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Universitat Autonòma de Barcelona, E-08193 Bellaterra, Barcelona, Spain

bDepartament de F́ısica Teòrica and IFIC
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ABSTRACT

We present a new framework for the extraction of the strong coupling from

hadronic τ decays through finite-energy sum rules. Our focus is on the small, but

still significant non-perturbative effects that, in principle, affect both the central

value and the systematic error. We employ a quantitative model in order to

accommodate violations of quark-hadron duality, and enforce a consistent treat-

ment of the higher-dimensional contributions of the Operator Product Expansion

to our sum rules. Using 1998 OPAL data for the non-strange isovector vector and

axial-vector spectral functions, we find the nf = 3 values αs(m
2
τ ) = 0.307±0.019

in fixed-order perturbation theory, and 0.322±0.026 in contour-improved pertur-

bation theory. For comparison, the original OPAL analysis of the same data led

to the values 0.324± 0.014 (fixed-order) and 0.348± 0.021 (contour-improved).
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I. INTRODUCTION

In the past few years there has been a renewed interest in the precision determination of

αs from non-strange hadronic τ decays. One reason for this interest is the recent calculation

of the coefficient of the O(α4
s) term in the perturbative contribution to the Adler function

[1]. This contribution dominates the ratio of the hadronic τ decay width and the electronic

decay rate [2],

Rτ = Γ[τ− → ντ hadrons (γ)]/Γ[τ
− → ντe

−ν̄e(γ)] . (1.1)

Another reason is the existence of a number of competing analysis methods which lead to

results that are not, or only barely, consistent with one another. In fact, the error on αs

from τ decays quoted in a recent (2009) review [3] has gone up since its 2006 version, for the

simple reason that the result of Ref. [3] was obtained by averaging the central values of all

recent τ decay determinations of αs and the error by considering the spread of these central

values. All determinations are based on data from (primarily) the ALEPH (see Ref. [4] for

their 1998 analysis and Ref. [5] for their 2005 analysis) and (also) the OPAL (see Ref. [6])

collaborations; the differences in the results are on the theory side.

Clearly, this is an unsatisfactory situation. There are at least three theoretical issues

related to the discrepancies between the different determinations. Number one is the long-

standing question as to which resummation scheme, fixed-order perturbation theory (FOPT)

or contour-improved perturbation theory (CIPT), is best used for evaluating the perturbative

contributions to Rτ . Many of the recent reanalyses have focussed on this question [1, 7–

11]. Much less attention has been devoted to the two other issues, both of which concern

non-perturbative contributions to Rτ . Because of the relatively low value of the τ mass,

such contributions cannot be entirely neglected, even if they are expected to be small. Issue

number two is the question of whether the Operator Product Expansion (OPE) contributions

beyond perturbation theory have been consistently taken into account. Here we are aware

of only one systematic investigation [12], in which it was demonstrated that self-consistency

problems existed for a number of earlier analyses. Specifically, it was shown that the OPE

parameters obtained in those analyses do not provide a good match between data and theory

when the upper limit s0 on the hadronic invariant mass-squared, s, in the weighted integrals

over the spectral functions (which enter the finite-energy sum rules (FESRs) employed in
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these analyses) is varied away from m2
τ .

1 Issue number three concerns potential violations of

“quark-hadron duality” not taken into account in previous FESR determinations of αs. In

the case of FESRs, the assumption of quark-hadron duality amounts to presuming that all

non-perturbative effects are accounted for by higher-dimensional terms in the OPE. To date,

this assumption has not seen a systematic investigation. As already explained in Ref. [12], the

issues of the OPE and possible violations of quark-hadron duality are intricately connected:

without a quantitative analysis of duality violations, it turns out to be difficult to treat

the OPE consistently without relying on “external” results. For instance, in the analysis

of Ref. [12], the dimension-4 term in the OPE had to be fixed using a result for the gluon

condensate from charmonium sum rules.

In this article, we aim to address this situation, focussing on the non-perturbative ques-

tions. We use a recently developed model for the duality-violating (DV) part of the ud-flavor

vector (V ) and axial-vector (A) spectral functions [13], which makes it possible to carry out

a self-contained FESR analysis in which stability with respect to varying s0 is checked self-

consistently without reliance on external values for any of the OPE parameters.

Since no QCD-based theory of quark-hadron duality exists, we have to resort to a model.

This means that our results will be based on the (testable) assumption that this model gives

a good description of the DV part of the spectral functions for values of s from s→ ∞ down

to a minimum value, smin, sufficiently low to lie in the range s ≤ m2
τ kinematically accessible

in hadronic τ decays. We emphasize that the need to make such an assumption has always

been a fundamental “shortcoming” of the determination of αs from τ decays. Assuming

quark-hadron duality a priori, and therefore neglecting the effect of DVs altogether, also

amounts to employing a – probably worse – model. In other words, in order to investigate

the systematics related to the assumption of quark-hadron duality, one cannot avoid the

adoption of a model of the DV part of the spectral functions. In Ref. [13] it was found that

the model we intend to employ gives a reasonable description of the spectral functions in

the region 1.1 GeV2 ≤ s ≤ m2
τ .

2 Moreover, the physics of our model is based on a picture of

the hadron resonances which are experimentally seen in the spectral function. Resonances

1 Some of the earlier analyses carried out this test for the FESR based on the kinematic weight (the weight

yielding Rτ when s0 = m2
τ ), for which it works reasonably well. Reference [12] showed that these analyses

unambiguously fail the tests for other doubly-pinched FESRs.
2 In the present, more detailed analysis, we will find that a significantly larger value of smin is preferred.
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are not described by perturbation theory or the OPE, and thus should be part of any model

aiming to describe violations of quark-hadron duality.

In this work, we do not address the issue of the optimal choice of resummation for the

truncated perturbative series in a given FESR. While this systematic, of course, forms a

potentially important part of the final theory error on αs, we have no new elements to

add to the discussion of this issue. Moreover, we believe that the non-perturbative part of

the systematics should be understood first, in order to get a more reliable picture of the

quantitative discrepancy between results based on FOPT and CIPT. We will therefore carry

out our whole analysis with both resummation schemes.

To date, two experiments, ALEPH [4, 5] and OPAL [6], have made the non-strange V

and A spectral functions from their τ -decay analyses publicly available. The 2005 analysis

of ALEPH is more recent, and based on more statistics, and thus would be expected to

have smaller experimental errors. Unfortunately, the 2005 ALEPH data cannot be used at

present, because correlations due to unfolding have been inadvertently omitted in the original

ALEPH analysis and hence from the publicly posted covariance matrices [14].3 Since the

re-analysis of the ALEPH data has yet to be completed, we limit ourselves, in this article,

to an analysis employing the OPAL data.

In order to normalize the various exclusive-mode components of the spectral functions,

OPAL relied on the branching fractions available in 1998, as well as the then-current values of

Vud and the electronic branching fraction Be. All of these have been updated since then, and

this makes it possible to at least partially update the OPAL inclusive spectral distributions

as well. Such an update would allow an updated, though still OPAL-based, determination

of αs. Here, since our primary goal is to investigate the impact of the novel features of

our treatment of non-perturbative effects on the extracted results for αs, we choose not to

perform this update, and instead work with the data in precisely the same form as used by

OPAL [6]. We plan to devote a separate article to an adaptation of OPAL data to recent

values of the exclusive branching fractions, Vud and Be, and an investigation of the effect of

this adaptation on the value of αs and other OPE parameters.

This article is organized as follows. In Sec. II we present a brief review of the application

3 We thank members of the ALEPH collaboration for private communications, in which the existence of

this problem has been confirmed.
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of FESRs to hadronic τ decays, with emphasis on the issue of quark-hadron duality. In

Sec. III we are then able to provide a more thorough discussion of the various systematic

errors discussed already above. Preparing for a presentation of our results in Sec. VI, we

describe the theory parametrization we will employ in more detail in Sec. IV, and discuss

the issue of strong correlations in the integrated data, and our resulting fitting strategies,

in Sec. V. Apart from reporting on our fits in Secs. VIA and VIB, we consider also, in

Sec. VID, the V + A channel sum (related to the non-strange part of Rτ ) as well as the

V −A channel difference. In the latter case, we demonstrate that our fit results satisfy the

Weinberg sum rules [15] as well as the DGMLY sum rule for the π electromagnetic mass

difference [16]. Section VII contains a summary of our results, including a conversion of αs

to its value at the Z mass; Sec. VIII contains our conclusions.

II. THEORY SUMMARY

Our analysis will involve the correlation functions

Πµν(q) = i
∫

d4x eiqx〈0|T
{

Jµ(x)J
†
ν(0)

}

|0〉 (2.1)

=
(

qµqν − q2gµν
)

Π(1)(q2) + qµqνΠ
(0)(q2)

=
(

qµqν − q2gµν
)

Π(1+0)(q2) + q2gµνΠ
(0)(q2) ,

where Jµ is one of the non-strange V or A currents, uγµd or uγµγ5d, and the superscripts

(0) and (1) label the spin. The decomposition in the third line employs the combinations

Π(1+0)(q2) and q2Π(0)(q2), which are free of kinematic singularities. Defining s = q2 = −Q2

and the spectral functions

ρ(1+0)(s) =
1

π
ImΠ(1+0)(s) , (2.2)

Cauchy’s theorem and the analytical properties of Π(1+0)(s), applied to the contour in Fig. 1,

imply the FESR relation

I
(w)
V/A(s0) ≡

1

s0

∫ s0

0
dsw(s) ρ

(1+0)
V/A (s) = −

1

2πis0

∮

|s|=s0
dsw(s) Π

(1+0)
V/A (s) , (2.3)

valid for any s0 > 0 and any weight w(s) analytic in the region of the contour [17]. In the

present work we will restrict ourselves to polynomial weights. Partial integration allows the

right-hand side of Eq. (2.3) to be recast in terms of the Adler function

D(s) = −s
dΠ(1+0)(s)

ds
. (2.4)
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Re q
2

FIG. 1: Analytic structure of Π(1+0)(q2) in the complex s = q2 plane. The solid curve shows the

contour used in Eq. (2.3).

