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Abstract

We study renormalizable Lorentz invariant stable quantum field theories in two space-time
dimensions with instantaneous causal structure (causal ordering induced by the light “cone”
time ordering). These models provide a candidate UV-completion of the two-dimensional
ghost condensate. They exhibit a peculiar UV/IR mixing—energies of all excitations become
arbitrarily small at high spatial momenta. We discuss several phenomena associated with this
mixing. These include the impossibility to reach a thermal equilibrium and metastability of
all excitations towards decay into short wavelength modes resulting in an indefinite turbulent
cascade. In spite of the UV/IR mixing in many cases the UV physics can still be decoupled
from low energy phenomena. However, a patient observer in the Lineland is able to produce
arbitrarily heavy particles simply by waiting for a long enough time.

1 Introduction

Our chances for superluminal travel are very slim. There is a single Lorentz invariant causal
structure in (3 + 1) dimensional Minkowski space-time and it is not compatible with superluminal
signal propagation. However, life may be more interesting in a (1 + 1) dimensional world—the
Lineland [1]. There one may use a light “cone” coordinate

x+ = t+ x

as an absolute time. Then one may define an unconventional causal structure, such that the causal
future of any observer at the moment of time x+ = a consists of all space-time events in the upper
right half-plane x+ > a, and the causal past consists of all space-time events in the lower left
half-plane x+ < a. Lorentz boosts in two dimensions act as

x+ → λx+, x− → λ−1x−

with λ > 0, so that the light cone causal ordering is Lorentz invariant. Its existence is related
to the absence of continuous spatial rotations in the Lineland. All what is left is a discrete
spatial parity x+ ↔ x−, which is necessarily broken with this causal ordering (as it is in the
real world). Following [1] we call this causal structure instantaneous, since it does not admit any
causally disconnected regions. From now on we will be referring to x+ and x− as time and space
coordinates correspondingly, unless specified otherwise.

As shown by [1], the Einstein-aether theory in two dimensions [2, 3] provides an example of a
renormalizable (in fact, asymptotically free) and apparently consistent theory realizing this causal
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structure1. This model is subject to the following subtlety though. At the classical level the
Einstein-aether theory exhibits a spontaneous breaking of Lorentz symmetry. One may expect
this symmetry to be restored at the quantum level as prescribed by the Coleman–Mermin–Wagner
theorem [4, 5]. However, non-compactness of the Lorentz group complicates direct construction
of well-defined Lorentz invariant observables in this case.

Instead, in the current paper we chose to concentrate on simpler examples of instantaneous
theories such that this subtlety is avoided. Our main goal is to develop a basic intuition about these
models by performing a number of simple calculations, aimed to demonstrate that instantaneous
theories are amenable to a straightforward perturbative analysis and possible to work with in spite
of a number of rather unconventional and, at first sight, counterintuitive properties.

The origin of these peculiarities is easy to understand. The Lorentz invariant dispersion relation
in instantaneous theories is

ω =
µ2

|k|
, (1)

where ω is a frequency defined with respect to the time coordinate which is x+ and k is a spatial
momentum with respect to x−. This dispersion relation exhibits a peculiar form of the UV/IR
mixing—the higher the spatial momentum of a mode is, the smaller is its energy! In particular,
the spectrum is always gapless no matter how heavy the “mass” µ2 of a field is. Understanding
the consequences of this unconventional dispersion relation will be our main theme.

The rest of the paper is organized as follows. In section 2 we start by introducing the class
of theories we will be working with. To keep things as simple as possible we restrict to models
of a single scalar field φ. A Lorentz invariant kinetic term with two time derivatives is (∂+∂−φ)2.
Note that it has four derivatives with respect to the Minkowski time t, so a theory with this
kinetic term would contain ghosts, if quantized with respect to the conventional causual structure.
This problem does not arise when quantizing using the light cone time and instantaneous causal
structure.

