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We briefly review the need to perform renormalization of inflationary perturbations to properly
work out the physical power spectra. We also summarize the basis of (momentum-space) renormal-
ization in curved spacetime and address several misconceptions found in recent literature on this
subject.
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I. Introduction. The inflationary universe [1] opens
an exciting window to observationally test fundamental
aspects of the theory of quantized fields in curved space-
time [2–5]. In a curved background, the vacuum energy
of quantum fields enters into the gravitational field equa-
tions. As is well known, infinities arise in the compu-
tation of vacuum energy, and other expectation values
quadratic in fields, due to the ultraviolet (UV) behav-
ior of the field theory. Therefore, the potential gravita-
tional effects of the quantum vacuum must be handled
with care. Methods have been developed to define reg-
ularization and renormalization procedures to physically
account for the effects of vacuum energy in free and in-
teracting quantum field theory in curved spacetime.
In the cosmological scenario, it was shown in the early

eighties that vacuum fluctuations can induce a primordial
spectrum of density perturbations during an inflationary
expansion. Remarkably, the calculated spectrum satis-
factorily accounts for the origin of the cosmic inhomo-
geneities that we observe in the present universe. Let ϕ
represent a generic field describing (scalar or tensor) per-
turbations during inflation. The quantum fluctuations of
ϕ can be quantified by the mean square fluctuation in
the vacuum state (see, for instance, [6])

〈ϕ2(~x, t)〉 =

∫

d3k|ϕk(t)|
2 ≡

∫ ∞

0

dk

k
∆2

ϕ(k, t) . (1)

where ϕk(t) is defined by the expansion in Fourier modes
of a free field operator

ϕ(~x, t) =

∫

d3k(A~kϕk(t) +A†

−~k
ϕ∗
k(t))e

i~k~x , (2)

where A~k and A†
~k
are creation and annihilation opera-

tors, such that A~k|0〉 = 0. In the last equality of Eq. (1)

we have defined the power spectrum ∆2
ϕ(k, t), which is

the quantity conventionally used in cosmology to quan-
tify the variance (1) . For a single k, the power spectrum
∆2

ϕ(k, t) is well defined. However, the formal variance

〈ϕ2(~x, t)〉 diverges in the UV. One could argue that this

UV divergence concerns ultrashort wavelength modes,
and it is not going to affect the predictions regarding the
finite range of wavelengths that we actually observe in
cosmic inhomogeneities. But in view of the fact that the
perturbations are a consequence of quantum field theory
in curved spacetime, it was proposed in [7–10] that the
physical power spectrum should be defined in terms of
the renormalized mean square

〈ϕ2(~x, t)〉ren =

∫ ∞

0

dk

k
∆̃2

ϕ(k, t) . (3)

They found that, when methods of renormalization in
curved space-time are applied, the power spectrum at
wavelengths of observational interest may be affected in
ways that can be tested by observations in the not-too-
distant future.
It has been argued recently that the renormalization

procedure used in [7–10] is not well-defined at the time
scales at which cosmic inhomogenities are created dur-
ing inflation, particularly at the time tk that each mode
crosses the Hubble sphere [11, 12]. In the present work,
we briefly summarize the basis of renormalization (in-
cluding its effects on the momentum-space power spec-
trum) in an expanding universe and address the criti-
cisms raised in [11, 12]. We believe that the arguments
and conclusions proposed in [11, 12] conflict with some of
the basic principles of renormalization in curved space-
time. The last paragraphs in sections II and III sum-
marize the arguments provided here in relation to the
criticism of [11, 12].
II. Renormalization in curved space-time. The renor-

malization of expectation values like those corresponding
to the mean square fluctuation and the stress tensor of
a quantized field in a curved space-time is more involved
than in Minkowski space, even for the simplest case of
a free field. This is rooted in the fact that in a gen-
eral curved space-time there are insufficient isometries to
uniquely determine a global vacuum state. Moreover, the
presence of space-time curvature yields new types of di-
vergences not present in Minkowski space. This is true
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for free as well as interacting fields.

