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Abstract

We construct heterotic standard models by compactifying on smooth Calabi-Yau three-folds in the pres-

ence of purely Abelian internal gauge fields. A systematic search over complete intersection Calabi-Yau

manifolds with less than six Kähler parameters leads to over 200 such models which we present. Each

of these models has precisely the matter spectrum of the MSSM, at least one pair of Higgs doublets, the

standard model gauge group and no exotics. For about 100 of these models there are four additional U(1)

symmetries which are Green-Schwarz anomalous and, hence, massive. In the remaining cases, three U(1)

symmetries are anomalous while the fourth, massless one can be spontaneously broken by singlet vacuum

expectation values. The presence of additional global U(1) symmetries, together with the possibility of

switching on singlet vacuum expectation values, leads to a rich phenomenology which is illustrated for a

particular example. Our database of standard models, which can be further enlarged by simply extend-

ing the computer-based search, allows for a detailed and systematic phenomenological analysis of string

standard models, covering issues such as the structure of Yukawa couplings, R-parity violation, proton

stability and neutrino masses.
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1 Introduction

There is a long history of attempting to construct four dimensional theories, from smooth compactifications

of the heterotic string, with a matter sector which precisely matches that of the Minimal Supersymmetric

Standard Model (MSSM). Indeed, the subject of string phenomenology started in this way in the 1980s

when various attempts were made to build models based upon the “standard embedding”. In that ap-

proach, the gauge bundle was taken to be the holomorphic tangent bundle, with SU(3) structure group,

or deformations of the tangent bundle [1]. In recent years, more general gauge configurations have been

used in an attempt to achieve phenomenologically viable physics. Slope-stable1 bundles with SU(n) struc-

ture groups (for n = 3, 4, 5), unrelated to the tangent bundle, have been used in the attempt to build

stringy standard models [2–12]. These constructions were based upon the use of non-Abelian gauge field

configurations on smooth Calabi-Yau three-folds.2

In this paper we adopt a different approach to constructing standard models in smooth Calabi-Yau

three-fold compactifications of heterotic string and M-theory. Instead of using the non-Abelian construc-

tions mentioned in the preceding paragraph, we shall construct models where the gauge field configuration

in the internal dimensions is simply a sum of line bundles - that is a set of U(1) fluxes. This is the extremal

form of the so-called “split” or reducible bundles first studied in Refs. [26, 27].

There are two key aspects to this approach that differentiate it from the traditional non-Abelian one.

The first is a practical one: it is much simpler to construct, and calculate the resulting spectrum of,

Abelian bundles than non-Abelian ones. As a result, an algorithmic and systematic approach to such

(heterotic) string model building is relatively straightforward and can be used to analyse vast numbers of

line bundle sums over Calabi-Yau manifolds. Rather than attempting to fine-tune the construction of a

single example, this large data set can be scanned for realistic models, using methods of computational

algebraic geometry3 [30–32]. This paper presents our first results from an investigation along these lines.

We have systematically scanned line bundle sums on Calabi-Yau three-folds (defined as complete inter-

sections in products of projective spaces) with Hodge number h1,1(X) ≤ 5 and have found 208 heterotic

standard models. It is important to note that these models are all “global” in that they correspond to ex-

plicit Calabi-Yau threefolds and holomorphic vector bundles leading to fully consistent heterotic theories.

All 208 models have the precise matter spectrum of the MSSM, at least one pair of Higgs doublets, the

standard model gauge group and no exotics charged under the standard model group of any kind. The

number of models constructed should be considered with the knowledge that to date, only 3 other smooth

heterotic standard models have been produced in the literature [2, 5, 12].

1Slope-stable bundles satisfy the Hermitian-Yang-Mills equations required for N = 1 supersymmetry in 4-dimensions [1].
2Another class of models are based on non-smooth CY orbifolds, these have been shown to also allow for an appropriate

massless spectrum as well as other phenomemological features [13–22]. There are also constructions based on non-geometric

settings such as the free-fermionic models as studied in [23–25].
3Similar scans for non-Abelian constructions have been started in Refs. [10–12, 28] and further results will be presented in

Ref. [29].
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The second key aspect of heterotic line bundle model building is related to additional U(1) symmetries.

We will consider line bundle sums with structure group S(U(1)5) whose commutant within E8 is SU(5)×

S(U(1)5) ∼= SU(5) × U(1)4. Hence, before Wilson line breaking, our models are based on SU(5) GUT

theories with four additional U(1) symmetries. Phenomenologically, the vector bosons associated with

those U(1) symmetries should of course be massive. Fortunately, there are two mechanisms to generate

such masses, both within our control. The first is the Green-Schwarz mechanism: the U(1) vector bosons

can acquire a large mass, close to the compactification scale, due to a gauging of axion shift symmetries.

For 105 of our 208 models this happens for all four U(1) symmetries, so that the low-energy gauge group

is precisely that of the standard model. The remaining models have three anomalous and, hence, massive

U(1) symmetries while the fourth Abelian gauge factor remains massless, as long as the internal bundle

is a sum of line bundles. In this case, we can invoke the second mechanism, namely moving away from

the split locus in bundle moduli space such that the bundle structure group becomes non-Abelian, thus

removing the extra U(1) from the low energy gauge group. In the effective field-theory this amounts

to giving supersymmetric vacuum expectation values (VEVs) to bundle moduli fields. We have explicit

control over the spectrum of such bundle moduli and can, therefore, analyse this effect in detail.

Another important physical implication, which is tied to the above discussion, is that the Green-

Schwarz anomalous U(1) symmetries give rise to residual U(1) global symmetries in the effective theory.

These global symmetries impose constraints on the possible operators present in the theory and may

forbid problematic operators such as those that lead to proton decay or R-parity violation. They may also

serve as Froggatt-Nielsen type symmetries to explain the patterns of observed quark and lepton masses.

This interplay between U(1) symmetries, their spontaneous breaking through bundle moduli VEVs, and

the resulting operators in the low energy theory, leads to a rich arena for phenomenology [33,34].

In this paper, we present the physical ideas behind our work, the database of 208 standard models,

and an exploration some of the phenomenological issues by focusing on a particular example. A more

comprehensive study will be presented in a forthcoming paper [35].

The plan of this paper is as follows. In the next section we briefly explain the basic model-building

set-up. Section 3 reviews the Green-Schwarz mechanism and its particular implications for our models.

In section 4 we describe our scanning procedure and its main results. As an illustrative example, one

of our standard models is presented in Section 5. Section 6 discusses the phenomenological implications

of the anomalous U(1) symmetries and bundle moduli VEVs in more detail, focusing on the particular

example introduced earlier. We present a brief summary and an outlook in Section 7. The data for all

208 standard models is listed in the Appendix.

2 Model building set-up

We consider compactifications of the E8×E8 heterotic string on a smooth Calabi-Yau three-fold, X, with

a freely acting discrete symmetry, Γ. In practice, we will use complete intersection Calabi-Yau manifolds

(CICYs) which are defined as the common zero locus of homogeneous polynomials in an ambient product
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of projective spaces Pn1 × · · · × P
nm. These manifolds have been classified [36,37] and their freely-acting

symmetries are known [38]. In the present paper, we will explore all CICYs with freely acting symmetries

and Hodge number satisfying h1,1(X) ≤ 5. It turns out, all these manifolds are “favourable” in the sense

that h1,1(X) = m, so that their whole second cohomology is spanned by the restrictions of the Kähler

forms, Ji, of the ambient projective spaces. Line bundles, L, on X, the main building blocks of our bundle

construction, can hence be denoted as L = OX(k), where k is an m–dimensional integer vector such that

c1(OX(k)) = kiJi.

As mentioned earlier, on X we consider vector bundles V with structure group S(U(1)5), that is, sums

of line bundles

V =
5

⊕

a=1

La where La = OX(ka) , (2.1)

satisfying

c1(V ) =

5
∑

a=1

ci1(La)Ji = 0 . (2.2)

Hence, for a given three-fold, X, and a given symmetry, Γ, a model is specified by the 5h1,1(X) integers

kia. In our model scan, we will restrict ourselves to bundles, V , for which

c2(TX)− c2(V ) = [C] , [C] an effective class in H2(X,Z) (2.3)

which allows for an anomaly-free supersymmetric completion by addition of an appropriate number of

five-branes wrapping C. Supersymmetry conditions on the bundle V itself will be discussed in the next

section.

The structure group is embedded into E8 via the sub-group chain S
(

U(1)5
)

⊂ SU(5) ⊂ E8, so that

the four-dimensional gauge group, before Wilson line breaking, is the GUT group SU(5) × S(U(1)5). In

general, the low-energy theory contains the standard SU(5) multiplets 10, 5̄ (and their conjugates) and

bundle moduli singlets 1. In addition, the above multiplets are labeled by S(U(1)5) charges, which can

be represented as integers vectors q = (q1, . . . , q5). Due to the unit determinant condition in S(U(1)5),

two such charge vectors q and q̃ have to be identified if q− q̃ ∈ Z(1, 1, 1, 1, 1) and, as a result, each charge

vector with five same entries corresponds to the trivial representation. This fact will be of importance

later on when we discuss the S(U(1)5) invariant operators in the four-dimensional effective theory. With

this notation, the matter multiplet content of the GUT group is

10ea , 1̄0−ea , 5̄ea+eb
, 5−ea−eb

, 1ea−eb
, 1−ea+eb

, (2.4)

where a < b. Here, the subscripts are S(U(1)5) charges with ea the ath standard unit vector in five

dimensions. These multiplets are associated to particular line bundle cohomology groups, as summarised

in Table 1, and their numbers can be determined by computing the dimensions of these cohomology groups.