With this kinetic term the naive scaling dimension of the field φ is −1, so there is an infinite
number of relevant and marginal operators. For example, any interaction Lagrangian of the form
P (φ, ∂+φ∂−φ) leads to a renormalizable theory according to the naive power counting. In general,
this will lead to a strongly coupled theory in the IR (i.e., at small ω and k), however, as we will
see, this strong coupling can be avoided by introducing a sufficiently large “mass” term µ4φ2. Our
principal working model of an interacting instantaneous theory will be a φ3 theory, which is not
only super-renormalizable, but also finite.

To study the physics of instantaneous theories we start by looking at the non-interacting
model. We calculate the retarded propagator to see explicitly the presence of instantaneous
signals and discuss an unusual consequence of the dispersion relation (1)—the impossibility to
reach the equilibrium Bose–Einstein distribution at finite temperature. We continue in section
3 with introducing the cubic interaction and discuss another interesting consequence of the ω/k
dispersion relation—the instability of all particles towards a two body decay into particles with
larger spatial momenta. We also argue that in spite of the UV/IR mixing the approximate
decoupling of heavy particles (i.e., particles with large µ2) is still possible. Nevertheless, the

1To be precise, we are talking here only about vector sector of the Einstein-aether, with gravity being decoupled.
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UV/IR mixing makes high energy experimental physics simpler and less expensive—an arbitrarily
heavy particle will be eventually produced in the decays of lighter particles, so the discovery of
the theory of everything is simply a matter of time in the Lineland.

In order to understand what the absence of the equilibrium Bose–Einstein distribution means,
in section 4 we use the Boltzmann equation to describe the non-equilibrium behaviour of a homo-
geneous gas in the instantaneous φ3 theory. As a consequence of particle decays an arbitrary initial
state gives rise to a turbulent cascade towards higher momenta. An arbitrary initial distribution
function approaches the universal scaling shape at late times. In the limit of small occupation
numbers we find this scaling solution analytically. Physically, this cascade can be interpreted as
a process of Bose condensation which cannot be completed in a finite time, because zero energy
state corresponds to the infinite spatial momentum. We present our conclusions in section 5.

Before proceeding, a comment is in order. To ensure a better IR (or, to be more precise,
long distance) behavior it is often convenient to compactify the x−-coordinate on a circle. One
may complain that this breaks the Lorentz symmetry. However, from our view-point, the major
interest of working with a Lorentz invariant theory is that it can be coupled to gravity in a natural
way (we leave for a future work the study of what happens then). A “soft” breaking of Lorentz
symmetry, like imposing periodic boundary conditions in x−, does not spoil this property.

2 Free Theory

A simple example of a free instantaneous theory is provided by the following Lagrangian,

L =
1

2
(∂+∂−φ)2 − 1

2
µ4φ2 . (2)

The corresponding field equation in the Fourier space is

(ω2k2 − µ4)φ = 0 (3)

so that at any absolute value |k| of the spatial momentum we find one left-moving and one right-
moving mode with the UV/IR mixing dispersion relation (1). Massless instantaneous theories are
somewhat degenerate already at the level of a free theory—the dispersion relation (1) does not
give rise to propagating waves for µ = 0. In what follows we restrict to the massive case µ4 > 0.

In principle, one can also include in (2) a conventional kinetic term Zµ2∂+φ∂−φ. Then at
small frequencies and momenta our model would reduce to a conventional scalar field theory
quantized in the light front. This opens an interesting possibility to interpolate smoothly between
conventional and instantaneous physics. For simplicity, we restrict to the case Z = 0, this choice
can be enforced by requiring the invariance under x− → −x− parity.

A well-known subtlety in the light front quantization is the zero mode problem (see, e.g., [6]).
The cause of the problem is that if one expands the field φ into modes with different spatial
momenta the constant k = 0 mode does not acquire a kinetic term from (2).

