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Abstract

Using a data sample of 2.59×107 ψ(2S) decays obtained with the CLEO-c detector, we perform

amplitude analyses of the complementary decay chains ψ(2S) → γχc1; χc1 → ηπ+π− and ψ(2S) →

γχc1; χc1 → η′π+π−. We find evidence for an exotic P -wave η′π amplitude, which, if interpreted as

a resonance, would have parameters consistent with the π1(1600) state reported in other production

mechanisms. We also make the first observation of the decay a0(980) → η′π and measure the ratio

of branching fractions B(a0(980) → η′π)/B(a0(980) → ηπ) = 0.064 ± 0.014 ± 0.014. The ππ

spectrum produced with a recoiling η is compared to that with η′ recoil.

PACS numbers: 13.25.Gv,14.40.Pq,14.40.Rt,14.40.Be

∗ Present address: Pacific Northwest National Laboratory, Richland, WA 99352
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I. INTRODUCTION

Hadronic charmonium decays, in which charm and anti-charm quarks annihilate into

gluons, provide an excellent opportunity to study light mesons. The combination of well-

defined initial states and the availability of a wide variety of final states allows for the

strategic selection of reactions to isolate and study different light meson systems. The

decays χc1 → ηπ+π− and χc1 → η′π+π−, in particular, have two interesting characteristics.

First, since the quark and SU(3) flavor of the η and η′ are relatively well-known, one

could, in principle, model these decays using what is known about the OZI rule and SU(3)

flavor symmetry and learn about the ππ isoscalar states recoiling against them. Such a

technique has been proposed for other χcJ decay channels [1].

Second, the decays χc1 → ηπ+π− and χc1 → η′π+π− provide an opportunity to search

for exotic JPC = 1−+ states in the ηπ and η′π systems. In fact, the only two-body S-wave

decays of the χc1 available in these channels necessarily have the ηπ or η′π system in a

configuration with JPC = 1−+. Two exotic candidates, the π1(1400) and the π1(1600), have

been reported in other production mechanisms to have decays to ηπ and η′π, respectively.

The π1(1400) has been reported primarily decaying to ηπ [2–5], while the π1(1600) has been

reported to decay to η′π [6, 7], b1π [8, 9], f1π [10], and ρπ [11].

We present amplitude analyses of the processes ψ(2S) → γχc1; χc1 → ηπ+π− and

ψ(2S) → γχc1; χc1 → η′π+π− in which we study the various ηπ and ππ resonances pro-

duced in the decays of the χc1. In Section II, we describe the data-selection process that

results in a sample of χc1 decays with estimated backgrounds below 5%. In Section III,

we describe our construction of amplitudes using the helicity formalism. Here we assume

that the χc1 → ηπ+π− and χc1 → η′π+π− decays proceed through a sequence of two-body

decays, where the intermediate states have well-defined quantum numbers. We pay special

attention to the treatment of the ππ S-wave, which utilizes independent experimental data

on ππ S-wave scattering [12]. We also describe our fitting procedure, based on the unbinned

extended maximum-likelihood method.

The highlights of our analysis, detailed in Section IV, are

• evidence for a P -wave η′π amplitude, which, when parametrized by an exotic JPC =

1−+ resonance, has properties consistent with those of the π1(1600) reported in other

production mechanisms;
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• the first direct observation of the decay a0(980) → η′π, a measurement of the ratio of

branching fractions B(a0(980) → η′π)/B(a0(980) → ηπ), and a characterization of the

a0(980) lineshape; and

• the observation of qualitative differences in the ππ system when it is produced against

the η or η′.

Finally, in Section V, we evaluate and discuss systematic errors.

II. DATA SELECTION

We select candidate events of the form ψ(2S) → γχc1; χc1 → ηπ+π− and ψ(2S) →
γχc1; χc1 → η′π+π− using 25.9 × 106 ψ(2S) decays collected by the CLEO-c detector at

the Cornell Electron Storage Ring. We reconstruct the η (η′) in three (six) different decay

topologies comprising 94.6± 0.7% (83.8± 1.8%) of its total decay width (Table I). We then

select the χc1 using the energy of the photon from ψ(2S) → γχc1.

Final state photons and charged pions are measured by the CLEO-c detector [13], which

covers a solid angle of 93%. The detector has a 1 Tesla superconducting magnet enclosing

two drift chambers and a ring imaging Cherenkov (RICH) system for tracking charged

particles and particle identification. Enclosed inside the solenoid are also a barrel and two

endcap CsI-crystal calorimeters. The energy resolution for 100 MeV (1 GeV) photons is

5.0% (2.2%), while the momentum resolution for charged tracks in the drift chambers is

0.6% at 1 GeV/c.

Charged tracks are required to have momentum p > 18.4 MeV/c and originate within

a cylindrical volume, with 20 cm length and 2 cm radius, centered around the interaction

point. The π± candidates are then required to have ionization losses (dE/dx) within 3σ of

those expected for charged pions. Photons reconstructed inside the calorimeters, with polar

angles | cos θ| < 0.79 and 0.85 < | cos θ| < 0.93, are required to have energy E > 20 MeV and

separation from charged tracks. Two-photon four-momenta are kinematically constrained

to select the π0 → γγ and η → γγ candidates, with a requirement that the respective

invariant mass is within 3σ of the π0 or η rest mass. Finally, the total four-momentum of

all of the final state particles of a given topology is kinematically constrained to the initial

ψ(2S) four-momentum and the χ2 of the resulting fit is required to satisfy χ2/d.o.f. < 5.
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TABLE I. The decay modes of the η and η′ that are used to reconstruct ψ(2S) → γχc1; χc1 →

ηπ+π− and ψ(2S) → γχc1; χc1 → η′π+π−, the branching fractions B of each decay mode [14], and

the final state topology reconstructed with the detector.

η(′) Decay Mode B [%] Final State

η → γγ 39.3±0.2 3γ 1(π+π−)

η → π+π−π0 22.7±0.3 3γ 2(π+π−)

η → π0π0π0 32.6±0.2 7γ 1(π+π−)

η′ → π+π−η; η → γγ 17.1±0.3 3γ 2(π+π−)

η′ → π+π−η; η → π+π−π0 9.9±0.2 3γ 3(π+π−)

η′ → π+π−η; η → π0π0π0 14.1±0.2 7γ 2(π+π−)

η′ → γπ+π− 29.3±0.6 2γ 2(π+π−)

η′ → π0π0η; η → γγ 8.5±0.3 7γ 1(π+π−)

η′ → π0π0η; η → π+π−π0 4.9±0.2 7γ 2(π+π−)

If multiple combinations of tracks and showers within an event pass all of these selection

requirements (which occurs for 1.6% of all selected events), only the combination with the

best χ2/d.o.f. is accepted.

To select the decays η → π+π−π0 and η → π0π0π0, the invariant mass of the three pions

must be between 540 and 555 MeV/c2 (see Fig. 1). Similarly, to select the η′ in its various

decay modes the invariant mass of its decay products must fall between 950 and 965 MeV/c2

(see Fig. 2). If multiple combinations of particles within an event can be used to form an

η (occurring in 0.9% of selected events), one of these combinations is chosen randomly. If

there are multiple η′ candidates (occurring in 1.4% of selected events), the event is discarded.

