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Abstract

We expose simple and practical relations between the integrated four- and five-point one-loop

amplitudes of N ≥ 4 supergravity and the corresponding (super-)Yang-Mills amplitudes. The

link between the amplitudes is simply understood using the recently uncovered duality between

color and kinematics that leads to a double-copy structure for gravity. These examples provide

additional direct confirmations of the duality and double-copy properties at loop level for a sample

of different theories.
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I. INTRODUCTION

One of the remarkable theoretical ideas emerging in the last decade is the notion that

gravity theories are intimately tied with gauge theories. The most celebrated connection

is the AdS/CFT correspondence [1] which relates maximally supersymmetric Yang-Mills

gauge theory to string theory (and supergravity) in anti-de Sitter space. Another surprising

link between the two theories is the conjecture that to all perturbative loop orders the

kinematic numerators of diagrams describing gravity scattering amplitudes are double copies

of the gauge-theory ones [2, 3]. This double-copy relation relies on a novel conjectured

duality between color and kinematic diagrammatic numerators of gauge-theory scattering

amplitudes. At tree level, the double-copy relation encodes the Kawai-Lewellen-Tye (KLT)

relations between gravity and gauge-theory amplitudes [4].

The duality between color and kinematics offers a powerful tool for constructing both

gauge and gravity loop-level scattering amplitudes, including nonplanar contributions [3, 5–

7]. The double-copy property does not rely on supersymmetry and is conjectured to hold

just as well in a wide variety of supersymmetric and non-supersymmetric theories. In recent

years there has been enormous progress in constructing planar N = 4 super-Yang-Mills

amplitudes. For example, at four and five points, expressions for amplitudes of this theory—

believed to be valid to all loop orders and nonperturbatively—have been constructed [8].

(For recent reviews, see refs. [5, 9].) Many of the new advances stem from identifying

a new symmetry, called dual conformal symmetry, in the planar sector of N = 4 super-

Yang-Mills theory [10]. This symmetry greatly enhances the power of methods based on

unitarity [11, 12] or on recursive constructions of integrands [13]. The nonplanar sector of

the theory, however, does not appear to possess an analogous symmetry. Nevertheless, the

duality between color and kinematics offers a promising means for carrying advances in the

planar sector of N = 4 super-Yang-Mills theory to the nonplanar sector and then to N = 8

supergravity. In particular, the duality interlocks planar and nonplanar contributions into

a rigid structure. For example, as shown in ref. [3], for the three-loop four-point amplitude,

the maximal cut [14] of a single planar diagram is sufficient to determine the complete

amplitude, including nonplanar contributions.

Here we will explore one-loop consequences of the duality between color and kinematics
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for supergravity theories with 4 ≤ N ≤ 6 supersymmetries. These cases are less well un-

derstood than the cases of maximal supersymmetry. (Some consequences for finite one-loop

amplitudes in non-supersymmetric pure Yang-Mills theory have been studied recently [15].)

Since the duality and its double-copy consequence remain a conjecture, it is an interesting

question to see if the properties hold in the simplest nontrivial loop examples with less than

maximal supersymmetry. In particular, we will explicitly study the four- and five-point

amplitudes of these theories. These cases are especially straightforward to investigate be-

cause the required gauge theory and gravity amplitudes are known. Our task is then to find

rearrangements that expose the desired properties. The necessary gauge-theory four-point

amplitudes were first given in dimensional regularization near four dimensions in ref. [16],

and later in a form valid to all orders in the dimensional regularization parameter [17].

At five points, the dimensionally regularized gauge-theory amplitudes near four dimensions

were presented in ref. [18]. The four-graviton amplitudes in theories with N ≤ 6 supersym-

metries were first given in ref. [19]. More recently, the MHV one-loop amplitudes of N = 6

and N = 4 supergravity were presented, up to rational terms in the latter theory [20].1

Here we point out that the double-copy relations can be straightforwardly exploited, al-

lowing us to obtain complete integrated four- and five-point amplitudes of N ≥ 4 supergrav-

ity amplitudes as a simple linear combinations of corresponding gauge-theory amplitudes.

Because these relations are valid in any number of dimensions, we can use previously ob-

tained representations of QCD andN = 4 super-Yang-Mills four-point amplitudes valid with

D-dimensional momenta and states in the loop to obtain such representations for N ≥ 4

supergravity. These D-dimensional results are new, while our four-dimensional results repro-

duce ones found in refs. [19, 20]. Relations between integrated N = 4 super-Yang-Mills and

N = 8 supergravity four-point one- and two-loop amplitudes had been described previously

in refs. [21].

For cases with larger numbers of external legs, the loop momentum is expected to become

entangled with the relations making them more intricate. Nevertheless, we expect that the

duality should lead to simple structures at one loop for all multiplicity, and once understood

these should lead to improved means for constructing gravity loop amplitudes. Indeed, the

1 While completing the present paper, version 2 of ref. [20] appeared, giving the missing rational terms of

the N = 4 supergravity five-point amplitudes.
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duality has already been enormously helpful for constructing four- and five-point multiloop

amplitudes in N = 8 supergravity [3, 5–7].

This paper is organized as follows. In section II we review some properties of scattering

amplitudes, including the conjectured duality between color and kinematics and the grav-

ity double-copy property. Then in section III, we give some one-loop implications, before

turning to supergravity. We also make a few comments in this section on two-loop four-

point amplitudes. We give our summary and outlook in section IV. Two appendices are

included collecting gauge-theory amplitudes and explicit forms of the integrals used in our

construction.

II. REVIEW

In this section we review some properties of gauge and gravity amplitudes pertinent to

our construction of supergravity amplitudes. We first summarize the duality between color

and kinematics which allows us to express gravity amplitudes in terms of gauge-theory ones.

We then review decompositions of one-loop N = 4, 5, 6 supergravity amplitudes in terms of

contributions of matter multiplets, simplifying the construction of the amplitudes.

A. Duality between color and kinematics

We can write any m-point L-loop-level gauge-theory amplitude where all particles are in

the adjoint representation as

(−i)L

gm−2+2L
Aloop

m =
∑

j

∫

dDLp

(2π)DL

1

Sj

njcj
∏

αj
p2αj

. (2.1)

The sum runs over the set of distinct m-point L-loop graphs, labeled by j, with only cubic

vertices, corresponding to the diagrams of a φ3 theory. The product in the denominator runs

over all Feynman propagators of each cubic diagram. The integrals are over L independent

D-dimensional loop momenta, with measure dDLp =
∏L

l=1 d
Dpl. The ci are the color factors

obtained by dressing every three vertex with an f̃abc = i
√
2fabc = Tr{[T a, T b]T c} structure

constant, and the ni are kinematic numerator factors depending on momenta, polarizations

and spinors. For supersymmetric amplitudes expressed in superspace, there will also be
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Grassmann parameters in the numerators. The Sj are the internal symmetry factors of

each diagram. The form in eq. (2.1) can be obtained in various ways; for example, starting

from covariant Feynman diagrams, where the contact terms are absorbed into kinematic

numerators using inverse propagators.

Any gauge-theory amplitude of the form (2.1) possesses an invariance under “generalized

gauge transformations” [2, 3, 22–24] corresponding to all possible shifts, ni → ni+∆i, where

the ∆i are arbitrary kinematic functions (independent of color) constrained to satisfy

∑

j

∫

dDLp

(2π)DL

1

Sj

∆jcj
∏

αj
p2αj

= 0 . (2.2)

By construction this constraint ensures that the shifts by ∆i do not alter the amplitude

(2.1). The condition (2.2) can be satisfied either because of algebraic identities of the

integrand (including identities obtained after trivial relabeling of loop momenta in diagrams)

or because of nontrivial integration identities. Here we are interested in ∆i that satisfy (2.2)

because of the former reason, as the relations we will discuss below operate at the integrand

level. We will refer to these kind of numerator shifts valid at the integrand level as point-

by-point generalized gauge transformations. One way to express this freedom is by taking

any function of the momenta and polarizations and multiplying by a sum of color factors

that vanish by the color-group Jacobi identity, and then repackaging the functions into ∆i’s

over propagators according to the color factor of each individual term. Some of the resulting

freedom corresponds to gauge transformations in the traditional sense, while most does not.