For CICYs, line bundle cohomology can be explicitly computed by applying the methods described in

Refs [11,12,39]. Compared to a standard SU(5) GUT theory, the multiplet content of our models is split

into sub-sectors, labeled by different S(U(1)5) charges. Invariance under S(U(1)5) restricts the allowed
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multiplet S(U(1)5) charge associated line bundle L contained in

10ea ea La V

1̄0−ea −ea L∗

a V ∗

5̄ea+eb
ea + eb La ⊗ Lb ∧2V

5−ea−eb
−ea − eb L∗

a ⊗ L∗

b ∧2V ∗

1ea−eb
ea − eb La ⊗ L∗

b V ⊗ V ∗

1−ea+eb
−ea + eb L∗

a ⊗ Lb

Table 1: Multiplet content, charges and associated line bundles of the SU(5) × S(U(1)5)

GUT theory. The indices a, b, . . . are in the range 1, . . . , 5 and ea denotes the standard

five-dimensional unit vector in the ath direction. The number of each type of multiplet is

obtained from the first cohomology, H1(X,L), of the associated line bundle L.

operators in the low-energy theory and this will be of importance for the phenomenological discussion later

on. In particular, we note that the bundle moduli singlets carry non-trivial S(U(1)5) charges, so operators

involving these singlets are constrained as well. This leads to an interesting interplay between S(U(1)5)

invariance and switching on singlet VEVs. In the language of vector bundles, non-zero singlet VEVs

corresponds to moving away from the Abelian locus in bundle moduli space to a bundle with non-Abelian

structure group.

The further breaking of the GUT theory to the standard model proceeds in the standard way via Wilson

lines. For the bundle V to descend to the quotient Calabi-Yau manifold, X/Γ, it has to be equivariant

under the symmetry Γ [40], a property which can be explicitly checked for line bundles using the methods

described in Ref. [12]. Note that for an equivariant line bundle, L, the cohomology groups H i(X,L) form

representations under the group Γ. A Wilson line on the quotient, pointing into the standard hypercharge

direction then breaks the GUT group into the standard model group times the massive S(U(1)5) symmetry.

Let us consider a standard model multiplet with Wilson line representation RW which originates from a

GUT multiplet with associated line bundle, L. The number of these multiplets can be computed from

the Γ invariant part of H1(X,L)⊗RW . In essence, once the GUT multiplet content is known, computing

the particle content after Wilson line breaking is a matter of applying representation theory of the finite

group Γ.

3 Additional U(1) symmetries and Green-Schwarz mecha-

nism

We turn now to the fate of the four additional U(1) symmetries in S(U(1)5) ∼= U(1)4 which arise in our

models. The Green-Schwarz mechanism in heterotic theories has been understood for many years (see [41]

and [27, 42–44] for some recent papers on the subject). It is known that Abelian factors in the bundle
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structure group give rise to a gauging of certain axion shift symmetries in the four dimensional effective

theory. In our context, for each line bundle, La, in V , the Kähler axions, χi, the supersymmetric partners

of the Kähler moduli, ti, acquire the following transformation4

δχi = −ci1(La)ηa , (3.5)

with transformation parameter ηa. Note that, from Eq. (2.2), only four of these transformation, corre-

sponding to the four U(1) symmetries, are independent. Each such transformation leads to a D-term

which schematically reads

Da =
µ(La)

κ
−

∑

I

QaI |CI |
2 . (3.6)

Here, κ = dijkt
itjtk is the Kähler moduli space pre-potential with the triple intersection numbers dijk of

X and CI are matter fields and bundle moduli with charges QaI under S(U(1)5). The slope, µ(La), of

the line bundle La is defined as

µ(La) = ci1(La)κi with κi = dijkt
jtk . (3.7)

We can now discuss the conditions on the line bundle sum V arising from N = 1 supersymmetry. From a

four-dimensional point of view, for a supersymmetric vacuum, all D-terms (3.6) must vanish. The locus

in bundle moduli space where V is split into a sum of line bundles corresponds to setting all VEVs of

the fields CI to zero. Hence, all slopes, µ(La), must vanish simultaneously, somewhere in Kähler moduli

space. This is, of course, the well-known condition for line bundle sums to preserve supersymmetry. For

the equations kiaκi = 0 to have a non-trivial solution it must be the case that the

(number of lin. independent ka) < h1,1(X) . (3.8)

This implies strong model building constraints for Calabi-Yau manifolds with a small Hodge number

h1,1(X) and explains why we were not able to find standard models on CICYs with h1,1(X) = 2, 3.

At the split locus in bundle moduli space, the mass matrix for the S(U(1)5) vector bosons is given by

Mab = Gijc
i
1(La)c

j
1(Lb) , (3.9)

where Gij = −∂i∂j lnκ is the Kähler moduli space metric of X. Since Gij is positive definite, the number

of massless U(1) vector fields must equal 4 − rank(kia) and can, hence, be easily determined from the

integers kia which specify our models. Combining this statement with the inequality (3.8) we learn that

(number of massless U(1) vector fields) > 4− h1,1(X) . (3.10)

Hence, for Calabi-Yau manifolds with h1,1(X) = 4 at least one massless U(1) vector field remains, while

h1,1(X) = 5 is the smallest Hodge number for which all U(1) vector fields can receive masses from the

Green-Schwarz mechanism.

4The equations below receive a one loop correction due to a non-trivial shift of the dilatonic and M5-brane axions. This has

been explicitly studied in Ref. [27, 43] but will be neglected in the present context as it does not affect our discussion.
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4 Searching for line bundle standard models

Our scanning procedure involves the following basic steps. For a given Calabi-Yau manifold X with freely-

acting Abelian symmetry, Γ, we generate a large number of line bundle sums, V =
⊕5

a=1 La, satisfying

c1(V ) = 0, each specified by an integer matrix kia = ci1(La). In practice, we restrict the entries kia to run

in a certain finite range. In a first filtering step, we extract all line bundle sums which are supersymmetric

(that is, all slope conditions µ(La) = 0 can be satisfied for some Kähler parameters of X) and which satisfy

(2.3). This ensures that all remaining models give rise to consistent heterotic vacua on X. Subsequently,

we extract all line bundle sums which are equivariant under Γ, so that the model can be quotiented by Γ.

The second step involves imposing physical constraints on the spectrum of the SU(5)×S(U(1)5) GUT

theory. These conditions can be easily inferred from Table 1. First we impose that h1(X,V ) = 3|Γ| and

h1(X,V ∗) = 0, where |Γ| is the order of the discrete symmetry group Γ. This is to ensure that downstairs

we have precisely three SU(5) families of 10 multiplets and no 1̄0 anti-families. As can easily be proved,

it then follows that h1(X,∧2V ) − h1(X,∧2V ∗) = 3|Γ| so that there is a downstairs chiral asymmetry of

three 5̄ families. Secondly, we need at least one vector-like 5̄–5 pair in order to retain a pair of Higgs

doublets so we also require that h1(X,∧2V ∗) > 0.

With these conditions imposed we have a model with the standard model gauge group (times four U(1)

symmetries, some or all massive), three families of quarks and leptons and whatever remains from the 5̄–5

pair. To increase the chance that the Higgs triplets can be removed we demand that h1(L∗

a ⊗ L∗

b) < |Γ|

for all a < b, so that the number of such pairs is smaller than the group order in each sector. In this case,

it can be shown that for appropriate choices of equivariant structure and Wilson line, for all 208 models,

the Higgs triplets can be projected out and at least one pair of Higgs doublets can be kept [35].

As a first step, the above procedure has been carried out for all CICYs with symmetries and h1,1(X) ≤ 5

in the standard list [36]. We recall that h1,1(X) = 5 is the smallest value for which all four additional

U(1) symmetries can become massive due to the Green-Schwarz mechanism, so it is sensible to scan up to

this Hodge number at least. For the 6 CICYs with h1,1(X) = 2 this has been done for line bundle entries

in the range −10 ≤ kia ≤ 10 and for the 12 CICYs with h1,1(X) = 3 the range −3 ≤ kia ≤ 3 has been

covered. No model passing all the above tests has been found. As indicated earlier, this can be traced

back to the stability constraint (3.8) which is particularly strong for low h1,1(X).

The 19 CICYs with symmetries at h1,1(X) = 4 have been scanned in the range −3 ≤ kia ≤ 3 and 28

models passing all tests have been found. The scan over the 23 CICYs with h1,1(X) = 5 in the range

−2 ≤ kia ≤ 2 resulted in 180 models. Altogether, we have found 208 heterotic line bundle standard models

which are explicitly listed in the Appendix. For 105 of these models, all for h1,1(X) = 5, all additional

U(1) symmetries are Green-Schwarz anomalous and super-heavy. For the remaining models we have three

anomalous, massive U(1) symmetries and one massless one. As indicated earlier, this remaining U(1) can

be easily broken spontaneously by switching on singlet VEVs and, for this reason, these models have been

included.

These results have been obtained from a scan over roughly 1012 integer matrices kia generated initially.

Hence, a “one in a billion” rule of thumb [45] is not too far from the truth in this part of the heterotic
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vacuum space. It should be mentioned that this task has not required high performance computing but

was completed (within several weeks) on a standard desktop machine. Extending to larger ranges for the

kia and to CICYs with larger h1,1(X) is merely a question of computing power.

5 A standard model example

In order to illustrate our result and to set up a more explicit context for the subsequent phenomenological

discussion, we will now present one of our 208 standard models in more detail. This will be sufficient for

the main purpose of this paper which is to merely indicate the rich structure of model building possibilities.

A detailed analysis for all standard models in our database will be carried out in a forthcoming paper [35].