The spectral functions ρ
(1+0)
V/A (s) are measurable in hadronic τ decays. Explicitly, for

Standard Model decays induced by the flavor ud (isovector) currents, with wT (s; s0) =

(1− s/s0)
2(1 + 2s/s0), wL(s; s0) = 2(s/s0)(1− s/s0)

2, and the scaled, non-strange V and A

widths

RV/A;ud ≡
Γ[τ− → ντ hadronsV/A;ud (γ)]

Γ[τ− → ντe−ν̄e(γ)]
, (2.5)

one has [18]

RV/A;ud = RV/A;ud(s0 = m2
τ ) , (2.6)

in which RV/A;ud(s0) is defined by

RV/A;ud(s0) = 12π2|Vud|
2SEW

1

s0

∫ s0

0
ds
[

wT (s; s0)ρ
(1+0)
V/A (s)− wL(s; s0)ρ

(0)
V/A(s)

]

, (2.7)

where SEW is a short-distance electroweak correction. Since, in the Standard Model,

ρ
(0)
V (s) = O[(md −mu)

2)] , (2.8)

ρ
(0)
A (s) = 2f 2

π

(

δ(s−m2
π±)− δ(s)

)

+O[(md +mu)
2] ,

the differential distributions proportional to the expression in square brackets in Eq. (2.7)

provide a direct measure of ρ
(1+0)
V/A (s), up to numerically negligible O

(

m2
u,d

)

corrections.4

The second delta function in Eq. (2.8), which comes from the kinematic singularity present

4 The π decay constant, fπ = 92.21(14) MeV [19], is presently known very accurately. The central value of
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in Π(0), does not contribute to the integral in Eq. (2.7) as a result of the factor of s in the

accompanying weight wL(s; s0).

For sufficiently large s0, and ignoring for a moment that the OPE is only valid for large

euclidean Q2, the right-hand side of Eq. (2.3) can be approximated using the OPE for

Π
(1+0)
V/A (s). Experimental spectral data can then be used to fit the OPE, and extract pa-

rameters such as αs [2]. In what follows, we will denote the experimental version of the

spectral integral on the left-hand side of Eq. (2.3) by I
(w)
V/A;ex(s0) (generically, I

(w)
ex (s0)) and

the theoretical representation of the contour integral on the right-hand side by I
(w)
V/A;th(s0)

(generically, I
(w)
th (s0)).

In the upper part of the energy region allowed by τ -decay kinematics
[

Π
(1+0)
V/A (s)

]

OPE
is

dominated by its dimension D = 0 contribution, i.e., the perturbative contribution in the

chiral limit.5 The perturbative expression for the Adler-function (2.4), which is known to

order α4
s [1], can be written as6

[D(s)]D=0
OPE =

1

4π2

∞
∑

n=0

ans (µ
2)

n+1
∑

k=1

k cnk

(

log
−s

µ2

)k−1

, (2.9)

with as(µ
2) = αs(µ

2)/π. Since D(s) is independent of µ2, we can choose µ2 = −s, indicating

that only the coefficients cn1 are independent; all other cnk can be expressed in terms of the

cn1 through the renormalization group. In the MS scheme, c01 = c11 = 1, c21 = 1.63982,

c31 = 6.37101 and c41 = 49.07570 [1]. We will use the guess c51 = 283 of Ref. [8] for the next

coefficient, assigning an uncertainty of ±283 in order to estimate the error due to truncating

perturbation theory (cf. Sec. VIC).

The freedom to choose µ2 in Eq. (2.9) is at the heart of the different prescriptions employed

for evaluating the perturbative contribution to the right-hand side of Eq. (2.3): in FOPT,

µ2 = s0 is used in Eq. (2.9), whereas in CIPT µ2 = −s is employed inside the contour

integral on the right-hand side of Eq. (2.3) [21].

the τ → πντ branching fraction, Bπ, employed in the 1998 OPAL analysis corresponds to the somewhat

larger value 94.0 MeV. In order to match exactly the OPAL treatment of the V and A spectral functions

we employ the latter value in our analysis. Note that, since Bπ was obtained by the PDG in a combined fit

to the full set of τ basis modes, it would, in fact, be inconsistent to change just Bπ without simultaneously

changing all other branching fractions. We will revert to the updated value fπ = 92.21(14) MeV in our

later analysis employing updated OPAL data.
5 Perturbative contributions proportional to powers of the quark masses are included in D ≥ 2 OPE terms.
6 See, for instance, Ref. [20].
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Beyond perturbation theory, one may improve the approximation to the right-hand side

of Eq. (2.3) by including higher-dimension contributions to Π
(1+0)
OPE (s). Explicitly,

Π
(1+0)
OPE (s) =

∞
∑

k=0

C2k(s)

(−s)k
, (2.10)

with the OPE coefficients C2k logarithmically dependent on s through perturbative cor-

rections. The term with k = 0 corresponds to the purely perturbative, mass-independent

contributions, represented by Eq. (2.9). The C2k, with k > 1, contain non-perturbative

D = 2k condensate contributions, and are, in principle, different for the V and A channels.

We will neglect C2, which is purely perturbative and quadratic in the light quark masses.7

It has been suggested that a non-perturbative D = 2 term should be added in order to

account for the truncation of the perturbative series for the D = 0 term [22]. We postpone

an investigation of this issue to future work, and here set C2 = 0.

Neglecting contributions of O(m4
u,d) or proportional to 〈ūu〉 − 〈d̄d〉, both of which are

numerically very small, the coefficient C4 is a linear combination of the “gluon condensate”

〈asGµνG
µν〉 (with Gµν the gluon field strength), and the chiral condensates mi〈ψiψi〉, i =

u, d, s. To leading order in αs both contributions to C4 are the same in the V and A

channels. Differences in the D = 4 V and A light quark condensate contributions enter

beginning at O(αs) or O(m
4
u,d) [23].

The coefficient C6 is assumed to be dominated by four-quark condensates, because the

contribution from 〈g3fabcG
aν
µ G

bκ
ν G

cµ
κ 〉 vanishes at leading order in αs [24], and the contribu-

tions from lower-dimensional operators are suppressed by powers of the quark mass. Coef-

ficient functions for the four-quark condensates were calculated to next-to-leading order in

Ref. [25]. At D = 8 there is a proliferation of operators, and very little detailed information

is available. As we will explain in Sec. IV below, we will not need to consider terms with

D > 8.

The OPE is valid when the euclidean distance |x| in Eq. (2.1) is small compared to Λ−1
QCD,

or, equivalently, when euclidean Q2 is positive and large. However, both perturbation theory

and the OPE are expected to break down near the positive real q2 axis [26]. We may account

7 Since in the present study we are only dealing with the light up- and down-quark correlators, the D = 2

mass-squared corrections are tiny. Still, one version of our analysis code has implemented all known m2

corrections up to O(α3
s), and we have verified that they are indeed negligible.
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for this additional non-perturbative effect by writing the right-hand side of Eq. (2.3) as [13]

−
1

2πis0

∮

|s|=s0
dsw(s)

(

Π
(1+0)
OPE (s) + ∆(s)

)

, (2.11)

with

∆(s) ≡ Π(1+0)(s)− Π
(1+0)
OPE (s) . (2.12)

The difference ∆(s) defines the duality violating contribution to Π(1+0)(s).

All previous determinations of αs from hadronic τ decays have assumed, implicitly or

explicitly, that integrated DV contributions are small enough to be neglected for the weights

employed in the analysis. While this assumption has sometimes been checked for self-

consistency (see, e.g., Ref. [12]), a comprehensive quantitative estimate of the impact of

DVs on the precision with which αs can be determined has not been provided. One of

the aims of the present work is to provide a comprehensive analysis which takes DVs into

account, and hence remedies this shortcoming.

As shown in Ref. [13], if ∆(s) is assumed to decay fast enough as s→ ∞, the right-hand

side of the FESR relation (2.3) can be rewritten as

I
(w)
th (s0) = −

1

2πis0

∮

|s|=s0
dsw(s) Π

(1+0)
OPE (s) +Dw(s0) , (2.13)

with

Dw(s0) = −
1

s0

∫ ∞

s0
dsw(s)

1

π
Im∆(s) . (2.14)

The imaginary parts 1
π
Im∆V/A(s) can be interpreted as the DV parts, ρDV

V/A(s), of the V/A

spectral functions. Following Ref. [13], we will parametrize ρDV
V/A(s) as

ρDV
V/A(s) = κV/A e

−γV/As sin (αV/A + βV/As) . (2.15)

This introduces, in addition to αs and the D ≥ 4 OPE condensates, four new parameters

in each channel. The OPE, supplemented by the ansatz (2.15), will be assumed to hold

for s ≥ smin, where smin will have to be inferred from fits to the experimental data. The

extended analysis, including DVs, will of course only be possible if smin lies significantly

below m2
τ .

The ansatz (2.15) is modeled on the asymptotic behavior for large s of a semi-realistic

model for the QCD spectrum in a given channel. This model was developed in Ref. [27],

based on earlier ideas described in Ref. [28]. It incorporates a combination of large-Nc
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insights (narrow resonances with widths increasing with mass) as well as the Regge picture

for the spacing between resonances. These ingredients lead quite naturally to the exponential

decay in Eq. (2.15) with the decay parameter γ ∼ 1/Nc, as well as the oscillatory behavior

represented by the sine function, both with arguments (approximately) linear in s. We

favor this model over other attempts to model DVs because of its natural connection to

the resonance structure of the spectral distributions, something that is not evident in other

models (such as those based on instantons). For detailed discussions of the model, see

Refs. [27, 29, 30].

III. SYSTEMATIC ERRORS

There are three sources of systematic error affecting, to various extents, existing FESR

determinations of αs. Since the investigation of two of these sources is the central aim of

this work, we briefly describe each of the three sources here, before embarking on the details

of our analysis.