These generalized gauge transformations will play a key role, allowing us to choose different

representations of gauge-theory amplitudes, aiding our construction of gravity amplitudes

from gauge-theory ones.

The conjectured duality of refs. [2, 3] states that to all loop orders there exists a form of

the amplitude where triplets of numerators satisfy equations in one-to-one correspondence

with the Jacobi identities of the color factors,

ci = cj − ck ⇒ ni = nj − nk , (2.3)

where the indices i, j, k schematically indicate the diagram to which the color factors and

numerators belong to. Moreover, we demand that the numerator factors have the same

antisymmetry property as color factors under interchange of two legs attaching to a cubic
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vertex,

ci → −ci ⇒ ni → −ni . (2.4)

At tree level, explicit forms satisfying the duality have been given for an arbitrary number

of external legs and any helicity configuration [25]. An interesting consequence of this duality

is nontrivial relations between the color-ordered partial tree amplitudes of gauge theory [2]

which have been proven in gauge theory [26] and in string theory [27]. Recently these

relations played an important role in the impressive construction of the complete solution to

all open string tree-level amplitudes [28]. The duality has also been studied from the vantage

point of the heterotic string, which offers a parallel treatment of color and kinematics [22].

A partial Lagrangian understanding of the duality has also been given [23]. The duality

(2.3) has also been expressed in terms of an alternative trace-based representation [29],

emphasizing the underlying group-theoretic structure of the duality. Indeed, at least for

self-dual field configurations and MHV amplitudes, the underlying infinite-dimensional Lie

algebra has been very recently been identified as area preserving diffeomorphisms [30].

At loop level, less is known though some nontrivial tests have been performed. In par-

ticular, the duality has been confirmed to hold for the one-, two- and three-loop four-point

amplitudes of N = 4 super-Yang-Mills theory [3]. It is also known to hold for the one-

and two-loop four-point identical helicity amplitudes of pure Yang-Mills theory [3]. Very

recently it has also been shown to hold for the four-loop four-point amplitude of N = 4

super-Yang-Mills theory [6], and for the five-point one-, two- and three-loop amplitudes of

the same theory [7].

B. Gravity as a double copy of gauge theory

Perhaps more surprising than the gauge-theory aspects of the duality between color and

kinematics is a directly related conjecture for the detailed structure of gravity amplitudes.

Once the gauge-theory amplitudes are arranged into a form satisfying the duality (2.3),

corresponding gravity amplitudes can be obtained simply by taking a double copy of gauge-

theory numerator factors [2, 3],

(−i)L+1

(κ/2)n−2+2L
Mloop

m =
∑

j

∫

dDLp

(2π)DL

1

Sj

njñj
∏

αj
p2αj

, (2.5)
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where Mloop
m are m-point L-loop gravity amplitudes. The ñi represent numerator factors of

a second gauge-theory amplitude, the sum runs over the same set of diagrams as in eq. (2.1).

At least one family of numerators (nj or ñj) for gravity must be constrained to satisfy the

duality (2.3) [3, 23]. This is expected to hold in a large class of gravity theories, including

all theories that are low-energy limits of string theories. We obtain different gravity theories

by taking the ni and ñi to be numerators of amplitudes from different gauge theories. Here

we are interested in N ≥ 4 supergravity amplitudes in D = 4. For example, we obtain the

pure supergravity theories as products of D = 4 Yang-Mills theories as,

N = 8 supergravity : (N = 4 sYM)× (N = 4 sYM) ,

N = 6 supergravity : (N = 4 sYM)× (N = 2 sYM) ,

N = 5 supergravity : (N = 4 sYM)× (N = 1 sYM) ,

N = 4 supergravity : (N = 4 sYM)× (N = 0 sYM) , (2.6)

whereN = 0 super-Yang-Mills is ordinary non-supersymmetric Yang-Mills theory, consisting

purely of gluons. (N = 7 supergravity is equivalent to N = 8 supergravity, so we do not

list it.)

Since the duality requires the numerators and color factors to share the same algebraic

properties (2.3) and (2.4), eq. (2.2) implies that

∑

j

∫

dDLp

(2π)DL

1

Sj

∆jñj
∏

αj
p2αj

= 0 , (2.7)

so that the gravity amplitude (2.5) is invariant under the same point-by-point generalized

gauge transformation nj → nj +∆j as in gauge theory.

At tree level, the double-copy property encodes the KLT [4] relations between gravity

and gauge theory [2]. The double-copy formula (2.5) has been proven at tree level for pure

gravity and for N = 8 supergravity, when the duality (2.3) holds in the corresponding gauge

theories [23]. At loop level a simple argument based on the unitarity cuts strongly suggests

that the double-copy property should hold if the duality holds in gauge theory [3, 23]. In

any case, the nontrivial part of the loop-level conjecture is the assumption of the existence

of a gauge-theory loop amplitude representation that satisfies the duality between color

and kinematics. The double-copy property (2.5) has been explicitly confirmed in N = 8

supergravity through four loops for the four-point amplitudes [3, 6] and through two loops
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for the five-point amplitudes [7]. (The three- and four-loop N = 4 super-Yang-Mills and

N = 8 supergravity four-point amplitudes had been given earlier, but in a form where the

duality and double copy are not manifest [31–34].)

C. Decomposing one-loop N ≥ 4 supergravity amplitudes.

scalars spin 1/2 spin 1 spin 3/2 spin 2

N = 8 70 56 28 8 1

N = 6 gravity 30 26 16 6 1

N = 5 gravity 10 11 10 5 1

N = 4 gravity 2 4 6 4 1

N = 6 matter 20 15 6 1

N = 4 matter 6 4 1

TABLE I: Particle content of relevant supergravity multiplets. The scalars are taken to be real for

counts in this table.

To simplify the analysis, we consider amplitudes with only gravitons on the external legs.

(One can, of course, use an on-shell superspace as described in ref. [35] to include other cases

as well.) At one loop it is well known that the graviton scattering amplitudes of various

supersymmetric theories satisfy simple linear relations dictated by the counting of states

in each theory. In table I we give the particle content of relevant supergravity multiplets.

(The N = 5 matter multiplet is the same as the N = 6 matter one, hence, it is not explicitly

listed. Similarly, the N = 8 supergravity multiplet is equivalent to the N = 7 one.) Looking

at this table, we can easily assemble some simple relations between the contributions from

different multiplets circulating in the loop,

M1-loop
N=6 (1, 2, . . . , m) = M1-loop

N=8 (1, 2, . . . , m)− 2M1-loop
N=6,mat.(1, 2, . . . , m) ,

M1-loop
N=5 (1, 2, . . . , m) = M1-loop

N=8 (1, 2, . . . , m)− 3M1-loop
N=6,mat.(1, 2, . . . , m) , (2.8)

M1-loop
N=4 (1, 2, . . . , m) = M1-loop

N=8 (1, 2, . . . , m)− 4M1-loop
N=6,mat.(1, 2, . . . , m)

+ 2M1-loop
N=4,mat.(1, 2, . . . , m) ,
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where the subscript “mat” denotes a matter multiplet contribution. Thus, in the rest of

the paper, we will consider only one-loop amplitudes with the two types of matter going

around the loop in addition to the N = 8 amplitudes. The remaining N ≥ 4 amplitudes

(with generic amounts of N ≥ 4 matter) can be assembled by linear combination of these

three types.

