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Abstract

In nonrelativistic quantum mechanics and in relativistic quantum field theory, the time coordi-

nate t is a parameter and thus the time-reversal operator T does not actually reverse the sign of

t. In contrast, in the five-dimensional approach to relativistic quantum mechanics introduced by

Feynman, time t is a quantum-mechanical operator. In this paper it is shown how one can use

this five-dimensional approach to extend T and PT symmetry from nonrelativistic to relativistic

quantum mechanics and implement time reversal as an operation that effects T ⊔T = −⊔ just

as P effects P§P = −§, with PT thus effecting PT §µPT = −§µ. Some illustrative relativistic

quantum-mechanical models are constructed whose associated Hamiltonians are non-Hermitian

but PT symmetric, and it is shown that for each such Hamiltonian the energy eigenvalues are all

real.
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I. INTRODUCTION

In nonrelativistic quantum mechanics the position x(t) is taken to be an operator while the

time t is only a c-number parameter. To make quantum mechanics relativistic our approach

here is to treat time and space on an equivalent footing. There are two possibilities: one can

either demote the spatial coordinates to parameters or promote the time coordinate to an

operator. The former prescription is used in quantum field theory, where the field operators

are treated as functions of the spacetime parameters x and t, but one can also construct

sensible quantum-mechanical theories via the latter approach, which was introduced by

Feynman [1] and Nambu [2]. In such theories a new parameter is needed to parameterize

evolution, and thus one introduces a fifth coordinate τ that is an SO(3, 1) Lorentz scalar.

In this five-dimensional formalism the space and time coordinates xµ(τ) become operator

functions of τ and one obtains an SO(3, 1)-invariant relativistic first-quantized generalization

of the nonrelativistic Heisenberg algebra [xj , pk] = iδj,k:

[xµ(τ), pν(τ)] = iηµν , [xµ(τ), pν(τ)] = iδµν , (1)

where ηµν is the SO(3, 1) Minkowski metric.

The dynamics in this formalism is SO(3, 1) invariant in the four operators xµ, but is

nonrelativistic in the fifth coordinate τ [because the dynamics is not SO(4, 1) or SO(3, 2)

invariant], and propagation is forward in τ . However, just as the nonrelativistic quantum-

mechanical operator x(t) can propagate forward and backward with respect to its time

parameter t, in relativistic quantum mechanics all four components of xµ(τ) can propagate

forward and backward in τ [3]. The five-dimensional formalism of [1, 2] readily incorpo-

rates forward and backward time propagation, so one can introduce antiparticles with first

quantization alone without requiring the second-quantization techniques of quantum field

theory.

When the five-dimensional Hamiltonian operator Ĥ is Hermitian and its eigenfunctions

have the separable form ψn(x
µ, τ) = φn(x

µ)e−iEnτ and when its states obey the standard

Dirac completeness relation
∑

|n〉〈n| = I, (2)

the five-space forward propagator takes the form

G5(x
µ
f , τ ; x

µ
i , 0) = −iθ(τ)〈xµf |e

−iĤτ |xµi 〉 = −iθ(τ)
∑

φn(x
µ
f )φ

∗
n(x

µ
i )e

−iEnτ . (3)
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This propagator obeys a Schrödinger equation that is first order in τ :

(

i∂τ + Ĥ
)

G5(x
µ, τ ; 0, 0) = δ(τ)δ4(xµ). (4)

The four-dimensional propagators in the five-dimensional formalism are constructed by

integrating out the fifth coordinate. Given (3), the associated four-dimensional propagator

is then defined as

G4(x
µ
f ; x

µ
i ) = N

∫ ∞

−∞
dτG5(x

µ
f , τ ; x

µ
i , 0), (5)

where N is a normalization constant. Using the integral representation

θ(τ) = −
1

2πi

∫ ∞

−∞
dν

e−iντ

ν + iǫ
, (6)

one then obtains

G4(x
µ
f ; x

µ
i ) = N

∑ φn(x
µ
f )φ

∗
n(x

µ
i )

−En + iǫ
. (7)

Finally, since the wave functions are eigenfunctions of Ĥ, G4(x
µ
f ; x

µ
i ) obeys

−ĤG4(x
µ, 0) = Nδ4(xµ). (8)

The primary objective in using the approach of [1, 2] is to choose a five-dimensional Ĥ

so that G4(x
µ, 0) obeys a differential wave equation of the form

D4G4(x
µ, 0) = δ4(xµ), (9)

where D4 is one of the familiar wave operators that appear in quantum field theory (such

wave operators are typically higher than first derivative in time). [Normalizing G4(x
µ, 0) ac-

cording to (9) would fix the constant N .] Thus, in the simple case where the five-dimensional