1. There are (at least) two ways of partially resumming the perturbative contribution

to I
(w)
th (s0), CIPT and FOPT (cf. Sec. II). The relative merits of the two methods

have been the subject of a number of investigations [1, 7–11]. While no particular

preference is given to either scheme in Refs. [1, 11], CIPT is favored in [7, 9], whereas

Refs. [8, 10] give arguments in favor of FOPT, in the latter work through a new CI

expansion in a conformally mapped coupling.

We will not attempt to resolve the associated systematic uncertainty in this work,

but instead report on the results of our fits using both CIPT and FOPT. In fact, it

is interesting to see what discrepancy remains between CIPT and FOPT after other

systematic errors, described below, have been properly taken into account.

2. With the exception of Ref. [12], the OPE has not been treated consistently in previous

extractions of αs from τ decays, in the sense we now explain. Consider a term of

order 1/sk in the OPE of Eq. (2.10). The dominant term in the expansion in αs

of the corresponding coefficient CD, D = 2k, is a constant of order one (times the

relevant condensate). In the sum rule (2.3), this term in the OPE is picked out by

the term of degree k − 1 in the weight w(s). Other terms in w(s) will also pick up
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contributions from CD(s), because of the logarithmic dependence of CD(s) on s, but

such contributions will not be dominant as they are suppressed by at least one extra

power of αs. Thus, if weight functions up to degree n are used in the fits, it follows

that terms up to at least order k = n+ 1 must be kept in the OPE in order to retain

all potentially relevant contributions not suppressed by at least one extra power of αs.

In the conventional analysis of Refs. [5–7, 31] this was not done: while weights up to

degree n = 7 in s were employed (which would generally require keeping terms in the

OPE up to D = 16 (k = 8)), only terms up to D = 8 (k = 4) were retained. As noted

earlier, it was found in Ref. [12] that this is not self-consistent: with the parameter

values found in those fits, the s0 dependence of the theory curves does not match that

of the data for the majority of the weights employed, as well as for alternate degree 2

and 3 weights which explicitly test the D ≤ 8 parameters obtained from the original

fits.8 In this work, we will restrict ourselves to weight functions of degree n ≤ 3,

corresponding to keeping terms up to D = 8 in the OPE. As we will explain below,

this implies we will have to vary s0 in the FESR (2.3); it is not possible to restrict a

consistent analysis to only s0 = m2
τ without additional uncontrollable assumptions.

3. Typically, previous analyses neglected the presence of duality violations.9 While in

some cases this assumption was checked for self-consistency [12], such a check does

not provide a quantitative assessment of the impact of residual DV effects. It has long

been known that FESRs with a simple weight like w = 1 have sizable DVs, even at

scales ∼ 2 − 3 GeV2, but that switching to weights “pinched” (having a zero) near

s = s0 significantly reduces this effect [34]. It has become a standard assumption that

using only weights which are at least doubly pinched will suppress DVs sufficiently so

as not to affect the value of, or error on, αs. Clearly, in view of the quite small errors

on αs reported in the recent literature, this issue is in need of further investigation.

The use of weights which are at least doubly pinched, i.e., which contain at least two

powers of s0−s, forces us to vary s0 in Eq. (2.3), if the OPE is to be treated consistently

8 See also Ref. [27], where it was shown in a model study that adding a D = 10 term to the OPE in an

analysis like that of Refs. [5–7] can make a significant difference.
9 Exceptions are Refs. [7, 32]; however, as is clear from the results of the present work, those investigations

of DVs involved additional assumptions which we are able to avoid in the present analysis.
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in the sense described above. Suppose one wants to consider only s0 = m2
τ , and fit αs

as well as C4,...,D=2k, i.e., k parameters.10 To fit k parameters, one requires at least

k + 1 data points, and therefore at least k + 1 linearly independent weights if one

uses only s0 = m2
τ . If all weights contain the factor (s0 − s)2, the minimally required

highest degree will be n = k + 2. This is inconsistent with our criterion of point 2

above, which would require terms up to order k + 3 to be kept in the OPE. The only

way out is to vary s0, and/or to consider weights that are less than doubly-pinched.

This makes the need to take DVs into account more urgent, because it is certainly not

justified to assume that integrated DVs are negligible for weights which are less than

doubly pinched, over any sizable interval in s0 below m2
τ .

IV. PARAMETRIZATION USED IN FITS

In this section, we describe in detail the parametrization of the theory that we will use

in our analysis of the data.

A. Selection of moments

We wish to consider terms in the OPE only up to D = 8, for several reasons. First, we

expect that small contributions to typical OPE integrals associated with these condensates

will be potentially sensitive to residual integrated DV contributions, making it possible to

check the impact of DVs on earlier determinations of the condensates. Second, it appears

unlikely that we can reliably determine condensates with D > 8 from existing data. Hence

we focus on FESRs where such contributions will be strongly suppressed. Finally, little is

known about the OPE, but it is almost certainly not a convergent expansion. One would

thus expect it to break down at some sufficiently high order, making it prudent to limit

ourselves to a relatively low maximum order.

From the arguments in Sec. III, this restricts us to weights with degree ≤ 3, i.e., to at

most four linearly independent weights. Since we will be fitting up to four OPE parameters

(αs as well as the D = 4, 6 and 8 condensates), in addition to the DV parameters in each

10 Recall that we set C2 = 0 in this article.
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channel, this already forces us to consider the sum rules (2.3) with more than one value of s0

for at least one weight. We will vary s0 over the interval [smin, m
2
τ ], and explore the stability

of the fits as a function of smin.

In this work, we choose to consider the weights11

ŵ0(x) = 1 , (4.1)

ŵ2(x) = 1− x2 ,

ŵ3(x) = (1− x)2(1 + 2x) = wT (s; s0) ,

x ≡ s/s0 .

A key point is that we explicitly incorporate DVs in our fits, and therefore need to use at least

one weight sensitive not only to αs and the OPE coefficients, but also to the DV parameters.

This stands in contrast to other work to date, where a desire to neglect DVs motivated the

use of (at least) doubly-pinched weights, which are known to suppress such contributions.

Such doubly-pinched weights are, in fact, too insensitive to the DV parameters to allow for

reliable fits of these parameters. In order to maximize our sensitivity to DVs and hence

improve our ability to fit DV parameters we include the unpinched weight ŵ0 in all our fits.

The other weights have been chosen by requiring them to be of degree ≤ 3, to have no term

linear in s, and to be singly pinched (ŵ2) or doubly pinched (ŵ3). Alternative sets of weights

satisfying the same requirements are obtained by replacing either ŵ2 or ŵ3 with 1−x3. Our

results with these alternative sets are completely consistent with those obtained from the

set (4.1).

For constant CD, I
(ŵ2)
th picks out the D = 6 term, while I

(ŵ3)
th picks out the D = 6 and

D = 8 terms. In practice, the logarithmic dependence of CD on s beyond leading order in

αs implies that all terms in the OPE contribute for all choices of w(s). However, C6 and

C8 will be primarily determined by the ŵ2 and ŵ3 FESRs. In the present work, we will

represent the D ≥ 4 contributions using effective values C4, C6 and C8 independent of s.

This implies that C4 does not contribute to fits involving any of the moments of Eq. (4.1).

For the case of C4, we have checked, in the case of fits to I ŵ0

ex (s0), that the numerical effect

of this approximation is tiny, cf. Sec. VIA.

As we will show in Sec. VI, fits to moments with weights ŵ0, ŵ2 and ŵ3 lead to stable and

11 We use hats in order to distinguish our set of weights from a different set of weights considered in Ref. [12].
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self-consistent results. One might also consider including moments with weights containing

a linear term in s, such as the weight w1(x) = 1−x. Such moments are sensitive to the gluon

condensate and would thus allow us to estimate its size, although due care would have to be

exercised with the interpretation of such a result since this condensate mixes with the unit

operator.12 However, renormalon-inspired model studies of higher orders in perturbation

theory along the lines of Refs. [8, 20] appear to indicate that perturbation theory, truncated

at currently known orders, may be less well converged to the full resummed result for I
(w1)
th (s0)

than for I
(ŵ0,2,3)
th (s0). This may be related to the observation that the D = 4 term, present in

the OPE representation of I
(w1)
th (s0), is affected by the leading infrared-renormalon ambiguity

in the Borel resummation of the associated perturbative series. In contrast, non-perturbative

contributions to the OPE representations of I
(ŵ2,3)
th (s0) depend most significantly on the CD

with D > 4, and are affected primarily only by subleading ambiguities, associated with

more distant infrared renormalon poles. This is one reason we restrict ourselves to the

weights (4.1) in this article.

We have also studied weights with a term linear in x, such as w1(x), added to our set of

weights (4.1), but find that, with analyses of the type we present in Sec. VI, the uncertainty

on the resulting determination of the gluon condensate remains large compared to that of

other determinations in the literature. We intend to further investigate such fits, and in

particular the determination of the gluon condensate, in a forthcoming article. Here we just

note that fits similar to those presented in Sec. VI but also including the weight w1 yield

results consistent with the fits presented in Secs VIA and VIB. Finally, we observe that

ŵ0,2,3(x) are a complete, linearly-independent set of weights of degree ≤ 3 without a term

linear in s.

B. Duality violations

We will parametrize the duality-violating part of ρV and ρA as in Eq. (2.15). This

introduces four new parameters in each channel, forcing us to consider values of s0 over an

interval [smin, m
2
τ ]. Since our ansatz (2.15) is assumed to hold only for sufficiently large s,

smin must be large enough to lie in the region of validity of this assumption, but low enough

12 A similar observation holds for some of the condensates in C6 and C8.
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to be kinematically accessible in hadronic τ decay. Our ansatz is therefore only practical if

we also assume that such an smin exists. We are then interested in a value of smin that is

small enough to maximize the data available for use in our fits, requiring at the same time

that the DV ansatz with that choice of smin gives a good description of the data.

A priori, there is no reason for smin to be equal in the V and A channels. We therefore

present two types of analysis: one for the V channel alone, and one for the combined V and

A channels (V&A). In the latter case, we will employ an smin common to both channels.