III. IMPLICATIONS OF THE DUALITY AT ONE LOOP

In this section we first present a few general one-loop implications of the duality between

color and kinematics. Our initial considerations are general and apply as well to non-

supersymmetric theories. We will then specialize to N ≥ 4 supergravity four- and five-point

amplitudes, taking advantage of special properties of N = 4 super-Yang-Mills theory.

A. Implications for generic one-loop amplitudes

As shown in ref. [36] all color factors appearing in a one-loop amplitude can be obtained

from the color factors of “ring diagrams”, that is the (m−1)!/2 one-particle-irreducible (1PI)

diagrams in the shape of a ring, as illustrated in fig. 1 for the cyclic ordering 1, 2, . . . , m. We

will denote the color and kinematic numerator factors of such a diagram with external leg

ordering 1, 2, . . . , m by c123···m and n123···m(p). Its color factor is given by the adjoint trace,

c123...m = TrA[f̃
a1 f̃a2 f̃a3 · · · f̃am ] , (3.1)

where (f̃ai)bc = f̃ baic.

The color factors of the one-particle-reducible diagrams are simply given by antisym-

metrizations of ring-diagram ones as dictated by the Jacobi relations (2.3). For example,

the color factor of the diagram with a single vertex external to the loop shown in fig. 2 is

c[12]3···m ≡ c123···m − c213···m . (3.2)

If we have a form of the amplitude where the duality holds, then the numerator of this

diagram is

n[12]3···m(p) ≡ n123···m(p)− n213···m(p) . (3.3)
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FIG. 1: the one-loop m-gon master diagram for the cyclic ordering 1, 2, . . . ,m.
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FIG. 2: The basic Jacobi relation between three one-loop graphs that can be used to express any

color factor or kinematic numerator factor for any one-loop graph in terms of the parent m-gons.

The color factors of other diagrams, with multiple vertices external to the loop, can similarly

be obtained with further antisymmetrizations such as c[[12]3]···m = c[12]3···m − c3[12]···m. In this

way all color factors and numerators can be expressed in terms of the ones of the ring

diagram, so it serves as our “master” diagram.

It is also useful to consider representations where the dual Jacobi relations do not hold.

For any m-point one-loop amplitude, we can use the color-group Jacobi identity to eliminate

all color factors except those of the master diagram and its relabelings. Indeed, this is how

one arrives at the adjoint-representation color basis [36]. In this color basis we express the

one-loop amplitude in terms of a sum over permutations of a planar integrand,

A1-loop(1, 2, . . . , m) = gm
∑

Sm/(Zm×Z2)

∫

dDp

(2π)D
c123...m A (1, 2, . . . , m; p) , (3.4)

where A (1, 2, . . . , m; p) is the complete integrand of the color-ordered amplitude,

A1-loop(1, 2, . . . , m). The sum runs over all permutations of external legs (Sn), but with
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the cyclic (Zm) and reflection (Z2) permutations modded out. In this representation all nu-

merator factors except for the m-gon ones are effectively set to zero, since their color factors

no longer appear in the amplitude. This is equivalent to a generalized gauge transformation

applied to the numerators2

n123···m(p) → n123···m(p) + ∆123···m(p) = A (1, 2, 3, . . . , m; p)

m
∏

α=1

p2α ,

ni → ni +∆i = 0, for 1PR graphs i , (3.5)

where the product
∏

p2α runs over the inverse propagators of the m-gon master diagram. In

this representation the m-gon numerators are in general nonlocal to account for propagators

carrying external momenta present in the one-particle reducible (1PR) diagrams but not in

master diagrams. In general, the new numerators in eq. (3.5) will not satisfy the duality

relations (2.3).

Recall that generalized gauge invariance implies that only one of the two copies of nu-

merators needs to satisfy the duality in order for the double-copy property to work. For the

first copy we use the duality-violating representation (3.5) where all one-particle reducible

numerator factors are eliminated in favor of nonlocal m-gon master numerator factors. For

the second copy we use the duality-satisfying numerators, ñ12...m. Then according to the

double-copy formula (2.5), by making the substitution ci → ñi in eq. (3.4), we obtain a valid

gravity amplitude. We then have

M1-loop(1, 2, . . . , m) =
(κ

2

)m ∑

Sm/(Zm×Z2)

∫

dDp

(2π)D
ñ123...m(p)A (1, 2, . . . , m; p) , (3.6)

where ñ12...m(p) is the m-gon master numerator with the indicated ordering of legs and we

have replaced the gauge-theory coupling constant with the gravity one.

At first sight, it may seem surprising that only the m-gon numerators are needed, but

as noted above, these master numerators contain all the nontrivial information in the am-

plitudes. The nontrivial step in this construction is to find at least one copy of m-gon

numerators ñi such that the duality relations (2.3) hold manifestly.

So far these considerations have been general. An important simplification occurs if

the numerators of one of the gauge-theory copies are independent of the loop momenta,

2 Here we have absorbed a phase factor i into the numerator definition, i nj → nj , compared to eq. (2.1),

as is convenient for one-loop amplitudes. For the remaining part of the paper we will use this convention.
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ñ123...m(p) = ñ123...m. We can then pull these numerators out of the integral in eq. (3.6)

giving relations between integrated gravity and gauge theory amplitudes. Below we will

identify two cases where this is indeed true: the four- and five- point one-loop amplitudes of

N = 4 super-Yang-Mills theory [7, 37]. Taking one copy to be the N = 4 super-Yang-Mills

amplitude and the other to be a gauge-theory amplitude with fewer supersymmetries, we

then get a remarkably simple relation between integrated one-loop (N +4) supergravity and

super-Yang-Mills amplitudes with N supersymmetries,

M1-loop
N+4 susy(1, 2, . . . , m) =

(κ

2

)m ∑

Sm/(Zm×Z2)

ñ123...mA1-loop
N susy(1, 2, . . . , m) , (3.7)

valid for m = 4, 5. This construction makes manifest the remarkably good power counting

noted in refs. [20, 38]. We do not expect higher points to be quite this simple, but we do

anticipate strong constraints between generic one-loop amplitudes of gravity theories and

those of gauge theory.

B. Four-point one-loop N ≥ 4 supergravity amplitudes

We now specialize the above general considerations to four-point supergravity amplitude.

There is only one independent four-graviton amplitude, M1-loop
N susy(1

−, 2−, 3+, 4+), as the oth-

ers either vanish or are trivially related by relabelings. As a warmup exercise, we start

with N = 8 supergravity and we reevaluate this supergravity amplitude using the above

considerations. Our starting point is the N = 4 super-Yang-Mills one-loop four-point am-

plitude [37, 40],

A1-loop
N=4 (1, 2, 3, 4) = istg4Atree(1, 2, 3, 4)

(

c1234I
1234
4 + c1243I

1243
4 + c1423I

1423
4

)

, (3.8)

where s = (k1 + k2)
2 and t = (k2 + k3)

2 are the usual Mandelstam invariants, and the tree

amplitude is

Atree(1−, 2−, 3+, 4+) =
i 〈1 2〉4

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 , (3.9)

where the angle brackets 〈i j〉 (also [i j] below) denotes spinor products. (See e.g. ref. [41].)