Our example lives on the h1,1(X) = 5 CICY with configuration matrix

X =

















P
1 1 1 0 0

P
1 0 0 0 2

P
1 0 0 2 0

P
1 2 0 0 0

P
3 1 1 1 1

















5,37

−64

(5.11)

defined in the ambient space (P1)×4 × P
3, as indicated in the first column of the configuration matrix.

We denote the homogeneous coordinates of the four P
1 by xiα, where i = 1, 2, 3, 4 and α = 0, 1 and

the P
3 coordinates by yα, where α = 0, . . . , 3. The remaining columns of the above matrix specify the

multi-degrees of four homogeneous polynomials on the ambient space whose common zero locus defines

the CICY, X. The subscript is the Euler number and the superscripts provide the Hodge numbers h1,1(X)

and h2,1(X), which count the number of Kähler and complex structure moduli, respectively. The second

cohomology of X is spanned by the five ambient space Kähler forms Ji and the cone of allowed Kähler

forms J = tiJi is specified by ti > 0 for all i. The triple intersection numbers of X have the following

non-zero components (as well as those related by symmetry of the indices)

d123 = d124 = d134 = d234 = d235 = 2

d125 = d135 = d145 = d245 = d255 = d345 = d355 = 4 (5.12)

d155 = d455 = d555 = 8 .

The second Chern class of the tangent bundle is c2(TX) = (24, 24, 24, 24, 56), relative to a basis of four-

forms dual to the ambient space Kähler forms Ji. The manifold is simply connected but can be divided

by a freely acting Γ = Z2 symmetry which transforms the ambient space coordinates as

(xi0, xi1) → (−xi0, xi1) , (y0, y1, y2, y3) → (−y0,−y1, y2, y3) (5.13)
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Our model is specified by the sum of line bundles

V =
5

⊕

a=1

La = OX(1, 0, 0,−1, 0) ⊕OX(1,−1,−2, 0, 1) ⊕OX(0, 1, 1, 1,−1) ⊕

OX(0,−1, 1, 0, 0)X ⊕OX(−2, 1, 0, 0, 0) . (5.14)

This bundle satisfies c1(V ) = 0 and (2.3). In addition, using the above intersection numbers, it can be

verified that the slope conditions µ(La) = 0 can be simultaneously satisfied at a locus in the Kähler cone

of X. It can also be verified that V is Z2 equivariant and, hence, descends to a bundle on the “downstairs”

quotient space X/Z2. The bundle (5.14) has four linearly independent Chern classes c1(La) = ka. From

our earlier discussion this means that all four additional U(1) symmetries are Green-Schwarz anomalous

and, hence, massive. Consequently, the downstairs gauge group is precisely the standard model gauge

group.

The non-vanishing cohomology groups of the constituent line bundles La are given by

h1(X,L2) = 4 , h1(X,L5) = 2 . (5.15)

We recall from Table 1 that the cohomology groups H1(X,La) count the number of GUT multiplets 10ea .

Hence, after dividing by the symmetry order, |Γ| = 2, this leads to three multiplets, 10e2 , 10e2
, 10e5

, in

the downstairs spectrum.

The non-vanishing first cohomology groups of tensor products La ⊗ Lb and L∗

a ⊗ L∗

b are

h1(X,L2 ⊗ L4) = 4 , h1(X,L4 ⊗ L5) = 2 , h1(X,L2 ⊗ L5) = 1 , h1(X,L∗

2 ⊗ L∗

5) = 1 . (5.16)

From Table 1, the cohomology groups H1(X,La⊗Lb) and H1(X,L∗

a⊗L∗

b) count the number of 5̄ea+eb
and

5−ea−eb
GUT multiplets, respectively. This means downstairs we have three multiplets, 5̄e2+e4

, 5̄e2+e4
,

5̄e4+e5
plus whatever remains from the vector-like pair of 5̄e2+e5

and 5−e2−e5
multiplets after Wilson line

breaking. It turns out, in line with general arguments above, that both Higgs triplets can be projected

out while the pair of Higgs doublets can be kept. As a result, the complete spectrum of multiplets charged

under the standard model group is precisely that of the MSSM, as summarised in Table 2 below. From

name 101 102 103 5̄1 5̄2 5̄3 Hu Hd

S(U(1)5) charge e2 e2 e5 e2 + e4 e2 + e4 e4 + e5 −e2 − e5 e2 + e5

Table 2: Charges of the standard model multiplets in our example model. Each multiplet

arises with multiplicity one. For simplicity, families are denoted by SU(5) representations

but should be thought of as broken up into standard model multiplets, keeping the S(U(1)5)

charge unchanged.

Table 1, the number of singlets 1ea−eb
is determined by H1(X,La⊗L∗

b). For our model, the non-vanishing
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first cohomology groups in this sector are

h1(X,L2 ⊗ L∗

1) = 4 , h1(X,L5 ⊗ L∗

1) = 8 , h1(X,L2 ⊗ L∗

3) = 4 , h1(X,L2 ⊗ L∗

4) = 12

h1(X,L2 ⊗ L∗

5) = 11 , h1(X,L5 ⊗ L∗

2) = 3 , h1(X,L4 ⊗ L∗

5) = 6 .
(5.17)

After Wilson line breaking, this gives rise to seven types of singlets, denoted by C1, . . . , C7, whose charges

and multiplicities are listed in Table 3.

name C1 C2 C3 C4 C5 C6 C7

S(U(1)5) charge e2 − e1 e5 − e1 e2 − e3 e2 − e4 e2 − e5 e5 − e2 e4 − e5

multiplicity 2 4 2 6 5 1 3

Table 3: Charges and multiplicities for the seven types of bundle moduli singlets in our

example model.

To summarise, our example model has the exact spectrum and gauge group of the MSSM, plus seven

types of bundle moduli fields which are singlets under the standard model group. All those fields carry

charges under the remnant global S(U(1)5) symmetry which constrains the four-dimensional effective

theory. The phenomenology resulting from the interplay between this global symmetry and switching on

VEVs for the singlet fields will be discussed in the next section.

6 Residual symmetries and singlet VEVs

In the previous section we presented an example from our standard model database which has exactly

the matter spectrum of the MSSM along with some gauge singlet fields. In this model, all four additional

U(1) symmetries are Green-Schwarz anomalous, so that their associated gauge bosons are super-heavy and,

hence, absent from the low-energy theory. However, they leave behind global U(1) symmetries (see [33,34]

for recent explorations of such symmetries in heterotic theories) which allow us to constrain the operator

spectrum of the theory [34] and push the phenomenological study beyond the mere computation of the

spectrum. Similar considerations apply to the other standard models in our database. In this section,

we would like to discuss some of these phenomenological issues in general and illustrate our points within

the context of the example model. A systematic study for all models will be presented in a forthcoming

paper [35]. We also note that the themes presented in this section are recurrent within the F-theory GUT

literature, see for example [46–50].

Before proceeding it is important to note that although we refer to the U(1) symmetries as global,

since they are fundamentally gauge symmetries, there is no pseudo-Goldstone boson associated to their

spontaneous breaking by the GUT singlet vevs. Rather the would be flat mode is a combination of the

GUT singlets and the closed-string axion which gets eaten by the U(1). The remaining gauge-neutral

combination can possibly remain a flat direction perturbatively but will be lifted by non-perturbative
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operators which realise the gauge symmetry non-linearly. Whether all flat directions can be lifted in this

way is a question of moduli stabilisation which we do not address here.

The study of allowed operators in the theory involves finding S(U(1)5) invariant field combinations.

We recall that S(U(1)5) charges are labeled by integer vectors q = (q1, . . . , q5) and, as a result of the

determinant one condition in S(U(1)5), two such integer vectors q and q̃ have to be identified if q− q̃ ∈

Z(1, 1, 1, 1, 1). A particular operator is therefore allowed if its charge vector is entirely zero or if it is non-

zero but with all entries equal. For our example, the explicit charge vectors of the MSSM fields and the

seven singlet fields CI are given in Tables 2 and 3. We note that these charges are not flavour-universal,

a feature which is generic for heterotic line bundle models5. In our analysis, we also allow the singlets CI

to develop a VEV 6 which we denote by

ǫI = 〈CI〉 . (6.18)

As a result, the allowed terms involve higher dimension operators with singlet insertions - much like in

the Froggatt-Nielsen setup [54]. As mentioned earlier, S(U(1)5) gauge bosons which did not receive a

mass from the Green-Schwarz mechanism can become massive due to the spontaneous breaking induced

by these VEVs. This is the reason why we have included such models in our list of 208 standard models

given in the Appendix. In the following, we will frequently write down operators in terms of SU(5) GUT

multiplets, for simplicity. This is appropriate because every standard model field within a given SU(5)

multiplet carries the same S(U(1)5) charge. However, we should keep in mind that, even though we use

the language of SU(5) GUTs, the subsequent discussion applies to heterotic standard models.