Hamiltonian has the form Ĥ = ˆ̄p
2
− (p̂0)2 +m2, (7) is the Fourier transform of the standard

four-dimensional scalar field Feynman propagator D4 = ∂µ∂
µ. Because forward propagation

in τ gives the correct iǫ prescription for the causal Feynman contour in four dimensions,

D4 = ∂µ∂
µ is the usual four-dimensional Klein-Gordon operator. Using the five-dimensional

formalism, one can solve for a one-body quantum-mechanical Schrödinger-type propagator

in five space, and from it one can construct a many-body quantum-field-theoretic propagator

in four space. The five-space formalism also permits one to choose five-space Hamiltonians

for which the resulting four-space propagator does not obey an equation of the form (9) with

a familiar D4. In this paper we construct some simple models that lead to a propagator

equation with a familiar D4 and some that have a more general structure.
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When Lorentz invariance was introduced in classical mechanics, it described the invari-

ance properties of the line element ds2 = dt2 − dx2. In addition to invariance under the

continuous orthochronous Lorentz transformations, the line element also possesses a set of

discrete invariances, namely, space reflection P: x → −x, t → t, time reversal T : x → x,

t → −t, and their product spacetime reflection PT : x → −x, t → −t. However, when

time reversal was introduced into quantum mechanics by Wigner, the time reflection of

the i∂/∂t operator was achieved not by replacing t by −t but rather by taking T to be

an antiunitary operator that transforms i into −i (T : i → −i); time t was treated as a

c-number parameter that is not affected by T . In relativistic quantum field theory, time

reversal is also not implemented by making the direct replacement t→ −t even though the

line element ds2 = dt2 − dx2 possesses this time-reversal invariance. As noted above, in

the five-dimensional relativistic quantum-mechanical approach used here, we treat time as

an operator and thus we can implement a time-reversal operation that acts directly on the

time. We can also implement PT transformations directly on the time operator.

The ability to implement a PT transformation on the time operator is appealing because

of the implications of PT invariance for Hamiltonians that are not Hermitian. In the last

few years it has been recognized [4–7] that a quantum-mechanical Hamiltonian that is not

Hermitian may still have an entirely real set of energy eigenvalues. In the cases that were

explicitly considered in [4–7], the reality of the eigenvalues was traced to the existence of an

underlying invariance of the Hamiltonian with respect to a combined PT reflection. Thus,

while Dirac Hermiticity of the Hamiltonian is sufficient for reality of eigenvalues, it is not

necessary. (Of course, Hamiltonians with entirely real eigenvalues can be both PT invariant

and Dirac Hermitian.) However, recently it has been shown [8] that a Hamiltonian that

is not PT invariant cannot have an entirely real set of energy eigenvalues. This means

that PT invariance, in contrast to Dirac Hermiticity, is necessary for the reality of energy

eigenvalues [9]. (If one knows only that a Hamiltonian is not Dirac Hermitian, one can say

nothing about the reality of the eigenvalues.) Thus, PT invariance of a Hamiltonian is a

broader requirement than Dirac Hermiticity.

In the non-Hermitian PT -invariant context we apply the five-dimensional formalism de-

scribed above. To do this we recall [9] that when a Hamiltonian is PT invariant, its eigen-

values are either real or they come in complex conjugate pairs. Consequently, both Ĥ and

its Dirac-Hermitian conjugate Ĥ† have the same eigenspectrum, and they are related by
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some similarity transform V [10]

V ĤV −1 = Ĥ†. (10)

In this case, if |n〉 is a right eigenvector |R〉 of Ĥ , then 〈n|V rather then 〈n| is a left eigen-

vector 〈L| of Ĥ . Consequently, the energy-eigenstate-completeness relation (2) is replaced

by
∑

|R〉〈L| =
∑

|n〉〈n|V = I, (11)

and (3) and (7) are replaced by

G5(x
µ
f , τ ; x

µ
i , 0) = −iθ(τ)〈xµf |e

−iĤτ |xµi 〉 = −iθ(τ)
∑

〈xµf |n〉e
−iEnτ 〈n|V |xµi 〉, (12)

G4(x
µ
f ; x

µ
i ) = N

∑ 〈xµf |n〉〈n|V |x
µ
i 〉

−En + iǫ
. (13)

The propagator (13) is the relevant one in the PT case, and with its PT -symmetric Ĥ , it

also obeys (8).