Since the decays η′ → π+π−η; η → π0π0π0 and η′ → π0π0η; η → π+π−π0 share the same

final state topology, no requirement is made on the internal η mass.

Specific backgrounds are further suppressed based on studies using a Monte Carlo (MC)

sample of inclusive ψ(2S) decays. For the ψ(2S) → γχc1; χc1 → ηπ+π− decay chain, the

dominant backgrounds are due to ψ(2S) → ηJ/ψ and ψ(2S) → γχc1; χc1 → γJ/ψ, where

J/ψ → µ+µ−. The first of these is suppressed by requiring the mass recoiling against the η
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FIG. 1. The invariant mass of η candidates after selecting a χc1 candidate and applying background

suppression criteria. Candidates in (a) are selected by requiring individual photon pairs be no more

than 3σ from the nominal η mass; the arrows in (b) and (c) indicate the region used to select the

η candidates.

be separated from the J/ψ mass by at least 20 MeV/c2. The second is only a background

for the η → γγ mode and is similarly suppressed using the masses recoiling against the γγ

combinations, which are required to be more than 35 MeV/c2 from the J/ψ mass.

The largest backgrounds in the ψ(2S) → γχc1; χc1 → η′π+π− decay chain occur in

the η′ → γπ+π− mode. We suppress J/ψ backgrounds, as above, by requiring the masses

recoiling against the γγ and π+π− systems to be more than 20 MeV/c2 away from the J/ψ

mass. In addition, we treat π+π− combinations as µ+µ− and require their invariant masses

be more than 15 MeV/c2 away from the J/ψ mass. There is also a substantial background

from ψ(2S) → π02(π+π−), which we reduce by requiring that no two showers in an event
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FIG. 2. The invariant mass of η′ candidates after selecting a χc1 candidate and applying background

suppression criteria. The arrows indicate the region used to select the η′ candidates.

be consistent with the π0 mass within 3σ. We also enhance the signal to background for the

η′ → γπ+π− mode by making a loose requirement that the π+π− invariant mass be between

335 and 895 MeV/c2, which is motivated by the apparent ρ dominance in the π+π− system.

One additional background for the ψ(2S) → γχc1; χc1 → η′π+π− decay chain with
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FIG. 3. The invariant mass distributions of the (a) ηπ+π− and (b) η′π+π− candidates from selected

ψ(2S) → γηπ+π− and ψ(2S) → γη′π+π− decays, respectively, after all background suppression

criteria have been applied. The solid arrows indicate the regions used to select the χc1 signals.

η′ → γπ+π− is from ψ(2S) → γχc0; χc0 → 2(π+π−) where the radiated photon converts

to an e+e− pair outside the tracking region. This is suppressed by requiring that the total

energy of the two resulting showers is not consistent with the energy of the photon from

ψ(2S) → γχc0, i.e., not between 225 and 295 MeV, and that the cosine of the angle between

the two showers is less than 0.97.

Figure 3 shows the invariant mass distributions of (a) the ηπ+π− and (b) the η′π+π−

candidates after combining all of the decay modes of the η and η′. We select the χc1

by requiring that the energy of the photon radiated from the ψ(2S) be between 155 and

185 MeV (indicated by the arrows in Fig. 3). Our final data samples consist of 2498 and

698 events in the ψ(2S) → γχc1; χc1 → ηπ+π− and ψ(2S) → γχc1; χc1 → η′π+π− decay

chains, respectively. The background is estimated by fitting the data in Fig. 3 using a reverse

Crystal Ball shape [15] to describe the signal. The background and χc2 peak are described by

a second order polynomial and a double Gaussian, respectively. Peaking backgrounds have

been subtracted by fitting the χc candidate mass distribution in η(′) mass sidebands; such

backgrounds are negligible in all cases except the η′ → γπ+π− decay mode. The estimated

signal purity for the ηπ+π− (η′π+π−) decay channel is 97.5% (94.6%) with an uncertainty

of 0.3% (1.3%).
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TABLE II. A list of χc1 decay modes for all possible isobars with J ≤ 4.

χc1 Decay Mode L Isobar JPC

a0π; a0 → η(′)π P 0++

π1π; π1 → η(′)π S,D 1−+

a2π; a2 → η(′)π P, F 2++

a4π; a4 → η(′)π F,H 4++

f0η
(′); f0 → ππ P 0++

f2η
(′); f2 → ππ P, F 2++

f4η
(′); f4 → ππ F,H 4++

III. AMPLITUDE ANALYSIS

We perform amplitude analyses to disentangle the substructure present in the χc1 →
ηπ+π− and χc1 → η′π+π− decays. We assume that the three-hadron decays of the χc1

proceed through a sequence of two-body decays, where one participant is the “isobar,” a

bound state of either η(′)π± or π+π− with total angular momentum J , and the other is a

stable, non-interacting meson (the π∓ or η(′)) produced with an orbital angular momentum

L with respect to the isobar. All possible χc1 decays through isobars with J ≤ 4 are listed

in Table II.

The general idea of an amplitude analysis is to fit the distribution of events observed

with the detector to a coherent sum of physically-motivated amplitudes that describes the

dynamics of the intermediate states. We can define I(x), the number of observed events per

unit phase space, as

I(x) =
∑

Mψ,λγ

∣

∣

∣

∣

∣

∑

α

V α
Mψ,λγ

AαMψ ,λγ
(x)

∣

∣

∣

∣

∣

2

, (1)

where α indexes the χc1 decay amplitudes and Mψ and λγ index the polarization of the

ψ(2S) and the helicity of the photon, respectively. We use x to denote a set of kinematic

variables, e.g., angles and invariant masses, that provide a complete description of the event.

The value of the decay amplitude at a location x in this multi-dimensional space is given

by AαMψ ,λγ
(x). The real fit parameters V α

Mψ ,λγ
determine the relative strengths of each χc1

9



decay amplitude.

Section IIIA discusses the construction of the decay amplitudes used in the fit. Sec-

tion IIIB discusses the application of the extended maximum likelihood technique to this

analysis in order to determine the optimal values of V α
Mψ ,λγ

that describe the data.

A. Amplitude construction

1. General amplitude structure

The amplitude for a given χc1 decay mode α depends on the set of observed final state

event kinematics x, the assumed polarization of the initial state ψ(2S), denoted Mψ, and

the helicity of the final state photon λγ. The general form is given by

AαMψ,λγ
(x) =

∑

λχ=±1,0

C(Mψ, λγ , λχ)
∑

M ′

χ=±1,0

D1∗
M ′

χ,−λχ
(φγ, θγ, 0)×

∑

M ′

L
,M ′

J

〈1M ′
χ|LM ′

L, JM
′
J〉Y

M ′

L
∗

L (θ′I , φ
′
I)Y

M ′

J
∗

J (θ′h, φ
′
h)p

LqJTα(s), (2)

where summations in the second line are performed over all possible values M ′
L and M ′

J , the

projections of L and J , respectively. We briefly provide a term-by-term description of this

expression.