It turns out this problem ameliorates in instantaneous theories due to the presence of the term
in (2), which is second order in the light cone time. To see this it is convenient to compactify the
light cone time on a finite interval and to impose zero Dirichlet boundary conditions. This way
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the zero mode gets projected from the theory and does not lead to any additional constraints.
One may recover the non-compact theory by sending the compactification length to infinity.

Note, that this argument cannot be directly applied to conventional theories. First, compact-
ification on the light-like direction is subtle with a conventional causal structure. Even if one
ignores this, it is immediate to see that the Dirichlet boundary conditions are incompatible with
the field equation in the absence of the second derivative kinetic term. Indeed, given some initial
data at any moment of time one can think of the field equation as an ordinary differential equation
in x− for the uknown function f = ∂2

+φ. This equation is second order for the theory (2),

∂2
−f = µ4φ ,

so that one can impose two Dirichlet boundary conditions. For the conventional theory this
equation is first order so it is impossible to impose two Dirichlet conditions.

Clearly, the same reasoning can be applied to project out the zero mode in the interacting
theory as well.

Note also that for a conventional theory without higher derivative terms the light cone and
conventional quantizations give rise to the same results, if done properly. The theory (2) demon-
strates this is not the case in general. Treated by conventional methods this model contains
negative energy states—ghosts. As a consequence, already at the classical level, if one adds non-
linearity into this theory the vacuum becomes unstable, arbitrary small field fluctuations grow
indefinitely by populating positive and negative energy modes. This does not happen if one uses
the light cone time to define the Cauchy problem.

One should not be surprised that different choices of a time coordinate or, equivalently, differ-
ent ways to pose the Cauchy problem give rise to inequivalent physical results even though the
Lagrangian is the same. A more familiar example of this kind is a conventional massive theory,
which turns from being stable into tachyonic if one exchanges the role of space and time. With
different choices of the Cauchy surfaces one imposes different regularity conditions at the infin-
ity on the allowed field configuration, and this may tame/induce the instability of the Cauchy
problem.

To see explicitly the instantaneous behavior in the theory (2) let us study the field response
to an external source, which is determined by the retarded propagator,

Gret(x
+, x−) =

1

4π2

∫
dkdω

eikx−+iωx+

k2ω2 − µ4 − iεω
= −θ(x+)

2µ2
J0(
√
µ2x+|x−|) (4)

We see that there is indeed a non-vanishing field response at all x+ ≥ 0. One may worry that
the fall-off of the retarded propagator at large x− becomes more and more slow at early times. In
particular, at x+ = 0+ the retarded propagator approaches a non-vanishing constant, indicating
that the k = 0 infinite frequency mode gets excited. This is an artefact of using the source which
is switched on and off instantaneously. For physical sources smeared in time (and space) the field
response goes to zero at the spatial infinity at all times.

Apart from instantaneous signal propagation the retarded propagator (4) exhibits other in-
teresting features following from the UV/IR mixing dispersion relation (1) and persisting in the
interacting theory. Consider an observer located at a fixed spatial position x−. After a localized

4



source turns on at the origin, she immediately observes the field response. At late times x+ →∞
this response asymptotes to

Gret(x
+ →∞, x−) ∝ (x+|x−|)−1/4 sin(

√
µ2x+|x−|) .

We see that the characteristic wavelength, λ ∼ µ−1 (|x−|/x+)
1/2

, of the observed signal be-
comes shorter at late time. On the other hand the characteristic time-scale for its variation,
τ ∼ µ−1 (x+/|x−|)1/2

, becomes very long. So at late times the observer detects a very short-scale
and almost static “noise”.

Another piece of information which is usually straightforward to extract from a free theory is
a finite temperature behavior of a system. However, we find a surprise here. A thermal theory
has to possess the Bose-Einstein distribution

n(k) =
1

e

(
µ2

|k|−µ̄
)
/T − 1

, (5)

where µ̄ < 0 is a chemical potenital. However, the total particle density given by
∫
n(k)dk diverges

at large momenta. This is another manifestation of the UV/IR mixing—there is an infinite number
of high momentum levels with energies arbitrary close to zero, so that one expects to observe a
never ending process of Bose-Einstein condensation onto the infinite momentum ground state. In
section 4 we will provide a detailed kinetic description of this process.