This is equivalent to assuming an smin < m2
τ exists such that the asymptotic behavior has set

in for both the V and A channels for all s > smin. Since it seems unlikely for the asymptotic

behavior in a given channel to set in below the lowest resonance in that channel, we expect

to find smin ∼ m2
a1

or higher for the combined V&A fits. In practice, we find an optimal

choice smin ∼ 1.4− 1.5 GeV2.

We have also considered fits to only the A channel, but find that the data in that channel

lead to a poor determination of the DV parameters, and thus also of αs. We believe this

is due to the lower quality of the A-channel data, rather than the absence of a sufficiently

low A-channel smin, but it is impossible to decide this from the data alone. We therefore do

not discuss purely A-channel fits, and restrict our analysis of this channel to combined fits

involving the V channel as well.

V. CORRELATIONS AND FITTING STRATEGIES

Values of the left-hand side, I(w)
ex (s0), of Eq. (2.3) for nearby values of s0 are very strongly

correlated, and this has repercussions for the choice of fitting strategies. We describe the

strong correlations in Sec. VA, and our strategies in Sec. VB below. As already explained

in the introduction, we limit ourselves to an analysis of the OPAL data [6].

A. Correlations and errors

The data we will use are the OPAL compilation of the non-strange V and A spectral

functions.13 These data appear in our fits through the weighted integrals, I(w)
ex (s0), appearing

13 We would like to thank Sven Menke for making the data files available to us.
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on the left-hand sides of the FESRs (2.3), for the various weight functions we consider.

These integrals are, of course, represented numerically by sums over the appropriate sets of

experimental bins. Since OPAL’s bin width is 0.032 GeV2, varying s0 between approximately

1.5 GeV2 and 3.120 GeV2 (OPAL’s highest bin in the V channel, and almost equal to

m2
τ = 3.157 GeV2) or 3.088 GeV2 (OPAL’s highest bin in the A channel) provides about 50

data points for each integral.

The integrals I(w)
ex (s0) are, however, highly correlated. For instance, if we consider I ŵ0

ex (s0)

on the interval s0 ∈ [1.504, 3.136] GeV2,14 the corresponding correlation matrix has sub- or

super-diagonal elements as large as 0.998, a largest eigenvalue ∼ 33, and a smallest eigenvalue

∼ 0.00019. Nonetheless, as we will show in Sec. VIA, it turns out that reliable, standard

χ2 fits to the data for ŵ0, using our parametrization of the right-hand side of Eq. (2.3), are

possible.

The situation changes if we consider two or more weight functions simultaneously. Fo-

cussing on our primary fits, with moments constructed with the weight functions ŵ0,2,3, not

only the correlations for each moment have to be taken into account, but also the cross-

correlations between these different moments, because they are not independent of each

other. In fact, if we consider the full correlation matrix for a combination of moments, for a

range of s0 values, it turns out to have zero eigenvalues at machine precision because of the

strong cross-correlations. This means that standard χ2 fits, employing the full correlation

matrix in constructing the function to be minimized, are not possible in this case. This

remains true if we “thin out” the data, i.e., if we use fewer values of s0 on a given interval,

by a factor two to four. This puts standard χ2 fits out of reach for simultaneous fits to

multiple moments, forcing us to either use a different fitting strategy, or to drop such fits

from consideration.

Because of this problem, we will perform fits to multiple moments using a different “fit

quality” Q2. Q2 will be a positive-definite quadratic form in the differences between data

and theory; for a description of some possible choices, see Sec. VB. Any such Q2 can be

minimized to give an estimate of the fit parameters, as long as we have a reasonable way

to estimate the parameter errors and covariances associated with the fit. In this article, we

14 These numbers are at the right edges of the bins centered at s = 1.488 GeV2 and s = 3.120 GeV2,

respectively.
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will estimate the parameter error matrix by propagating errors through a linear fluctuation

analysis starting from the full data covariance matrix; for details, see App. A.

B. Fitting strategies

In this subsection, we explain three different fitting strategies we have used, in view of

the problem of strong correlations described in Sec. VA.

1. The simplest fit we can perform is a standard χ2 fit to a single moment. We will choose

our single-moment fit to be the one with weight function ŵ0(x) = 1, since it does not

suppress contributions from any part of the spectrum, and is sensitive enough to the

DV part of our fitting function to give reasonably good fits for the DV parameters.

It should be noted here that our main goal is to minimize the fit error on αs. The

only reason one cares about the “nuisance” parameters κV,A, γV,A, αV,A, and βV,A is

that they describe part of the physics, and as such have to be taken into account in

any fit. We emphasize again that, under the assumption that our DV ansatz (2.15)

gives a good description of the DVs, there are no reasons to limit ourselves to pinched

weights and, in fact, strong arguments not to do so.

We have also considered fitting the spectral function directly, since it is maximally

sensitive to DVs in the kinematically allowed region. Such a fit can be cast in terms

of an FESR obtained by choosing w(s) = 1 and replacing ρ(1+0)(s) with its derivative

on the left-hand side of Eq. (2.3). It turns out that it is not possible to determine αs

from such a fit, basically because the spectral function is much less sensitive to αs than

it is to the DV parameters.15 In contrast, pinched weights suppress the contribution

from DVs more than ŵ0 does. We find, in fact, that fits with a single doubly-pinched

weight are not stable if one tries to fit both the OPE and (strongly suppressed) DV

parameters. In our experience, the most stable and precise results from a single-

moment fit are obtained using ŵ0(x) = 1. Fits to singly-pinched weights also appear

to work well: we have checked standard χ2 fits with weights ŵ2(x) or 1− x3 and find

15 In Ref. [13] fits to the spectral function were presented, but there αs was kept fixed. Note that contributions

to ρV/A from the higher D terms in the OPE are negligibly small.
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results in excellent agreement with those reported in Tables 1 and 4 below, though

with somewhat larger errors on αs.

2. It is of course interesting to see whether simultaneous fits to multiple moments can be

used to reduce errors, in particular the error on αs. However, in this case, we run into

the problem of strong correlations described above in Sec. VA. The simplest solution

is to omit correlations in constructing the fit quality Q2, and choose a Q2 which is

diagonal in the differences between data and theory. Working with a set of s0, {s
k
0}

in some fitting window, and letting δI(w)
ex (s0) be the error on the weighted spectral

integral I(w)
ex (s0), obtained using the full data covariance matrix, such a fit quality has

the form

Q2
diag =

∑

w

∑

sk
0





I(w)
ex (sk0)− I

(w)
th (sk0; ~p)

δI
(w)
ex (sk0)





2

, (5.1)

where we have made the dependence of the weighted theory integral on the set of fit

parameters ~p explicit and the outer sum runs over the set of weights included in the

analysis.

Often, such a fit is referred to as “uncorrelated.” Indeed, if Q2 would be interpreted

as a χ2, the standard χ2 errors obtained from such a fit would miss the effect of

correlations and be (significantly) underestimated. However, we emphasize that we

will not compute parameter errors in this way; instead we will propagate errors using

the linear fluctuation analysis of App. A, thus taking into account all correlations

explicitly.16

While we will not report on fits to Eq. (5.1), but instead rely on fits described under

items 1 and 3, we have carried out many such fits. They yield results fully consistent

with those we do report, but always lead to larger parameter errors.

3. A third type of fit we will consider is one in which Q2 incorporates the correlation

sub-matrix corresponding to each individual moment employed in the fit, but not

the cross-correlations between different moments. Full correlations are again to be

16 We find indeed that this leads to much larger errors than naive “χ2” errors would suggest.
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included via the linear fluctuation analysis described in App. A. We choose

Q2
block =

∑

w

∑

si
0
, sj

0

(

I(w)
ex (si0)− I

(w)
th (si0; ~p)

) (

C(w)
)−1

ij

(

I(w)
ex (sj0)− I

(w)
th (sj0; ~p)

)

, (5.2)

with Cw the covariance matrix of the set of moments with fixed weight w and s0

running over the chosen fit window range. The motivation for this form is that the

cross-correlations between two moments arise mainly because the weight functions

used in multiple-moment fits are in practice close to being linearly dependent (even

though, as a set of polynomials, of course they are not). This dependency might be

reinforced by the relatively large errors on the data for values of s toward m2
τ , because

it is primarily in this region that the weights ŵ0, ŵ2 and ŵ3 differ from each other.

A key observation is that it does not matter which fit quality Q2 one chooses,17 as long

as errors are propagated appropriately. Whatever the motivation for a particular choice,

such a choice is useful if it turns out to allow a reliable fit, and to reduce errors on the

fit parameters. We note that, of course, it is not possible to use the minimum value of

diagonal or block diagonal Q2 of Eqs. (5.1) and (5.2) obtained in such a fit in order to derive

a confidence level; only the relative size of minimum values compared between different fits

with the same choice of Q2 is meaningful.

VI. FITS

In this section, we will present the results from our fits, using the parametrization of the

theory explained in Sec. IV and employing the strategies of Sec. VB. All fits are based

on the original, unmodified OPAL data, including the OPAL normalization for the π-pole

contribution, which corresponds to a central value of 94.0 MeV for fπ.

Section VIA contains our “benchmark” fit, which is a standard χ2 fit of I(ŵ0)
ex (s0) for the

V channel. In this case, the fit quality is the standard χ2 function, which of course employs

the full I(ŵ0)
ex (s0) covariance matrix, generated from the covariance matrix of the original

OPAL data. We will also consider a combined fit of the same moment to the V and A

channels.

17 As long as Q2 is a positive-definite quadratic form in the differences I
(w)
ex (sk0)− I

(w)
th (sk0 ; ~p).
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In Sec. VIB we consider simultaneous fits to I(ŵ0)
ex , I(ŵ2)

ex and I(ŵ3)
ex , again for both the

pure V channel and combined V&A channel cases. As already discussed in Sec. VA, we

find that standard χ2 fits are not possible. Our best results in the V channel originate from

minimizing the fit quality (5.2). Our main conclusion is that, presumably because of the

strong correlations between different moments, these type of fits do not help reduce the error

on αs significantly. They do, however, provide cross-checks, verifying that our ansatz (2.15)

also describes moments other than just I(ŵ0)
ex , including the non-strange component of Rτ ,

RV +A;ud(s0) = RV ;ud(s0) +RA;ud(s0) , (6.1)

which is proportional to I
(ŵ3)
ex,V+A(s0). They also give access to the V - and A-channel OPE

coefficients C6,V , C6,A, C8,V and C8,A.