The first factor in Eq. (2), C(Mψ, λγ, λχ), is used to transform the helicity amplitude

for the radiative decay into the multipole basis. The ψ(2S) → γχc1 radiative transition

is dominated by the electric dipole (E1) transition, while the magnetic quadrupole (M2)

transition contributes ≈ 3% [16] of the total rate. In our analysis, we use the E1 amplitude

to derive our results and check the sensitivity of the results to the presence of a small M2

amplitude. The E1 or M2 amplitude can be constructed with the following choice of C:

C(Mψ, λγ, λχ) =

√

3

8π
D1
Mψ ,λγ−λχ

(φγ, θγ , 0)×










(

δλγ ,1δλχ,1 − δλγ ,−1δλχ,−1 + (δλγ ,1 − δλγ ,−1)δλχ,0
)

for E1, or

(

δλγ ,1δλχ,1 − δλγ ,−1δλχ,−1 − (δλγ ,1 − δλγ ,−1)δλχ,0
)

for M2.
(3)

In order to describe the angular distribution of the final state particles we measure angles

in two coordinate systems which are depicted in Fig. 4 and related in Eq. (2) by the D-

function at the end of the first line. The angles θγ and φγ are the polar and azimuthal angle
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FIG. 4. The angles used to describe the initial ψ(2S) decay (a) and the subsequent decay of the

χc1 (b)

of the radiated photon in the ψ(2S) rest frame, where ẑ is given by the e+ beam direction

and ŷ is (arbitrarily) defined as upward in the laboratory. (The amplitude is uniform in φγ.)

The two spherical harmonics in the second line of Eq. (2) provide a description of the

angular distribution for the initial χc1 decay and the subsequent isobar decay for various

values of isobar-hadron orbital angular momentum L and isobar angular momentum J . The

angles θ′I and φ′
I are the polar and azimuthal angles of the isobar in the χc1-helicity frame,

defined as the rest frame of the χc1 with z′-axis along the photon momentum and y′-axis

perpendicular to the plane formed by the ψ(2S) and photon three-momenta. Finally, the

angles θ′h and φ′
h are the polar and azimuthal angles of h, one of the hadrons produced in

the isobar decay, after boosting the momentum of h in the χc1-helicity frame to the isobar

rest frame [17]. All values of M ′
L and M ′

J are summed with appropriate Clebsch-Gordan

coefficients to create the initial χc1 state with one unit of total angular momentum and z′

projection M ′
χ.

The “breakup momentum” in a decay of 1 → 2 particles is given by the momentum

of one of the produced particles in the rest frame of the parent. We denote the breakup

momentum of the initial χc1 decay and the secondary isobar decay by p and q, respectively.

Finally, the term T α(s), described in detail in the next section, is a function of the invariant

mass squared of the isobar and describes the two-body dynamics in the decay.
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To impose isospin symmetry in the decays χc1 → a±J π
∓, we write the aJπ amplitude as

AaJπMψ ,λγ
(x) =

1√
2

(

A
a+
J
π−

Mψ,λγ
(x) + A

a−
J
π+

Mψ ,λγ
(x)
)

, (4)

where the distinction between the two terms on the right-hand side is the interchange of the

π+ and π− four-momenta in the calculation of the relevant kinematic variables. A similar

symmetrization is used in the construction of the π1π amplitude.

2. Two-body dynamics

We use three different formulations of Tα(s) [in Eq. (2)] to describe the isobar decay

amplitude and phase as a function of s, the invariant mass squared of the isobar decay

products. For all intermediate states except the a0(980) and the ππ S-wave we use a Breit-

Wigner distribution,

Tα(s) =
1

m2
0 − s− im0ΓJ(s)

, (5)

with

ΓJ(s) = Γ0
ρ(s)

ρ0

[

BJ (q(s))

BJ(q0)

]2

, (6)

where m0 and Γ0 are the isobar mass and width, respectively. We define the breakup

momentum q0 ≡ q(m2
0). Likewise, the available phase space is given by ρ(s) = 2q(s)/

√
s,

and ρ0 ≡ ρ(m2
0). These factors are used in conjunction with BJ (q), a spin-dependent Blatt-

Weisskopf barrier penetration factor [18], to construct the mass-dependent total decay width

given in Eq. (6).

To describe the a0(980) line-shape we use a three-channel Flatté formula [19]. In addition

to the common decay modes a0(980) → ηπ and a0(980) → KK, we include a third decay

mode, a0(980) → η′π, to provide a consistent description for both the χc1 → ηπ+π− and

χc1 → η′π+π− data. The parametrization takes the form

Ta0(980)(s) =
1

m2
0 − s− i

∑

c g
2
cρc

, (7)

where m0 is the a0(980) mass and gc represents a coupling to one of the a0(980) decay modes:

ηπ, KK, or η′π. The factors ρc are the phase space available for each of the three different

final states. Following the technique suggested by Flatté to preserve analyticity at the KK

and η′π thresholds, we allow the phase space factors to become imaginary when s is below

threshold for a particular decay channel [19].
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FIG. 5. A diagram of the ππ scattering process (a) and the χc1 decay process (b). Both processes

may have intermediate pion or kaon loops. The dark grey interaction represents that obtained

from scattering data, while the light grey interaction is some unknown s-dependent production

amplitude in χc1 decay.

For the ππ S-wave, we utilize an analysis of ππ scattering data [12] that provides two

independent amplitudes for ππ → ππ and KK → ππ production mechanisms. Specifically,

we attempt to model both direct production of χc1 → ηππ with the ππ in an S-wave and

also the process χc1 → ηKK → ηππ where the KK S-wave intermediate state rescatters

into ππ S-wave. These two amplitudes, labeled Sππ and SKK respectively, are constructed

to be consistent with existing data in the region of ππ invariant mass below 2 GeV/c2, where

the S-wave is expected to be significant.

To account for the s-dependent differences between ππ scattering, from which the am-

plitudes are derived, and production in χc1 decay (see Fig. 5), the Sππ scattering amplitude

is rewritten in a form N(s)/D(s), and the numerator is replaced by the first two terms in a

series expansion

Sππ(s) =
1 + z(s)

D(s)
= S0

ππ(s) + c S1
ππ(s) (8)

where the conformal transform z(s) is given by

z(s) =

√
s+ s0 −

√

4m2
K − s

√
s+ s0 +

√

4m2
K − s

. (9)
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FIG. 6. The (a) magnitudes and (b) phases of both terms of the ππ → ππ (dashed and dotted, blue

online) amplitude and the KK → ππ (solid, red online) amplitude as a function of the two-pion

invariant mass squared.

The parameter s0, used to adjust the left-hand cut in the complex plane, is set to s0 =

1.5 GeV2/c4. Since the SKK amplitude only peaks in a narrow region of s, it is assumed

that a similar s-dependent modification of the production amplitude is not necessary. The

magnitudes and phases of the SKK , S
0
ππ, and S1

ππ amplitudes used in the fit are shown in

Fig. 6.

