
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Chiral quark dynamics and topological charge: The role of
the Ramond-Ramond U(1) gauge field in holographic QCD

H. B. Thacker, Chi Xiong, and Ajinkya S. Kamat
Phys. Rev. D 84, 105011 — Published  9 November 2011

DOI: 10.1103/PhysRevD.84.105011

http://dx.doi.org/10.1103/PhysRevD.84.105011


DE10850

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Chiral Quark Dynamics and Topological Charge: The Role of the

Ramond-Ramond U(1) Gauge Field in Holographic QCD

H. B. Thacker∗, Chi Xiong† , and Ajinkya S. Kamat‡

Department of Physics, University of Virginia,

P.O. Box 400714 Charlottesville, VA 22901-4714

The Witten-Sakai-Sugimoto construction of holographic QCD in terms of D4 color branes

and D8 flavor branes in type IIA string theory is used to investigate the role of topological

charge in the chiral dynamics of quarks in QCD. The QCD theta term arises from a com-

pactified 5-dimensional Chern-Simons term on the D4 branes. This term couples the QCD

topological charge to the Ramond-Ramond U(1) gauge field of IIA string theory. For large

Nc the contribution of instantons (D0 branes) is suppressed, and the nonzero topological

susceptibility of pure-glue QCD is attributed to the presence of D6 branes, which constitute

magnetic sources of the RR gauge field. The topological charge of QCD is required, by an

anomaly inflow argument, to coincide in space-time with the intersection of the D6 branes

and the D4 color branes. This clarifies the relation between D6 branes and the coherent,

codimension-one topological charge membranes observed in QCD Monte Carlo calculations.

Using open-string/closed-string duality, we interpret a quark loop (represented by a D4-

D8 open string loop) in terms of closed-string exchange between color and flavor branes.

The role of the RR gauge field in quark-antiquark annihilation processes is discussed. RR

exchange in the s-channel generates a 4-quark contact term which produces an η′ mass inser-

tion and provides an explanation for the observed spin-parity structure of the OZI rule. The

(log Det U)2 form of the U(1) anomaly emerges naturally. RR exchange in the t-channel of

the qq scattering amplitude produces a Nambu-Jona Lasinio interaction which may provide

a mechanism for spontaneous breaking of SU(Nf)× SU(Nf).

I. INTRODUCTION

In the holographic construction of QCD-like gauge theories from type IIA string theory [1, 2], the

elementary fields of the gauge theory are associated with the low-lying spectrum of open strings

on Nc coincident D4 branes and Nf coincident D8 branes whose intersection is 4-dimensional

spacetime. Gluons and quarks are represented by open D4-D4 and D4-D8 strings, respectively. In
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the closed string sector, the U(1) gauge field associated with the massless states of the Ramond-

Ramond (RR) string plays a special role in reproducing the low energy chiral dynamics associated

with topological charge in QCD [1]. In the holographic theory, the QCD theta term arises from a

5-dimensional Chern-Simons term which couples the RR gauge potential to the topological charge

of the color gauge field. A very useful way of understanding the origin of this Chern-Simons term

and its implications for low energy hadron physics is to interpret it in terms of anomaly inflow [3, 4].

By standard arguments, the coupling of the RR field to the color gauge field on the D4 branes is

dictated by the requirement that chiral anomalies on the brane, associated with the topological

charge of the gauge field, should be cancelled in the higher dimensional bulk theory by the inflow

of Ramond-Ramond flux. Equivalently, in the presence of D-branes, the equations of motion and

Bianchi identity for the RR field must be modified to include electric and magnetic source terms

on the world volume of the branes. The form of these source terms is dictated by the anomaly

inflow argument, which determines the U(1) gauge variation of the RR field that must accompany

a Yang-Mills gauge transformation in order to define a gauge invariant RR field strength. In terms

of the RR potential C1, the gauge invariant field strength is no longer just dC1, but must include

a Yang-Mills source term on the D4 branes proportional to the Chern-Simons current of the color

gauge field.