It is important to note that an operator allowed by the S(U(1)5) symmetries is not necessarily present

in the theory - this would require further calculations to determine [51]. In particular, the theory might

have further discrete symmetries which forbid some operators allowed by S(U(1)5). However, an S(U(1)5)

non-invariant operator is definitely forbidden at the perturbative level. It can still be generated by non-

perturbative effects but one would expect such a contribution to be suppressed.7

6.1 Proton decay

One of the strongest constraints on supersymmetric theories comes from dimension four proton decay,

induced by superpotential operators of the form 5̄ 5̄ 10 with matter multiplets 5̄ and 10. In our context,

these operators can be written as 5̄ea+eb
5̄ec+ed

10ef and, hence, have a total S(U(1)5) charge ea + eb +

ec+ ed + ef . Such an operator is allowed precisely if all five charge vectors involved are different in which

case the total charge is (1, 1, 1, 1, 1). Whether this happens depends on the precise charges of the matter

fields and has to be analysed in detail for each of our standard models. For our example, the matter field

5Note that this shows that the approach adopted in [47] within the F-theory framework of allowing different families to come

from different matter curves is in fact rather generic.
6So long as this VEV remains small compared to the compactification scale, we can define a valid perturbative theory near

the Abelian locus in moduli space. For more details on the mass scales associated to these VEVs, see [44].
7Note that the U(1) symmetries have discrete subgroups that are preserved even non-perturbatively such that the group Zk

is determined by the charge of the axion participating in the Green-Schwarz mass for the U(1) [55, 56].
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charges in Table 2 show that all such operators are forbidden and, hence, this particular model is safe

from dimension four proton decay at the Abelian split locus. What happens if we move away from this

locus by switching on singlet VEVs ǫI? In this case, we have to worry about re-creating such operators

by singlet VEV insertions. Again this is a matter of detailed analysis for each given model, but for our

example model the singlet charges in Table 3 show that they are never re-created for any number of

singlet insertions. Our example model is therefore safe from dimension four proton decay in at least a

neighbourhood of the Abelian locus in bundle moduli space.

A less-constrained but nevertheless important effect is dimension five proton decay, induced by operator

of the form 5̄ea+eb
10ec10ed

10ef
with total charge ea+eb+ec+ed+ef . For our example, such operators

are forbidden, as the S(U(1)5) charges in Table 2 show and, from the singlet charges in Table 3, they are

not re-created by singlet insertions.

The above results regarding proton decay are promising. However within our models, forbidding proton

decay using the S(U(1)5) symmetry comes at a price. From the neutrality of the Yukawa couplings in the

MSSM, it is easy to show that the only U(1) symmetry that can forbid dimension five proton decay is

one that is not vector-like for the up- and down-Higgs. Such a symmetry is often referred to as a Pecci-

Quinn symmetry, U(1)PQ. In our example, the Higgs pair is indeed vector-like and so there is no U(1)PQ.

The reason for the absence of dimension five proton decay in this model is that, as discussed below, the

down-type Yukawa couplings are forbidden by S(U(1)5) and, hence, the standard MSSM reasoning based

on the presence of these couplings does not apply. Of course, this may not be a real problem as the

down-type Yukawa couplings may be generated by non-perturbative effects. Such non-perturbative effects

may or may not re-introduce proton decay. Whether or not this occurs can be decided at the present

level of sophistication, relying on the information provided by the S(U(1)5) symmetry, by writing down

the relevant gauge invariant non-perturbative contributions to the theory given the axion transformations

(3.5). As with the perturbative terms being discussed in this section, whether or not such terms actually

appear in the theory, as opposed to simply being allowed by gauge invariance, requires more detailed

calculation to determine.

In fact, we find that, under fairly general assumptions, the issue discussed in the proceeding paragraph

is generic in heterotic line bundle standard models. Assuming that the low-energy spectrum does not

contain exotic states, such as Higgs triplets, Higgs pairs are always vector-like under S(U(1)5) and, hence,

there is no U(1)PQ symmetry. The underlying model-building reasons for this will be discussed in Ref. [35].

Here, we present a more intuitive argument which follows from anomaly cancellation. The key observation

is that, since the Green-Schwarz couplings only depend on the gauge field-strength, the GUT-breaking

Wilson-line cannot affect Green-Schwarz anomaly cancellation. Considering the mixed anomalies of two

standard model gauge factors with one of the additional U(1) symmetries, together with the MSSM

matter spectrum, these can only match the GUT anomalies if the Higgs fields are vector like under the
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U(1) symmetry. Consequently, there is either no U(1)PQ symmetry or the theory contains exotic matter

fields 8.

6.2 R-parity violation

There is a set of superpotential operators which violate the MSSM R-parity and which lead to too large

neutrino masses, namely operators of the form 5Hu
−ea−eb

5̄ec+ed
with S(U(1)5) charge −ea − eb + ec + ed.

For our example, an inspection of the charges in Table 2 shows that these operators are forbidden. This

is consistent with our cohomology calculation which shows that, at the Abelian split locus, the three 5̄

matter multiplets and the up-Higgs are indeed massless. However, the dimension four operator C35̄3Hu

is allowed so it is possible to induce some of these R-parity violating terms by switching on a VEV for

C3. To be safe we have to demand that ǫ3 = 〈C3〉 = 0 and this is sufficient to remove all similar operators

with any number of singlet insertions.

6.3 µ–term

A related discussion applies to the µ-term, µHuHd. As we have argued above, for our models Higgs

doublets come in vector-like pairs under the S(U(1)5) symmetry. Consequently, the µ-term is allowed by

S(U(1)5). However, as the cohomology calculation shows, all our 208 standard models have at least one

massless Higgs pair at the Abelian locus in bundle moduli space. Hence, for all these models, the µ-term

is absent from the superpotential for reasons unrelated to the S(U(1)5) symmetry. What happens when

we move away from the Abelian locus by switching on singlet VEVs? A quick glance at Table 3 shows

that our example model has no singlets which are completely uncharged under S(U(1)5), so dimension

four terms of the form CIHuHd are forbidden. In fact, this is generic for all our models. Bundle moduli

with charge ea − eb are counted by the first cohomology of La ⊗ L∗

b . Singlets under S(U(1)5) can only

arise for a = b but in this case H1(X,La ⊗ L∗

a) = H1(X,OX ) = 0.

As a result, the lowest dimension at which a µ-term can be generated is five. The relevant operators

are of the form CICJHuHd where CI and CJ need to have opposite S(U(1)5) charge. For sufficiently small

VEVs, ǫI , ǫJ , this can provide a string-theoretical realisation of the solution to the µ-problem proposed

in Ref. [53]. In our example model such a dimension five operator, C5C6HuHd, is allowed and, if indeed

present, could give rise to a µ-term of an acceptable size provided the product ǫ5ǫ6 is sufficiently small.

A small value for this product is independently suggested by the pattern of up-type Yukawa couplings

discussed below.

8There is a very similar story in F-theory, for which we note our Wilson-line argument above also applies, in the case of

hypercharge flux doublet-triplet splitting [48–50, 52]. Also note that this argument applies to an unbroken U(1)PQ and can be

evaded by having an approximate symmetry, i.e. breaking it well below the cutoff scale.
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6.4 Yukawa couplings

Three possible types of contributions to the (superpotential) Yukawa coupling arise in our models. First

we have regular dimension four Yukawa couplings. In the up sector they are of the form 5Hu
−ea−eb

10ec10ed

and allowed provided ea+eb = ec+ed. The down sector Yukawa couplings, 5̄Hd
ea+eb

5̄ec+ed
10ef , are allowed

if ea+eb+ec+ed+ef = (1, 1, 1, 1, 1). As we have mentioned earlier, the S(U(1)5) symmetry is not flavour-

universal, so this generates a pattern of order one entries in the Yukawa matrices. Further contributions,

proportional to the VEVs ǫI or products thereof, can be generated by vacuum insertions once singlet

VEVs are switched on. This amounts to a string-theoretical realisation of a Froggatt-Nielsen [54] type

model for fermion masses.9 Finally, we may have non-perturbative contributions. Here, we will only

consider the first two types of effects explicitly and we stress that they can be straightforwardly analysed

for all our standard models.

However, when discussing the results, we should keep in mind that non-perturbative corrections to

Yukawa couplings are rather common in string theory and provide a possible mechanism to generate small

fermion masses. It is, therefore, not absolutely necessary to explain the full structure of Yukawa couplings

from a Froggatt-Nielsen approach based on the S(U(1)5) symmetry. However, we should certainly require

that the top Yukawa coupling is generated perturbatively at order one.

For our example model, the charges in Table (2) show that, in the absence of singlet VEVs, the up-type

Yukawa matrix has rank two while the down-type Yukawa matrix vanishes identically. Switching on VEVs

ǫ5 = 〈C5〉 and ǫ6 = 〈C6〉 the Yukawa matrices take the form

Y U =







ǫ5 1 1

1 ǫ6 ǫ6

1 ǫ6 ǫ6






, Y D =







0 0 0

0 0 0

0 0 0






. (6.19)

Note that order one coefficients have been omitted so that Y U generically has rank three. The eigenvalues

of Y U are of order 1, 1 and ǫ6, giving two heavy generations and one potentially lighter one, depending

on the position in moduli space. The down-type Yukawa couplings are vanishing and so require non-

perturbative effects in order to be generated.

Generally, when giving VEVs to singlets we must ensure that supersymmetry is preserved, that is, the

D-terms (3.6) and F-terms must remain zero. The D-terms form a very mild restriction as the Kähler

moduli can adjust themselves to minimise the D-term potential for many choices of singlet VEVs. For

our example, it is even simpler to prove the existence of VEVs compatible with supersymmetry. Since C5

and C6 are vector-like we can set ǫ5 = ǫ6 and keep the Kähler moduli fixed, so that the FI and matter

9We note that, as show in [47], the group theory of E8 allows for an accurate recreation of the observed masses and mixing

of the quarks and leptons. Note though that a more detailed treatment would also require a mechanism for the observed mass

splitting of the SU(5) multiplets for the lighter generations.
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field contributions to the D-term vanish independently. In [35] we show that also more general vevs are

supersymmetric with appropriate adjustment of the Kahler moduli.10

The F-terms correspond to superpotential operators and are more difficult to study explicitly since

we do not know the co-efficients of these operators. Including a possible vev for C7 the most general

superpotential compatible with gauge invariance up to quartic terms is

W ⊃ λijC
2
6C

i
5C

j
5 + γijC6C

i
4C

j
7 . (6.20)

The indices on the singlets count generations. There are no quadratic terms since we know that all the

fields are massless. The cubic and quartic terms are allowed by gauge invariance and may or may not

be present. An explicit analysis of F-term stability is difficult due to the unkown matrices λij and γij.