In Sec. VIC we consider the additional errors originating from the truncation of per-

turbation theory, and in Sec. VID we show that our fits both give a good description of

RV+A;ud, and satisfy, within errors, the Weinberg and DGMLY V −A sum-rule constraints.

A. Fits with the weight ŵ0(x)

We begin with a standard χ2 fit to the V -channel w(s) = ŵ0(x) = 1 FESR. Fit results

are presented in Table 1, which shows all fit parameters, as well as the number of degrees

of freedom (dof), and the χ2 per degree of freedom. Errors are standard χ2 errors; errors

computed with Eq. (A5) are typically somewhat larger, but similar in size.

We observe that there is excellent stability for the results with smin = 1.4, 1.5 and

1.6 GeV2, with the errors getting somewhat larger at 1.6 GeV2. At values of smin ≥ 1.7 GeV2,

γV becomes very small and tends to go negative, which is clearly unphysical. However, within

errors such fits are always consistent with those shown in the table. We choose the results

obtained at smin = 1.5 GeV2 to fix our central values, and treat the spread of the fit results

for smin ranging from 1.4 to 1.6 GeV2 as an error. From this simple fit, we obtain for αs at

the τ mass the values

αs(m
2
τ ) = 0.307± 0.018± 0.004 (FOPT) , (6.2)

αs(m
2
τ ) = 0.322± 0.025± 0.004 (CIPT) ,

where the second error represents the variation with smin discussed above. We note that

there is good stability over the full range of smin values covered in Table 1. Since our fitting
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smin dof χ2/dof αs κV γV αV βV

1.3 53 0.44 0.320(23) 0.026(18) 0.42(50) 0.54(54) 2.85(30)

1.4 50 0.35 0.311(19) 0.019(13) 0.23(44) −0.29(64) 3.27(33)

1.5 47 0.36 0.307(18) 0.017(11) 0.16(42) −0.52(74) 3.38(38)

1.6 44 0.38 0.308(20) 0.018(15) 0.22(51) −0.47(82) 3.36(41)

1.7 41 0.38 0.305(19) 0.012(12) 0.03(51) −0.61(86) 3.41(41)

1.3 53 0.45 0.332(37) 0.037(27) 0.64(53) 0.57(58) 2.80(33)

1.4 50 0.36 0.326(27) 0.023(16) 0.35(48) −0.32(64) 3.27(33)

1.5 47 0.37 0.322(25) 0.020(13) 0.25(44) −0.57(73) 3.39(38)

1.6 44 0.38 0.323(27) 0.022(20) 0.31(57) −0.53(81) 3.38(41)

1.7 41 0.39 0.320(25) 0.014(13) 0.08(53) −0.68(85) 3.43(40)

TABLE 1: Standard χ2 fits to Eq. (2.3) with w(s) = 1, V channel. FOPT results are shown

above the double horizontal line, CIPT results below. Errors are standard χ2 errors; γV and βV in

GeV−2.

function is non-linear, in general χ2 errors are expected to be asymmetric. We have therefore

also computed asymmetric errors for all the fit parameters. We find that the error on αs

is nearly symmetric, and that only errors on κV and γV show a significant asymmetry. For

instance, we find, at smin = 1.5 GeV2, that, for FOPT,

αs(m
2
τ ) = 0.307+0.018

−0.021 , (6.3)

κV = 0.017+0.027
−0.007 ,

γV = 0.16+0.63
−0.34 GeV−2 ,

αV = −0.52+0.71
−0.78 ,

βV = 3.38+0.40
−0.36 GeV−2 .

This shows that omitting DVs from the fit, which is equivalent to setting κV = 0, would

lead to a poor fit. For CIPT the asymmetries show the same pattern.

In Fig. 2, we show the quality of the match between the fitted I
(ŵ0)
th (s0) and I

(ŵ0)
ex (s0), as

well as of the match between the experimental spectral function and its theoretical coun-

terpart in which parameter values are obtained from the FESR fit for smin = 1.5 GeV2.
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FIG. 2: Left panel: comparison of I
(ŵ0)
ex (s0) and I

(ŵ0)
th (s0) for the smin = 1.5 GeV2 V-channel fits of

Table 1. Right panel: comparison of the theoretical spectral function resulting from this fit with the

experimental results. CIPT fits are shown in red (dashed) and FOPT in blue (solid). The (much

flatter) black curves display only the OPE parts of the FOPT (solid) and CIPT (dashed) fit results.

The vertical dashed line indicates the location of smin.

αs κV γV αV βV

αs 1 -0.69 -0.67 0.70 -0.62

κV -0.69 1 0.99 -0.47 0.43

γV -0.67 0.99 1 -0.48 0.43

αV 0.70 -0.47 -0.68 1 -0.98

βV -0.62 0.43 0.43 -0.98 1

TABLE 2: Parameter correlation matrix for the FOPT fit with smin = 1.5 GeV2 shown in Table 1.

The left panel shows the FESR fit itself, while the right panel shows the results of this

comparison for the spectral function case. We emphasize that the spectral function was not

part of the fit; the agreement between the theoretical and experimental versions of ρV (s)

is an output. Agreement with data is good in the full fit window s0 ≥ smin = 1.5 GeV2.

The black curves, in contrast, show the OPE parts of the theoretical curves, i.e., the curves

obtained by removing the DV contributions from the blue and red curves. It is clear that

DVs are needed to give a good description of the data for I(ŵ0)
ex and the spectral function
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itself, in agreement with our conclusion based on Eq. (6.3).

There are strong correlations between the parameters shown in Table 1 and Eq. (6.3).

Such strong correlations are present in all our fits, and are unavoidable, given the number of

fit parameters. We emphasize that this cannot be resolved by simply omitting the duality-

violating part from the theory – one cannot “improve” fits by throwing out physics that is

known to have an impact on those fits! In Table 2 we show the full parameter correlation

matrix corresponding to the FOPT result quoted in Eq. (6.2). The analogous matrix for the

CIPT result looks very similar.

We have also considered fits like those shown in Table 1, but including the contribution

coming from the logarithmic dependence of C4 on s. For the latter, we estimated the

quark-condensate contribution from the Gell-Mann–Oakes-Renner relation [35], and we took

〈asGµνG
µν〉 = 0.021 GeV4. We find that corresponding changes in the numbers in Table 1

are at most a tiny fraction of the fitting errors.

We performed a similar type of fit to the combination of V and A channels. If we use

all possible s0 values, we find that the standard χ2 fit function (involving the very strongly

correlated spectral integral covariance matrix) is very flat, admitting not just “physical”

solutions (consistent with those in Table 1), but also solutions that are clearly unphysical

(with, for instance, values for αs drifting down to unacceptably low values as a function of

smin). This happens for both CIPT and FOPT. Parameter errors for these solutions can be

very large, consistent with the flatness of the χ2 landscape, and there is a strong sensitivity

of central values to initial guesses for the parameter values.

However, if we thin out the s0 values i.e., use only every nth value of I ŵ0

ex (s0), for some

value of n > 1, we find that fits with n = 2, 3 or 4 are much more stable than the one

with n = 1 (no thinning) described above. In Table 3 we show our results for n = 3, which

is the choice leading to the most stable fits.18 The problem disappears when we use fit

quality (5.1), computing errors with Eq. (A5), but this method leads to significantly larger

errors.

Choosing again the fit with smin = 1.5 GeV2, we find for our combined V and A channel

18 Negative values for γV,A can appear because we use the analytic form of the integral in Eq. (2.14). Note,

however, that all values we find in the fits are consistent with a positive value, as physically required.
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fit the results

αs(m
2
τ ) = 0.308± 0.016± 0.009 (FOPT) , (6.4)

αs(m
2
τ ) = 0.325± 0.022± 0.011 (CIPT) ,

with the second error representing, as above, the variation over the neighboring smin values,

1.4 and 1.6 GeV2. The results reported in Tables 1 and 3 are in good agreement. We note

that the central values for γV shown in Table 3 are very small, compared with those in

Table 1, but given the errors there is no inconsistency. In Fig. 3 we show the quality of the

fit in the panels on the left, for V (top) and A (bottom), for smin = 1.5 GeV2. In the panels

on the right we show again the match between the experimental spectral functions and their

theoretical counterparts with parameter values obtained from the smin = 1.5 GeV2 FESR

fit. As before, black curves show only the OPE parts of the theoretical curves. Again, we see

that the data clearly confirm the presence of DVs, which are well described by our ansatz.
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smin dof χ2/dof αs κV,A γV,A αV,A βV,A

1.3 30 0.81 0.326(13) 0.0186(88) 0.18(35) 0.35(46) 2.95(27)

0.094(51) 1.15(35) 0.21(79) −3.42(45)

1.4 28 0.69 0.317(15) 0.0140(68) 0.01(33) −0.31(58) 3.29(31)

0.085(39) 1.06(30) −0.5(1.1) −3.06(61)

1.5 26 0.69 0.308(16) 0.0134(69) −0.01(34) −0.67(70) 3.46(36)

0.110(71) 1.15(35) −1.1(1.1) −2.73(59)

1.6 24 0.73 0.308(17) 0.0150(98) 0.06(41) −0.64(74) 3.45(38)

0.15(13) 1.29(45) −1.2(1.2) −2.67(65)

1.7 22 0.68 0.304(18) 0.0131(99) 0.00(42) −0.80(77) 3.51(38)

1.0(2.0) 2.14(84) −2.3(2.1) −2.1(1.1)

1.3 30 0.85 0.346(19) 0.026(12) 0.37(34) 0.40(51) 2.89(30)

0.072(35) 1.01(31) 0.10(85) −3.38(48)

1.4 28 0.72 0.336(21) 0.0170(86) 0.10(35) −0.36(56) 3.30(30)