Note, that fermions obeying the UV/IR mixing dispersion relation (1) would exhibit the same
property—changing the sign in the denominator of the distribution (5) does not make its integral
converging. The physical reason for that is similar—for any finite Fermi momentum there is always
an infinite number of states below the Fermi surface, so that thermalization cannot be completed.

3 Interacting Theory

Let us turn to an interacting theory now. For simplicity, we restrict to the simplest (super)renor-
malizable interaction2

Vint =
g

6
φ3 .

It is immediate to see now the dynamics responsible for the absence of thermalization pointed out
at the end of the previous Section. Namely, a peculiar property of the dispersion relation (1) is
that two body decays of a particle into a pair of particles of the same mass and larger momenta
are kinematically allowed. For a particle with a momentum k the momenta of the decay products
are

p = −ϕk, q = k − p = ϕ2k ,

where ϕ = (
√

5 + 1)/2 is the golden ratio. Consequently, the momenta of decay products in an
infinite chain of two body decays originated from a single initial particle can be approximated by
the Fibonacci numbers.

2As usual, the vacuum is unstable in the φ3-theory at the non-perturbative level, but this is irrelevant for our
perturbative analysis.
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Let us calculate the corresponding decay rate. The calculation is parallel to what one does in
conventional theories, one should only be careful to keep track of the correct state and operator
normalizations. We introduce canonical creation and anihilation operators a†k, ak satisfying

[ak, a
†
k′ ] = δ(k − k′) .

For φ and and its canonically conjugate momentum πφ to satisfy the canonical commutation
relations, the field operator should be defined as follows

φ(x) =

∫
dk

(2π)1/2

eikx−+iωx+

µ
√

2|k|
ak + c.c. (6)

Note the extra |k|−1 factor in the wave function normalization compared to the standard (2ω)−1/2

[7], it is related to the presence of two spatial derivative in the expression for the canonical
momentum, πφ = −∂+∂

2
−φ. From here the standard expressions for the Feynmann rules and

transition rates [7] adopted for the theory at hand give the following result for the two-body decay
width,

Γ =
g2

8µ6|k|

∫
dpdq

δ(k − p− q)δ
(
µ2

|k| −
µ2

|p| −
µ2

|q|

)
|pq|

=
g2

8µ8|k|

(
ϕ+

1

ϕ

)−1

(7)

Note that the ratio of the width to the frequency of a particle Γ/ω does not depend on the spatial
momentum k. This behavior could have been anticipated from the Lorentz invariance of the
theory, so that the result (7) for the width Γ is fixed by the Lorentz invariance and dimensional
analysis up to an overall numerical factor. As a consequence, even though the width itself diverges
at small spatial momenta, particles remain narrow resonances and the theory is weakly coupled
(at least, as far as this particular process goes), provided the dimensionless coupling g/µ5 is small.

It is natural to expect that the dispersion relation (1) makes decoupling of heavy particles
subtle compared to the standard case. As an illustration consider a situation when in addition
to a light field of mass µ, there is another one with mass M � µ. Normally, at energies below
M heavy particles simply never get produced. Consequently, one can write an effective low-
energy theory of light fields only, where all the memory about heavy particles present in the full
microscopic theory is absorbed into the values of coupling constants describing local interactions
of the light fields. This is no longer the case with the UV/IR mixing dispersion relation (1). For
example, a two body decay

|µ, k〉 → |µ, p〉|M, q〉 (8)

with |k| ∼ µ and |p|, |q| ∼ kM2/µ2 is kinematically allowed no matter how heavy the mass M is.
Consequently, in a strict sense, the full decoupling never takes place and one can always produce
arbitrarily heavy particle simply by waiting long enough.

