to 3200 configurations. It is interesting to note the results

for primed (disconnected graphs omitted) and unprimed (all graphs included) quantities

contributing to Re(A0) have similar values suggesting that the disconnected graphs, while

contributing significantly to the statistical error, have an effect on the final result for Re(A0)

at or below 25%.

In contrast, the result for Im(A0) has an 80% error. Thus, it is not clear whether the size

of the result will survive a quadrupling of the sample with its statistical error reducing to

a 40% error or whether the result itself will shrink, remaining statistically consistent with

zero. Considering the substantial systematic errors associated with our small volume and

the fact that our kinematics are far from the physical, we present this trial calculation as

a guideline for future work and a proof of method rather than giving accurate numbers to

compare with experiment.

From our observation of the around-the-world effect, we conclude that it is important

to use the average of quark propagators obeying periodic and anti-periodic boundary con-

ditions to extend the lattice size in the time direction. In addition, explicit subtraction of

the divergent mixing term sγ5d is necessary even for kinematics which are literally energy

1 A further unphysical aspect of our kinematics is the inequality of the strange quark mass used in the

fermion determinant and the self contractions appearing in the eye graphs (ms = 0.032) and strange

quark masses used in the valence propagator of the K meson (ms = 0.066, 0.99 and 0.165).
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conserving because the around-the-world path and possibly other excited state matrix ele-

ments are far off shell and can be substantially enhanced by such a divergent contribution.

Finally, future work should be done using a much larger lattice which can contain two pions

without any worry about finite size effects.

The focus of this paper is on developing techniques capable of yielding statistically mean-

ingful results from the challenging lattice correlation functions involved in the amplitude A0.

However, there are other important problems that will also require careful attention if physi-

cally meaningful results are to be obtained for this amplitude with an accuracy of better than

20%. Two important issues are associated with operator mixing. As discussed in Appendix

A, a proper treatment of the non-perturbative renormalization of the four independent (8, 1)

four-quark operators requires that additional operators containing gluonic variables (some

of which are not gauge invariant) be included. While including such operators is in principle

possible and the subject of active research, controlling such mixing using RI/MOM methods

offers significant challenges.

A second problem is operator mixing induced by the residual chiral symmetry breaking of

the DWF formulation. The mixing of such wrong-chirality operators should be suppressed

by a factor of order mres. However, theK → ππ matrix elements of the important (8, 1) four-

quark operators are themselves suppressed by at least one power of m2
K , a suppression that

is absent from similar matrix elements of the induced, wrong-chirality operators. Therefore,

such mixing has been ignored in this paper because its effect on the matrix elements of

interest are expected to be of order mres/ms ≈ 0.08, suggesting that these effects will be

smaller than our 25% statistical errors. To perform a more accurate calculation in the

future, these mixing effects may be further suppressed by adopting a gauge action with

smaller residual chiral symmetry breaking. For example, this ratio reduces to 0.04 for the

DSDR gauge action now being used in RBC/UKQCD simulations [28] and to 0.023 for

those ensembles with the smallest lattice spacing created to date using the Iwasaki gauge

action [29]. When greater accuracy is required either an improved fermion action, larger Ls

or explicit subtraction of wrong-chirality mixing must be employed.

As we move closer to the physical pion mass we must overcome a further important

difficulty: giving physical relative momentum to the two pions. This can be accomplished

while keeping the two-pion state in which we are interested as the ground state, if the

kaon is given non-zero spatial momentum relative to the lattice. In this case the lowest
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energy final state can be arranged to have one pion at rest while the other pion carries the

kaon momentum, as in the ∆I = 3/2 calculation of Ref. [30]. However, this requires the

momentum carried by the initial kaon and final pion to be 739 MeV, which is 5.4 times

larger than the physical pion mass. Such a large spatial momentum will likely make the

calculation extremely noisy. For the ∆I = 3/2 calculation, it is possible to use anti-periodic

boundary conditions in one or more spatial directions for one of the light quarks so that each

pion necessarily carries the physical, 206MeV momentum present in the actual decay while

the kaon can be at rest [12, 13]. However, this approach cannot be used in the case of the

I = 0 final state being studied here. Instead, the use of G-parity boundary conditions [31]

may be the solution to this problem.
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Appendix A: Operator normalization

In order to combine our lattice matrix elements with the Wilson coefficients describing

the short-distance weak interaction physics responsible for K → ππ decay we must convert

our lattice operators into those normalized according to that MS scheme in which the Wilson

coefficients are evaluated. We will discuss the details of this procedure in this appendix.