However a sufficient condition for F-term stability is that the matrices do not have maximal rank since

then we can set the vevs such that

λijǫ
j
5 = γijǫ

j
7 = 0 . (6.21)

Note that the second condition in (6.21) is not strictly necessary as we will require ǫ4 = 0 anyway, but

we include the solution with it vanishing since it has relevance for the following section in which C4 are

considered as potential right-handed neutrino candidates. Apart from these solutions we can also take the

simpler setup with ǫ5 = 0, which would only affect the µ-term discussion above and would require Kahler

moduli to adjust in order to solve the D-term (we have explicitly checked that this is possible within the

Kahler cone up to the constraint |ǫ6| > |ǫ7|).

It is worth noting a practical advantage originating from the S(U(1)5) symmetry, in relation to the

physical Yukawa couplings in heterotic compactifications. It is generally very difficult to calculate the

structure of the kinetic terms of the matter fields and so deducing the physical Yukawa couplings from

the holomorphic ones is non-trivial. The additional U(1) symmetries can be of help in this regard because

they can restrict the matter field kinetic terms severely.

6.5 Neutrino physics

The bundle moduli serve as good candidates for right-handed neutrinos [34]. For our example model, we

can consider the fields C4 as forming the right handed neutrinos. In this case we have the superpotential

operators, in GUT field notation,

W ⊃ 5Hu 5̄3C4 + ǫ65Hu 5̄2C4 + ǫ65Hu 5̄1C4 + (ǫ6ǫ7)
2 C4C4 . (6.22)

10In order to recreate the hierarchy between the top and up quark masses, and solve the D-terms, we should take ǫ5 = ǫ6 ∼ 10−6

which interestingly implies the µ-term operator discussed in section 6.3 is naturally at the TeV scale. Note though that this

assumes that whatever mechanism induces the Charm-Top mass splitting leaves the Up coupling unaffected.
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The first three terms provide Dirac neutrinos masses while the last gives a Majorana mass to C4 thereby

realising the see-saw mechanism. However note that there is also a possible linear term ǫ6ǫ7C4 which must

vanish in some way (in the MSSM this is done using matter-parity).11

7 Conclusions and outlook

In this paper, we have presented a database of 208 heterotic standard models based on smooth Calabi-Yau

manifolds and Abelian bundles over them. All of these models have the precise matter spectrum of the

MSSM, one or more pairs of Higgs doublets, the standard model gauge group with possibly one additional

U(1) symmetry and no exotic matter charged under the standard model of any kind. For 105 of these

models, there is no additional U(1) symmetry so that the gauge group is exactly the standard model

group. For the remaining models this U(1) can be spontaneously broken by switching on singlet VEVs.

We have presented an example model from our database with the exact gauge group and spectrum of the

MSSM in more detail.

An interesting additional feature of our heterotic line bundle models is the presence of a global, flavour

non-universal S(U(1)5) ∼= U(1)4 symmetry which restricts the structure of the four-dimensional effective

theory. Standard model fields as well as bundle moduli singlets are charged under S(U(1)5). The interplay

between this symmetry and switching on singlet VEVs, thereby moving away from a purely Abelian

bundle, provides a rich phenomenological setting for issues such as proton stability, R-parity violation,

the µ-problem and fermion masses. We have discussed some of these issues and have illustrated them

with our example. It turns out, in this model, that the S(U(1)5) symmetry stabilises the proton, allows

for an order one top Yukawa coupling, facilitates a possible solution to the µ-problem and may provide

a realisation of the see-saw mechanism for neutrino masses. However the down-type Yukawa couplings

vanished perturbatively for this example and, as a further goal, it is important to search for models where

such U(1) flavour non-universal symmetries can accomodate both proton stability and a realistic Yukawa

sector for both up and down.

We believe that our results raise the phenomenology of heterotic Calabi-Yau compactifications to a new

level. Phenomenological problems beyond the calculation of the spectrum can now be addressed within a

sizable class of quasi-realistic explicit models, rather than for a small number of individual models which

are likely to fail more sophisticated phenomenological requirements. Such a systematic phenomenological

analysis, for the standard models presented here, will be carried out in a forthcoming paper [35].

Our work can be extended in a variety of ways. Scans over CICYs with Hodge numbers h1,1 > 5

and larger ranges of bundles are underway and are likely to lead to more standard models. It would be

interesting to perform a similar scan for heterotic line bundle models on Calabi-Yau hypersurfaces in toric

varieties, as classified in Ref. [57,58], although this requires developing a number of technical tools [59,60].

11Note that the numerical values required for the vevs ǫ6 and ǫ7 for the quark masses and neutrino majorana masses are in

tension.
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A Line bundle standard models on h1,1(X) = 4, 5 CICYs

In this Appendix we provide tables with all 208 line bundle standard models which we have found on

CICYs with h1,1(X) = 4, 5. The scan has been performed over all line bundle sums V =
⊕5

i=1OX(ka)

with entries in the range −3 ≤ kia ≤ 3 for h1,1(X) = 4 and −2 ≤ kia ≤ 2 for h1,1(X) = 5. The methodology

and the general results of this scan have already been described in Section 4.

The notation in the tables is as follows. The first row contains information about the CICY, namely

the CICY identifier (that is, its position in the standard CICY list [36]), the standard configuration matrix

with the Euler number as sub-script and h1,1(X), h2,1(X) as super-scripts and the freely acting symmetry

by which the model is divided. Each subsequent table entry specifies a line bundle sum by providing the

five vectors ka. As explained in Section 3, the number of massless U(1) symmetries at the Abelian locus

in bundle moduli space is given by 4 minus the number of linearly independent vectors ka and can, hence,

be directly read of from the data provided here.

CICY 6784:











P
1

P
1

P
1

P
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0

0 0 2

2 0 0

1 1 2











4,36

−64

Z2 × Z2

(3,2,-2,-1)(1,-1,0,0)(-1,0,1,0)(-1,0,1,0)(-2,-1,0,1) (2,2,1,-1)(1,-1,0,0)(1,-1,0,0)(-1,0,-2,1)(-3,0,1,0)

(2,1,0,-1)(0,1,-3,0)(0,-2,1,1)(-1,0,1,0)(-1,0,1,0) (2,1,-3,0)(0,1,2,-1)(0,-2,-1,1)(-1,0,1,0)(-1,0,1,0)

(1,0,-1,0)(1,0,-1,0)(1,-2,0,1)(0,1,2,-1)(-3,1,0,0) (1,2,2,-1)(1,0,-3,0)(0,-1,1,0)(0,-1,1,0)(-2,0,-1,1)

(1,1,0,-1)(1,1,0,-1)(0,-1,-2,1)(0,-2,1,1)(-2,1,1,0) (1,0,-1,0)(1,0,-1,0)(0,-1,1,0)(0,-1,-2,1)(-2,2,3,-1)

CICY 7435:











P
1

P
1

P
1

P
7

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 0

1 1 1 1 1 1 2











4,44

−80

Z2 × Z2

(2,1,1,-1)(2,1,-3,0)(-1,0,1,0)(-1,0,1,0)(-2,-2,0,1) (2,1,1,-1)(2,-3,1,0)(-1,1,0,0)(-1,1,0,0)(-2,0,-2,1)

(1,2,1,-1)(1,-1,0,0)(1,-1,0,0)(0,-2,-2,1)(-3,2,1,0) (1,1,2,-1)(1,0,-1,0)(1,0,-1,0)(0,-2,-2,1)(-3,1,2,0)

(1,2,1,-1)(1,2,-3,0)(0,-1,1,0)(0,-1,1,0)(-2,-2,0,1) (1,1,2,-1)(1,-3,2,0)(0,1,-1,0)(0,1,-1,0)(-2,0,-2,1)
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CICY 7862:











P
1

P
1

P
1

P
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

2

2











4,68

−128

Z2 × Z2

(1,-3,0,2)(0,1,0,-1)(0,1,0,-1)(0,0,-1,1)(-1,1,1,-1) (1,-1,-1,1)(1,-2,0,1)(0,0,-1,1)(-1,2,2,-3)(-1,1,0,0)

(1,-1,-1,1)(1,-1,-1,1)(0,1,2,-3)(-1,1,-1,1)(-1,0,1,0) (1,0,-2,-1)(1,-2,1,2)(0,0,1,-1)(-1,1,0,0)(-1,1,0,0)

(1,0,-2,-1)(1,-2,2,1)(0,0,1,-1)(-1,1,0,0)(-1,1,-1,1) (1,0,-2,1)(1,-2,0,1)(0,1,1,-2)(-1,1,1,-1)(-1,0,0,1)

(1,0,-2,1)(1,-2,1,0)(0,1,1,-2)(-1,1,0,0)(-1,0,0,1) (1,0,-1,0)(1,-3,2,0)(0,1,0,-1)(0,1,0,-1)(-2,1,-1,2)

(1,0,-3,0)(1,-2,3,0)(0,0,1,-1)(0,0,1,-1)(-2,2,-2,2) (1,0,-1,0)(1,-1,2,-2)(1,-2,1,0)(0,1,-1,0)(-3,2,-1,2)

CICY 5256:















P
1

P
1

P
1

P
1

P
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0

2 0 0 0

0 0 1 1

0 0 1 1

1 1 1 1















5,29

−48

Z2

(1,-2,0,1,0)(0,1,1,1,-1)(0,1,-1,0,0)(0,0,1,-2,0)(-1,0,-1,0,1) (1,1,0,1,-1)(1,-2,0,0,0)(0,1,1,-2,0)(-1,1,0,1,0)(-1,-1,-1,0,1)