Invariance under PT reflection is a more physical requirement than Hermiticity because

the proper orthochronous Lorentz group has a complex PT extension. Until now, this aspect

of the Lorentz group has not been utilized because transformations that reverse the sign of

the time have not been considered. In the present paper we consider such transformations

and explicitly extend PT symmetry to the relativistic quantum-mechanical domain. In

particular we study some simple non-Hermitian but PT -symmetric SO(3, 1)-invariant model

Hamiltonians using the five-dimensional formalism and for each Hamiltonian we show that

all of the energy eigenvalues are real.

II. A SIMPLE FIVE-DIMENSIONAL PT -SYMMETRIC HAMILTONIAN

The generic five-dimensional action has the form I =
∫ τ
0 dτ

′L(τ ′), where τ is the end

point of integration. We begin with a simple example that illustrates the five-dimensional

formalism. Specifically, we take a Lagrangian of the form

L =
m

2
ẋµẋ

µ −
mω2

2
(xµx

µ − 2iaµx
µ − aµa

µ) , (14)

where µ = (0, 1, 2, 3), the dot denotes differentiation with respect to τ , and aµ is a real, exter-

nal, τ -independent four-vector operator that commutes with xµ. As constructed, the action

5



is a relativistic SO(3, 1) scalar function of the four xµ coordinates, but it is nonrelativistic

in the fifth coordinate τ . We define a canonical momentum

pµ ≡
δI

δẋµ
= mẋµ, (15)

and then eliminate ẋµ to obtain a canonical Hamiltonian

H = pµẋ
µ − L

=
1

2m
pµp

µ +
mω2

2
(xµx

µ − 2iaµx
µ − aµa

µ) . (16)

The Hamiltonian (16) is not Dirac Hermitian because of the iaµx
µ term.

Next, we assign P and T quantum numbers to the xµ and pµ operators, just as we do

with the nonrelativistic x and p = dx/dt; to wit, we take the three spatial components

xk to be P odd [Pxk(τ)P−1 = −xk(τ)] and T even [T xk(τ)T −1 = xk(−τ)], and take

the three spatial components pk = dxk/dτ to be P odd [Ppk(τ)P−1 = −pk(τ)] and T

odd [T pk(τ)T −1 = −pk(−τ)]. Similarly, we take the time component x0 to be P even

[Px0(τ)P−1 = x0(τ)] and T odd [T x0(τ)T −1 = −x0(−τ)] and take the time component

p0 = dx0/dτ to be P even [Pp0(τ)P−1 = p0(τ)] and T even [T p0(τ)T −1 = p0(−τ)]. With

these assignments the four xµ are PT odd while the four pµ are PT even. Because T also

converts i to −i, these assignments are consistent with the commutation algebra in (1). We

summarize these assignments as follows:

p p0 x x0

P − + − +

T − + + −

PT + + − −

(17)

Finally, we take the four-vector aµ to be PT even. For our purposes we will need a to

be P even and thus T even, and a0 to be P odd and thus T odd. In the five-space the

Hamiltonian (16) is conjugate to τ and not to x0. Neither P nor T affect τ because τ is only

a parameter, so with pµẋ
µ = pµp

µ/m being PT even, the Hamiltonian is PT symmetric.

To determine the energy eigenvalues we take the spacetime metric to be diag(ηµν) =

(−1, 1, 1, 1). Writing xµ = (t, x, y, z), we obtain a wave-mechanics representation of the

algebra (1) when pµ = −i∂/∂xµ; that is,

p0 = −i
∂

∂t
, pk = −i

∂

∂xk
. (18)
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Consequently, in five-space the Schrödinger equation takes the form

i
∂ψ(τ, xµ)

∂τ
=

[

−
1

2m
ηµν

∂

∂xµ
∂

∂xν
+
mω2

2
(xµ − iaµ)(x

µ − iaµ)

]

ψ(τ, xµ). (19)

The substitution yµ = xµ − iaµ brings (19) to the form

i
∂ψ(τ, yµ)

∂τ
=

[

1

2m

(

∂2

∂t2
−

∂2

∂y2

)

+
mω2

2
(y2 − t2)

]

ψ(τ, yµ), (20)

and reduces the Schrödinger equation to a four-dimensional harmonic oscillator with

Minkowski signature. Noting that
[

1

2m

(

∂2

∂t2
−

∂2

∂y2

)

+
mω2

2
(y2 − t2)

]

e−mω(y2−t2)/2 = 2ωe−mω(y2−t2)/2, (21)

we see that the t-dependent sector contributes a positive zero-point energy equal to ω/2 just

as the y-dependent sector does. Because all the eigenvalues of a harmonic oscillator are real,

the five-space energy eigenvalues of (19) are given by

E5 = (nx + ny + nz + nt + 2)ω, (22)

where each of nx, ny, nz and nt ranges over the positive integers. Thus, while the Hamiltonian

(16) is not Hermitian, all of its energy eigenvalues are real.