It is instructive to briefly consider, in a general curved
space-time, an interacting scalar field ϕ with a λϕ4 in-
teraction term in its Lagrangian. In flat space-time, one
usually renormalizes such an interacting theory by going
to momentum-space and adding counter-terms to the La-
grangian that will cancel the regularized UV divergences
in the momentum space integrals corresponding to Feyn-
man diagrams. The latter method is not directly applica-
ble in a general curved space-time because of the absence
of a global and generally-covariant momentum-space ex-
pansion. However, this problem was overcome for a gen-
eral smooth curved space-time in [13] by making use of a
Riemann normal coordinate system (RNC) with its origin
at a given space-time point x′. Such a coordinate system,
based on the system of geodesics leaving the point x′, ex-
ists in any smooth space-time in a normal neighborhood
of x′ (i.e., one in which these outgoing geodesics do not
intersect). In a RNC, the metric infinitesimally close to
x′ is Minkowskian and has vanishing first derivatives with
respect to the space and time coordinates of the RNC.
In addition, the metric has a well defined expansion in
powers of the RNC coordinates y, which are defined for
each space-time point x in the normal neighborhood of
x′ by means of the tangent vector at x′ of the unique
geodesic that connects x′ to x and the invariant length
of that geodesic.

In [13], Bunch and Parker (BP) defined a local
momentum-space “Fourier” transform of the Feynman
propagator G(x, x′) based on an RNC with its origin at
x′. Working in a general curved space-time, they used
this local momentum-space method to evaluate the Feyn-
man diagrams necessary to renormalize the interacting

scalar field theory to second order in the interaction cou-
pling constant λ appearing in the λϕ4 self-interaction.
Dimensional regularization was used to replace the UV
infinities that are present in 4-dimensions by covariant
well-defined expressions. For the interacting theory, they
introduced into the Lagrangian the minimal set of gen-
erally covariant counter-terms necessary to absorb the
regularized UV “infinities” into the values of the con-
stant coefficients of these counter-terms. This process
leaves one with a Lagrangian having terms of the same
form as the original counter-terms, but with “renormal-
ized” constant coefficients that are assumed to be finite,
well-defined, and in principle measurable.

The terms that involve the curvature at the space-
time point x′ were shown to drop out of the final result.
This step is non-trivial and necessary for the renormal-
ized interacting theory to be covariant in a general curved
space-time. This calculation showed that interacting λϕ4

theory is renormalizable in a general curved space-time
to second order in λ. The reason for using the minimal

set of counter-terms is to alter the original Lagrangian as
little as possible, thus avoiding the arbitrary introduction
of interactions that are not necessary for renormalization.

They also calculated the leading terms of their lo-
cal momentum-space expansion of the propagator that

remain when λ = 0, (i.e., for the non-interacting,
free field). For example, for a minimally coupled free

field, ϕ, the local momentum-space Fourier transform of
|g(x)|−1/4G(x, x′)|g(x′)|−1/4 ≡ Ḡ(x, x′) has an asymp-
totic expansion for large k2 that is given by [13]

Ḡ(k;x′) ∼
1

−k2 +m2
+

R(x′)

6(−k2 +m2)2
+ · · · , (4)

where k is the 4-momentum, m is the mass of the field,
and the ellipsis (· · · ) includes terms that go as the third
and fourth powers of 1/(−k2 +m2). The coefficients of
those terms are formed from contractions of Riemann
tensors and their derivatives, evaluated at point x′, and
are given explicitly in Eq. (2.21) of [13], with k2 in their
results replaced by −k2 because we are using the oppo-
site metric signature, namely (+,−,−,−), in the present
paper. By carrying out the inverse Fourier transforma-
tion back to curved space-time, they were able to recast
this series into the form of the proper-time or heat kernel
expansion of Ḡ(x, x′) [14].
As is well known, the expectation values 〈Tµν(x

′)〉 of
the energy-momentum tensor of the free scalar field in
physical states can be found from the exact expression for
the Green function G(x, x′) by applying to G(x, x′) the
appropriate second-order differential operator that pro-
duces the expression for the operator Tµν(x

′) in the coin-
cidence limit as x → x′ and taking the expectation value
in the physical state of interest. From the asymptotic se-
ries for Ḡ(k;x′) discussed above, it is clear that the terms
in that series up to those that go as 1/(−k2 +m2)3, will
produce divergent contributions to 〈Tµν(x

′)〉 when the
Riemann normal coordinate y is taken to zero and the
dimension n is taken to the value 4 in the n-dimensional
Fourier transform. It can be seen that, when the two
spatial derivatives in Tµν are taken into account, the
first term in (4) gives a contribution to 〈Tµν(x

′)〉 that
has a quartic UV divergence that does not depend on
the curvature at x′, the second term has a quadratic UV
divergence that depends on the Ricci scalar curvature
R(x′), and the subsequent terms have logarithmic UV
divergences that depend in a more complicated way on
contractions and spatial derivatives of the Riemann ten-
sor, evaluated at x′.
It is also clear that these UV divergent contributions

to 〈Tµν(x
′)〉 have the same state-independent expression

in terms of the curvature tensor and its derivatives at x′.
The leading (quartic) divergence reduces to the vacuum
energy in flat space-time and is customarily subtracted
from the physical or renormalized value of 〈Tµν(x