(1,1,0,1,-1)(1,0,1,-2,0)(0,-1,0,1,0)(0,-1,-1,0,1)(-2,1,0,0,0)

CICY 5256:















P
1

P
1

P
1

P
1

P
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0

2 0 0 0

0 0 1 1

0 0 1 1

1 1 1 1















5,29

−48

Z2 × Z2

(1,1,0,1,-1)(0,1,-2,-2,1)(0,0,1,-1,0)(0,-2,1,1,0)(-1,0,0,1,0) (1,0,-2,1,0)(1,-2,1,0,0)(0,1,1,-2,0)(-1,1,0,0,0)(-1,0,0,1,0)

(1,1,-2,0,0)(1,-2,0,1,0)(0,1,1,-2,0)(-1,0,1,0,0)(-1,0,0,1,0) (1,1,0,1,-1)(1,-2,0,1,0)(0,1,-2,-2,1)(-1,0,1,0,0)(-1,0,1,0,0)

(1,1,0,1,-1)(1,-2,1,0,0)(0,1,-2,-2,1)(-1,0,1,0,0)(-1,0,0,1,0) (1,0,-2,1,0)(1,-2,1,0,0)(0,1,0,-1,0)(0,0,1,-1,0)(-2,1,0,1,0)

(1,0,-1,0,0)(1,-2,1,0,0)(0,1,1,-2,0)(0,0,-1,1,0)(-2,1,0,1,0) (1,0,-1,0,0)(1,-2,0,1,0)(0,1,1,-2,0)(0,1,-1,0,0)(-2,0,1,1,0)

(1,0,-2,1,0)(1,-1,0,0,0)(0,1,1,-2,0)(0,-1,1,0,0)(-2,1,0,1,0) (1,0,0,-1,0)(1,0,-2,1,0)(0,1,0,-1,0)(0,-2,1,1,0)(-2,1,1,0,0)

(1,0,-1,0,0)(1,0,-1,0,0)(0,1,1,1,-1)(0,1,1,-2,0)(-2,-2,0,1,1) (1,0,0,-1,0)(1,0,-2,1,0)(0,1,1,1,-1)(0,1,0,-1,0)(-2,-2,1,0,1)

(1,0,1,1,-1)(1,0,-2,1,0)(0,1,0,-1,0)(0,1,0,-1,0)(-2,-2,1,0,1) (1,0,1,1,-1)(1,0,-1,0,0)(0,1,1,-2,0)(0,1,-1,0,0)(-2,-2,0,1,1)

(1,1,-2,0,0)(1,-1,0,0,0)(0,1,1,1,-1)(0,1,0,-1,0)(-2,-2,1,0,1) (1,1,-2,0,0)(1,0,1,-2,0)(0,-1,1,0,0)(0,-1,0,1,0)(-2,1,0,1,0)

(1,1,-2,0,0)(1,0,1,1,-1)(1,0,0,-1,0)(-1,1,0,0,0)(-2,-2,1,0,1)

CICY 5452:
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1 1 0 0

0 0 1 1

2 0 0 0

0 0 2 0

1 1 1 1















5,29

−48

Z2

(1,1,0,-2,0)(1,0,1,1,-1)(0,0,-1,1,0)(0,-1,-1,0,1)(-2,0,1,0,0) (1,0,1,1,-1)(1,0,-2,0,0)(0,1,1,-2,0)(-1,0,0,1,0)(-1,-1,0,0,1)

(1,1,-2,0,0)(0,1,1,1,-1)(0,0,1,-1,0)(0,-2,0,1,0)(-1,0,0,-1,1) (1,0,-2,1,0)(0,1,1,1,-1)(0,1,0,-2,0)(0,-1,1,0,0)(-1,-1,0,0,1)

CICY 5452:
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






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∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0

0 0 1 1

2 0 0 0

0 0 2 0

1 1 1 1















5,29

−48

Z2 × Z2

(1,1,0,0,-1)(1,1,0,0,-1)(1,-2,0,0,1)(-1,0,-1,-1,1)(-2,0,1,1,0) (1,1,0,0,-1)(1,1,0,0,-1)(1,-2,-1,1,1)(-1,0,1,-2,0)(-2,0,0,1,1)

(1,1,0,1,-1)(1,0,1,-2,0)(1,-1,0,0,0)(-1,0,1,0,0)(-2,0,-2,1,1) (1,1,0,0,-1)(1,1,0,0,-1)(0,0,-1,-2,1)(0,-2,1,1,0)(-2,0,0,1,1)

(1,1,0,0,-1)(1,1,0,0,-1)(0,0,-2,-1,1)(0,-2,1,0,1)(-2,0,1,1,0) (1,1,0,1,-1)(1,1,0,-2,0)(0,-1,1,0,0)(0,-1,1,0,0)(-2,0,-2,1,1)

(1,1,0,0,-1)(1,1,0,0,-1)(0,-1,-1,-1,1)(0,-2,1,1,0)(-2,1,0,0,1) (1,1,0,0,-1)(1,1,0,0,-1)(0,-1,-2,1,0)(0,-2,1,0,1)(-2,1,1,-1,1)

(1,1,0,-2,0)(1,0,-1,0,0)(0,0,-1,1,0)(0,-2,1,1,0)(-2,1,1,0,0) (1,1,-2,0,0)(1,0,0,-1,0)(0,0,1,-1,0)(0,-2,1,1,0)(-2,1,0,1,0)

(1,1,0,-2,0)(1,0,-2,1,0)(0,-1,1,0,0)(0,-1,0,1,0)(-2,1,1,0,0) (1,1,0,1,-1)(1,-1,0,0,0)(0,1,1,-2,0)(0,-1,1,0,0)(-2,0,-2,1,1)

(1,1,0,-2,0)(1,-1,0,0,0)(0,1,1,1,-1)(0,-1,1,0,0)(-2,0,-2,1,1) (1,1,0,-2,0)(1,-1,0,0,0)(0,1,-2,1,0)(0,-1,1,0,0)(-2,0,1,1,0)

(1,1,-2,0,0)(1,-1,0,0,0)(0,1,1,-2,0)(0,-1,0,1,0)(-2,0,1,1,0) (1,1,0,-2,0)(1,-2,1,0,0)(0,1,-1,0,0)(0,0,-1,1,0)(-2,0,1,1,0)

(1,1,-2,0,0)(1,-2,0,1,0)(0,1,0,-1,0)(0,0,1,-1,0)(-2,0,1,1,0) (1,0,1,-2,0)(1,0,-1,0,0)(0,1,1,1,-1)(0,-1,1,0,0)(-2,0,-2,1,1)

(1,0,0,-1,0)(1,0,-2,1,0)(0,1,0,-1,0)(0,-2,1,1,0)(-2,1,1,0,0) (1,0,-2,1,0)(1,-1,0,0,0)(0,1,1,-2,0)(0,-1,1,0,0)(-2,1,0,1,0)

(1,0,-1,0,0)(1,-2,0,1,0)(0,1,1,-2,0)(0,1,-1,0,0)(-2,0,1,1,0) (1,0,1,-2,0)(1,-2,0,1,0)(0,1,-1,0,0)(0,0,-1,1,0)(-2,1,1,0,0)

(1,0,0,-1,0)(1,-2,0,1,0)(0,1,-2,1,0)(0,0,1,-1,0)(-2,1,1,0,0) (1,-1,0,0,0)(1,-1,0,0,0)(0,1,1,1,-1)(0,1,1,-2,0)(-2,0,-2,1,1)

(1,1,1,0,-1)(1,1,-2,0,0)(0,-2,1,-2,1)(-1,0,0,1,0)(-1,0,0,1,0) (1,1,1,0,-1)(1,0,-2,1,0)(0,-2,1,-2,1)(-1,1,0,0,0)(-1,0,0,1,0)

(1,1,0,-2,0)(1,0,-2,1,0)(0,-2,1,1,0)(-1,1,0,0,0)(-1,0,1,0,0) (1,1,-2,0,0)(1,0,1,1,-1)(0,-2,1,-2,1)(-1,1,0,0,0)(-1,0,0,1,0)

(1,1,-2,0,0)(1,0,1,-2,0)(0,-2,1,1,0)(-1,1,0,0,0)(-1,0,0,1,0) (1,1,-2,0,0)(1,-2,0,1,0)(0,1,1,-2,0)(-1,0,1,0,0)(-1,0,0,1,0)

(1,0,1,1,-1)(1,0,-2,1,0)(0,-2,1,-2,1)(-1,1,0,0,0)(-1,1,0,0,0) (1,0,-2,1,0)(1,-2,1,0,0)(0,1,1,-2,0)(-1,1,0,0,0)(-1,0,0,1,0)

(1,1,1,0,-1)(0,1,-2,1,0)(0,-1,0,1,0)(0,-2,1,-2,1)(-1,1,0,0,0) (1,0,1,1,-1)(0,1,0,-1,0)(0,1,-2,1,0)(0,-2,1,-2,1)(-1,0,0,1,0)
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CICY 6947:
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0 0 0 0 1 1 0 0
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1 1 1 1 1 1 1 1















5,37

−64

Z2

(1,0,1,1,-1)(1,0,1,1,-1)(1,-2,0,-2,1)(-1,1,-2,-1,1)(-2,1,0,1,0) (1,1,0,1,-1)(1,1,0,1,-1)(0,1,-2,-2,1)(0,-2,1,1,0)(-2,-1,1,-1,1)