Given the definitions above, we can write an expression for the dynamical portion of the

ππ S-wave amplitude in the fit:

T(ππ)S (s) = S0
ππ(s) + c S1

ππ(s) + k SKK(s), (10)

where c and k are real parameters that determine the relative sizes of the components.

B. Fitting technique

The extended maximum likelihood method is utilized to determine the best model pa-

rameters to describe the data. The likelihood can be written as

L =
e−µµN

N !

N
∏

i=1

ζ(xi)I(xi)
∫

ζ(x)I(x)dx
, (11)

where x, as above, is a position in the multi-dimensional space that spans the event kine-

matics. The functions ζ and I describe the efficiency of the analysis criteria and the model-

predicted density of events in this space, respectively. The total number of observed events
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is N , and the model-predicted number of events is represented by

µ ≡
∫

ζ(x)I(x)dx. (12)

In practice one varies the fit parameters to minimize the function

−2 lnL = 2

(

∫

ζ(x)I(x)dx−
N
∑

i=1

ln I(xi)

)

+ κ, (13)

where κ is a constant term that is not included in the minimization procedure. The integral

on the right hand side of the equation is evaluated using MC techniques to determine the

average value of ζ(x)I(x). Namely, we generate an MC sample of Ng signal events that are

distributed uniformly in phase space. These events are subjected to our selection criteria

and yield a sample of Na accepted events. For the current study Na/N ≈ 60. From this

sample we can compute

∫

ζ(x)I(x)dx = V 〈ζ(x)I(x)〉 ≈ V
Ng

Na
∑

i=1

I(xi), (14)

where V is the volume of phase space that spans the event kinematics.

In the context of the model discussed in the previous section, I(x) is as given in Eq. (1).

Finally, after substituting Eq. (14) into Eq. (13), making a change of variables V α
Mψ ,λγ

→
V α
Mψ,λγ

/
√
V, and collecting constant terms into κ′, we can write the expression that is mini-

mized by the fitter:

−2 lnL − κ′ =

2

Ng

Na
∑

i=1

∑

Mψ,λγ

∣

∣

∣

∣

∣

∑

α

V α
Mψ ,λγ

AαMψ,λγ
(xi)

∣

∣

∣

∣

∣

2

−

2

N
∑

i=1

ln





∑

Mψ,λγ

∣

∣

∣

∣

∣

∑

α

V α
Mψ,λγ

AαMψ ,λγ
(xi)

∣

∣

∣

∣

∣

2


 . (15)

Note that κ′ is a constant that only depends on V and the number of events N ; therefore,

its actual value is not needed to construct a ratio of likelihoods (L) for two different models

that describe the same set of data.

In the fit, we constrain V α
1,1 = V α

1,−1 = V α
−1,1 = V α

−1,−1 for each decay amplitude. Recall

that the coefficients C defined in Eq. (3) ensure the proper linear combination of ψ(2S) and

photon helicities is used to generate the desired E1 or M2 transition amplitude.
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In order to compare the results of our unbinned fit with the data for a given kinematic

variable, we take the signal MC sample that passes our event selection criteria and weight

each entry in a histogram of the given variable by the function I(x), defined above. To isolate

contributions from various χc1 decay modes, we can restrict the sum used to compute the

weight I(x).

The results of the fit can be cast as an acceptance-corrected “fit fraction” for each χc1

decay amplitude α given by

Fα ≡
∫
∑

Mψ ,λγ

∣

∣

∣
V α
Mψ ,λγ

AαMψ,λγ
(x)
∣

∣

∣

2

dx
∫

I(x)dx
. (16)

The integrals of the amplitudes over phase space are evaluated using MC techniques, similar

to Eq. (14), except the sum is performed over the Ng generated MC events. Note that due to

interference between the decay amplitudes, AαMψ ,λγ
(x), the sum of the fit fractions,

∑

αFα,

is not constrained to unity.

We compute errors on the fit fractions by propagating the errors on the fitted values

of V α
Mψ ,λγ

through Eq. (16). We stress this point because such errors are not suitable for

estimating the statistical significance of amplitudes with relatively small fit fractions. We

obtain the statistical significance of amplitude α by computing the ratio of the likelihood

of the null hypothesis (Fα → 0) to the likelihood of our baseline fit, which is derived by

retaining known or possible η(′)π and ππ resonances that have a significance greater than

one standard deviation.

IV. RESULTS

Figures 7(a) and 7(d) display Dalitz plots from the χc1 → ηπ+π− and χc1 → η′π+π−

decays. We perform the amplitude analysis, discussed in the previous section, independently

on both the χc1 → ηπ+π− and χc1 → η′π+π− samples. In both cases our signal MC sample

includes all of the various η and η′ decay modes that we reconstructed in the data populated

according to their known branching fractions [14]. Figures 7(b) and 7(c), and Figs. 7(e)

and 7(f) show projections of the Dalitz plot for the χc1 → ηπ+π− and χc1 → η′π+π− data

samples, respectively, along with the baseline fit for each sample.

The projections of data and our baseline fits, separated into the various amplitudes,

are shown in Fig. 8. For those isobars with J > 0 we try multiple values of L (see Ta-
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FIG. 7. Dalitz plots and corresponding projections from the χc1 → ηπ+π− (a-c) and χc1 → η′π+π−

(d-f) decays, overlaid with the baseline fits (solid lines).

ble II); only in the case of f2(1270)η
(′) do we find a statistically significant contribution from

higher orbital angular momenta. We report the sum of these P -wave and F -wave contri-

butions as f2(1270)η
(′); the individual P and F wave fractions, as expected, have strongly

anti-correlated statistical and systematic errors. We also separate the various (ππ)Sη
(′) con-

tributions given in Eq. (10). In the fits to the χc1 → η′π+π− sample we fix the ππ S-wave

parameter c in Eq. (10) to zero; allowing this parameter to float yields a value that is statisti-

cally consistent with both zero and the value obtained in the higher-statistics χc1 → ηπ+π−

fits. In all cases the parameters describing the masses and widths of the intermediate res-

onances are fixed in our baseline fits to enhance the stability of the fit. Both the π1(1600)

and f4(2050) parameters are fixed to values that maximize the likelihood. We systematically

explore uncertainties on the parametrization of the amplitudes as discussed in Section V.

A quantitative summary of the baseline fits appears in Table III. From the fit one can

compute the total acceptance-corrected event yield in either the η′π+π− or ηπ+π− final

states, which is the denominator of Eq. (16). If we denote this quantity N(ηπ+π−) or

N(η′π+π−), respectively, then we can compute the branching fractions for χc1 to these final
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states, B(χc1 → ηπ+π−) and B(χc1 → η′π+π−), as

B(χc1 → η(′)π+π−) =

pN(η(′)π+π−)

Nψ(2S)B(ψ(2S) → γχc1)
∑

i Bi(η(′))
, (17)

where Nψ(2S) is the number of initial ψ(2S), 2.59 × 107, and we use B(ψ(2S) → γχc1) =

(9.2± 0.4)× 10−2 [14]. The sum over η and η′ branching fractions encompasses all η and η′

decay modes in our signal MC sample, indicated in Table I. The value p is the purity of the

data sample in the χc1 region in Fig. 3, which is obtained as discussed in Section II.