′)〉 in a
general curved space-time. The other state-independent
divergences coming from the leading terms in the asymp-
totic series in (4), are also subtracted. Alternatively, one
can rewrite the full Lagrangian (including the gravita-
tional terms) to include counter-terms having the same
form as the expressions involving the Riemann tensor and
its derivatives in these UV divergences. Then one can
absorb the regularized expressions for these UV infinities
into the constants in front of similar terms added to the



3

original Lagrangian (similar to the procedure described
above for the interacting field). Thus, the renormaliza-
tion of the free field requires covariant terms involving
the curvature tensor to be added to the Lagrangian with
coupling constants that are in principle measurable.
Whether one thinks simply of subtracting these state-

independent UV-infinite terms from the formal expres-
sion for Tµν or thinks of those terms as renormalizing
the coupling constants of terms present in the full La-
grangian, the result is the same, namely, a quantity that
has no UV infinities when its expectation value is eval-
uated for any physical state in 4-dimensions. Its expec-
tation value is what we will refer to as the renormalized
expectation value of the energy-momentum tensor, de-
noted by 〈Tµν(x

′)〉ren.
Now let us consider the renormalization of the vari-

ance 〈ϕ2(~x, t)〉 within the local momentum space method
we are considering. The expression for the renormalized
variance 〈ϕ2(~x′, t′)〉ren in any given physical state is ob-
tained by subtracting the terms in the asymptotic se-
ries that would give UV infinities from the solution for
Ḡ(k;x′) in the normal neighborhood of x′. The variance
involves no derivatives of ϕ(x), so only the first two terms
in Eq.(4) are subtracted from the local Fourier transform
of Ḡ(k;x′). Then the inverse of the local momentum
space Fourier transform can be performed, giving a well-
defined operator that we will denote by Ḡ(x;x′)ren. The
coincidence limit (x → x′) of the expectation value of this
quantity, then gives the renormalized value of the vari-
ance at x′ in any given physical state. Thus, we obtain
the result,

〈ϕ2(x′)〉ren = lim
x→x′

Ḡ(x;x′)ren (5)

As explained previously, we are subtracting only the min-
imum number of terms needed to give an expression hav-
ing no UV divergences. Even though we found it nec-
essary to subtract four terms of the asymptotic series to
obtain 〈Tµν(x

′)〉ren, since the renormalization of the vari-
ance involves only the first two counter-terms, there is no
reason to subtract additional terms in the series. In the
gravitational part of the Lagrangian of the renormalized
theory the additional covariant terms needed to renor-
malize the energy-momentum tensor will still appear, but
it would be uneconomical and would lead to unnecessary
complications to subtract the corresponding momentum
space terms from Ḡ(k;x′) in calculating the renormalized
variance because those terms are not necessary to regu-
larize UV divergences in the variance. One does not wish
to introduce physical effects into the theory that are not
required by the actual renormalization process. Hence,
one uses the principle of minimal subtraction.
In the above discussion of renormalization in a general

curved space-time, the asymptotic expansion of Ḡ(k;x′)
in (4) was used to identify the set of UV divergent terms
in the local momentum space expansion in the normal
neighborhood of x′. The asymptotic expansion was not

used to approximate a solution of the differential equa-
tion for Ḡ(k;x′) that would be the local momentum space

Fourier transform of some particular global Green func-
tion G(x, x′) for values of x in the normal neighborhood
of x′. As noted above, one subtracts the minimum num-
ber of terms in the asymptotic expansion (4) that are
required to renormalize the UV divergences of the vari-
ance, namely, the first two terms in that expansion. It
has been argued [11, 12] that subtracting these two terms
is not reliable for values of k sufficiently small that the
second term in the expansion (4) is not small compared
to the first term. As we see it, such an argument seems
based on the incorrect view that the large-momentum se-
ries should approximate the exact solution for the Green
function Ḡ(k;x′) within the normal neighborhood of x′.
Because in doing renormalization one generally uses an
asymptotic series, which does not necessarily converge,
to identify the terms that must be subtracted, minimal
subtraction to achieve a UV finite result is a well-defined
and reasonable procedure. Neither the behavior of the
asymptotic series for finite momentum, nor the size of
the normal neighborhood, is relevant to defining the UV
renormalization subtraction terms.