The first step is converting the lattice operators into those normalized according to the

RI/MOM scheme [15]. We follow the procedure of Ref. [6] and make use of the fact that the
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ten operators which enter the conventional expression given in Eq. 4 are linearly dependent

and can be reduced to a set of seven independent operators, Q′
1, Q

′
2, Q

′
3, Q

′
5, Q

′
6, Q

′
7 and

Q′
8 defined in Eq. 172-175 Ref. [6]. These have been defined so that the resulting opera-

tors belong to specific irreducible representations of SUL(3) × SUR(3). The operator Q′
1

transforms as a (27, 1). The four operators Q′
2, Q

′
3, Q

′
5 and Q′

6 all belong to the (8, 1) rep-

resentation, while Q′
7 and Q′

8 each transform as an (8, 8). Here (m,n) denotes the product

of an m-dimensional irreducible representation of SUL(3) with an n-dimensional irreducible

representation of SUR(3). We refer to the basis of these seven independent operators as

the chiral basis. Because SUL(3) × SUR(3) is an exact symmetry of the large momentum,

massless limit which our NPR calculation is intended to approximate, the mixing matrix

Z lat→RI given in Eq. 22 which relates the lattice and RI-normalized operators will be block

diagonal, only connecting operators which belong to the same irreducible representation of

SUL(3)× SUR(3).

The RI/MOM conditions which define the operators ORI
i and determine the 7× 7 matrix

Z lat→RI are imposed on the Green’s functions:2

Gi(p1, p2)
f
αβγδ =

4
∏

i=1

{
∫

d4xi

}

〈

s(x1)αf(x2)βQ
RI
i (0)dγ(x3)f δ(x4)

〉

e−ip2(x1+x2)eip1(x3+x4)

(A1)

evaluated for p21 = p22 = (p1 − p2)
2 = µ2. Here α, β, γ and δ are spin and color indices.

The fields d and f create a down quark and a quark of flavor f = u or d while s and f

destroy a strange quark and a quark of flavor f . The RI/MOM conditions are imposed

by removing the four external quark propagators from the amplitudes in Eq. A1, and then

contracting each of the resulting seven amputated Green’s functions obtained from Eq. A1

with seven projectors {Γij;f
αβγδ}1≤j≤7. The matrix Z lat→RI is then determined by requiring that

the resulting 49 quantities take their free field values, as is described in detail in Refs. [6]

and [16].

The choice of external momenta specified by Eq. A1 is non-exceptional since no partial

sum of these momenta vanish (if their signs are chosen so that all four momenta are incoming)

and is the choice used in Refs. [26] and [16]. Such a choice of kinematics is expected to result

in normalization conditions which are less sensitive to non-zero quark masses and QCD

2 While this equation agrees with Eqs. 143 and 152 of Ref. [6], a different choice of momenta was actually

used in that earlier reference. These two equations accurately describe the earlier kinematics only after

one pair of the momenta p1 and p2 are exchanged: p1 ↔ p2.
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TABLE VII. The renormalization matrix Z lat→RI/Z2
q in the seven operator chiral basis at the

energy scale µ = 2.15 GeV. These values were obtained from Ref. [26] by performing an error

weighted average of the values given in Tabs. 40, 41 and 42 (corresponding to bare quark masses

of 0.01, 0.02 and 0.03) and inverting the resulting matrix with an uncorrelated propagation of the

errors. Since the results given in these three tables are equal within errors, we chose to combine

them to reduce their statistical errors rather than to perform a chiral extrapolation.

1 2 3 4 5 6 7

1 0.825(7) 0. 0. 0. 0. 0. 0.

2 0. 0.882(38) -0.111(41) -0.009(12) 0.010(10) 0. 0.

3 0. -0.029(69) 0.962(92) 0.013(22) -0.011(25) 0. 0.

4 0. -0.04(12) -0.01(13) 0.924(42) -0.149(35) 0. 0.