In what follows we discuss the results of the fits to each of the samples in detail, high-

lighting the key results obtained from each fit. For each χc1 decay mode, we also compute

the product B(χc1 → η(′)π+π−) × F , which can be interpreted as the branching fraction

for the χc1 decay to the isobar and spectator multiplied by the branching fraction for the

isobar to decay to the η(′)π± or π+π− final state. Dividing products with common factors

(discussed in Section IVC) yields χc1 and isobar branching ratios.

A. χc1 → ηπ
+
π
− decays

The ηπ± and π+π− invariant mass projections and corresponding amplitude contribu-

tions from the fit to the ψ(2S) → γχc1; χc1 → ηπ+π− sample are shown in Fig. 8(a,b). The

dominant amplitude in this data set is the a0(980), which, consequently, must be adequately

parametrized to obtain a satisfactory fit to the data. To determine the a0(980) parame-

ters, we exclude the data with π+π− invariant mass below 1.7 GeV/c2, which removes any

correlation with the π+π− S-wave amplitudes. The fit to this restricted data set includes

the a0(980), a2(1320) and f4(2050) amplitudes, and we allow all four a0(980) parameters

to float. The resulting a0(980) parameters are given in Table IV, where the first error is

statistical and the second error is systematic, obtained by trying various combinations of

ππ isobars to fit the region in π+π− invariant mass around 2.0 GeV/c2, a peak attributed

to the f4(2050) resonance in the baseline fit. The a0(980) Flatté distribution parameters,

which are consistent with a previous determination by CLEO [20], are subsequently fixed in

the baseline fit to the full data sample. It is worth noting that the a0(980) lineshape in ηπ

is rather insensitive to the a0(980) → η′π coupling gη′π. In fact, the fit prefers a coupling

of zero, but with large uncertainty. Our analysis of χc1 → η′π+π− data, presented later,
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FIG. 8. Invariant mass projections from the analysis of the χc1 → ηπ+π− (a,b) and χc1 → η′π+π−

(c,d) decays.

directly extracts information related to this coupling constant.

The ππ S-wave is parametrized as described in Eq. (10) with the parameters c and k

floating in the fit. In Table III we list the contributions of the three individual components

of the ππ S-wave. In principle, the magnitude and phase of the total ππ S-wave can be

constructed by using the entries in this table to normalize three components depicted in

Fig. 6.

In order to fit the π+π− invariant mass distribution around 2.0 GeV/c2, we tried various

known ππ resonances with J = 0, 2, and 4 and masses ranging from 2.0 to 2.3 GeV/c2. The

best fit is obtained with a single spin-four resonance that has parameters consistent with the
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TABLE III. Summary of results of the baseline fits. The first and second errors are statistical and

systematic, respectively. The third error, where reported, is from the external value of B(ψ(2S) →

γχc1). Amplitudes that are preceded by an asterisk (*) are not part of the baseline fits but have

been included to determine upper limits. The listed fit fractions and significances (Nσ) are obtained

when the amplitude is added to the baseline fits.

χc1 Decay Mode F [%] B(χc1 → η(′)π+π−)×F [10−3] Nσ

ηπ+π− - 4.97 ± 0.08 ± 0.21 ± 0.22 -

a0(980)π 66.2 ± 1.2± 1.1 3.29 ± 0.09 ± 0.14 ± 0.15 > 10

a2(1320)π 9.8± 0.8 ± 1.0 0.49 ± 0.04 ± 0.05 ± 0.02 9.7

(π+π−)Sη 22.5 ± 1.3± 2.5 1.12 ± 0.06 ± 0.13 ± 0.05 > 10

S0
ππη 12.1 ± 1.7± 5.6 0.60 ± 0.08 ± 0.28 ± 0.03 > 10

S1
ππη 3.4± 0.9 ± 1.5 0.17 ± 0.05 ± 0.07 ± 0.01 6.0

SKKη 3.1± 0.6 ± 0.4 0.15 ± 0.03 ± 0.02 ± 0.01 9.4

f2(1270)η 7.4± 0.8 ± 0.6 0.37 ± 0.04 ± 0.04 ± 0.02 > 10

f4(2050)η 1.0± 0.3 ± 0.3 0.05 ± 0.01 ± 0.02 ± 0.00 5.2

*π1(1600)π - < 0.031 0.7

η′π+π− - 1.90 ± 0.07 ± 0.08 ± 0.09 -

a0(980)π 11.0 ± 2.3± 1.8 0.21 ± 0.04 ± 0.04 ± 0.01 8.4

a2(1320)π 0.4± 0.5 ± 0.6 < 0.031 1.4

(π+π−)Sη 21.6 ± 2.7± 1.2 0.41 ± 0.05 ± 0.03 ± 0.02 10.2

S0
ππη

′ 7.0± 2.2 ± 2.3 0.13 ± 0.04 ± 0.04 ± 0.01 6.6

SKKη
′ 8.4± 1.5 ± 1.3 0.16 ± 0.03 ± 0.02 ± 0.01 7.5

f2(1270)η
′ 27.0 ± 2.9± 1.7 0.51 ± 0.06 ± 0.04 ± 0.03 > 10

*f4(2050)η
′ - < 0.010 0.4

π1(1600)π 15.1 ± 2.7± 3.2 0.29 ± 0.05 ± 0.06 ± 0.01 7.2
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TABLE IV. The values of a0(980) parameters compared to the previous CLEO analysis [20]. The

first error is statistical and the second error is systematic, as explained in the text.

Parameter [GeV/c2] Ref. [20] [GeV/c2]

m0 0.998 ± 0.006 ± 0.015 1.002 ± 0.018

gηπ 0.60 ± 0.02 ± 0.03 0.64 ± 0.05

gKK 0.56 ± 0.06 ± 0.09 0.52 ± 0.15

gη′π 0.00 ± 0.15 ± 0.07 -

f4(2050) state listed by the PDG [14]. The mass and width of the f4(2050), as determined

by our fit, arem0 = 2.080±0.025±0.010 GeV/c2 and Γ = 0.160±0.035±0.040 GeV/c2. The

systematic errors are obtained by varying the a0(980) parameters within the errors listed in

Table IV.

B. χc1 → η
′
π
+
π
− decays

The set of amplitudes used to fit the χc1 → η′π+π− data is listed in Table III, and the

corresponding fit projections are shown in Fig. 8(c,d). The dominant isobar in this χc1 decay

mode is the f2(1270), coupled with the η′ in both P and F waves. Two key results emerge

from the analysis of the η′π spectrum. First, a P -wave intensity is necessary to describe

the η′π± mass spectrum in the region of 1.7 GeV/c2. Second, we find that a0(980) → η′π

decays populate the η′π± region near threshold. We discuss both of these findings in the

subsections below.