However, if the coupling constants for light and heavy fields are of the same order, there is an
approximate notion of decoupling. One indication for this comes from the possibility to perform
a Wick rotation, which for instantaneous theories amounts to replacing x+ → ix+. The resulting
“Euclidean” propagator (ω2k2 + µ4)

−1
does not have poles just like it happens in ordinary theories.

Similarly to the conventional case for calculating Green’s functions involving light fields only at
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low values of kinematic invariants one can Taylor expand the heavy propagators in ω2k2/M4,
which trades a heavy field for an infinite number of local vertices involving light fields only—the
standard “integrating out” procedure.

For low energy processes involving on-shell heavy particles, such as the two-body decay (8),
the suppression comes from the difference in the wave function normalization in (6) between heavy
and light fields3. Replacing an external line of a light field by a heavy one in a given Feynmann
diagram brings in a suppression both because of the heavier mass in the denominator of (6), and
because the corresponding spatial momentum is higher as the example (8) illustrates.

To further illustrate this reasoning let us consider a super-renormalizable (and finite) theory
of three scalar fields φ1, φ2 and φM with masses µ, µ, and M satisfying the hierarchy µ�M . As
an interaction potential we chose

Vint = g12φ
2
M (φ1 + φ2) + g(φ3

1 + φ3
2) ,

so that different light fields interact only through the exchange of the heavy field. Note first that
the decay of a light particle into two heavy particles has a width

Γlhh '
g2

12

µ2M6k
,

where we suppressed all order one factors. Consequently, in order for this process to be subleading
with respect to the processes involving light fields only one needs the condition

g12 � g
M3

µ3
(9)

to be satisfied.
In particular, as anticipated, processes with heavy particles are indeed suppressed if g12 ∼ g.

In this case, just like in conventional theories, we can integrate out the heavy field, which will
result in direct interactions between different light fields φ1, φ2. At the leading order in g12 these
are mass, kinetic and higher order in momenta mixings of the form

g2
12M

−6−4nφ1(∂+∂−)2nφ2 , (10)

which are small as a consequence of (9) and the smallness of g/µ5.
To summarize, we see that in many situations decoupling in instantaneous theories works

similarly to the standard case, with the important difference that with enough time one will
always be able to produce arbitrarily heavy particles on-shell. On the other hand, the condition
(9) is not necessary for the theory to be perturbative (for instance, one can set g = 0). If it is
violated, one ends up being in an interesting situation when the dominant processes involving
low-energy light particles are decays into heavy particles.

3This suppression is not unrelated to the Euclidean argument above. At the end of the day, the propagator is
built as a convolution of two wave functions.
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Figure 1: Solution of the classical equation of motion for the φ3 theory with boundary conditions
φ|x−=0 = φ

∣∣
x−=2π

= 0 and with µ = g = 1.

4 Turbulence

After developing some experience with simplest interacting instantaneous theories, let us come
back to the observation at the end of Section 2 that thermalization is impossible in these models
and describe quantitatively the turbulent cascade corresponding to the Bose condensation onto
an infinite momentum ground state, which was anticipated there.

The first simple thing to try is just to study numerically the evolution of some smooth ini-
tial data in the interacting φ3 theory. The typical result is shown in Fig. 1. As expected, we
indeed observe that at late time the field configuration turns into a short-distance noise. To de-
scribe the statistical properties of this noise quantitatively we make use of the kinetic approach.
Namely, we consider a homogeneous (on average) gas of φ-particles with spatial momenta distri-
bution described by the distribution function n(k). The evolution of this distribution function is
determined by the Boltzmann equation, where in the limit of weak non-linearities the collision
integral contains two-body decays, and the inverse process—two-to-one collisions. A particle with
a momentum k participates in six processes

k ↔ −ϕk, ϕ2k ϕ−2k ↔ k,−ϕ−1k − ϕ−1k ↔ k,−ϕk (11)