(1,0,1,1,-1)(1,0,1,1,-1)(0,0,-1,-2,1)(0,-1,-1,-1,1)(-2,1,0,1,0) (1,1,0,1,-1)(1,1,0,1,-1)(0,-2,1,1,0)(-1,0,0,-2,1)(-1,0,-1,-1,1)

CICY 6947:
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1 1 1 1 1 1 1 1


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
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



5,37

−64

Z2 × Z2

(1,1,-2,-2,1)(1,0,1,1,-1)(1,0,1,1,-1)(-1,-2,0,-1,1)(-2,1,0,1,0) (1,1,0,1,-1)(1,1,0,1,-1)(0,-1,-2,-1,1)(0,-2,1,1,0)(-2,1,1,-2,1)

(1,1,0,-2,0)(1,0,-1,0,0)(0,0,-1,1,0)(0,-2,1,1,0)(-2,1,1,0,0) (1,1,-2,0,0)(1,0,0,-1,0)(0,0,1,-1,0)(0,-2,1,1,0)(-2,1,0,1,0)

(1,1,0,-2,0)(1,0,-2,1,0)(0,-1,1,0,0)(0,-1,0,1,0)(-2,1,1,0,0) (1,1,-2,0,0)(1,0,1,-2,0)(0,-1,1,0,0)(0,-1,0,1,0)(-2,1,0,1,0)

(1,1,0,-2,0)(1,-1,0,0,0)(0,1,-2,1,0)(0,-1,1,0,0)(-2,0,1,1,0) (1,1,-2,0,0)(1,-1,0,0,0)(0,1,1,-2,0)(0,-1,0,1,0)(-2,0,1,1,0)

(1,1,0,-2,0)(1,-2,1,0,0)(0,1,-1,0,0)(0,0,-1,1,0)(-2,0,1,1,0) (1,1,-2,0,0)(1,-2,0,1,0)(0,1,0,-1,0)(0,0,1,-1,0)(-2,0,1,1,0)

(1,0,1,-2,0)(1,0,-1,0,0)(0,1,-1,0,0)(0,-2,1,1,0)(-2,1,0,1,0) (1,0,0,-1,0)(1,0,-2,1,0)(0,1,0,-1,0)(0,-2,1,1,0)(-2,1,1,0,0)

(1,0,1,-2,0)(1,-1,0,0,0)(0,1,-2,1,0)(0,-1,0,1,0)(-2,1,1,0,0) (1,0,-2,1,0)(1,-1,0,0,0)(0,1,1,-2,0)(0,-1,1,0,0)(-2,1,0,1,0)

(1,0,0,-1,0)(1,-2,1,0,0)(0,1,0,-1,0)(0,1,-2,1,0)(-2,0,1,1,0) (1,0,-1,0,0)(1,-2,0,1,0)(0,1,1,-2,0)(0,1,-1,0,0)(-2,0,1,1,0)

(1,0,1,-2,0)(1,-2,0,1,0)(0,1,-1,0,0)(0,0,-1,1,0)(-2,1,1,0,0) (1,0,0,-1,0)(1,-2,0,1,0)(0,1,-2,1,0)(0,0,1,-1,0)(-2,1,1,0,0)

(1,0,-1,0,0)(1,-2,1,0,0)(0,1,1,-2,0)(0,0,-1,1,0)(-2,1,0,1,0) (1,0,-2,1,0)(1,-2,1,0,0)(0,1,0,-1,0)(0,0,1,-1,0)(-2,1,0,1,0)

(1,1,0,-2,0)(1,0,-2,1,0)(0,-2,1,1,0)(-1,1,0,0,0)(-1,0,1,0,0) (1,1,-2,0,0)(1,0,1,-2,0)(0,-2,1,1,0)(-1,1,0,0,0)(-1,0,0,1,0)

(1,1,0,-2,0)(1,-2,1,0,0)(0,1,-2,1,0)(-1,0,1,0,0)(-1,0,0,1,0) (1,1,-2,0,0)(1,-2,0,1,0)(0,1,1,-2,0)(-1,0,1,0,0)(-1,0,0,1,0)

(1,0,1,-2,0)(1,-2,0,1,0)(0,1,-2,1,0)(-1,1,0,0,0)(-1,0,1,0,0) (1,0,-2,1,0)(1,-2,1,0,0)(0,1,1,-2,0)(-1,1,0,0,0)(-1,0,0,1,0)

CICY 6732:
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


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
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



5,37

−64

Z2

(1,1,1,0,-1)(1,0,-2,1,0)(1,-1,0,0,0)(-1,1,1,-1,0)(-2,-1,0,0,1) (1,1,1,0,-1)(1,-1,1,-1,0)(1,-1,0,0,0)(-1,0,-2,0,1)(-2,1,0,1,0)

(1,1,1,0,-1)(1,1,-1,1,-1)(0,0,-2,1,0)(0,-2,1,-1,1)(-2,0,1,-1,1) (1,1,0,-2,0)(1,0,1,1,-1)(0,1,-1,0,0)(0,-1,0,1,0)(-2,-1,0,0,1)

(1,1,-2,0,0)(1,0,1,1,-1)(0,1,0,-1,0)(0,-1,1,0,0)(-2,-1,0,0,1) (1,1,1,0,-1)(1,-1,0,0,0)(0,1,0,-2,0)(0,0,-1,1,0)(-2,-1,0,1,1)

(1,1,1,0,-1)(1,-1,0,0,0)(0,1,-2,1,0)(0,0,1,-1,0)(-2,-1,0,0,1) (1,1,0,1,-1)(1,-1,1,-1,0)(0,1,-2,1,0)(0,0,1,-1,0)(-2,-1,0,0,1)

(1,1,0,1,-1)(1,-1,0,0,0)(0,1,-2,0,0)(0,0,1,-1,0)(-2,-1,1,0,1) (1,1,0,1,-1)(1,-1,1,-1,0)(0,0,-1,1,0)(0,-1,0,-2,1)(-2,1,0,1,0)

(1,1,0,-2,0)(1,0,-1,0,0)(0,1,1,1,-1)(-1,0,0,1,0)(-1,-2,0,0,1) (1,1,-2,0,0)(1,0,0,-1,0)(0,1,1,1,-1)(-1,0,1,0,0)(-1,-2,0,0,1)

(1,1,1,0,-1)(1,0,0,-2,0)(0,0,-1,1,0)(-1,1,0,0,0)(-1,-2,0,1,1) (1,1,1,0,-1)(1,0,-2,1,0)(0,0,1,-1,0)(-1,1,0,0,0)(-1,-2,0,0,1)

(1,1,0,1,-1)(1,0,-2,1,0)(0,0,1,-1,0)(-1,1,1,-1,0)(-1,-2,0,0,1) (1,1,0,1,-1)(1,0,-2,0,0)(0,0,1,-1,0)(-1,1,0,0,0)(-1,-2,1,0,1)

(1,1,1,0,-1)(1,-1,1,-1,0)(0,1,-2,1,0)(-1,1,0,0,0)(-1,-2,0,0,1) (1,1,1,0,-1)(1,-1,0,0,0)(0,0,1,-2,0)(-1,0,0,1,0)(-1,0,-2,1,1)

(1,1,0,1,-1)(1,-2,0,1,0)(0,0,-1,1,0)(-1,1,1,-1,0)(-1,0,0,-2,1) (1,1,1,0,-1)(1,-2,0,1,0)(0,-1,-2,0,1)(-1,1,1,-1,0)(-1,1,0,0,0)

(1,1,1,0,-1)(0,0,1,-2,0)(0,-1,0,1,0)(0,-1,-2,1,1)(-1,1,0,0,0)
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(1,-2,0,0,0)(0,1,1,-2,0)(0,1,0,0,-1)(0,-1,-1,1,1)(-1,1,0,1,0) (1,-2,0,0,0)(0,1,1,0,-2)(0,1,0,-1,0)(0,-1,-1,1,1)(-1,1,0,0,1)

(1,-2,0,0,1)(0,1,0,0,-2)(0,1,-1,1,0)(0,0,0,-1,1)(-1,0,1,0,0) (1,-2,0,1,0)(0,1,0,-2,0)(0,1,-1,0,1)(0,0,0,1,-1)(-1,0,1,0,0)

(1,-2,0,0,0)(0,1,1,-2,0)(0,1,0,0,-1)(0,0,-1,1,1)(-1,0,0,1,0) (1,-2,0,0,0)(0,1,1,0,-2)(0,1,0,-1,0)(0,0,-1,1,1)(-1,0,0,0,1)

(1,-1,-1,1,1)(0,1,0,-2,1)(0,0,1,0,-2)(0,-1,0,1,0)(-1,1,0,0,0) (1,-1,-1,1,1)(0,1,0,1,-2)(0,0,1,-2,0)(0,-1,0,0,1)(-1,1,0,0,0)

(1,-1,0,0,0)(0,1,0,-2,1)(0,0,1,0,-2)(0,0,-1,1,1)(-1,0,0,1,0) (1,-1,0,0,0)(0,1,0,1,-2)(0,0,1,-2,0)(0,0,-1,1,1)(-1,0,0,0,1)

(1,-1,1,-1,1)(0,1,0,0,-2)(0,0,-1,1,0)(0,0,-1,0,1)(-1,0,1,0,0) (1,-1,1,1,-1)(0,1,0,-2,0)(0,0,-1,1,0)(0,0,-1,0,1)(-1,0,1,0,0)

(1,0,0,-2,0)(0,1,-2,0,1)(0,-1,1,1,-1)(0,-1,1,0,0)(-1,1,0,1,0) (1,0,0,0,-2)(0,1,-2,1,0)(0,-1,1,0,0)(0,-1,1,-1,1)(-1,1,0,0,1)