0.075(33) 0.99(28) −0.5(1.1) −3.04(61)

1.5 26 0.71 0.325(22) 0.0152(80) 0.05(35) −0.73(67) 3.48(35)

0.101(66) 1.11(35) −1.2(1.0) −2.74(58)

1.6 24 0.75 0.324(23) 0.017(12) 0.11(44) −0.72(71) 3.47(37)

0.14(12) 1.25(45) −1.3(1.1) −2.66(62)

1.7 22 0.70 0.318(23) 0.014(11) 0.03(44) −0.88(75) 3.54(37)

1.0(1.9) 2.11(86) −2.3(2.1) −2.1(1.1)

TABLE 3: Standard χ2 fits to Eq. (2.3) for w(s) = 1, combined V&A channels. FOPT results are

shown above the double horizontal line, CIPT results below. The first line for each smin gives the

V DV parameters; the second line the A ones. Every third value of s0 starting at smin is included

in the fits. Errors are standard χ2 errors; γV,A and βV,A in GeV−2.
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FIG. 3: Left panels: comparison of I
(ŵ0)
ex (s0) and I

(ŵ0)
th (s0) for the smin = 1.5 GeV2 combined V&

A fits of Table 3 (top: V channel, bottom: A channel). Right panels: comparison of the theoretical

spectral function resulting from this fit with the experimental results. CIPT fits are shown in red

(dashed) and FOPT in blue (solid). The (much flatter) black curves display only the OPE parts of

the FOPT (solid) and CIPT (dashed) fit results. The vertical dashed lines indicate the location of

smin.

B. Multiple-weight fits with the weights ŵ0, ŵ2 and ŵ3

One would naively expect that by using more moments, more information could be ex-

tracted from the data. This would help reducing the errors reported in Tables 1 and 3.

Higher-degree weights, however, also require the introduction of additional OPE fit param-

eters. This, in combination with the very strong correlations, may turn out to reduce the

extra constraints placed on the parameters (αs and the DV parameters) entering the ŵ0

FESR by the additional moments. In addition, as we already pointed out in Sec. VA, it

appears to be impossible to perform standard χ2 fits to multiple moments.

Table 4 shows the results of simultaneous fits to moments with weights ŵ0, ŵ2, and ŵ3
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for the V channel using the fit quality (5.2), with errors computed from Eq. (A5); see Fig. 4

for a visual representation of the qualities of the resulting fits for the case smin = 1.5 GeV2.

Results are consistent with those presented in Sec. VIA, but errors are slightly larger.

smin dof Q2/dof αs κV γV αV βV 102C6,V 102C8,V

1.3 167 0.42 0.300(18) 0.050(35) 0.87(48) 0.38(77) 2.87(44) −0.39(40) 0.45(68)

1.4 158 0.33 0.304(17) 0.027(18) 0.46(43) −0.48(88) 3.35(48) −0.43(31) 0.67(47)

1.5 149 0.33 0.304(19) 0.021(12) 0.31(38) −0.7(1.1) 3.46(58) −0.46(33) 0.76(51)

1.6 140 0.33 0.305(23) 0.025(17) 0.41(43) −0.6(1.4) 3.41(74) −0.43(46) 0.68(76)

1.7 131 0.34 0.303(25) 0.0136(95) 0.10(39) −0.8(1.5) 3.47(73) −0.50(45) 0.88(71)

1.3 167 0.40 0.332(47) 0.035(32) 0.60(64) 0.5(1.0) 2.84(52) −0.27(59) 0.19(95)

1.4 158 0.32 0.327(31) 0.023(16) 0.34(46) −0.3(1.0) 3.26(54) −0.43(36) 0.58(58)

1.5 149 0.32 0.322(31) 0.020(13) 0.26(42) −0.6(1.3) 3.39(66) −0.50(37) 0.73(62)

1.6 140 0.33 0.323(42) 0.025(17) 0.37(47) −0.5(1.7) 3.35(89) −0.48(54) 0.66(98)

1.7 131 0.34 0.319(39) 0.014(10) 0.11(41) −0.7(1.7) 3.43(84) −0.57(48) 0.89(85)

TABLE 4: Fits to Eq. (2.3) with weights ŵ0,2,3, V channel, using fit quality (5.2). FOPT results

are shown above the double horizontal line, CIPT fits below. Errors have been computed using

Eq. (A5); γV and βV in GeV−2, C6,V in GeV6 and C8,V in GeV8.

Again, the black curves in Fig. 4 show the OPE parts of the theoretical curves, i.e., the

results obtained by removing the DV contributions from the blue and red curve results. For

the spectral function, I(ŵ0)
ex and I(ŵ2)

ex , it is again clear that no good description of the data can

be obtained without a model for DVs. This is not the case for the doubly-pinched moment

I(ŵ3)
ex . In this case, one would expect that a reasonably good fit can be obtained without

DVs, for values of smin down to somewhere below ∼ 2 GeV2. This is consistent with the

results of Ref. [12] for various doubly pinched weights, and, for the doubly pinched kinematic

weight, also with the results of Refs. [5, 6]; in those cases, reasonably good matches for the

sum of the vector and axial channels were obtained without the inclusion of DVs. However,

one would also expect that a best fit can only be obtained by shifting the OPE parameters

relative to those reported in Table 4.
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FIG. 4: V -channel fits of Table 4, showing the theoretical and experimental versions of the moments

I(ŵ0) (top left), I(ŵ2) (top right) and I(ŵ3) (bottom left), for smin = 1.5 GeV2. Bottom-right panel:

comparison of the theoretical spectral function resulting from this fit with the experimental results.

CIPT fits are shown in red (dashed) and FOPT in blue (solid). The (flatter) black curves display

only the OPE parts of the FOPT (solid) and CIPT (dashed) fit results. The vertical dashed lines

indicate the location of smin.

An estimate similar to Eq. (6.2), using the fit with smin = 1.5 GeV2, leads to

αs(m
2
τ ) = 0.304± 0.019± 0.001 (FOPT) , (6.5)

αs(m
2
τ ) = 0.322± 0.031± 0.005 (CIPT) ,

which is in excellent agreement with Eq. (6.2). We see, however, that the simultaneous fit

to multiple moments does not help reduce the error. It is an interesting question whether

fit qualities other than those of Eqs. (5.1) and (5.2) exist that would lead to smaller errors.

Fits like those reported in Table 4 using fit quality (5.1) lead to consistent results, but with

significantly larger errors than those shown in the table.

Finally, in Table 5, we show the results of combined V&A channel fits, similar to those
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of Table 3, but for the weights ŵ0, ŵ2 and ŵ3. From this table, we obtain

αs(m
2
τ ) = 0.302± 0.015± 0.001 (FOPT) , (6.6)

αs(m
2
τ ) = 0.322± 0.024± 0.008 (CIPT) ,

with the second error again reflecting the variation over the range smin = 1.4 to 1.6 GeV2.

Comparing Table 5 with Table 4 we see that adding the A channel gives little extra infor-

mation (apart from estimates of the axial OPE and DV parameters). Adding the A channel

increases the central values of γV , but all parameter values are consistent between these two

tables within (sometimes substantial) errors. The fit with smin = 1.7 GeV2 is clearly not

meaningful (in particular for FOPT), and the errors indicate that at this value of smin, Q
2

is very flat in some directions in parameter space. Indeed, restricting the value of αs to

the value obtained at smin = 1.6 GeV2 leads to a good fit for the remaining parameters,

consistent with the unrestricted smin = 1.6 GeV2 fit, and with a value for Q2 almost equal

to the value reported in the table.

Let us next deduce some implications of the above fits for the breaking of the factorization

hypothesis in the D = 6 condensates. To begin with, we will assume that the D = 6 conden-

sates are dominated by their leading-order contribution. The corresponding contribution to

the V/A correlators is given by [2]:

C6,V/A =−8 π2as
〈

(ūγµ







γ5

1





tad)(d̄γµ







γ5

1





tau)
〉

(6.7)

−
8

9
π2as

∑

q=u,d,s

〈

(ūγµt
au+ d̄γµt

ad)(q̄γµtaq)
〉

+O(a2s) ,

where, in the first line, the upper Dirac structure γ5 corresponds to the V channel and the

lower 1 to the A channel. The two four-quark condensates can be parametrized in terms of

their factorization values by

〈(q̄iγµt
aqj)(q̄jγ

µtaqi)〉≡−
4

9
〈q̄iqi〉〈q̄jqj〉·ρ1 , (6.8)

〈(q̄iγµγ5t
aqj)(q̄jγ

µγ5t
aqi)〉≡

4

9
〈q̄iqi〉〈q̄jqj〉·ρ5 ,

where the parameters ρ1 and ρ5 would be equal to one if the vacuum-saturation approxima-

tion were exact. Further assuming that isospin breaking is small in the light u- and d-quark
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smin dof Q2/dof αs κV,A γV,A αV,A βV,A 102C6,V/A 102C8,V/A

1.3 104 0.66 0.305(11) 0.033(18) 0.57(37) −0.11(63) 3.15(37) −0.36(24) 0.51(38)

0.053(20) 0.78(23) −0.93(63) −2.81(36) 0.08(27) 0.26(52)

1.4 98 0.48 0.303(13) 0.023(12) 0.32(37) −0.76(77) 3.51(43) −0.45(23) 0.74(35)

0.082(41) 0.98(29) −1.30(75) −2.61(42) −0.12(41) 0.78(91)

1.5 92 0.47 0.302(15) 0.020(10) 0.24(35) −0.97(94) 3.61(51) −0.49(25) 0.82(40)

0.109(84) 1.11(40) −1.50(89) −2.51(49) −0.24(53) 1.1(1.3)

1.6 86 0.46 0.302(19) 0.024(16) 0.35(43) −0.9(1.2) 3.58(66) −0.48(36) 0.78(60)

0.19(20) 1.37(52) −1.7(1.2) −2.44(63) −0.36(74) 1.6(2.0)

1.7 80 0.41 0.277(35) 0.6(1.9) 2.3(2.1) −1.6(5.9) 3.9(3.1) −1.00(85) 1.7(1.9)