5 0. 0.17(18) 0.08(23) -0.042(55) 0.649(63) 0. 0.

6 0. 0. 0. 0. 0. 0.943(8) -0.154(9)

7 0. 0. 0. 0. 0. -0.0636(53) 0.680(11)

vacuum chiral symmetry breaking than would be the case if an exceptional set of momenta

had been used [32]. The resulting matrix Z lat→RI(µ, a)/Z2
q obtained for µ = 2.15 GeV in

Ref. [26] is given in Tab. VII.

Since these RI/MOM renormalization conditions are being imposed for off-shell, gauge-

fixed external quark lines, we must in principle include a larger number of operators than the

minimal set of seven independent operators which can represent all gauge invariant matrix

elements between physical states of HW . Therefore, we must also employ a correspondingly

larger set of conditions to distinguish among this larger set of operators. These additional

operators are two-quark operators of dimension three, four and six and are either gauge

invariant or non gauge invariant. The treatment of those operators of dimension three and

four follows closely that given in Ref. [6]. Equations (12) and (89) of Ref. [16] give a complete

list of the corresponding gauge-invariant operators of dimension six. If evaluated between

on-shell states, however, these additional operators can be expressed by linear combinations

of the seven operators Q′
i.
3 Thus, as stated in Sec. V, the relations given in Eq. 22 between

3 Exceptions to this statement come from the two dimension-3, mass operators s(1±γ5)d which do contribute

independently to on-shell matrix elements in which four-momentum is not conserved.
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the seven lattice and the seven RI operators are valid only when those operators appear in

physical matrix elements between on-shell states. For this equation to be valid when the

operators appear in the off-shell, gauge-fixed Green’s functions that define the RI scheme,

additional RI/MOM-normalized operators must be added.

This is the meaning of the 7×7 matrix Z lat→RI matrix given in Tab. VII: gauge symmetry

and the equations of motion must be imposed to reduce to seven the RI-normalized operators

to which the seven lattice operators are equated. In the calculation of Z lat→RI presented in

Ref. [26] all such extra, dimension six operators are neglected. For all but one, this might

be justified for the current calculation because these operators enter only at two loops or

beyond and the perturbative coefficients that we are using in later steps are computed at

only one loop. A single operator, given in Eq. 146 of Ref. [6] and Eq. 12 of Ref. [16] does

appear at one loop but has also been neglected because it is expected to give a smaller

contribution than other two-quark operators with quadratically divergent coefficients whose

effects are indeed small. While these contributions of such extra operators are believed to

be small for the current calculation, care must be taken in future calculations in which a

continuum limit is attempted that any neglected counter terms with coefficients of the form

log(µa) do not become important.

A final imperfection in the results presented in Tab. VII is that the subtraction of a third

dimension-four, two-quark operator which contains a total derivative was not performed.

However, the effect of subtracting this third operator is expected to be similar to those

of the two operators which were subtracted, effects which were not visible outside of the

statistical errors (see e.g. Tabs. XIV and XVIII in Ref. [6]).

In the second step we convert the seven RI operators obtained above into the MS scheme:

Q′
i
MS

=
∑

j

(

1 + ∆rRI→MS
)

ij
QRI

j . (A2)

Here the indices i and j run over the set {1, 2, 3, 5, 6, 7, 8} corresponding to the chiral basis of

the operators Qj defined above and a set of operators Q′
j
MS, with identical chiral properties,

which are defined in Ref. [16]. We use the computational framework described in Ref. [16]

and the resulting 7×7 matrix ∆rRI→MS is given in Tab. VIII of that reference. As in the case

of Eq. 22, the two sets of seven RI and MS operators are related by this 7 × 7 matrix only

when appearing in physical matrix elements. Since the values in this table were obtained for

the case that the wave function renormalization constant for the quark field is the quantity
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Z
/q
q it is that factor which we use to extract Z lat→RI from the matrix Z lat→RI/Z2

q given in

Tab. VII. For our β = 2.13, Iwasaki gauge ensembles Z
/q
q = 0.8016(3). (Note, Z

/q
q is the same

as the quantity Z ′
q introduced in earlier, exceptional momentum schemes [33].)