The function I12344 is the massless scalar box integral defined in eqs. (B6) and (B7) of

appendix B. The other box integrals are just relabelings of this one. The expression in

eq. (3.8) in terms of the box integral (B6) is valid in dimensions D < 10.
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The first color factor in eq. (3.8) is given by

c1234 = f̃ ba1cf̃ ca2df̃ da3ef̃ ea4b , (3.10)

and the others are just relabelings of this one. The kinematic numerator in each case is

n1234 = n1243 = n1423 = istAtree(1, 2, 3, 4) . (3.11)

These numerators happen to have full crossing symmetry, but that is a special feature

of the four-point amplitude in N = 4 super-Yang-Mills theory. Because the triangle and

bubble diagrams vanish, eq. (3.11) is equivalent to the duality relations (2.3). Indeed,

applying a Jacobi-like identity to these box numerators gives a vanishing triangle numerator,

n12[34] = n1234 − n1243 = 0, as required. Thus, this representation of the amplitude trivially

satisfies the duality.

Using eq. (3.6), by replacing color factors with numerators and compensating for the

coupling change, we then immediately have the four-point N = 8 supergravity amplitude,

M1-loop
N=8 (1, 2, 3, 4) = −

(κ

2

)4

[stAtree(1, 2, 3, 4)]2
(

I12344 + I12434 + I14234

)

, (3.12)

which matches the known amplitude [37, 42].

We now generalize to supergravity amplitudes with fewer supersymmetries. Specifically,

consider the one-loop four-graviton amplitudes with the N = 6 andN = 4 matter multiplets

in the loop. These multiplets can be expressed as products of two gauge-theory multiplets:

N = 6 matter : (N = 4 sYM)× (N = 1 sYM)mat. ,

N = 4 matter : (N = 4 sYM)× (scalar) , (3.13)

where the N = 1 Yang-Mills matter multiplet consists of a Weyl fermion with two real

scalars (this combination actually has two-fold supersymmetry so it can also be thought of

as a N = 2 matter multiplet), and on the second line “(scalar)” denotes a single real scalar.

Following eq. (3.6), we get the gravity amplitude by taking the first copy of the gauge-

theory amplitude and replacing the color factors with the kinematic numerator of the second

copy, constrained to satisfy the duality (2.3), and switching the coupling to the gravitational

one. Because the duality satisfying N = 4 super-Yang-Mills kinematic factors at four points

(3.11) are independent of the loop momentum, they simply come out of the integral as in
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eq. (3.7) and behave essentially the same way as color factors. Thus, we have a remarkably

simple general formula at four points,

M1-loop
N+4 susy(1, 2, 3, 4) =

(κ

2

)4

istAtree(1, 2, 3, 4)
(

A1-loop
N susy(1, 2, 3, 4) + A1-loop

N susy(1, 2, 4, 3)

+ A1-loop
N susy(1, 4, 2, 3)

)

, (3.14)

where A1-loop
N susy are one-loop color- and coupling-stripped gauge-theory amplitudes for a theory

with N (including zero) supersymmetries. We were able pull out an overall stAtree(1, 2, 3, 4)

because of the crossing symmetry apparent in eq. (3.11).

Using eq. (3.14) we can straightforwardly write down the four-graviton supergravity am-

plitude M1-loop
N=6,mat.(1

−, 2−, 3+, 4+) with the N = 6 matter multiplet in the loop. We use the

N = 1 one-loop amplitude representation3 from ref. [17] which is valid to all order in the

dimensional regularization parameter ǫ:

A1-loop
N=1,mat.(1

−, 2−, 3+, 4+) = ig4Atree(1−, 2−, 3+, 4+)
(

tJ4(s, t)− I2(t)
)

,

A1-loop
N=1,mat.(1

−, 2−, 4+, 3+) = ig4Atree(1−, 2−, 3+, 4+)
(

tJ4(s, u)−
t

u
I2(u)

)

,

A1-loop
N=1,mat.(1

−, 4+, 2−, 3+) = ig4Atree(1−, 2−, 3+, 4+)
(

I2(t) +
t

u
I2(u)

− tJ4(t, u)− tID=6−2ǫ
4 (t, u)

)

, (3.15)

where the integrals I2, J4 and ID=6−2ǫ
4 are defined in appendix B. Using eq. (3.14) we can

see that the bubble integrals cancel and we have the amplitude in a form valid to all orders

in ǫ. Also using the relation J4 = −ǫID=6−2ǫ
4 , we get

M1-loop
N=6,mat.(1

−, 2−, 3+, 4+) =
(κ

2

)41

s
[stAtree(1−, 2−, 3+, 4+)]2 (3.16)

×
[

ID=6−2ǫ
4 (t, u) + ǫ

(

−ID=6−2ǫ
4 (t, u) + ID=6−2ǫ

4 (s, t)

+ ID=6−2ǫ
4 (s, u)

)]

.

Using the explicit value of ID=6−2ǫ
4 given in eq. (B14), we get the remarkably simple result

to order ǫ0,

M1-loop
N=6,mat.(1

−, 2−, 3+, 4+) =
icΓ
2

(κ

2

)4

[stAtree(1−, 2−, 3+, 4+)]2
1

s2

[

ln2

(−t

−u

)

+ π2

]

+O(ǫ)

= −icΓ
2

(κ

2

)4 〈1 2〉4 [3 4]4
s2

[

ln2

(−t

−u

)

+ π2

]

+O(ǫ) , (3.17)

3 Here we removed the factor of i(−1)m+1(4π)2−ǫ present in the integrals of ref. [17], where m is 2 for the

bubble, 3 for the triangle and 4 for the box. (Compare eq. (B1) with eq. (A.13) of ref. [17].)
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where the constant cΓ is defined in eq. (B3). On the last line we plugged in the value of the

tree amplitude, stAtree(1−, 2−, 3+, 4+) = −i 〈1 2〉2 [3 4]2. Indeed, this reproduces the known

result from ref. [19].

Now consider the four-graviton amplitude with an N = 4 supergravity matter multiplet

going around the loop. We take the four-gluon amplitudes with a scalar in the loop from

ref. [17]. These are

A1-loop
scalar (1

−, 2−, 3+, 4+) = −ig4Atree(1−, 2−, 3+, 4+)
(1

t
ID=6−2ǫ
2 (t) +

1

s
J2(t)−

t

s
K4(s, t)

)

,

A1-loop
scalar (1

−, 2−, 4+, 3+) = −ig4Atree(1−, 2−, 3+, 4+)
( t

u2
ID=6−2ǫ
2 (u) +

t

su
J2(u)−

t

s
K4(s, u)

)

,

A1-loop
scalar (1

−, 4+, 2−, 3+) = −ig4Atree(1−, 2−, 3+, 4+)

(

−t(t− u)

s2
J3(u)−

t(u− t)

s2
J3(t)−

t2

s2
I2(u)

− tu

s2
I2(t)−

t

u2
ID=6−2ǫ
2 (u)− 1

t
ID=6−2ǫ
2 (t)− t

su
J2(u)−

1

s
J2(t)

+
t

s
ID=6−2ǫ
3 (u) +

t

s
ID=6−2ǫ
3 (t) +

t2u

s2
ID=6−2ǫ
4 (t, u)− t

s
K4(t, u)

)

,

(3.18)

where the integral functions are given in appendix B. Using eq. (3.14), we immediately have

a form for the contributions of an N = 4 supergravity matter multiplet valid to all orders

in ǫ,

M1-loop
N=4,mat.(1

−, 2−, 3+, 4+) =
(κ

2

)4

[stAtree(1−, 2−, 3+, 4+)]2
(

−(t− u)

s3
J3(u)−

(u− t)

s3
J3(t)

− t

s3
I2(u)−

u

s3
I2(t) +

1

s2
ID=6−2ǫ
3 (u) +

1

s2
ID=6−2ǫ
3 (t) (3.19)

+
tu

s3
ID=6−2ǫ
4 (t, u)− 1

s2
K4(t, u)−

1

s2
K4(s, t)−

1

s2
K4(s, u)

)

.