For this model the five-space propagator obeys
[

i
∂

∂τ
+

1

2m

∂

∂xµ

∂

∂xµ
−
mω2

2
(xµ − iaµ)(x

µ − iaµ)

]

G5(x
µ, τ ; 0, 0) = δ(τ)δ4(xµ) (23)

and we show in Appendix A that

G5(x
µ, τ ; 0, 0) = θ(τ)

1

(sinωτ)2
exp

[

imω cosωτ(xµ − iaµ)(x
µ − iaµ)

2 sinωτ

]

. (24)

The propagator of the associated four-dimensional theory is then obtained via (5), and it

obeys (8) with the PT -symmetric Ĥ = −∂µ∂
µ/2m+mω2(xµ − iaµ)(x

µ − iaµ)/2.

Using the PT -theory techniques described in [6], one can demonstrate the reality of the

eigenvalues algebraically without actually solving the Schrödinger equation. To do so, one

must construct an operator eQ that possesses four key properties: (i) a similarity transfor-

mation using eQ preserves the commutation relations; (ii) Q is a Hermitian operator (so

that eQ is not unitary); (iii) like V in (10), eQ effects the transformation

e−QHeQ = H†; (25)
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(iv) the operator

H̃ = e−Q/2HeQ/2 (26)

obeys H̃† = H̃ . The existence of such a Q operator implies that the energy eigenvalues of

H are all real.

We now construct the Q operator for our simple five-dimensional model. Note that the

momentum operator will effect the transformation

e−bνpνxµeb
ρpρ = xµ + ibµ, (27)

and leave the commutation relations (1) untouched for any four-vector bµ that commutes

with both xµ and pµ. Given (27), we identify Q as the Hermitian operator 2aνpν because

e−2aνpνHe2a
ρpρ =

1

2m
pµp

µ +
mω2

2
(xµx

µ + 2iaµx
µ − aµa

µ) = H†. (28)

Similarly, the transformation

e−aνpνHea
ρpρ =

1

2m
pµp

µ +
mω2

2
xµx

µ = H̃ (29)

generates an equivalent Hamiltonian H̃ that is manifestly Hermitian.

In PT quantum mechanics one introduces an operator C that is required to obey

[C, H ] = 0, C2 = I. (30)

One constructs this operator by making the ansatz C = eQP, where the operator P obeys

P2 = I. In this form, the operator C fulfills the condition C2 = I provided that Q satisfies

PQP = −Q. With e−Q generating e−QHeQ = H†, the operator C obeys C−1HC = H if P

generates PHP = H†. For the Q and H of interest here, both PQP = −Q and PHP = H†

hold provided that a0 is P odd and a is P even. With this choice for the parity of aµ, we

then identify C = eQP. (Previously, we had required that aµ be PT even.) Then, if both aµ

and pµ are PT even, the operator Q is PT even. As constructed, C thus obeys [C,PT ] = 0,

as expected [8, 9] when all energy eigenvalues are real [11].

III. FIVE-DIMENSIONAL PAIS-UHLENBECK OSCILLATOR

In 1950 Pais and Uhlenbeck [12] explored the question of whether the Pauli-Villars reg-

ulator associated with the fourth-order equation of motion

(∂2t −∇2 +M2
1 )(∂

2
t −∇2 +M2

2 )φ(x, t) = 0 (31)
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and propagator

D(k2) =
1

(k2 +M2
1 )(k

2 +M2
2 )

=
1

M2
2 −M2

1

(

1

k2 +M2
1

−
1

k2 +M2
2

)

, (32)

where k2 = −(k0)2+k2, could be physically viable, or whether it was merely a mathematical

technique to regulate Feynman integrals. To this end they replaced the scalar field φ(x, t)

by a single coordinate z(t) and examined single momentum modes ω2
1 = k2 + M2

1 and

ω2
2 = k2 +M2

2 . The resulting nonrelativistic quantum-mechanical limit of the equation of

motion (31) and the propagator (32),

(∂2t + ω2
1)(∂

2
t + ω2

2)z(t) = 0, G(E) =
1

ω2
1 − ω2

2

(

1

E2 − ω2
1

−
1

E2 − ω2
2

)

, (33)

is known as the PU oscillator.