1. Evidence of the P -wave η′π amplitude

A fit to the data without the χc1 → π1π amplitude is shown in Fig. 9(a). It poorly

describes the data in in the η′π invariant mass region near 1.7 GeV/c2 and greater than

2.3 GeV/c2 (due to the contribution from the isospin-conjugate channel). Our baseline fit

accounts for these deficiencies by introducing a χc1 → π1π amplitude where the π1 resonance

shape is described by Eq. (5) and the parameters for the mass and width are determined
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by the fit. Such a resonance has exotic quantum numbers, JPC = 1−+, and cannot be a qq̄

meson.

The statistical significance of the χc1 → π1π amplitude can be evaluated by examining

the ratio of maximum likelihoods for the two fits. If we define

Λ ≡ L(π1π excluded)

L(π1π included)
, (18)

then, in the absence of any true π1π amplitude, −2 lnΛ will approach, in the limit of infinite

statistics, a χ2 distribution with the number of degrees of freedom equal to the number

of additional free parameters in the fit that includes the π1π amplitude. As indicated in

the first line of Table V, the value of −2 lnΛ for the baseline fit with and without the π1π

amplitude is 53, and three additional free parameters are used to describe the π1π amplitude.

This results in a very small probability (≈ 10−11) that data are a fluctuation of the model

used in the fit to Fig. 9(a), which does not have a π1π amplitude.

In order to search for and quantify the significance of other non-exotic alternatives to

the π1π amplitude that is used in our baseline fit, we considered several alternative fits

to the data, enumerated 2-6 in Table V and described briefly here. Fit 2 replaces the

exotic amplitude with the a0(1450), a state that has a known η′π decay channel. Fit 3

adds an a2(1700) amplitude, which might also decay into the η′π final state. Fit 4 adds an

f0(1710) state in the ππ channel; heavier ππ states of various spins produce no significant

improvements in fit quality. Finally, fits 5 and 6 test the J = 1 assignment of the η′π state

by attempting to fit the data with a new a0 or a2 η
′π state whose mass and width are

floating in the fit. The fit returns a value of the mass and width of 2.5 GeV/c2 and 1.4 GeV

(1.6 GeV/c2 and 0.1 GeV) for the new a0 (a2) state, respectively. In the third column of

Table V we list the change in −2 lnL from fit 1, the baseline fit that does not include an

exotic amplitude. None of the alternate fits produces a change in likelihood as significant

as the fit that includes the π1π amplitude. Furthermore, we can test the significance of the

π1π amplitude in the presence of these alternate models by including this amplitude in each

of the alternate fits. The resulting values for −2 lnΛ are listed in Table V. Including the

π1π amplitude introduces just one extra degree of freedom since the mass and width of the

π1 are fixed to the values obtained in the baseline fit. The π1π amplitude is least significant

in the context of fit 5, but even in this fit the significance of the π1π amplitude is 4.7 (
√
22)

standard deviations.
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TABLE V. Table of alternate π1 fits. The difference in likelihood (cast as −2 ln(L1/Li), where i is the fit index) and number of additional

free parameters (Npar
i −Npar

1 ) for each fit when compared to fit 1 is listed on the left side of the vertical line. The values on the right side

of the vertical line are −2 lnΛ (see text for definition) and the number of additional free parameters when the π1π amplitude is included

(∆Npar). The baseline fit corresponds to fit 1 with the π1π amplitude included.

π1π amplitude excluded π1π amplitude included

Fit Description −2 ln(L1/Li) Npar
i −Npar

1 −2 lnΛ ∆Npar

1 Baseline fit without π1 – – 53 3

2 Fit 1 amplitudes and a0(1450) 8 1 47 1

3 Fit 2 amplitudes and a2(1700) 22 2 34 1

4 Fit 3 amplitudes and f0(1710) 30 3 27 1

5 Fit 1 amplitudes and a0 with floating m0, Γ 34 3 22 1

6 Fit 1 amplitudes and a2 with floating m0, Γ 32 3 23 1

7 Fit 1 amplitudes and non-resonant η′π P -wave 45 4 10 1
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FIG. 9. Projections of the η′π invariant mass for fits to the χc1 → η′π+π− data when the exotic

π1(1600) amplitude is excluded. Fits are numbered according to Table V. In all figures the sum of

all amplitudes in the fit is indicated by the solid black histogram.

It has been noted that intensity in the P -wave η′π scattering amplitude does not have a

unique interpretation in terms of QCD and/or hadronic degrees of freedom [21]. A complete

analysis of the amplitude and phase of the P -wave is needed. Unfortunately, it is impossible

to extract this information from the data in a model independent way due to the relatively

low statistics and three-body nature of this analysis. Furthermore, non-resonant η′π P -

wave interactions are not well constrained, which makes it difficult to systematically test

the significance of an exotic resonance in the presence of a non-resonant P -wave background.

In an attempt to probe the significance of the Breit-Wigner phase motion, we replace the

π1 Breit-Wigner parametrization in our baseline fit with an amplitude whose magnitude

matches that of a Breit-Wigner function but whose phase is constant (independent of s)

and a free parameter in the fit. In this fit, fit 7 in Table V, we also float the mass and

width of the Breit-Wigner shape that describes the magnitude of the amplitude. We obtain

a mass and width consistent with those obtained by introducing a resonant π1π amplitude
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FIG. 10. Invariant mass projections of a fit to the η′ππ data that uses an alternate parametrization

of the ππ S-wave. (See text for description).

and the improvement in the fit is 45 units for four additional parameters, which is not as

dramatic as is obtained by including a π1π amplitude. The significance of the π1π amplitude

in the presence of this non-resonant P -wave drops to 3 standard deviations. Our choice of

parametrization for non-resonant interactions in this test is somewhat arbitrary – other

choices may yield variations in the significance of the resonant π1π amplitude. While this

is suggestive of significant resonant behavior in the P -wave, such a definitive conclusion is

difficult to make without a complete understanding of non-resonant P -wave interactions.

We can, however, state that there is clear evidence for P -wave η′π interactions.

Finally, we examine possible correlations of the P -wave intensity with the parametrization

of the ππ S-wave. An examination of Fig. 8(d) suggests that the region of ππ invariant mass

below 1.0 GeV/c2 may not be well-described in the baseline fit. A natural concern is that

the significant π1π signal might be correlated with the ππ S-wave amplitude in this region.

To address this concern we perform two additional sets of fits. First, we exclude all data

with ππ invariant mass below 1.0 GeV/c2, remove the ππ S-wave amplitude from our fits,

and repeat the exercise outlined above to compare various alternate solutions without a π1π

amplitude. We find that including the π1π still produces the most significant improvement

in the likelihood. Second, we devise an alternate parametrization of the ππ S-wave that

is not derived from ππ scattering data. This parametrization utilizes a complex pole to

describe the broad ππ peak often called the σ in addition to Breit-Wigner resonances for the

f0(980) and f0(1370), with parameters set to those provided by PDG averages [14]. Such
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a technique of adding many resonances has been previously used to describe ππ S-wave

interactions [22]. The fit with this alternate ππ S-wave parametrization is shown in Fig. 10,

and the fit quality is improved in the region of ππ mass below 1 GeV/c2. We then repeat

fits 1 through 6 listed in Table V with this alternate ππ S-wave substituted into our baseline

fit; the results are qualitatively the same as those derived from our baseline analysis. The

corresponding value of −2 lnΛ for fit 1 is 56 units, and the least significant signal for the

π1π amplitude is in the context of fit 4, where the significance is 4.4 standard deviations.