Expanding this through order ǫ0 and using integral identities from refs. [17, 43] (see also

appendix B) to reexpress everything in terms of six-dimensional boxes, bubbles and rational

terms, we obtain

M1-loop
N=4,mat.(1

−, 2−, 3+, 4+) =
1

2

(κ

2

)4 〈1 2〉2 [3 4]2

[1 2]2 〈3 4〉2
[

icΓs
2 + s(u− t)

(

I2(t)− I2(u)
)

− 2ID=6−2ǫ
4 (t, u)stu

]

+O(ǫ) , (3.20)

matching the result of ref. [19].
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FIG. 3: Pentagon and box integrals appearing in the N = 4 super-Yang-Mills five-point one-

loop amplitudes. The complete set of such integrals is generated by permuting external legs and

removing overcounts.

C. Five-point one-loop N ≥ 4 supergravity amplitudes

Our construction at five points is again directly based on eq. (3.6). We only need to con-

struct M1-loop
N susy(1

−, 2−, 3+, 4+, 5+); the other nonvanishing amplitudes are related by parity

and relabeling. Our starting point is the known one-loop five-point amplitudes of N = 4

super-Yang-Mills theory. The original construction of the amplitude [11, 18] uses a basis

of scalar box integrals. Rearranging these results into the adjoint-representation color basis

gives

A1-loop(1, 2, 3, 4, 5) = g5
∑

S5/(Z5×Z2)

c12345 A
1-loop(1, 2, 3, 4, 5) . (3.21)

The sum runs over the distinct permutations of the external legs of the amplitude. This is the

set of all 5! permutations, S5, but with cyclic, Z5, and reflection symmetries, Z2, removed,

leaving 12 distinct permutations. The color factor c12345 is the one of the pentagon diagram

shown in fig. 3, with legs following the cyclic ordering as in eq. (3.1). The color-ordered

one-loop amplitudes of N = 4 super-Yang-Mills theory are

A1-loop
N=4 (1, 2, 3, 4, 5) =

i

2
Atree(1, 2, 3, 4, 5)

(

s34s45I
(12)345
4 + s45s15I

1(23)45
4 + s12s15I

12(34)5
4

+ s12s23I
123(45)
4 + s23s34I

234(51)
4

)

+O(ǫ) , (3.22)

where sij = (ki+kj)
2 and the I

abc(de)
4 are box integrals where the legs in parenthesis connects

to the same vertex, e.g. I
(12)345
4 is the box diagram in fig. 3. The explicit value of I

(12)345
4 is

given in eq. (B8), and the values of the remaining box integrals are obtained by relabeling.

If we insert these explicit expressions in eq. (3.22) then the polylogarithms cancel after using
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identities (see refs. [11, 18]) leaving the expression for A1-loop
N=4 given in eq. (A1) of appendix A.

The representation (3.22) of the amplitude does not manifestly satisfy the duality.

A duality satisfying representation of the amplitude was found in ref. [7]:

A1-loop
N=4 (1

−, 2−, 3+, 4+, 5+) = g5 〈1 2〉4
(

∑

S5/(Z5×Z2)

c12345n12345I
12345
5

+
∑

S5/Z2

2

c[12]345n[12]345
1

s12
I
(12)345
4

)

, (3.23)

where I123455 is the scalar pentagon, and I
(12)345
4 is the one-mass scalar box integral, as shown

in fig. 3. The explicit values of these integrals through O(ǫ0) are collected in appendix B.

Each of the two sums runs over the distinct permutations of the external legs of the integrals.

For I123455 , the set S5/(Z5 × Z2) denotes all permutations but with cyclic and reflection

symmetries removed, leaving 12 distinct permutations. For I
(12)345
4 the set S5/Z

2
2 denotes all

permutations but with the two symmetries of the one-mass box removed, leaving 30 distinct

permutations. Note that we pulled out an overall factor 〈1 2〉4, which we do not include in

the numerators. (If promoted to its supersymmetric form it should then be included [7].)

The numerators defined in this way are then [7]

n12345 = − [1 2] [2 3] [3 4] [4 5] [5 1]

4iǫ(1, 2, 3, 4)
, (3.24)

and

n[12]345 =
[1 2]2 [3 4] [4 5] [5 3]

4iǫ(1, 2, 3, 4)
, (3.25)

where 4iǫ(1, 2, 3, 4) = 4iǫµνρσk
µ
1k

ν
2k

ρ
3k

σ
4 = [1 2] 〈2 3〉 [3 4] 〈4 1〉 − 〈1 2〉 [2 3] 〈3 4〉 [4 1]. It is not

difficult to confirm that the duality holds for this representation, for example,

n12345 − n21345 = n[12]345 . (3.26)

A nice feature of this representation is that the numerator factors of both the pentagon and

box integrals do not depend on loop momentum, allowing us to use eq. (3.7). This will

greatly simplify the construction of the corresponding supergravity amplitudes.

We first consider the one-loop five-point N = 8 amplitude. In this case we have several

useful representations. Proceeding as in section IIIB, using eq. (3.7), we can obtain the five-

point amplitude for N = 8 by replacing the color factors in eq. (3.21) with the numerator
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factors of eq. (3.24), multiplying by the overall factor 〈1 2〉4, and putting in the gravitational

couplings. This yields

M1-loop
N=8 (1−, 2−, 3+, 4+, 5+) =

i

2

(κ

2

)5

〈1 2〉4
∑

S5/Z2

n12345A
tree(1−, 2−, 3+, 4+, 5+)s12s23I

123(45)
4

+O(ǫ) , (3.27)

where the sum runs over all permutations of external legs, denoted by S5, but with reflections

Z2 removed. To obtain a second representation, we can instead replace the color factors in

eq. (3.23) with their corresponding numerator factors, yielding an alternative expression for

the amplitude,

M1-loop
N=8 (1−, 2−, 3+, 4+, 5+) =

(κ

2

)5

〈1 2〉8
(

∑

S5/(Z5×Z2)

(n12345)
2I123455 +

∑

S5/Z2

2

(n[12]345)
2 1

s12
I
(12)345
4

)

,

(3.28)

where the sums run over the same permutations as in eq. (3.23). We have checked that in

D = 4 both formulas (3.27) and (3.28) are equivalent to the known five-point amplitude

from ref. [44] (after reducing the scalar pentagon integrals to one-mass box integrals),

M1-loop
N=8 (1−, 2−, 3+, 4+, 5+) =

(κ

2

)5

〈1 2〉8
∑

S5/Z2

2

d
123(45)
N=8 I

123(45)
4 +O(ǫ) , (3.29)

where the box coefficient is given by

d
123(45)
N=8 ≡ −1

8
h(1, {2}, 3)h(3, {4, 5}, 1) tr2[/k1/k2/k3(/k4 + /k5)] , (3.30)

and the “half-soft” functions are

h(a, {2}, b) ≡ 1

〈a 2〉2 〈2 b〉2
, h(a, {4, 5}, b) ≡ [4 5]

〈4 5〉 〈a 4〉 〈4 b〉 〈a 5〉 〈5 b〉 . (3.31)

Indeed it is straightforward to check that

〈1 2〉4 d123(45)N=8 =
i

2
s12s23

(

n12345A
tree(1−, 2−, 3+, 4+, 5+) + n12354A

tree(1−, 2−, 3+, 5+, 4+)
)

,

(3.32)

where the pentagon numerator is given in eq. (3.24).

Let us now study amplitudes with fewer supersymmetries starting with the five-graviton

amplitude with the N = 6 matter multiplet running around the loop. We pick the helicities
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(1−, 2−, 3+, 4+, 5+) for the gravitons; as noted above all other helicity or particle configura-

tions can be obtained from this. For the N = 6 and N = 4 matter multiplets from eq. (3.7)

we have

MN=6,mat.(1
−, 2−, 3+, 4+, 5+) =

(κ

2

)5

〈1 2〉4
∑

S5/(Z5×Z2)

n12345 A
1-loop
N=1,mat.(1

−, 2−, 3+, 4+, 5+) ,

MN=4,mat.(1
−, 2−, 3+, 4+, 5+) =

(κ

2

)5

〈1 2〉4
∑

S5/(Z5×Z2)

n12345 A
1-loop
scalar (1

−, 2−, 3+, 4+, 5+) , (3.33)

where n12345 is given in eq. (3.24) and the sums run over all permutations, but with cyclic

ones and the reflection removed.