(1,0,0,-2,0)(0,1,-1,0,0)(0,0,1,0,-1)(0,-2,1,1,0)(-1,1,-1,1,1) (1,0,0,0,-2)(0,1,-1,0,0)(0,0,1,-1,0)(0,-2,1,0,1)(-1,1,-1,1,1)

19



CICY 6777:
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5,37

−64
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(1,1,1,0,-1)(1,0,-2,-1,1)(1,-2,0,-1,1)(-1,1,1,1,-1)(-2,0,0,1,0) (1,1,0,1,-1)(1,0,-1,0,0)(0,0,1,-1,0)(0,-2,-1,0,1)(-2,1,1,0,0)

(1,0,1,1,-1)(1,-1,0,0,0)(0,1,0,-1,0)(0,-1,-2,0,1)(-2,1,1,0,0) (1,0,0,-1,0)(1,-1,-2,0,1)(0,1,1,1,-1)(0,-1,1,0,0)(-2,1,0,0,0)

(1,0,0,-1,0)(1,-2,-1,0,1)(0,1,1,1,-1)(0,1,-1,0,0)(-2,0,1,0,0) (1,1,1,0,-1)(0,1,-1,0,0)(0,0,1,-2,0)(0,-2,-1,1,1)(-1,0,0,1,0)

(1,1,0,1,-1)(0,1,1,-2,0)(0,0,-1,1,0)(0,-2,-1,0,1)(-1,0,1,0,0) (1,1,-1,-1,0)(0,1,1,1,-1)(0,0,-1,-2,1)(0,-2,1,1,0)(-1,0,0,1,0)

(1,1,1,0,-1)(0,1,0,-2,0)(0,-1,1,0,0)(0,-1,-2,1,1)(-1,0,0,1,0) (1,0,1,1,-1)(0,1,1,-2,0)(0,-1,0,1,0)(0,-1,-2,0,1)(-1,1,0,0,0)

(1,-1,1,-1,0)(0,1,1,1,-1)(0,1,-2,1,0)(0,-1,0,-2,1)(-1,0,0,1,0)

CICY 6890:















P
1

P
1

P
1

P
1

P
4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0 0

0 0 1 1 0

0 0 0 0 2

0 0 2 0 0

1 1 1 1 1















5,37

−64

Z2

(1,1,1,0,-1)(1,0,-1,0,0)(1,-2,0,1,0)(-1,1,1,-1,0)(-2,0,-1,0,1) (1,1,1,0,-1)(1,0,-1,0,0)(0,0,1,-2,0)(0,-1,0,1,0)(-2,0,-1,1,1)

(1,1,0,1,-1)(1,0,1,-2,0)(0,0,-1,1,0)(0,-1,1,0,0)(-2,0,-1,0,1) (1,1,-1,-1,0)(1,0,1,1,-1)(0,0,-1,-2,1)(0,-1,0,1,0)(-2,0,1,1,0)

(1,1,1,0,-1)(1,-1,1,1,-1)(0,1,-2,-1,1)(0,-2,0,1,0)(-2,1,0,-1,1) (1,1,0,1,-1)(1,-2,1,0,0)(0,1,-1,0,0)(0,0,1,-1,0)(-2,0,-1,0,1)

(1,0,1,1,-1)(1,0,-1,0,0)(0,1,0,-1,0)(0,-2,1,0,0)(-2,1,-1,0,1) (1,1,1,0,-1)(1,0,0,-2,0)(0,-1,0,1,0)(-1,0,1,0,0)(-1,0,-2,1,1)

(1,1,1,0,-1)(1,0,-2,1,0)(0,-2,-1,0,1)(-1,1,1,-1,0)(-1,0,1,0,0) (1,1,1,0,-1)(1,-2,0,1,0)(0,1,0,-1,0)(-1,0,1,0,0)(-1,0,-2,0,1)

(1,0,1,1,-1)(1,0,-2,1,0)(0,-1,0,1,0)(-1,1,1,-1,0)(-1,0,0,-2,1) (1,0,1,-2,0)(1,-1,0,0,0)(0,1,1,1,-1)(-1,0,0,1,0)(-1,0,-2,0,1)

(1,0,1,1,-1)(1,-2,0,1,0)(0,1,0,-1,0)(-1,1,1,-1,0)(-1,0,-2,0,1) (1,0,1,1,-1)(1,-2,0,0,0)(0,1,0,-1,0)(-1,1,-2,0,1)(-1,0,1,0,0)

(1,0,0,-1,0)(1,-2,1,0,0)(0,1,1,1,-1)(-1,1,0,0,0)(-1,0,-2,0,1) (1,1,1,0,-1)(0,1,0,-2,0)(0,0,-1,1,0)(0,-2,-1,1,1)(-1,0,1,0,0)

CICY 7447:


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
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∣

∣

∣
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∣
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1 1

1 1

1 1

1 1

1 1















5,45

−80

Z2 × Z2

(0,1,0,-2,1)(0,1,-2,1,0)(0,0,1,1,-2)(0,-1,1,0,0)(0,-1,0,0,1) (1,-2,0,0,1)(0,1,-2,0,1)(0,0,1,1,-2)(0,0,1,-1,0)(-1,1,0,0,0)

(1,-2,0,0,1)(0,1,0,1,-2)(0,0,1,-2,1)(0,0,-1,0,1)(-1,1,0,1,-1) (1,-2,-1,1,1)(0,1,1,-2,0)(0,1,-1,0,0)(0,0,1,1,-2)(-1,0,0,0,1)

CICY 7487:















P
1

P
1

P
1

P
1

P
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 2

1 1

1 1

1 1

1 1


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5,45
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Z2 × Z2

(1,-2,0,0,1)(0,1,-2,0,1)(0,0,1,1,-2)(0,0,1,-1,0)(-1,1,0,0,0) (1,-2,0,0,1)(0,1,0,1,-2)(0,0,1,-2,1)(0,0,-1,0,1)(-1,1,0,1,-1)

(1,0,-2,0,1)(1,-2,1,0,0)(0,1,1,0,-2)(-1,1,0,0,0)(-1,0,0,0,1) (1,-1,-1,0,1)(1,-2,0,0,1)(0,1,0,1,-2)(0,1,0,-1,0)(-2,1,1,0,0)

(1,-1,-1,1,0)(1,-1,-1,0,1)(0,1,0,-2,1)(0,0,1,1,-2)(-2,1,1,0,0) (1,-1,0,0,0)(1,-1,-1,0,1)(0,1,0,-2,1)(0,0,1,1,-2)(-2,1,0,1,0)

(1,-1,1,-1,0)(1,-1,-2,1,1)(0,1,1,-2,0)(0,0,0,1,-1)(-2,1,0,1,0) (1,-1,1,-1,0)(1,-1,-2,1,1)(0,1,1,0,-2)(0,0,0,-1,1)(-2,1,0,1,0)

(1,0,-2,0,1)(1,-2,0,1,0)(0,1,0,-1,0)(0,0,1,0,-1)(-2,1,1,0,0) (1,0,-2,0,1)(1,-2,0,1,0)(0,1,0,0,-1)(0,0,1,-1,0)(-2,1,1,0,0)

(1,0,-2,0,1)(1,-2,1,0,0)(0,1,0,-1,0)(0,0,1,0,-1)(-2,1,0,1,0) (1,0,-2,0,1)(1,-2,1,0,0)(0,1,0,0,-1)(0,0,1,-1,0)(-2,1,0,1,0)

(1,0,-2,0,1)(1,-2,1,0,0)(0,1,0,0,-1)(0,0,1,0,-1)(-2,1,0,0,1) (1,0,-2,0,1)(1,-2,1,1,-1)(0,1,0,-1,0)(0,0,1,0,-1)(-2,1,0,0,1)

(1,0,-2,0,1)(1,-2,1,1,-1)(0,1,0,0,-1)(0,0,1,-1,0)(-2,1,0,0,1) (1,0,-1,0,0)(1,-2,0,0,1)(0,1,1,-2,0)(0,0,0,1,-1)(-2,1,0,1,0)

(1,0,-1,0,0)(1,-2,0,0,1)(0,1,1,0,-2)(0,0,0,-1,1)(-2,1,0,1,0) (1,0,-1,0,0)(1,-2,1,0,0)(0,1,0,-2,1)(0,0,0,1,-1)(-2,1,0,1,0)

(1,0,-1,0,0)(1,-2,1,0,0)(0,1,1,-2,0)(0,0,-1,1,0)(-2,1,0,1,0) (1,0,-1,0,0)(1,-2,1,0,0)(0,1,1,-2,0)(0,0,0,1,-1)(-2,1,-1,1,1)

(1,0,-1,0,0)(1,-2,0,0,1)(0,1,0,1,-2)(0,1,0,-1,0)(-2,0,1,0,1) (1,0,-1,0,0)(1,-2,0,0,1)(0,1,1,0,-2)(0,1,-1,0,0)(-2,0,1,0,1)

(1,0,-1,0,0)(1,-2,1,-1,1)(0,1,0,1,-2)(0,1,0,-1,0)(-2,0,0,1,1) (1,0,0,-1,0)(1,0,-2,0,1)(1,-2,0,1,0)(-1,1,1,0,-1)(-2,1,1,0,0)

CICY 6828:
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4,36
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Z2 × Z2

(1,0,2,-1)(1,-3,0,0)(0,1,-1,0)(0,1,-1,0)(-2,1,0,1) (1,2,0,-1)(1,-3,2,0)(0,1,-1,0)(0,1,-1,0)(-2,-1,0,1)

(2,-2,3,-1)(0,1,-1,0)(0,1,-1,0)(-1,0,1,0)(-1,0,-2,1) (2,1,2,-1)(0,1,-3,0)(0,-2,-1,1)(-1,0,1,0)(-1,0,1,0)
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