To summarize, the best fit to the χc1 → η′ππ data is obtained when a π1π amplitude is

included, where the π1 is described by a Breit-Wigner lineshape with a mass and width of

1670±30±20 MeV/c2 and 240±50±60 MeV/c2, respectively. The significance of a P -wave

η′π amplitude is greater than 4 standard deviations under all attempted variations of the

fit, some of which are rather extreme and assume the existence of new conventional a0 and

a2 states. While our baseline fit assumes that the 1−+ η′π amplitude can be described by

a Breit-Wigner resonance, we cannot exclude other non-resonant P -wave η′π interactions

that may mimic a π1 resonance. Therefore, we conclude that evidence exists for a P -wave

η′π scattering amplitude, which, if parametrized by a single Breit-Wigner resonance, has a

mass and width consistent with the π1(1600) reported in other production mechanisms.

Motivated by reports of a π1(1400) observed in the ηπ spectrum [2–5], we test the sig-

nificance of an additional P -wave ηπ and η′π resonance that has the mass and width of

the π1(1400) reported in Ref. [14]. In neither the ηππ fit nor the η′ππ fit is the signal for

such a state robust under variations analogous to those in Table V, which were used to test

the significance of the π1(1600) amplitude. Averaging over the two charge conjugate decay

modes, we obtain the following 90% confidence level upper limits: B(χc1 → π1(1400)
±π∓)×

B(π1(1400)± → ηπ±) < 0.08 × 10−3 and B(χc1 → π1(1400)
±π∓)× B(π1(1400)± → η′π±) <

0.02× 10−3.

2. Observation of a0(980) → η′π decays

Figure 11 shows a projection of the η′π invariant mass for a fit that includes all amplitudes

in the baseline fit except the a0(980)π amplitude. This fit does a poor job of describing the

data near the η′π threshold. Our baseline fit corrects this by introducing an a0(980)π

amplitude, where the a0(980) lineshape utilizes the same Flatté parameters for the mass
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FIG. 11. Projection of the η′π invariant mass for a fit to the χc1 → η′π+π− data that excludes

the a0(980) amplitude. The value of −2 lnL for this fit, with one fewer free parameter, is 70 units

larger than the baseline fit.

and couplings to ηπ and KK channels obtained from the analysis of the ηπ+π− data. The

significance of the a0(980)π amplitude, when compared with this alternate fit, is 8.4 standard

deviations.

Like the studies above for the π1π amplitude, we try a variety of alternate fits that

include the a0(1450) and a2(1700) resonances in the η′π channel and the f0(1710) and

f2(1750) resonances in the ππ channel to describe the intensity at the η′π mass threshold.

The maximum change in −2 lnL observed for any alternate fit was 16 units, compared with

70 units when the a0(980)π amplitude is included. We can repeat this study with the π1π

amplitude excluded from the fit and similar results are obtained. Finally, we also study

the stability of the a0(980) amplitude when the alternate resonance-based parametrization

of the ππ S-wave, discussed above, is used. We find that the overall fit fraction of a0(980)

decreases to about 50% of the value obtained in our baseline fit; however, the signal remains

significant at the level of 6 standard deviations.

C. Branching ratios

Using the product branching fractions for the two final states, we can construct two

different types of branching ratios. If we divide products that contain a common ππ isobar,

then we can compare the production of this isobar in χc1 decay against an η and η′. If we
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FIG. 12. Comparison of the ππ spectra and the ππ S-wave contributions to the χc1 → ηπ+π− (a)

and χc1 → η′π+π− (b) decays.

divide products that contain a common η(′)π isobar, the result is measurement of the ratio

of ηπ to η′π branching fractions for that isobar. We discuss each of these types of branching

ratios below.

Since the η and η′ have a well known composition in both the quark and SU(3) flavor

bases, it may be valuable to examine ratios of branching fractions for χc1 decay to ππ

isobars and an η or η′. Figure 12 shows a comparison of the ππ spectra for the fits when

the recoil particle is an (a) η and (b) η′. The two components of ππ S-wave corresponding

to KK → ππ (SKK) and ππ → ππ (Sππ) scattering have been highlighted. There are

qualitative differences in the two ππ S-waves. Most notably, in the η′ recoil case, the SKK

amplitude dominates the Sππ amplitude producing a peak near the f0(980). However, for

the η recoil case, the interference between SKK and Sππ produces a dip near f0(980), which

is more clearly visible in the coherent sum of these amplitudes depicted in Fig. 8(b). A

compilation of branching ratios for all ππ isobars is listed in Table VI.

Table VII lists the branching ratios for ηπ and η′π decay channels of various isobars. The

fact that the a0(980) is below η′π threshold undoubtedly contributes to the small η′π to ηπ

branching ratio. The small a2(1320)π amplitude in our baseline fit yields an upper limit

that is consistent with previous measurements: B(a2(1320) → η′π)/B(a2(1320) → ηπ) =

0.037±0.006 [14]. Finally we can place a lower limit on B(π1 → η′π)/B(π1 → ηπ) by adding

a π1π amplitude to our fit to the ηππ data. This limit indicates that the η′π partial width

of the π1 is much larger than the ηπ partial width.
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TABLE VI. Branching ratios of the χc1 to various ππ states recoiling against η and η′.The errors

are statistical and systematic, respectively. Limits are set at the 90% confidence level. Correlations

in errors on the individual fit fractions have been accounted for in the error on the ratios.

χc1 Branching Ratio Value

(ππ)Sη
′/(ππ)Sη 0.37 ± 0.05 ± 0.06

SKKη
′/SKKη 1.03 ± 0.28 ± 0.17

Sππη
′/Sππη 0.11 ± 0.04 ± 0.04

f2(1270)η
′/f2(1270)η 1.39 ± 0.20 ± 0.11

f4(2050)η
′/f4(2050)η < 0.20

TABLE VII. Branching ratios and limits for the a0(980), a2(1320), and π1(1600) decays into the

η′π and ηπ decay modes. The errors are statistical and systematic, respectively, and the limits

are set at the 90% confidence level. Correlations in errors on the individual fit fractions have been

accounted for in the error on the ratios.

Branching Ratio Value

a0(980) → η′π/a0(980) → ηπ 0.064 ± 0.014 ± 0.014

a2(1320) → η′π/a2(1320) → ηπ < 0.065

π1(1600) → η′π/π1(1600) → ηπ > 9.1

V. SYSTEMATIC ERRORS

In general, the systematic uncertainties on the results of this analysis can be classified into

two broad categories: those that affect the measurement of the fit fractions (F) and those

that affect the measurement of the total branching fraction for χc1 → η(′)π+π−. Table VIII

presents a summary of the systematic errors on these quantities. Correlations are considered

when assigning systematic errors to branching ratios and products.