III. Adiabatic regularization in an RW universe. A
spatially flat RW universe, for which ds2 = dt2 −
a(t)2(dx2 + dy2 + dz2), is often used as the background
space-time in discussions of inflation. In such a universe,
the 3-dimensional hypersufaces of constant t are homoge-
neous and the relevant quantized perturbation field can
be expanded as in Eq.(2). The method of adiabatic reg-
ularization in the RW universe [2, 15] starts with the
formal expression for 〈Tµν(x

′)〉, which is a function of
t′ in the RW coordinate system. As described above in
connection with the local momentum space method, one
can make a large momentum asymptotic expansion of
the 3-dimensional Fourier transform of this quantity and
identify the leading terms in that expansion that would

give UV divergences in the integration over ~k. These
terms are the same for any physical state. Now, in-
stead of using dimensional regularization or some other
regularization method to find the covariant form of the
counter-terms that would be added to the Lagrangian
in the course of renormalization, in adiabatic regular-
ization one goes directly to the step of subtracting the
relevant leading terms in this momentum space asymp-
totic expansion from the formal expression for the spatial
3-dimensional Fourier transform of 〈Tµν(x

′)〉. This step
insures that the integrand of this 3-dimensional Fourier
transform will not give any UV divergences when inte-
grated over 3-momentum. The renormalized expression
for 〈Tµν(x

′)〉ren is defined by this momentum integral.

It is worth remarking that just as explained earlier in
connection with the λφ4 interaction, the minimal num-
ber of terms in the asymptotic series are subtracted in
the process of adiabatic subtraction and renormalization,
so as to change the form of the original unrenormalized
Lagrangian as little as possible in constructing the renor-
malized Lagrangian (including the gravitational part of
the Lagrangian). Note that after making the subtrac-
tions in the above method of regularization the integrand
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of the momentum integral is already regularized (i.e., the
momentum space integrand no longer has any UV infini-
ties when it is considered as a whole). One of the nice
points of this process of adiabatic regularization is that
it directly displays the spectral properties of the renor-
malized physical quantity, such as 〈Tµν(x

′)〉ren.
Regarding the variance 〈ϕ2(x′)〉, one proceeds in par-

allel to the method outlined above for the energy-
momentum tensor. The relevant leading terms in the
momentum space asymptotic expansion have to be sub-
tracted from the formal expression for the spatial 3-
dimensional Fourier transform of 〈ϕ2(x′)〉. Minimal sub-
traction requires keeping only up to second adiabatic or-
der subtraction terms. The renormalized expression for
〈ϕ2(x′)〉ren is then defined by the momentum integral, re-
gardless of the expansion rate of the universe (assuming
the expansion is sufficiently smooth and that infrared di-
vergences that may occur for zero mass are dealt with
properly). Therefore, we disagree with the argument
[11, 12] that adiabatic renormalization fails when the ex-
pansion rate H is larger than the physical momentum
scale k/a(t).
IV. Renormalization in the inflationary universe. In

the physical situation in which the field ϕ(~x, t) represents
scalar or (a polarization mode of) tensorial metric per-
turbation during inflation, ϕ(~x, t) must be treated as a
massless field. The term V ′′ appearing in the wave equa-
tion of scalar perturbations, where V is the potential of
a slow-roll inflationary model, should be considered as
a second-order adiabatic term [9, 10]. In the massless
limit, the subtraction terms defined by the BP renor-
malization [13] and those obtained with the adiabatic
renormalization coincide, thus defining a unique expres-
sion for the (renormalized) power spectrum [10], namely,

∆̃2
ϕ(k, t) = 4πk3(|ϕk(t)|

2−Ck(t)). The subtraction terms
Ck(t) can be obtained easily from the two first terms in
the expansion (4) (or equivalently by the adiabatic ex-
pansion of the modes).[16]
For scalar perturbations in single-field, slow-roll infla-

tion one finds (see [10] for details)

C
(δφ)
k (t) =

1

2(2π)3a3

[

a

k
+

a3

2k3
H2(2− 3η + 5ǫ)

]

, (6)

where δφ is the inflaton perturbation (in the spatially flat
gauge), a is the expansion factor, H ≡ ȧ/a , and ǫ and
η are the usual slow-roll parameters; while for tensorial
perturbations one gets

C
(h)
k (t) =

16πG

2(2π)3a3

[

a

k
+

a3

2k3
H2(2− ǫ)

]

, (7)

where h stands for one of the two independent fluctu-
ating modes. Taking into account the overall factor of
a−3, the first terms in square brackets in (6) and (7)
decay rapidly with time during inflation. However, the
second terms in square brackets change very slowly dur-
ing slow-roll inflation and, while maintaining the nearly
scale-invariant behavior, produce a non-negligible effect

in the power spectrum even at late times during inflation,
as explicitly worked out in [10].
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