1.0(2.3) 2.02(84) −3.1(2.6) −1.7(1.4) −1.6(1.9) 5.7(7.0)

1.3 104 0.55 0.348(19) 0.0206(86) 0.22(30) 0.26(57) 2.98(32) −0.20(23) 0.19(34)

0.073(33) 1.02(30) −0.14(73) −3.41(41) 0.41(23) −0.49(43)

1.4 98 0.45 0.330(22) 0.0188(96) 0.18(35) −0.48(82) 3.36(45) −0.43(25) 0.61(40)

0.085(42) 1.03(29) −0.84(93) −2.87(52) 0.04(40) 0.30(86)

1.5 92 0.45 0.322(24) 0.0185(95) 0.18(34) −0.8(1.0) 3.51(55) −0.52(28) 0.77(47)

0.105(80) 1.11(40) −1.2(1.0) −2.66(58) −0.15(55) 0.8(1.3)

1.6 86 0.41 0.321(31) 0.023(15) 0.31(41) −0.7(1.4) 3.49(73) −0.51(40) 0.73(73)

0.18(19) 1.36(52) −1.4(1.4) −2.58(76) −0.28(80) 1.2(2.1)

1.7 80 0.42 0.317(37) 0.022(17) 0.29(43) −0.8(1.7) 3.54(86) −0.55(51) 0.81(96)

1.0(2.2) 2.13(88) −2.2(2.7) −2.1(1.4) −0.7(1.3) 2.7(4.4)

TABLE 5: Fits to Eq. (2.3) with weights ŵ0,2,3, combined V and A channels, using fit quality (5.2).

FOPT results are shown above the double horizontal line, CIPT fits below. Errors have been

computed with Eq. (A5); γV,A and βV,A in GeV−2, C6,V and C6,A in GeV6 and C8,V and C8,A in

GeV8. The first line for each smin gives the V channel OPE and DV parameters; the second line

the A channel ones. Every third value of s0 starting at smin is included in the fits.
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sector, that is 〈ūu〉 = 〈d̄d〉 ≡ 〈q̄q〉, Eqs. (6.7) and 6.8 imply

C6,V/A =
32

81
π2as 〈q̄q〉

2







2 ρ1 − 9 ρ5

11 ρ1





 . (6.9)

Inverting Eq. (6.9), on the basis of the results of Table 5, estimates of the parameters ρ1,5

can be deduced. As representative examples, for the central fits with smin = 1.5 GeV2, one

obtains:

ρ1=− 1.4± 3.2 , ρ5 = 3.3± 1.5 (FOPT) , (6.10)

ρ1=− 0.9± 3.1 , ρ5 = 3.4± 1.5 (CIPT) ,

where 〈q̄q〉(m2
τ ) = − (272MeV)3 [33], together with our results for αs(m

2
τ ), has been

employed. The central results of Eq. (6.10) display sizable deviations from the factorization

values ρ1 = ρ5 = 1, though, given the large uncertainties, the significance is not very high.

The employed perturbative resummation scheme does not seem to play a big role for the

condensate or DV parameters, suggesting that this choice is mostly compensated for by the

differing αs values.

C. Errors from truncating perturbation theory

One of the uncertainties afflicting any determination of αs is that perturbation theory

needs to be truncated, irrespective of whether the CIPT or FOPT resummation scheme is

used for the truncated series. As already mentioned in Sec. II, we use the known values of

cn1 up to n = 4, together with the estimate c51 = 283. We assign a 100% error, ±283, to

this estimate, using this as a measure of the truncation uncertainty.

For the fits presented in Eqs. (6.2), (6.4), (6.5) and (6.6) we find that this variation of c51

leads to a shift of at most ±0.006 in αs(m
2
τ ); for Eq. (6.2) the shift is ±0.005. The shifts in

other parameters are also small (well within fitting errors).

D. Consistency with the V + A and V − A chiral sum rules

While Figs. 2–4 show that the parameter values obtained from the fits corresponding to

these figures give a good description of the data, with those parameter values in hand one
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FIG. 5: RV+A;ud(s0) as a function of s0, with smin = 1.5 GeV2 theory curves from Table 5 for

CIPT (dashed red curve) and FOPT (solid blue curve).

may also consider other quantities. The total non-strange scaled V + A branching fraction

RV+A;ud (cf. Eqs. (2.5), (2.7) and (6.1)) has always played a central role in the study of

hadronic τ decays. In particular, following Refs. [5, 6], we may consider RV+A;ud(s0) for

a hypothetical τ of mass-squared m2
τ = s0, as a function of s0. We show our version of

this quantity in Fig. 5, using the parameter values for the fit with smin = 1.5 GeV2 of

Table 5, the only fit reported that simultaneously yields all parameters needed to evaluate

RV+A;ud(s0).
19 Clearly, our result compares well with the fits shown in Fig. 10 of Ref. [6],20

especially keeping in mind that in Fig. 5 we only show errors on the experimental spectral

integrals, and not on the theory curves. Both CIPT and FOPT describe the data well down

to s0 = 1.5 GeV2. We used the same values for SEW = 1.0194 and |Vud|
2 = 0.9512 as

Ref. [6] in order to plot RV+A;ud(s0). In view of the discussion in Ref. [12] of the analysis

of Refs. [5, 6], we conclude that our fits pass the test of RV+A;ud(s0) much better than the

original analyses of Refs. [5, 6], and over a wider range of s0 than the alternate, self-consistent

fits obtained ignoring DVs in Ref. [12]. We emphasize, though, that it is not sufficient to

find a satisfactory description of this quantity only – at the very least all FESRs used in the

19 We included the pion-pole contribution to the longitudinal part in Eq. (2.7) in both the data points and

the theory curves in Fig. 5.
20 For an early investigation of this type, see Ref. [37].
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FIG. 6: First (left, in GeV2) and second (right, in GeV4) Weinberg sum rules. Data are used for

s ≤ ssw, while the DV ansatz (2.15) with values from Table 5 for smin = 1.5 GeV2 has been used

for s ≥ ssw. FOPT figures are shown; CIPT figures look essentially identical.

fits should show a similarly good match between experiment and theory as a function of s0,

as was shown to be the case for our fits in Secs. VIA and VIB above.

We may perform a similar test on the fits reported in Table 4. Of course, in that case

only V -channel parameters are available, so one should consider the corresponding ratio

RV ;ud as a function of s0. For the V channel, RV ;ud(s0) coincides (up to the overall factor

12π2SEW |Vud|
2) with I(ŵ3)

ex (s0). The corresponding match between data and theory for smin =

1.5 GeV2 is shown in the left bottom panel of Fig. 4.

We can also test our results by considering how well they satisfy the classical chiral V −A

sum rule constraints represented by the two Weinberg sum rules [15] and the DGMLY sum

rule for the π electromagnetic mass splitting [16]. These tests focus specifically on the DV

part of our spectral functions, since the OPE for the V −A correlator (and hence the OPE

part of the spectral ansatz) has no D = 0 contribution and D ≥ 2 OPE contributions to

ρV/A(s) are tiny, and can be ignored.

Weinberg’s sum rules can be written as

∫ ∞

0
ds
(

ρ
(1+0)
V (s)− ρ

(1+0)
A (s)

)

=
∫ ∞

0
ds
(

ρ
(1)
V (s)− ρ

(1)
A (s)

)

− 2f 2
π = 0 , (6.11)

∫ ∞

0
ds s

(

ρ
(1+0)
V (s)− ρ

(1+0)
A (s)

)

=
∫ ∞

0
ds s

(

ρ
(1)
V (s)− ρ

(1)
A (s)

)

− 2m2
πf

2
π = 0 ,

where we assumed, as before, that we can neglect terms of order mimj with i, j = u, d, even

though there is a term of order mimjα
2
s linearly divergent in s0 in the second sum rule. The

fact that this term is still very small at s0 = m2
τ amounts to the observation that the chiral
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symmetry breaking terms in the second of Eq. (6.11) are not visible in the data. This means

that in our test of the second sum rule we can assume ourselves to be effectively in the chiral

limit, in which the divergence does not appear. In Fig. 6 we show the integrals in Eq. (6.11)

as a function of the “switch point” ssw below which experimental spectral data is used and

above which the difference of the V and A DV ansätze of Eq. (2.15) is employed for ρV−A(s).

The DV contributions were obtained using the DV parameter values of Table 5. If the DV

ansatz is, as we have assumed, reliable in the window of s0 employed in the FESR fits which

produce these DV parameter values, the V − A sum rules should be satisfied for all values

of ssw lying in this s0 fit window. We see that this condition is well satisfied for both of the

Weinberg sum rules. The errors shown are those from the experimental (s < ssw) part of

the integral on the left-hand side of the sum rules only.

The first Weinberg sum rule is, of course, closely related to the difference of the V and A

ŵ0(x) = 1 FESRs. Therefore, the very good quality of the matches between the experimental

spectral integrals and our theoretical representations thereof precludes the first Weinberg

sum rule being badly broken by our fits. The second Weinberg sum rule (as well as the

DGMLY sum rule discussed below) can be viewed as a prediction, because the fits of Table 5

do not involve any weight with a term linear in s. We also note that if indeed we take the

second sum rule in the chiral limit, we should omit the term −2m2
πf

2
π . The value of this

term is −0.00034 GeV4, and it can thus indeed safely be dropped from the sum rule — the

difference would not be visible in the figure.