The k → pq decay contributes to the collision integral as

− g2

8µ8k

(
ϕ+

1

ϕ

)−1

n(k)(n(p) + 1)(n(q) + 1) (12)

and the inverse process as

g2

µ8k

(
ϕ+

1

ϕ

)−1

(n(k) + 1)n(p)n(q) . (13)
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The resulting Boltzmann equation reads

∂τn(k, τ) =
1

k

(
− n(k, τ) + n(−ϕ−1k, τ) + n(ϕ−2k, τ)−

−n(ϕ2k, τ)n(k, τ) + n(ϕ2k, τ)n(−ϕ−1k, τ)− 2n(−ϕk, τ)n(k, τ) +

+n(ϕ−2k, τ)n(k, τ) + n(ϕ−2k, τ)n(−ϕ−1k, τ) + n(−ϕ−1k, τ)n(−ϕk, τ)
)

(14)

where we absorbed the dependence on the coupling constant into the definition of the time variable

τ =
1

2π

g2

8µ8

(
ϕ+

1

ϕ

)−1

x+ .

Let us start by considering a low density gas with all occupation numbers being small4, n(k)�
1. In this regime one can drop quadratic contributions to the collision term in (14) and all the
dynamics is determined just by the particle decays,

∂τn(k, τ) =
1

k

(
−n(k, τ) + n(−ϕ−1k, τ) + n(ϕ−2k, τ)

)
. (15)

This equation turns out to be amenable to the analytic study. For simplicity we restrict to the
case n(k) = n(−k). It is natural to look for a special solution of (15) of the form

n0(k, τ) = f

(
log

k

τ

)
. (16)

Then the function f(x) satisfies the following equation

−exf ′(x) = −f(x) + f(x− logϕ) + f(x− 2 logϕ) . (17)

By performing the Fourier transform we reduce the problem to finding an analytic function de-
caying along the real axis and satisfying the following quasi-periodicity condition

(−iy − 1)f̂(y − i) = (1− ϕiy+1)(1 + ϕiy−1)f̂(y) . (18)

In the absence of the ϕ dependent prefactors on the r.h.s. of (18) this would be a defining property
of the Γ-function, Γ(−iy). The extra prefactors are straightforward to account for by writing the
solution in the form

f̂(y) = Γ(−iy)P+(y)P−(y) ,

where P± are two uniformly converging infinite products,

P+(y) =
∞∏
m=0

(
1− ϕiy−m

)
, P−(y) =

∞∏
m=2

(
1 + ϕiy−m

)
(19)

which can also be expressed through the q-Pochhammer symbols as P± = (±ϕ±1+iy, ϕ)∞/(1 ∓
ϕ±1+iy). Note, that all the poles of the Gamma function get cancelled by the zeroes of P+. Gamma

4Note, that this is a quantum regime, which cannot be captured by solving the classical field equations.

9



0 5 10 15 20 25 30
lnHkL�lnHjL0.0

0.1

0.2

0.3

0.4

0.5

0.6
n

Analytic

Τ=3000

Τ=50

Τ=0

0 5 10 15 20 25 30
lnHkL�lnHjL0

10

20

30

40

50

60
n

Τ=3850

Τ=200

Τ=2.5

Τ=0

Figure 2: Time evolution of the distribution function as a function of log k for the linearized (left)
and full (right) Boltzmann equation. In both cases the distribution function converges to the
universal shape at late times, which in the linearized case well agrees with the analytic solution.

function also guarantees the convergense of the inverse Fourier transform at the infinity. This all
implies that the function

f(x) =

∫
e−iyxΓ(−iy)P+(y)P−(y)dy (20)

satisfies the equation (17) and decays at the infinity faster than e−a|x| for any a. Clearly this
function is real, however in order to correspond to a physical solution of (17) it also has to be
positive. Fortunately, as the plot in Fig. 2a) shows, f(x) is indeed positive and, consequently,
provides a solution to the linearized Boltzmann equation via (16). Moreover, the same plot
demonstrates that this solution is actually a universal attractor, describing the shape of the
distribution function as a function of log k at late stages of the cascade independently of the
initial shape (of course, there is a freedom in choosing an overall normalization, which is fixed by
the total energy of the gas).