There are a number of simplifications that occur because of the permutation sum in

eq. (3.33) and because of the algebraic properties of the N = 4 sYM numerators (n12345

and permutations). Because the matter multiplet contributions have neither infrared nor

ultraviolet divergences [45], all 1/ǫ2 and 1/ǫ divergences cancel. In N = 6 supergravity,

this manifests itself by the cancellation of all bubble and triangle integral contributions,

as noted in ref. [20]. In the case of N = 4 supergravity, the cancellation is not complete

but the sum over bubble-integral coefficients vanishes to prevent the appearance of a 1/ǫ

singularity. A rational function remains which can be written in a relatively simple form once

the terms are combined and simplified. Note that the amplitudes generated by eq. (3.33)

do not immediately exhibit these properties; instead, the cancellations and simplifications

occur between the terms in the 12-fold permutation sum. However, these simplifications are

straightforward to carry out, and indeed using numerical analysis it is a simple matter to

rearrange our results into the same form as those of ref. [20].

The final form of the N = 6 results after simplifications are then [20]

M1-loop
N=6,mat.(1

−, 2−, 3+, 4+, 5+)

= −
(κ

2

)5

〈1 2〉8
∑

Z3(345)

(〈1 3〉 〈2 3〉 〈1 4〉 〈2 4〉
〈3 4〉2 〈1 2〉2

)

(

d
324(51)
N=8 I

324(51)
4,trunc + d

314(52)
N=8 I

314(52)
4,trunc

)

+O(ǫ) , (3.34)

where the summation runs over the three cyclic permutations of legs 3, 4, 5 in the box

integrals and coefficients. The factor d
123(45)
N=8 is exactly the coefficient (3.30) of the N = 8

theory and the integral I
123(45)
4,trunc given in eq. (B9) of appendix B is the one-mass box inte-

gral but with its infrared divergent terms subtracted out. Similarly, the simplified N = 4
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supergravity results are

M1-loop
N=4,mat.(1

−, 2−, 3+, 4+, 5+)

=
(κ

2

)5
[

〈1 2〉8
∑

Z3(345)

(〈1 3〉 〈2 3〉 〈1 4〉 〈2 4〉
〈3 4〉2 〈1 2〉2

)2
(

d
324(51)
N=8 I

324(51)
4,trunc + d

314(52)
N=8 I

314(52)
4,trunc

)

+ icΓ

5
∑

i=3

(c1i ln(−s1i) + c2i ln(−s2i)) + icΓR5

]

+O(ǫ) , (3.35)

where the coefficient of log(−s13) coming from the bubble integrals is

c13 =
1

2

〈1 2〉4 [3 1] [5 2]
〈1 3〉 〈2 5〉 〈4 5〉

[

− 〈2 4〉2 〈4|2 + 5|4] 〈1|3|4]2
〈3 4〉2 〈4 5〉 〈4|1 + 3|4]2

− 〈2 3〉
〈3 4〉

(

〈1 5〉 〈2 5〉 〈1|3|5] 〈5|2|4]
〈3 5〉2 〈4 5〉 〈5|1 + 3|5]

− 〈1 4〉 〈2 4〉 〈1|3|4] 〈4|2 + 5|4]
〈3 4〉2 〈4 5〉 〈4|1 + 3|4]

)

+
〈2 4〉
〈3 4〉

(

〈1 4〉 〈2 3〉 〈1|3|4] 〈3|2 + 5|4]
〈3 4〉2 〈3 5〉 〈4|1 + 3|4]

+
〈2 5〉 〈5|2|4]
〈3 5〉 〈4 5〉

(

〈1 5〉 〈1|3|5]
〈4 5〉 〈5|1 + 3|5] −

〈1 4〉 〈1|3|4]
〈4 5〉 〈4|1 + 3|4]

))]

+ (4 ↔ 5) , (3.36)

and the others are given by the natural label swaps, c1i = c13|3↔i and c2i = c1i|1↔2. The

rational terms follow the notation of ref. [20],

R5 = Rb
5 +

∑

Z2(12)×Z3(345)

Ra
5 , (3.37)

where

Ra
5 = −1

2
〈1 2〉4 [3 4]2 [2 5] 〈2 3〉 〈2 4〉

〈3 4〉2 〈2 5〉 〈3 5〉 〈4 5〉
, Rb

5 = −〈1 2〉4 [3 4] [3 5] [4 5]

〈3 4〉 〈3 5〉 〈4 5〉 . (3.38)

The sum in eq. (3.37) corresponds to the composition of the two permutations of negative-

helicity legs 1 and 2 and the three cyclic permutations over the positive-helicity legs 3, 4 and

5, giving six terms in total. (Results for general MHV amplitudes may be found in ref. [20].)

Inserting the results from eq. (3.33) into eq. (2.8) immediately converts the results we

obtained for the matter multiplets into those for the N = 4, 5, 6 gravity multiplets (the

pure supergravities). For the N = 4 and N = 6 gravity multiplets these match the results

of ref. [20].

Thus we have succeeded in expressing the four- and five-point integrated amplitudes

of N ≥ 4 supergravity amplitudes as simple linear combination of corresponding gauge-

theory ones. To generalize this construction to higher points, one would need to find duality

satisfying representations of m-point one-loop N = 4 super-Yang-Mills amplitudes.
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FIG. 4: The two-loop cubic diagrams appearing in the two-loop four-point N = 4 and N = 8

supergravity amplitudes.

D. Comments on two loops

An interesting question is whether the same considerations hold at higher loops. Consider

the two-loop four-point amplitude of N = 4 super-Yang-Mills theory [40, 42]:

A2-loop
4 (1, 2, 3, 4) = −g6stAtree

4 (1, 2, 3, 4)
(

cP1234 s I
2-loop,P
4 (s, t) + cP3421 s I

2-loop,P
4 (s, u) (3.39)

+ cNP
1234 s I

2-loop,NP
4 (s, t) + cNP

3421 s I
2-loop,NP
4 (s, u) + cyclic

)

,

where ‘+ cyclic’ instructs one to add the two cyclic permutations of (2,3,4) and the integrals

correspond to the scalar planar and nonplanar double-box diagrams displayed in fig. 4. As

at one loop, the color factor for each diagram is obtained by dressing each cubic vertex with

an f̃abc. It is then simple to check that all duality relations (2.3) hold.

According to the double-copy prescription (2.5), we obtain the corresponding N = 8

supergravity amplitude by replacing the color factor with a numerator factor,

cP1234 → nP
1234 = is2tAtree(1, 2, 3, 4) , cNP

1234 → nNP
1234 = is2tAtree(1, 2, 3, 4) , (3.40)

including relabelings and then swapping the gauge coupling for the gravitational one. The

planar and nonplanar color factor of eq. (3.40) are replaced by the same quantity since

nP
1234 = nNP

1234 as can be seen in eq. (3.39). (The kinematic numerators are forced to be

equal by a Jacobi-like identity that relates the difference of these two numerators to a third

vanishing numerator of a diagram containing a triangle subgraph.) The prescription (3.40)

gives the correct N = 8 supergravity amplitude, as already noted in ref. [42].