A third and final step is needed before we can combine the Wilson coefficients with the

matrix elements determined in our calculation to obtain the physical amplitudes A0 and

A2. The 7 × 7 matrix given in Tab. VIII of Ref. [16] gives us MS operators defined in the

chiral basis. However, the Wilson coefficients which are available in Ref. [17] are defined

for the ten operator basis referred to as basis I in Ref. [16]. The conversion between the

linearly independent, seven operator basis and the conventional set of ten linearly dependent

operators is correctly given by the application of simple Fierz identities for the case of the

lattice and RI/MOM operators. As is explained, for example, in Ref. [16], this procedure

is more complex for operators defined using MS normalization. Here subtleties of defining

γ5 in dimensions different from four, result in ten MS-normalized operators, QMS
i , which are

not related by the usual Fierz identities, with Fierz violating terms appearing at order αs.

Thus, the conventional ten MS-normalized operators QMS
i which appear in Eq. 4 must be

constructed, again through one-loop perturbation theory, from the seven operators Q′
i
MS:

QMS
i =

∑

j

(

T +∆TMS
I

)

ij
Q′MS

j , (A3)

in the notation of Ref. [16]. The 10×7 matrices, T and ∆TMS
I are given in Eqs. 59 and 65 of

that reference. (The subscript I on the matrix ∆TMS
I identifies the particular ten-operator,

MS basis required by the Wilson coefficients of Ref. [17].)

This entire set of non-perturbative and perturbative transformations can be summarized

by the following equation which expresses the ten MS-normalized operators QMS
i in terms

of the seven, chiral basis, lattice operators whose matrix elements we actually compute:

QMS
i =

∑

j

[

(

T +∆TMS
I

)

10×7

(

1 + ∆rRI→MS
)

7×7

(

Z lat→RI
)

7×7

]

ij

Qlat
j (A4)

=
∑

j

[

(

Z lat→MS
)

10×7

]

ij

Qlat
j , (A5)

where the subscripts indicate the dimensions of the matrices being multiplied and the matrix

Z lat→MS
ij is used in Eq. 25.

The physical matrix elements listed in Tabs. II and V are obtained by using Eq. A5 to

determine the matrix elements of the ten conventional operators QMS
i in term of the matrix

38



TABLE VIII. Wilson Coefficients in the MS scheme, at energy scale µ = 2.15GeV.

i yMS
i (µ) zMS

i (µ)

1 0 -0.29829

2 0 1.14439

3 0.024141 -0.00243827

4 -0.058121 0.00995157

5 0.0102484 -0.00110544

6 -0.069971 0.00657457

7 -0.000211182 0.0000701587

8 0.000779244 -0.0000899541

9 -0.0106787 0.0000150176

10 0.0029815 0.0000656482

elements of the seven lattice operators Qj . These ten matrix elements are then combined

with the twenty Wilson coefficients computed for the renormalization scale µ = 2.15 GeV

using the formulae in Ref. [17]. The values obtained for these Wilson coefficients are listed

in Tab. VIII.

Note, there are many important details of the RI/MOM renormalization procedure, such

as the subtraction of dimension three and four operators, which are not repeated here because

they are already discussed with some care in Refs. [6] and [16].

Appendix B: Propagator sources

The calculations presented in this paper rely on propagators computed using two types

of sources. The propagators for the quarks which make up the initial and final state mesons

are constructed from Coulomb gauge fixed wall sources while the fermion loops appearing

in the eye diagrams are formed from propagators using random Gaussian wall sources. In

this appendix we specify how each of these sources is constructed. (Our conventions for the

five dimensional Dirac operator D and its coupling to the gauge field are given in Ref. [34].)

A Coulomb gauge fixed wall source located at the time tw with spin α and color a is a

five-dimension color and spin vector field C(~x, t, s; tw, α, a)β,b with spinor and color indices
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β and b and is given by:

C(~x, t, s; tw, α, a)β,b =
{

(

1 + γ5

2

)

β,α

δs,Ls−1 +

(

1− γ5

2

)

β,α

δs,0

}

δt,twV
C(~x, t)† b,a (B1)

where V C(~x, t) is the 3 × 3 local gauge transformation matrix that transforms the gauge

links Ui(~x, t) into links UC
i (~x, t) in Coulomb gauge:

UC
i (~x, t) = V C(~x, t)Ui(~x, t)V

C(~x+ êia, t)
†. (B2)

Here êi is a unit vector in the ith direction.