Pais and Uhlenbeck found that if the theory were quantized with a standard positive-

metric Hilbert space, the energy spectrum would not be bounded below. One can evade this

negative-energy problem by quantizing the theory in a negative-metric Hilbert space, but

as the relative minus sign in (33) indicates, the disadvantage of doing so is that one obtains

states of negative Dirac norm and evidently loses unitarity.

The PU oscillator was revisited in 2008 [13, 14] and a new realization of the theory was

found in which the Hilbert space has neither negative-energy nor negative-norm states. In

this realization the Hamiltonian is not Dirac-Hermitian but is instead PT invariant. The

norm is given by 〈L|R〉 = 〈n|V |n〉, rather than by the Dirac norm 〈n|n〉, and the complete-

ness relation is given by (11) rather than by (2). In analogy with (13), the relative minus

signs in (32) and (33) are generated by the presence of the V operator in the propagator

and not by quantizing with an indefinite metric. This realization took a long time (more

than half a century) to discover because the Hamiltonian of the theory appeared to be Dirac

Hermitian even though it is not. (In Refs. [13, 14] the nonrelativistic PT realization of the

PU oscillator is studied, and in Ref. [14] the relativistic scalar field theory is examined.)

For the case of the nonrelativistic PU oscillator, the equation of motion (33) for the

coordinate z(t) can be derived by a stationary variation of the PU oscillator action

IPU =
γ

2

∫

dt
[

z̈2 −
(

ω2
1 + ω2

2

)

ż2 + ω2
1ω

2
2z

2
]

, (34)

where γ, ω1 and ω2 are positive constants. Since ż serves as the conjugate of both z and z̈,

the action is constrained. One thus replaces ż by a new variable x, and using the method
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of Dirac constraints, one obtains [15, 16] the Hamiltonian

HPU =
p2x
2γ

+ pzx+
γ

2

(

ω2
1 + ω2

2

)

x2 −
γ

2
ω2
1ω

2
2z

2 (35)

with two canonical pairs that obey [x, px] = i and [z, pz] = i.

In the realization of the theory for which the energy eigenvalues are bounded below, HPU

appears to be Hermitian but it is not. Specifically, one solves the Schrödinger equation for

the ground state of the system with energy E0 = (ω1 + ω2)/2. The eigenfunction is

ψ0(z, x) = exp
[

γ

2
(ω1 + ω2)ω1ω2z

2 + iγω1ω2zx−
γ

2
(ω1 + ω2)x

2
]

. (36)

This eigenfunction diverges exponentially for large z, so integration by parts generates sur-

face terms that cannot be discarded. Thus, one cannot represent the operator pz by −i∂z .

However, one can replace z by iz (this is equivalent to working in a Stokes wedge in the

complex-z plane that includes the imaginary z axis but not the real one [13]), and represent

pz by −i∂iz = −∂z . The eigenfunction then vanishes exponentially as z becomes large. The

highly unusual implication of the structure of (36) (and the reason it took so long to find) is

that while both conjugate pairs of coordinates are obtained from the same Lagrangian, the

commutator [x, px] = i is realized by Hermitian operators, while the commutator [z, pz ] = i

is realized by anti-Hermitian operators. As a result, the pzx cross-term in (35) is not Her-

mitian, and the Hamiltonian HPU is also not Hermitian.

Rather than using non-Hermitian operators, we make the similarity transformation

y = eπpzz/2ze−πpzz/2 = −iz, q = eπpzz/2pze
−πpzz/2 = ipz, (37)

to construct Hermitian operators y and q that obey [y, q] = i. In terms of y and q the

Hamiltonian now takes the form

HPU =
p2

2γ
− iqx+

γ

2

(

ω2
1 + ω2

2

)

x2 +
γ

2
ω2
1ω

2
2y

2, (38)

where for notational simplicity we have replaced px by p. The Hamiltonian HPU is now

manifestly non-Hermitian.

While HPU is not Hermitian, the P and T quantum-number assignments

p x q y

P − − + +

T − + + −

PT + − + −

(39)
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make HPU symmetric under PT reflection. Introducing the operator

Q = αpq + βxy, α =
1

γω1ω2
log

(

ω1 + ω2

ω1 − ω2

)

, β = αγ2ω2
1ω

2
2, (40)

we then find that [13, 14] the similarity-transformed PU Hamiltonian

H̃PU = e−Q/2HPUe
Q/2 =

p2

2γ
+

q2

2γω2
1

+
γ

2
ω2
1x

2 +
γ

2
ω2
1ω

2
2y

2 (41)

represents two uncoupled harmonic oscillators. The transformed Hamiltonian H̃PU in (41)

is both Hermitian and manifestly positive definite. This realization of the quantum theory,

which is associated with the non-Hermitian HPU, has no negative-norm or negative-energy

eigenstates [17].