As explained in section II, generalized gauge invariance implies that we need have only one

of the two copies in a form manifestly satisfying the duality (2.3). The color Jacobi identity

allows us to express any four-point color factor of an adjoint representation in terms of the

ones in fig. 4 [36]. If the duality and double-copy properties hold we should then be able
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to obtain integrated N ≥ 4 supergravity amplitudes starting from N ≤ 4 super-Yang-Mills

theory and applying the replacement rule (3.40). Indeed, in ref. [46], explicit expressions

for the four-point two-loop N ≥ 4 supergravity amplitudes, including the finite terms, are

obtained in this manner.

Two-loop supergravity amplitudes are UV finite and their IR behavior is given in terms

of the square of the one-loop amplitude [47]:

M(2-loop)
4 (ǫ)/Mtree

4 =
1

2

[

M1-loop
4 (ǫ)/Mtree

4

]2

+ finite . (3.41)

The amplitudes of ref. [46] satisfy this relation and the finite remainders are given in a

relatively simple form. These two-loop results then provide a rather nontrivial confirmation

of the duality and double-copy properties for cases with less than maximal supersymmetry.

IV. CONCLUSIONS

The duality between color and kinematic numerators offers a powerful means for ob-

taining loop-level gauge and gravity amplitudes and for understanding their structure. A

consequence of the duality conjecture is that complete amplitudes are controlled by a set of

master diagrams; once the numerators are known in a form that makes the duality between

color and kinematics manifest, all others are determined from Jacobi-like relations. In this

form we immediately obtain gravity integrands via the double-copy relation.

In the present paper, we used the duality to find examples where integrated supergravity

amplitudes are expressed directly as linear combinations of gauge-theory amplitudes. In

particular, we constructed the integrated four- and five-point one-loop amplitudes of N ≥ 4

supergravity directly from known gauge-theory amplitudes. This construction was based

on identifying representations of N = 4 super-Yang-Mills four- and five-point amplitudes

that satisfy the duality. Because the relations are valid in D dimensions, by using known

D-dimensional forms of gauge-theory four-point amplitudes we obtain corresponding ones

for supergravity. The agreement of our four- and five-point N ≥ 4 supergravity results with

independent evaluations [19, 20] in D = 4 provides evidence in favor of these conjectures

holding for less than maximal supersymmetry. The two-loop results in ref. [46] provide

further nontrivial evidence.
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The examples we presented here are particularly simple because the numerator factors

of one copy of the gauge-theory amplitudes were independent of loop momenta. Duality

satisfying representations of one-loop N = 4 sYM amplitudes have not been worked out

beyond five points as yet, but initial investigations of such forms suggest that the numerator

factors will in general become dependent on loop momenta, as one might expect from power

counting. However, even in these more general cases, we expect useful constraints to arise

at the integrated level. These constraints, for example, lead to KLT-like relations visible in

box-integral coefficients, such as those found in refs. [44, 48]. It would be very interesting

to further explore relations between gravity and gauge theory after having carried out the

loop integration.

There are a number of other interesting related problems. It would of course be important

to unravel the underlying group-theoretic structure responsible for the duality between color

and kinematics. Some interesting progress has recently made for self-dual field configurations

and for MHV tree amplitudes, identifying an underlying diffeomorphism Lie algebra [30].

Another key problem is to find better means for finding representations that automatically

satisfy the duality and double-copy properties. Such general representations are known at

tree level for any choice of helicities [25]. We would like to have similar constructions at

loop level, instead of having to find duality satisfying forms case by case. In particular, no

examples have as yet been constructed at loop level at six and higher points.

In summary, using the duality between color and kinematics we exposed a surprising

relation between integrated four- and five-point one-loop amplitudes of N ≥ 4 supergravity

and those of gauge theory. We look forward to applying these ideas to further unravel the

structure of gauge and gravity loop amplitudes.
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Appendix A: The one-loop five-point Yang-Mills amplitudes

This appendix collects the five-point one-loop Yang-Mills amplitudes used to construct

the five-point supergravity amplitudes. The external states are gluons and all amplitudes

can be obtained from two configurations, (1−, 2−, 3+, 4+, 5+) and (1−, 2+, 3−, 4+, 5+), using

relabeling and parity. These results are from ref. [18] which the reader is invited to consult for

further details. The results are presented in the four-dimension helicity (FDH) regularization

scheme [16], which is known to preserve supersymmetry at one loop.

The five-gluon color-ordered and coupling-stripped amplitudes with the N = 4, N = 1

matter multiplet and a real scalar going around the loop can be expressed as:

A1-loop
N=4 (1, 2, 3, 4, 5) = cΓV

gAtree
5 ,

A1-loop
N=1,mat.(1, 2, 3, 4, 5) = −cΓ(V

fAtree
5 + iF f ) ,

A1-loop
scalar (1, 2, 3, 4, 5) =

1

2
cΓ(V

sAtree
5 + iF s) , (A1)

where the tree amplitudes are

Atree
5 (1−, 2−, 3+, 4+, 5+) =

i〈1 2〉4
〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉 ,

Atree
5 (1−, 2+, 3−, 4+, 5+) =

i〈1 3〉4
〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉 . (A2)

The function,

Vg = − 1

ǫ2

5
∑

j=1

(−sj,j+1)
−ǫ +

5
∑

j=1

ln

( −sj,j+1

−sj+1,j+2

)

ln

(−sj+2,j−2

−sj−2,j−1

)

+
5

6
π2 . (A3)

is independent of the helicity configuration. In contrast to ref. [18], we have set the

dimensional-regularization scale parameter, µ, to unity. For the (1−, 2−, 3+, 4+, 5+) helicity
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configuration we have,

V f = −1

ǫ
+

1

2
[ln (−s23) + ln (−s51)]− 2 , V s = −1

3
V f +

2

9
,

F f = −1

2

〈1 2〉2 (〈2 3〉 [3 4] 〈4 1〉+ 〈2 4〉 [4 5] 〈5 1〉)
〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉

L0

(

−s23
−s51

)

s51
,

F s = −1

3

[3 4] 〈4 1〉 〈2 4〉 [4 5] (〈2 3〉 [3 4] 〈4 1〉+ 〈2 4〉 [4 5] 〈5 1〉)
〈3 4〉 〈4 5〉

L2

(

−s23
−s51

)

s351
− 1

3
F f (A4)

− 1

3

〈3 5〉 [3 5]3
[1 2] [2 3] 〈3 4〉 〈4 5〉 [5 1] +

1

3

〈1 2〉 [3 5]2
[2 3] 〈3 4〉 〈4 5〉 [5 1] +

1

6

〈1 2〉 [3 4] 〈4 1〉 〈2 4〉 [4 5]
s23 〈3 4〉 〈4 5〉 s51

,

and the corresponding functions for the (1−, 2+, 3−, 4+, 5+) helicity configuration,

V f = −1

ǫ
+

1

2
[ln (−s34) + ln (−s51)]− 2 , V s = −1

3
V f +

2

9
,

F f = −〈1 3〉2〈4 1〉[2 4]2
〈4 5〉〈5 1〉

Ls1

(

−s23
−s51

, −s34
−s51

)

s251
+

〈1 3〉2〈5 3〉[2 5]2
〈3 4〉〈4 5〉

Ls1

(

−s12
−s34

, −s51
−s34

)

s234

− 1

2

〈1 3〉3(〈1 5〉 [5 2] 〈2 3〉 − 〈3 4〉 [4 2] 〈2 1〉)
〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉

L0

(

−s34
−s51

)

s51
,

F s = −〈1 2〉〈2 3〉〈3 4〉〈4 1〉2[2 4]2

〈4 5〉〈5 1〉〈2 4〉2
2 Ls1

(

−s23
−s51

, −s34
−s51

)

+ L1

(

−s23
−s51

)