The color and spinor field C(~x, t, s; tw, α, a)β,b is used to define a five-dimensional propa-

gator G(~x, t, s; tw, α, a)b,β which obeys the domain wall fermion Dirac equation:

∑

x′,t′,s′

{

D~x,t,s;~x′,t′,s′G(~x′,′ t, s′; tw, α, a)
}

β,b
= C(~x, t, s; tw, α, a)β,b, (B3)

using the notation of Ref. [34]. Following those conventions we can project the five-

dimensional propagator G onto the four-dimensional walls to construct the four-dimensional

propagators L and S for the light and strange quarks used in Eqs. 1, 9, 10 and 11. For

example, the light quark propagator is constructed as follows:

L(~x, t; tw)β,b;α,a =

{

1 + γ5

2
G(~x, t, Ls − 1; tw, α, a)

}

β,b

+

{

1− γ5

2
G(~x, t, 0; tw, α, a)

}

β,b

.

(B4)

Critical to this approach is the limited gauge covariance of Eq. B3 under general gauge

transformations of the underlying gauge configuration. This gauge covariance can be seen

by considering a gauge transformation

Uµ(x) → UV
µ (x) = V (x)Uµ(x)V (x+ êµa)

† (B5)

where x = (~x, t) identifies a four vector and links in the general space-time direction µ

are being transformed. The gauge covariance of Eq. B3 can be established if we view

the Coulomb gauge transformation matrices V C [{U}](x) which appear in the source C as

functionals of the gauge ensemble from which they were defined and observe that candidate

Coulomb gauge transformation matrices for the transformed links can be easily constructed

from the original Coulomb gauge transformation matrices V C [{U}] as:

V C [{UV }](x) = GV C [{U}](x)V (x)† (B6)

40



where G is a 3×3 position-independent, global gauge transformation. If the original matrices

V C [{U}](x) transform the configuration {U} to Coulomb gauge, then by construction, the

new matrices V C [{UV }](x) will do the same for the gauge-transformed links {UV }. Thus, if
Eq. B6 holds, the left- and right-hand sides of Eq. B3 transform similarly under the gauge

transformation of Eq. B5 (recall that G(x, s; tw) will also transform as a color vector at x).

However, there are two issues that must be addressed. First the global gauge transforma-

tion G transforms the right-hand indices of the (V C)† on the right-hand side of Eq. B3 but

does not appear on the left-hand side when a gauge transformation is performed. Never-

the-less, this lack of invariance under a general gauge transformation can be removed if the

propagators G(~x, t, s; tw, α, a)β,b always appear in products in which the source color indices

a are arranged in gauge invariant combinations. Second, the Coulomb gauge transformation

for the gauge-transformed configuration can be guaranteed to be given by Eq. B6 only if

the transformation to Coulomb gauge is unique up to a global gauge transformation, an

assumption violated by Gribov copies. Thus, we expect hadronic propagators constructed

from these Coulomb gauge fixed wall sources to be affected by gauge noise generated by

Gribov copies. However, in practice we find these are excellent sources for creating pseu-

doscalar mesons providing good statistics from volume averaging and long plateaus when

the effective mass of the mesons is examined.

The construction of the random Gaussian wall sources is more straight-forward. As

described earlier, a separate random source is generated for each spin-color pair α, a. Thus,

a random Gaussian wall source at the time tw with spin α and color a is given by the

five-dimensional spin-color vector

R(~x, t, s; tw, α, a)b,β = η(~x, t)δt,twδa,b

{

(

1 + γ5

2

)

α,β

δs,Ls−1 +

(

1− γ5

2

)

α,β

δs,0

}

(B7)

where η(~x, t) are independent Gaussian random numbers defined for each space-time point.

An independent set of random numbers, η(~x, t) is generated each of the twelve separate

sources corresponding to the twelve possible choices of spin(α) and color(a). The corre-

sponding propagators GR and LR are constructed in a fashion completely analogous to that

described above for G, L and S in Eqs. B3 and B4.
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