To understand the origin of this attractor behavior note that by applying constant time shifts
to n0 we can construct the whole family of solutions of the form nu(k, τ) = f(log k − log(τ + u)).
All these solutions have the same bell-like shape as a function of log k, and differ only by an
overall shift. Given an arbitrary initial profile ni(k) at τ = 0 we can then decompose it in a linear
combination of nu(k, 0), with u > 0. The corresponding solution of the Boltzmann equation takes
then the following form

n(k, τ) =

∫ ∞
0

duf(log k − log (τ + u))c(u) (21)

where c(u) are the coefficients in the linear decomposition of ni(k). For the initial configuration
to have a finite total density of particles the function c(u) should decay at the infinity faster than
1/u. Then the late time asymptotics of the solution is

n(k, τ →∞) = f

(
log

k

τ

)∫ ∞
0

du c(u)
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which is exactly the attractor behavior exhibited in Fig. 2a).
The same argument cannot be applied for the full non-linear Boltzmann equation (14). How-

ever, as illustrated in Fig. 2b), numerical results indicate that the attractor behavior persists at the
non-linear level as well. Independently of the initial shape at late time the distribution function
is described by a universal scaling solution fnl(log k

τ
, E), where E is a total energy. Heuristically,

the origin of this attractor behavior can be understood as a consequence of the rate of interactions
getting lower as the momenta of the particles grow. As a consequence, for any initial distribution,
“fast” low momenta particles always have enough time to catch up with “slow” high momenta
modes and to establish a stable shape, which keeps drifting into UV afterwards.

5 Discussion and future directions

To conclude, we hope to have convinced the reader that instantaneous theories present a tractable
example of apparently local Lorentz invariant quantum field theories exhibiting interesting non-
local features. Our analysis of their dynamics is far from being exhaustive, we focussed on the
simplest case of two-body decays. It would be interesting to study more general processes, in
particular one may expect peculiar IR singularities in scattering processes following from the
absence of the gap in the spectra of instantaneous fields.

As we said in the Introduction, the main motivation to insist on Lorentz invariance is that it
provides a natural way to couple these models to gravity. It will be interesting to study whether
consistent instantaneous quantum gravity models can be constructed and what is the fate of black
holes in these theories.

Note also, that a two dimensional version of the ghost condensate model [8] becomes power
counting renormalizable if promoted to an instantaneous theory

Lgc = (�φ)2 + P
(
(∂φ)2

)
. (22)

It will be interesting to see whether this setup provides a useful lesson for understanding the
dynamics of the ghost condensate and more general phases of massive gravity [9]. Dynamics of
these theories may be somewhat more subtle than in examples studied in this paper, because the
shift symmetry acting on φ prevents one from adding a mass term µ4φ2.

As a totally different direction, note that one may view the theories studied here as a specific
case of non-relativistic theories with an anisotropic scaling symmetry

τ → λτ, σ → λzσ.

Theories of this kind with z < 0 are likely to share many of the features of z = −1 case studied
here. It is an interesting question whether anisotropic scaling symmetries with z < 0 may arise
in condensed matter system. In this regard it is worth noting that the dispersion relation (1)
describes short-wavelength nondivergent Rossby waves in the Earth atmosphere in the absence of
mean currents [10].

Finally, the physics of instantaneous models relies crucially on special properties of a two-
dimensional Lorentz group. It is not clear whether the lessons learnt here may be applied in
higher dimensions. A promising proposal in this direction [1] may be to study the dynamics
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of a string, with the instantaneous causal structure on its world-sheet, propagating in a higher
dimensional space-time. We hope to report a progress on this and other related topics in a near
future.
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