Finally, we consider the DGMLY sum rule for the π electromagnetic mass difference. To

leading order in the chiral expansion, one has that

∫ ∞

0
ds s log (s/µ2)

(

ρ
(1)
V (s)− ρ

(1)
A (s)

)

= −
8πf 2

0

3α

(

m2
π± −m2

π0

)

, (6.12)

where α is the fine-structure constant, and f0 the π decay constant in the two-flavor chiral

limit. On the right-hand side we take as input the values f0 = 87.0 ± 0.6 MeV [38] and

m2
π+ − m2

π0 = 0.00126 ± 0.00008 GeV2 [19].21 Because of the second Weinberg sum rule,

the left-hand side of Eq. (6.12) is, in fact, independent of the scale µ. In Fig. 7 we show

the left-hand and the right-hand sides of Eq. (6.12), as a function of ssw. The left-hand

side is represented by the data points, while the gray band represents the right-hand side,

21 Our uncertainty on the electromagnetic contribution to the difference m2
π+ −m2

π0 comes from an estimate

of the contribution of mu −md to the pion mass difference [39].
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FIG. 7: The DGMLY π electromagnetic mass difference sum rule: left-hand side (data points)

and right-hand side (gray band) of Eq. (6.12), as a function of ssw, in GeV4. Data are used for

s ≤ ssw, the DV ansatz (2.15), with fit parameter values from the smin = 1.5 GeV2 entries of

Table 5, for s ≥ ssw. The FOPT figure is shown; the CIPT figure is essentially identical. The gray

band represents an estimate of the error on the right-hand side of Eq. (6.12).

including the error resulting from the uncertainties in f0 and the pion electromagnetic mass

difference. As for the Weinberg sum rules, the integral on the left-hand side is computed

using experimental data for s ≤ ssw, and the DV ansatz, with DV parameters from the

smin = 1.5 GeV2 entries of Table 5, for s ≥ ssw. The errors shown again come from the

experimental data part of the integral only. We chose µ2 = 2.5 GeV2, which makes the

errors in the figure relatively small. For lower values of µ2 the errors are larger for larger

ssw, but the results are consistent with Eq. (6.12) being satisfied for all µ2 between 1.5 GeV2

and m2
τ .

One might consider using these sum rules as a further constraint on the DV parameters.22

Of course, this can only be done for combined V&A fits, which requires us to assume that

the larger of the two smin values for the V and A channels still lies sufficiently far below m2
τ

22 See, for instance, Ref. [36], where, however, the difference V −A was modeled with an expression of the

form (2.15). Given the results of Tables 3 and 5, such a parametrization does not seem to be favored by

the data. In the present work we avoid any additional assumptions about the relations between the DV

parameters in the V and A channels by introducing separate DV parameters for each channel.
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to make such a combined fit, using our DV ansatz in both channels, reliable. Since in this

work our primary results are obtained from purely V -channel fits, which do not require this

assumption, we postpone this possibility to a future investigation.

VII. SUMMARY OF RESULTS

Our most stable results come from fits to only the V channel. Moreover, since we need

to include a model for DVs, using only the V channel avoids the additional assumption that

our ansatz already adequately describes the A-channel data in the interval between 1.5 GeV2

and m2
τ . We emphasize, however, that all the results from our combined V and A channel

fits are consistent with those from our V -channel analyses. In addition, they pass several

further V + A and V −A channel tests, as demonstrated in Sec. VID.

In view of these observations, we will choose the fit to I(ŵ0)
ex in the vector channel as our

central result. Adding the errors from the fit, the variation of smin and the variation of c51

in quadrature, we find

αs(m
2
τ ) = 0.307± 0.019 (MS, nf = 3, FOPT) , (7.1)

αs(m
2
τ ) = 0.322± 0.026 (MS, nf = 3, CIPT) .

We do not average over CIPT and FOPT results, because we believe that it is useful to see

the difference between values for αs obtained with the two resummation schemes after all

non-perturbative effects have been consistently taken into account. Running these values

up to the Z mass MZ yields [40]23

αs(M
2
Z) = 0.1169± 0.0025 (MS, nf = 5, FOPT) , (7.2)

αs(M
2
Z) = 0.1187± 0.0032 (MS, nf = 5, CIPT) ,

where we symmetrized the slightly asymmetric errors one obtains after running up to the Z

mass.

These values can be compared to those obtained by OPAL from the same data [6]. The

OPAL values at the τ mass are

αs(m
2
τ ) = 0.324± 0.014 (MS, nf = 3, FOPT, OPAL) , (7.3)

23 The specifics of the evolution to the Z mass are as discussed in Ref. [8].
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αs(m
2
τ ) = 0.348± 0.021 (MS, nf = 3, CIPT, OPAL) ,

where we added the experimental and theoretical errors quoted by OPAL in quadrature. We

observe the shift to lower central values, with somewhat larger errors that follow from using

our new framework for analyzing the data. We also note that our CIPT and FOPT values

are somewhat closer, and that, because of the larger errors, the difference between our two

values for αs is less significant.

VIII. CONCLUSION

In this article, we provided a new framework for the extraction of αs and other OPE

parameters from hadronic τ decays. This new framework combines two elements that have

not been taken into account in the “traditional” analysis of hadronic τ decays. One is a

consistent treatment of the OPE, as discussed in Ref. [12], and the other is a detailed quan-

titative estimate of the effect of violations of quark-hadron duality, using a parametrization

proposed in Refs. [27, 29]. As explained in detail in Secs. III and IV, these two elements are

intricately intertwined.

Our new framework comes with the price of introducing four new fit parameters for each

channel, the vector and axial-vector DV parameters. Nevertheless, we demonstrated that

our method is feasible by presenting a rather complete analysis based on the OPAL data

for the V and A spectral functions [6]. With the larger number of parameters, and the

corresponding need to vary s0 away from m2
τ , it should come as no surprise that our errors

are typically larger than those found in earlier analyses, which simply did not take DVs into

account quantitatively. We emphasize that this means that the systematic errors of those

earlier analyses were understimated – we believe significantly so in some cases.

Our analysis leads us to a new estimate for both the central value of αs and the error,

which, in our opinion, should be interpreted as superseding previous estimates in the liter-

ature; for our result, based on OPAL data, see Sec. VII. We found our most reliable fits

to be those of the V channel, although fits including also the A channel lead to results

consistent with our most precise V -channel fits. As our primary concern in this article

is with previously underestimated non-perturbative effects, we presented results for both

contour-improved as well as fixed-order perturbation theory. Our analysis was based on the

original OPAL data, unmodified for subsequent changes in the various exclusive branching
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fractions. This choice was made in order to facilitate interpretation of the differences in

our results from those obtained by OPAL. With this choice, these differences are solely the

result of differences in the analysis method. We plan to present an analysis of OPAL data

with updated normalizations in the near future.

The accuracy of the results presented here depends in part on our ability to correctly

model the physics present in duality violations. Conservatively, our results can be seen as

providing a lower bound on the error introduced by ignoring duality violations. However,

the stability of αs, a purely perturbative parameter, across the range of moments analyzed

here provides strong support for the validity of our ansatz. We therefore surmise that not

only is the ansatz able to accurately describe the data, but also that it provides a reasonable

quantitative description of the physics of duality violations in the light-quark V and A

channels.

In cases with multiple weights, standard χ2 fits were not possible, and we performed

alternate fits, propagating errors as described in App. A. We point out, however, that our

final result is based on a standard χ2 fit to the moment I(ŵ0)
ex . All other fits yield results

completely consistent with this result, including the error on αs. The χ
2 error on αs obtained

from our fit to I(ŵ0)
ex is very close to that obtained with the method of App. A. Because

our parameter covariance matrix obtained with that method scales linearly with the data

covariance matrix, the error on αs will be reduced once the improved spectral function data

expected from BaBar and/or Belle becomes available.

We observe that a difference remains between the central values for αs obtained using

CIPT and FOPT, though this is less significant than the difference found previously by

OPAL, cf. Eq. (7.3). In this context, we note that, as mentioned already in Sec. IVA, a

term linear in s in any of the weights employed in Eq. (2.3) picks out the D = 4 term in the

OPE, which parametrizes the leading renormalon ambiguity in the perturbative expansion.

This, then, raises the question whether differences between the behavior of CIPT and FOPT

fits, including those associated with any dependence on the choice of weight, might be used

to constrain renormalon pole models that have been used previously to investigate the

resummation of the perturbative series for the various sum rules employed in the study of

hadronic τ decays [8, 11]. We plan to pursue such an investigation in a future work.
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Appendix A: Error propagation

Consider a fit quality

Q2 = [di − ti(~p)]C
−1
0,ij [dj − tj(~p)] , (A1)

in which di are the binned data, ti(~p) is a function that describes this data set for a set of

parameters ~p, and C0 is a positive-definite, symmetric, but otherwise arbitrary matrix. In

this Appendix, we use the summation convention for repeated indices. The parameters ~p

are determined by finding the global minimum of Q2, which satisfies

∂Q2

∂pα
= −2

∂ti(~p)

∂pα
C−1

0,ij [dj − tj(~p)] = 0 . (A2)

Varying, in this equation, the data by an amount δdi, and the parameters by δpα leads to

∂2ti(~p)

∂pα∂pβ
C−1

0,ij [dj − tj(~p)] δpβ +
∂ti(~p)

∂pα
C−1

0,ij

[

δdj −
∂tj(~p)

∂pβ
δpβ

]

= 0 . (A3)

If the fit is good, so that the deviations dj − tj(~p) are small, we may ignore the term with

the second derivative, leading to

δpα = A−1
αβ

∂ti(~p)

∂pβ
C−1

0,ij δdj , (A4)

or, for the covariance matrix 〈δpαδpβ〉,

〈δpαδpβ〉 = A−1
αα′A−1

ββ′

∂ti(~p)

∂pα′

∂tj(~p)

∂pβ′

C−1
0,ikC

−1
0,jℓ Ckℓ , (A5)
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in which

Aαβ =
∂ti(~p)

∂pα
C−1

0,ij

∂tj(~p)

∂pβ
, (A6)

and

Ckℓ = 〈δdkδdℓ〉 (A7)

is the data covariance matrix. This provides us with an estimate for the full correlation

matrix for the parameter set ~p. We note that, if C0,ij is chosen to be equal to the data

covariance matrix Cij, this expression simplifies to

〈δpαδpβ〉 = A−1
αβ . (A8)

This is equal to the usual χ2 error matrix estimate, given by the inverse of one-half times

the second derivative of Q2 at its minimum, if, again, the fit is good enough to ignore terms

proportional to di − ti(~p).

[1] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Phys. Rev. Lett. 101, 012002 (2008)
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