The total branching fraction of χc1 → η(′)π+π− is affected by uncertainties in the Monte

Carlo model of the track and photon efficiency, ǫππ− and ǫγ. We assume a 0.3% systematic
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TABLE VIII. Fractional systematic errors in percent on the measurements of χc1 → η(′)π+π−

branching fractions and amplitude contributions. See text for explanations.

Decay Mode Nψ(2S) ǫπ± ǫγ E1/M2 Bkg. Tα(s) Total Systematic

ηπ+π− 2.0 0.8 3.4 0.7 1.2 - 4.3

a0(980)π - - - 0.2 0.4 1.3 4.4

a2(1320)π - - - 0.9 7.1 7.6 11.2

(π+π−)Sη - - - 0.5 3.4 10.7 11.9

S0
ππη - - - 2.1 2.8 45.7 46.1

S1
ππη - - - 2.6 7.3 42.2 43.2

SKKη - - - 1.3 4.2 11.6 13.1

f2(1270)η - - - 0.9 5.9 6.2 9.6

f4(2050)η - - - 1.0 27.8 13.4 31.2

η′π+π− 2.0 1.2 2.9 0.6 2.0 - 4.3

a0(980)π - - - 1.0 9.4 13.1 16.7

(π+π−)Sη - - - 1.6 4.6 2.6 7.0

S0
ππη

′ - - - 1.3 21.3 24.1 32.5

SKKη
′ - - - 0.8 8.5 12.4 15.6

f2(1270)η
′ - - - 0.5 3.2 5.4 7.5

π1(1600)π - - - 2.7 10.3 18 21.4

error for each track and 1% systematic error each photon. The total error is obtained by

assigning a systematic error to each decay mode of the η or η′ and then constructing a

weighted average of these individual errors where the weights are given by the product of

the branching fraction and detection efficiency, i.e., a weight proportional to the number of

observed events, for each mode. Assuming that the systematic error is not dependent on

location of the event in the η(′)π+π− phase space, these errors cancel in the determination

of the fit fractions.

Background events have the potential to affect our analysis in two different ways. First,

our computation of the purity p of each sample obtained from fits to the spectra shown in
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Fig. 3 may be subject to systematic bias that would affect the measurement of B(χc1 →
η(′)π+π−). Second, because the background level is small and its angular distributions are

difficult to characterize, our fit does not include a background amplitude. It is assumed

that the background distributes itself among the various amplitudes thereby leaving the

fit fractions unchanged. We test this assumption and also probe the stability of our total

branching fraction measurement by relaxing event selection cuts and repeating the analysis.

Specifically, we relax the χ2/d.o.f. requirement; widen the invariant mass regions used to

select η, η′, and χc1; introduce some J/ψ background by reducing the effectiveness of the J/ψ

suppression criteria; and enhance the probability that photons reconstructed in the event

are actually decay products of π0 by reducing the effectiveness of the π0 veto requirement.

We take the largest deviation from our baseline analysis as the systematic error due to

background.

The construction of our amplitudes assumes the radiative transition ψ(2S) → γχc1 is

purely electric dipole E1. However, the contribution of magnetic quadrupole M2 amplitude

has been measured by CLEO [16] to be (2.76 ± 0.76)%. This slightly affects the angular

distribution of the radiated photon and the polarization of the χc1. We quantify the uncer-

tainty due to this assumption by repeating the analysis using the measured CLEO value and

assigning the deviation from our baseline analysis as the systematic error. The dominant

effect on the measurement of B(χc1 → η(′)π+π−) is due to the change in detection efficiency

of the radiated photon, while altering the polarization of the χc1 affects the fitted values of

F . While these two effects are independent, their source is fully correlated, and we take this

into account when obtaining product branching fractions.

The choice of parametrization for the two-body dynamics Tα(s) has the potential to

systematically bias the results. While the error in the total branching fraction due to such

variations is negligible, the individual fit fractions can be strongly affected by variations in

Tα(s). We vary, individually, the mass and width of the a2(1320) and f2(1270) within one

standard deviation as tabulated by the PDG [14] and repeat the analysis. We also vary the

parameters of the a0(980) according to the uncertainties listed in Table IV. The mass and

width parameters of the π1(1600) and f4(2050), which are fixed in our baseline analysis to

their best-fit values, are also varied by one standard deviation, and the analysis is repeated.

Finally, we test the sensitivity of our results to the parametrization of the ππ S-wave by

scaling the magnitude of this distribution by a value that ranges from unity to 1.2 or 0.8
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linearly with s. That is, we try various random linear changes in the shape at the 20% level.

In addition, we vary the parameter s0 in Eq. (9). The largest deviation from our baseline

fits within this set of variations is taken as the systematic uncertainty due to the amplitude

parametrization.

Finally, we must use as inputs the number of ψ(2S) events in the data sample and

branching fractions for the relevant η, η′, and ψ(2S) decays. The number of ψ(2S) decays is

known to a precision of 2%. The other branching fractions and their errors are taken from

the PDG review [14] and listed as a separate, external systematic error for each measured

quantitiy.

VI. CONCLUSIONS

We present an analysis of ψ(2S) → γχc1 → γη(′)π+π− decays in which we study the pro-

duction of various η(′)π and ππ intermediate states. Both channels exhibit a signal purity of

at least 95% and the majority of η and η′ decay modes are utilized in the analysis. The con-

tributions from various quasi two-body decays are extracted utilizing an unbinned maximum

likelihood fit that spans the phase space of relevant kinematic variables needed to describe

the decay. Two-body interactions in our model are parametrized by both Breit-Wigner and

Flatté distributions, and we utilize a parametrization of the ππ S-wave interactions that is

based on scattering data. The results presented here supersede those previously presented

by the CLEO Collaboration [20].

We find evidence for an exotic η′π P -wave scattering amplitude at the level of 4 standard

deviations under a wide variety of model variations. If we parametrize this amplitude as a

Breit-Wigner resonance we obtain a mass and width that is consistent with the π1(1600)

state reported in the literature. While the best description of the data is achieved with a

resonant π1π amplitude, it is impossible to exclude other mechanisms that contribute to

the η′π P -wave amplitude. In addition, the χcJ → η′π+π− data provide the first direct

evidence for the decay of a0(980) → η′π. We measure the ratio of branching fractions for

the η′π and ηπ decay channels of the a0(980). The χc1 → ηπ+π− data allow us to extract

the parameters of the a0(980) lineshape in the context of a three-channel Flatté distribution.

Finally we compare the ππ system when it is produced against an η to that produced against

an η′. Our model for the ππ S-wave interactions suggests that production via ππ → ππ S-
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wave scattering is suppressed with respect to KK → ππ scattering when the system recoils

against the η′. We also extract similar branching ratios for the other ππ resonances used in

the fit, the f2(1270) and f4(2050).
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[19] S. Flatté, Phys. Lett. B 63, 224 (1976).

[20] S. B. Athar et al. (CLEO Collaboration), Phys. Rev. D 75, 032002 (2007).

[21] A. P. Szczepaniak, M. Swat, A. R. Dzierba, S. Teige, Phys. Rev. Lett. 91, 092002 (2003).

[22] See for example: B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 95, 121802 (2005).

34