Because the transformation with eQ/2 is not unitary, the propagator

D(HPU) = 〈x′, y′|e−iHPUt|x, y〉 = 〈x′, y′|eQ/2e−iH̃PUte−Q/2|x, y〉 (42)

associated with HPU does not transform into the propagator

D(H̃PU) = 〈x′, y′|e−iH̃PUt|x, y〉 (43)

that one would ordinarily associate with a two-uncoupled-oscillator system. The state

〈x, y|eQ/2 is not the conjugate of e−Q/2|x, y〉, and the propagators in (42) and (43) are

not equivalent; for this realization of the PU Hamiltonian we must use (42) and not (43).

The dependence on the operator V = e−Q is crucial because it generates the relative minus

sign in (33).

We now illustrate PT invariance in relativistic quantum mechanics by applying the five-

dimensional formalism to the PU oscillator. We will see that a straightforward covariant

generalization of the PU oscillator does not lead back to (32). Consequently, in the next

section we provide an alternate five-dimensional formalism that does.

To generalize the PU oscillator to relativistic quantum mechanics we replace (34) by

I =
γ

2

∫ τ

0
dτ
[

z̈µz̈
µ −

(

M2
1 +M2

2

)

żµż
µ +M2

1M
2
2 zµz

µ
]

, (44)

where the dot denotes differentiation with respect to τ . Because of constraints associated

with this action, the Hamiltonian has the form

H =
(px)µ(px)

µ

2γ
+ (pz)µx

µ +
γ

2

(

M2
1 +M2

2

)

xµx
µ −

γ

2
M2

1M
2
2 zµz

µ. (45)
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Recalling the transformation in (37), we let yµ = −izµ and qµ = i(pz)
µ. On setting

(px)
µ = pµ we obtain two canonical pairs of operators that obey

[xµ(τ), pν(τ)] = iηµν , [qµ(τ), yν(τ)] = iηµν , (46)

and a Hamiltonian of the form

H =
pµp

µ

2γ
− iqµx

µ +
γ

2

(

M2
1 +M2

2

)

xµx
µ +

γ

2
M2

1M
2
2 yµy

µ. (47)

The assignments

p p0 x x0 q q0 y y0

P − + − + + − + −

T − + + − + − − +

PT + + − − + + − −

(48)

in which x0 changes sign under T , then establish that HPU is PT symmetric.

Next, we introduce the operator

Q = αpµq
µ + βxµy

µ, α =
1

γM1M2

log
(

M1 +M2

M1 −M2

)

, β = αγ2M2
1M

2
2 , (49)

and find that

H̃ = e−Q/2HeQ/2 =
pµp

µ

2γ
+

qµq
µ

2γM2
1

+
γ

2
M2

1xµx
µ +

γ

2
M2

1M
2
2 yµy

µ. (50)

Thus, the energy eigenvalues of the PT -symmetric Hamiltonian H are all real.

We show in Appendix A that if we set M1 =M and M2 = 0, the five-space propagator is

G5(x
µ, yµ, τ ; 0, 0, 0) = θ(τ)

eiB/A

A2
, (51)

where

2B/γ = Mxµx
µ(sinMτ −Mτ cosMτ)−M3yµy

µ sinMτ + 2iM2xµy
µ(1− cosMτ),

A = 2− 2 cosMτ −Mτ sinMτ. (52)

The propagator of the associated four-dimensional theory may now be obtained by

performing the integral in (5), and the resulting propagator will obey (8) with Ĥ =

−(1/2γ)∂/∂xµ∂/∂x
µ − xµ∂/∂yµ + γM2xµx

µ/2. While of interest in itself, this propaga-

tor is not of the generic Pauli-Villars form given in (32). Thus, in Sec. IV we provide an

alternate choice for the five-dimensional Hamiltonian that will lead to (32).
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IV. ALTERNATE FORMULATION OF THE FIVE-SPACE PU OSCILLATOR

Given the structure of (31) we take the five-space Ĥ to have the operator form

Ĥ = −[−(p̂0)2 + ˆ̄p
2
+M2

1 ][−(p̂0)2 + ˆ̄p
2
+M2

2 ]. (53)

For this Hamiltonian the five-dimensional energies are given by

E5 = −[−(p0)2 + p̄2 +M2
1 ][−(p0)2 + p̄2 +M2

2 ], (54)

where the momenta in (54) are the eigenvalues of the operators in (53). Inserting these

energies into (7), we obtain the Pauli-Villars propagator in (32), with (9) being satisfied.