+ L1

(

−s34
−s51

)

s251

+
〈3 2〉〈2 1〉〈1 5〉〈5 3〉2[2 5]2

〈5 4〉〈4 3〉〈2 5〉2
2 Ls1

(

−s12
−s34

, −s51
−s34

)

+ L1

(

−s12
−s34

)

+ L1

(

−s51
−s34

)

s234
(A5)

+
2

3

〈2 3〉2〈4 1〉3[2 4]3
〈4 5〉〈5 1〉〈2 4〉

L2

(

−s23
−s51

)

s351
− 2

3

〈2 1〉2〈5 3〉3[2 5]3
〈5 4〉〈4 3〉〈2 5〉

L2

(

−s12
−s34

)

s334

+
L2

(

−s34
−s51

)

s351

(

1

3

〈1 3〉 [2 4] [2 5] (〈1 5〉 [5 2] 〈2 3〉 − 〈3 4〉 [4 2] 〈2 1〉)
〈4 5〉

+
2

3

〈1 2〉2〈3 4〉2 〈4 1〉 [2 4]3
〈4 5〉 〈5 1〉 〈2 4〉 − 2

3

〈3 2〉2〈1 5〉2 〈5 3〉 [2 5]3
〈5 4〉 〈4 3〉 〈2 5〉

)

+
1

6

〈1 3〉3 (〈1 5〉 [5 2] 〈2 3〉 − 〈3 4〉 [4 2] 〈2 1〉)
〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉

L0

(

−s34
−s51

)

s51
+

1

3

[2 4]2[2 5]2

[1 2][2 3][3 4]〈4 5〉[5 1]
− 1

3

〈1 2〉〈4 1〉2[2 4]3
〈4 5〉〈5 1〉〈2 4〉[2 3][3 4]s51

+
1

3

〈3 2〉〈5 3〉2[2 5]3
〈5 4〉〈4 3〉〈2 5〉[2 1][1 5]s34

+
1

6

〈1 3〉2 [2 4] [2 5]
s34 〈4 5〉 s51

.

In contrast to ref. [18], in eqs. (A4) and (A5) we use unrenormalized amplitudes; this dis-

tinction actually has no effect on the corresponding gravity amplitudes since the difference

drops out in eq. (3.33). The functions appearing in the above expressions are

L0(r) =
ln(r)

1− r
, L1(r) =

ln(r) + 1− r

(1− r)2
, L2(r) =

ln(r)− (r − 1/r)/2

(1− r)3
,
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Ls1(r1, r2) =
1

(1− r1 − r2)2

[

Li2(1− r1) + Li2(1− r2) + ln r1 ln r2 −
π2

6
(A6)

+ (1− r1 − r2)(L0(r1) + L0(r2))
]

.

As discussed in section IIIC, these gauge-theory amplitudes serve as building blocks for the

corresponding N ≥ 4 supergravity amplitudes.

Appendix B: Integrals

In this appendix we collect the integrals used in our expressions from various sources

and adjust normalization to match our conventions. The m-point scalar integrals in D

dimensions are defined as:

Im =

∫

dDp

(2π)D
1

p2(p−K1)2(p−K1 −K2)2 . . . (p−K1 −K2 − . . .−Km−1)2
, (B1)

where the Ki’s are the external momenta which can be on- or off-shell.

The D = 4− 2ǫ bubble with momentum K is

I2(K
2) =

icΓ
ǫ(1− 2ǫ)

(−K2)−ǫ , (B2)

where

cΓ =
1

(4π)2−ǫ

Γ(1 + ǫ)Γ2(1− ǫ)

Γ(1− 2ǫ)
. (B3)

The D = 4− 2ǫ one-mass triangle is

I3(K
2
1) =

−icΓ
ǫ2

(−K2
1 )

−1−ǫ , (B4)

where K1 is the massive leg momentum and the two-mass triangle is

I3(K
2
1 , K

2
2) =

−icΓ
ǫ2

(−K2
1 )

−ǫ − (−K2
2 )

−ǫ

(−K2
1 )− (−K2

2 )
, (B5)

where K1 and K1 are the two massive leg momenta.

For amplitudes with four massless external particles we have the zero-mass box I12344 ≡
I4(s, t) where s = (k1 + k2)

2, t = (k2 + k3)
2 and the ki are massless momenta. An all-order

in ǫ expansion in terms of hypergeometric functions is [49]:

I4(s, t) =
2icΓ
ǫ2st

[

t−ǫ
2F1

(

−ǫ,−ǫ; 1 − ǫ; 1 +
t

s

)

+ s−ǫ
2F1

(

−ǫ,−ǫ; 1 − ǫ; 1 +
s

t

)

]

, (B6)

26



which through order ǫ0 is

I4(s, t) =
icΓ
st

[

2

ǫ2

(

(−s)−ǫ + (−t)−ǫ
)

− ln2

(−s

−t

)

− π2

]

+O(ǫ) . (B7)

Similarly, the one-mass box through ǫ0 is [49],

I
(12)345
4 = − 2icΓ

s34s45

{

− 1

ǫ2

[

(−s34)
−ǫ + (−s45)

−ǫ − (−s212)
−ǫ
]

+ Li2

(

1− s12
s34

)

+ Li2

(

1− s12
s45

)

+
1

2
ln2

(

s34
s45

)

+
π2

6

}

+O(ǫ) , (B8)

where legs 1 and 2 are at the massive corner. An all orders in ǫ form in terms of hyperge-

ometric functions may be found in ref. [49]. The integral I
(12)345
4,trunc is given by dropping the

term multiplied by 1/ǫ2,

I
(12)345
4,trunc = − 2icΓ

s34s45

{

Li2

(

1− s12
s34

)

+ Li2

(

1− s12
s45

)

+
1

2
ln2

(

s34
s45

)

+
π2

6

}

+O(ǫ) . (B9)

Finally, we use the pentagon integral whose expansion to order ǫ0 is [49]

I123455 =
∑

Z5

−icΓ(−s51)
ǫ(−s12)

ǫ

(−s23)1+ǫ(−s34)1+ǫ(−s45)1+ǫ

[

1

ǫ2
+ 2Li2

(

1− s23
s51

)

+ 2Li2

(

1− s45
s12

)

− π2

6

]

+O(ǫ) , (B10)

where the sum is over the five cyclic permutations of external legs.

We also need integrals in higher dimensions. The triangle and bubble integrals are ob-

tained by direct integration and the box integrals by dimension-shifting relations [49]. Ex-

plicitly, the D = 6− 2ǫ bubble is

ID=6−2ǫ
2 (K2) =

−icΓ
2ǫ(1− 2ǫ)(3− 2ǫ)

(−K2)1−ǫ , (B11)

whereas the D = 6− 2ǫ one-mass triangle is

ID=6−2ǫ
3 (K2

1) =
−icΓ

2ǫ(1− ǫ)(1− 2ǫ)
(−K2

1 )
−ǫ . (B12)

The zero-mass D = 6 − 2ǫ box can be expressed as a linear combination of the four-

dimensional one-mass boxes and one-mass triangles:

ID=6−2ǫ
4 (s, t) =

1

s+ t

(

st

2
I4(s, t)− i

cΓ
ǫ2

(

(−s)−ǫ + (−t)−ǫ
)

)

. (B13)
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Note that it is finite and equal to

ID=6−2ǫ
4 (s, t) = −i

cΓ
2(s+ t)

[

ln2

(−s

−t

)

+ π2

]

+O(ǫ) . (B14)

We also make use of the integral combination from ref. [17],

Jm = −ǫID=6−2ǫ
m , Km = −ǫ(1− ǫ)ID=8−2ǫ

m . (B15)

Through order ǫ0, these become

J4 = 0 +O(ǫ) , K4 = − i

6(4π)2
+O(ǫ) , J3 =

i

2(4π)2
+O(ǫ) . (B16)
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