Equation (53) leads directly to (32), but its use here is nonstandard because it does

not have a simple Lagrangian counterpart. In the previous examples and in the deriva-

tion of the Klein-Gordon propagator, one can start with a five-dimensional action (of the

form
∫ τ
0 dτ ẋµẋ

µ for the specific Klein-Gordon case) and by a canonical procedure derive

a Hamiltonian from it. The Lagrangians in these examples are quadratic functions of

the coordinates, so the procedure is straightforward and yields Hamiltonians that are also

quadratic. However, the Hamiltonian (53) is not quadratic; it is quartic because the wave

operator in (31) is a fourth-order derivative operator [18]. Since the Lagrangian is given by

L(ẋµ) = pµẋ
µ − H(pµp

µ) and since pµ = ∂L/∂ẋµ, one can in principle construct L(ẋµ) if

one knows H(pµp
µ). Doing so for (53) is difficult, so we start directly with H(pµp

µ). Once

we have H(pµp
µ), we can then use the representation in (7) without needing to know the

structure of the Lagrangian.

We can recover the four-dimensional Pauli-Villars propagator, but at first it appears that

the Hamiltonian in (53) is Hermitian. Moreover, in the second-order Klein-Gordon case

with Ĥ = −(p0)2 + p̄2 +M2
1 and real E5 the Hamiltonian is Hermitian. However, in the

fourth-order case, we note that (p0)2 is given as

(p0)2 =
1

2

(

E2
1 + E2

2 ± [(E2
1 −E2

2)
2 − 4E5]

1/2
)

, (55)

where E2
i = p̄2 +M2

i . Thus, now there can be real values of E5 for which (p0)2 is complex

and for which the operator (p̂0)2, and thus Ĥ, is not Hermitian. (Note that with E5 being

real, the Hamiltonian must be PT invariant.)

In addition, we note that for general M1 and M2, if we take E5 to be zero, the eigen-

functions associated with the operator Ĥ in (53) will have the form ψ1 = e−iE1t+ip̄·x̄ and
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ψ2 = e−iE2t+ip̄·x̄. However, if we then set M1 = 0 and M2 = 0, there will be eigenfunc-

tions of the form ψa = e−ipt+ip̄·x̄ and ψb = nµx
µe−ipt+ip̄·x̄, where nµ is the unit timelike vector

nµ = (1, 0, 0, 0). Of the two ψa and ψb eigenfunctions, only ψa is stationary; ψb grows linearly

in the time coordinate, which indicates that the Hamiltonian has Jordan-block form and that

it has an incomplete set of eigenvectors. Consequently, the Hamiltonian Ĥ in (53) cannot

be diagonalized and is not Hermitian. Since Ĥ is not Hermitian when E5 =M1 = M2 = 0,

it must also not be Hermitian for a range of values of these parameters. In Ref. [14] it was

found that in the equal-frequency limit ω1 = ω2 of the PU oscillator, the Hamiltonian in

(38) is also nondiagonalizable and non-Hermitian.

The solutions to (55) thus break up into two sectors. In one sector the Hamiltonian

is Hermitian and the energy eigenvalues are unbounded below (4E5 < (M2
1 −M2

2 )
2). In

the other sector the Hamiltonian is not Hermitian and the energies are bounded below

(4E5 > (M2
1 −M2

2 )
2), just as in the case of the nonrelativistic PU oscillator. If E5 is real,

the Hamiltonian is PT invariant in both cases. In the sector where Ĥ is Hermitian the four-

space propagator is given by (7). In the non-Hermitian sector the four-space propagator

is given by (13) and as before, the V operator then generates the relative minus sign in

the Pauli-Villars propagator [19]. Our five-space treatment of the Pauli-Villars propagator

based on (53) recovers the key features of the analyses of Refs. [13, 14]. We see that one

can extend PT symmetry to the five-dimensional formalism, and while we have not directly

studied the time-reversal and PT properties of the time operator in the Pauli-Villars case,

those properties follow directly from the commutation relations (1) depending on how they

are explicitly specified for (p̂)0.

V. SUMMARY

Using a number of elementary models, we have shown in this paper that the standard

techniques of PT quantum mechanics extend and apply to relativistic quantum mechanics,

where the time-reversal operator T reverses the sign of the time operator x0. We conclude

that relativistic PT -symmetric quantum mechanics is physically viable.

The work of CMB is supported by a grant from the U.S. Department of Energy.
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Appendix A: Construction of Five-space Propagators

To construct propagators that obey the five-dimensional equation
(

i∂τ + Ĥ
)

G5(x
µ, τ ; 0, 0) = δ(τ)δ4(xµ), we first recall how a propagator is constructed

when the eigenmodes of Ĥ are plane waves. For the nonrelativistic quantum-mechanical

free particle in one space dimension there is a plane wave basis and the propagator is given

by

G1(x, t; 0, 0) = −
iθ(t)

2π

∫

dp e−ipx−ip2t/m. (A1)

When i∂t acts on −iθ(t), we generate the δ(t)δ(x) term, while if we omit the θ(t) function,

the rest of the propagator obeys

[

i
∂

∂t
+

1

2m

∂2

∂x2

]

R1(x, t; 0, 0) = 0, (A2)

where G1(x, t; 0, 0) = θ(t)R1(x, t; 0, 0). The Fourier transform in (A1) can be performed

analytically and yields

G1(x, t; 0, 0) = θ(t)
(

m

2πit

)1/2

eimx2/2t. (A3)

The term ISTAT = mx2/2t in the exponent is the value of the classical action I =

(m/2)
∫ t
0 dt ẋ

2 for the stationary path ẍ = 0 between the end points (x = 0, t = 0) and

(x, t).

If one were to calculate this propagator as a path integral
∫

[dx]eiI over a complete basis

of paths between the end points, one would obtain the same eiISTAT phase, but one would

not know the multiplicative pre-factor. This pre-factor is determined by requiring that

the propagator obey (A2). (If one does not have a plane-wave basis, one can evaluate the

propagator via a path integral and then use the Schrödinger equation to determine the

pre-factor.)

For the one-dimensional harmonic oscillator (where the basis is not plane waves), the path

integral again has the form eiISTAT , where ISTAT is the value of I = (m/2)
∫ T
0 dt[ẋ2−ω2x2] as

evaluated in the stationary path ẍ+ω2x = 0 between the end points (x = 0, t = 0) and (x =

xf , t = T ). Noting that ẋ2−ω2x2 = d(xẋ)/dt−xẍ−ω2x2, we obtain ISTAT = mxf ẋf/2. The

solution to the equation of motion is x(t) = xf sinωt/ sinωT , ẋ(t) = ωxf cosωt/ sinωT , so

we obtain ISTAT = mωx2f cosωT/2 sinωT . With this form for ISTAT, the pre-factor evaluates
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to (sinωT )−1/2 and the propagator is

G1(x, T ; 0, 0) = θ(T )
(

1

sinωT

)1/2

exp

(

imωx2 cosωT

2 sinωT

)

. (A4)

The propagator (24) is the shifted covariant generalization of this result.

The propagator associated with the PU oscillator action given in (34) has already been

reported in the literature [20], and because the action is quadratic, the
∫

d[z] path integral

between end points with fixed z and ż has the form exp(iISTAT) with the appropriate ISTAT.

Here, we present a simplified version of the propagator in which we set ω1 = ω, ω2 = 0. In

this case the classical action reduces to

IPU =
γ

2

∫

dt
(

z̈2 − ω2ż2
)

, (A5)

and the stationary classical equation of motion is given by

∂2t (z̈ + ω2z) = 0. (A6)

Noting that

∂t
(

żz̈ − z∂3t z − ω2zż
)

= z̈2 − ω2ż2 − z∂2t (z̈ + ω2z), (A7)

on evaluating ISTAT between z = 0, ż = 0 at t = 0, and z(T ), ż(T ) at t = T , we obtain

ISTAT = (γ/2)
(

ż(T )z̈(T )− z(T )∂3t z(T )− ω2z(T )ż(T )
)

. (A8)

Hence, introducing

ωαA(T ) = ż(T )(ωT − sinωT )− ωz(T )(1− cosωT ),

βA(T ) = ż(T )(1− cosωT )− z(T )ω sinωT,

A(T ) = 2− 2 cosωT − ωT sinωT, (A9)

we find that the solution to (A6) that satisfies the boundary conditions takes the form

z(t) = −α(1− cosωt)− (β/ω) sinωt+ βt,

ż(t) = −αω sinωt− β cosωt+ β,

z̈(t) = −αω2 cosωt+ βω sinωt,

∂3t z(t) = αω3 sinωt+ βω2 cosωt. (A10)
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In this solution ISTAT obeys

2A(T )

γ
ISTAT = ωż2(T )(sinωT − ωT cosωT )− 2ω2z(T )ż(T )(1− cosωT ) + ω3z2(T ) sinωT.

(A11)

Finally, we verify that this function is a solution to the Schrödinger equation associated with

(35) and identify the pre-factor as A−1/2(T ). The propagator is thus A−1/2(T )eiISTAT. Its

covariant generalization, obtained by using (37), is given in (51).
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