In order to account for nonzero topological susceptibility, there must be a q2 = 0 pole in the

correlation function of two Chern-Simons currents 〈Kµ(x) Kν(0)〉, with residue equal to χt [5],

because ∂µKµ is the topological charge density. This does not imply a massless physical particle,

since the Chern-Simons current is not gauge invariant. On the other hand, this pole does have

direct physical implications, in that it gives rise to a delta-function contact term in the gauge

invariant topological charge correlator. Such a contact term is expected on general principles [6].

Since all real intermediate state contributions to χt (as computed from the integrated Euclidean

correlator) are negative, the correlator must be dominated by a positive contact term. In terms

of a dispersion relation, the contact term represents the necessary subtractions required to render

the sum over the tower of massive glueball states convergent, and can thus be viewed as a short-

distance effect arising from the sum over massive closed string states. The sum over closed string

states in the calculation of the η′ mass has been studied in [7, 8]. In Ref. [8] it was also noted

that the low-lying glueball states give a negative contribution to m2

η′ , so the contact term must be

positive and quantitatively dominant at q2 → 0 in order to obtain positive susceptibility.

The presence of a contact term in the QCD topological charge correlator has been confirmed

by lattice calculations [9, 10]. The Monte Carlo results showed that this contact term is the result
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of a laminated vacuum structure consisting of juxtaposed opposite-sign codimension one sheets of

topological charge, essentially dipole layers [9, 11, 12]. Such a topological charge distribution is

just what one would expect from the domain wall excitations and discrete “k=vacua” associated

with D6 brane excitations in the holographic formulation [1]. In the 4-dimensional Yang-Mills

framework, these are the “Wilson bag” excitations discussed by Luscher [5] which correspond to a

codimension one surface of Chern-Simons 3-form flux. In this paper, we investigate the contribution

of D6 brane/Wilson bag excitations to the topological susceptibility of QCD, the η′ mass, and to

short-range quark-quark interactions.

From a holographic viewpoint, the q2 = 0 pole required in the Chern-Simons current correlator

to obtain finite topological susceptibility is cancelled in gauge invariant amplitudes by the exchange

of a massless (unphysical) longitudinal Ramond-Ramond gauge boson. This constitutes a 4D Yang-

Mills generalization of the Kogut-Susskind dipole cancellation for the 2D Schwinger model. On

the I2 brane intersection of a D6 brane with the D4 branes, a gauge invariant excitation consists

of the D6 brane itself and the Yang-Mills gauge field excitation of the D4 branes that accompanies

it. In the 2D Schwinger model, the cancellation takes place between the Chern-Simons pole and

the pole of an auxiliary massless Goldstone field (defined in terms of the conserved but non-gauge

invariant axial vector current without the anomaly term). In holographic QCD, the RR field serves

a similar purpose to that of the massless Goldstone field in the covariant gauge Schwinger model

solution. It introduces a separation between the charged object (a bare fermion in the Schwinger

model or a D6 brane in QCD) and the Chern-Simons excitation that accompanies it. Since the

spectrum of the 4-dimensional Yang-Mills theory should consist only of massive glueball states,

there should be no massless poles in gauge invariant amplitudes. On the other hand, there must

be a q2 = 0 pole in the Chern-Simons correlator (because χt 6= 0). This requires a cancelling

pole in the Ramond-Ramond correlator on the D4 brane world volume. In pure glue QCD at low

energy, the physical manifestation of these cancelling pole terms is the appearance of a contact

term in the gauge invariant topological charge corrrelator, obtained from derivatives acting on the

Chern-Simons pole.

It should be emphasized that, just as the q2 = 0 pole in the C-S current correlator [5] does not

imply a massless particle in 4-dimensional Yang-Mills theory, the pole in the RR correlator does

not correspond to a physical massless closed string state in the near-horizon geometry of the D4

branes in the string theory. In both cases, the massless poles appear in the correlators of non-gauge-

invariant operators. In this paper we study the dynamics of topological charge fluctuations in the

QCD vacuum in the large Nc limit which correspond to the appearance of D6 brane and anti-D6
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brane sources in the Witten-Sakai-Sugimoto model [1, 22]. As shown in Ref. [4] in this situation,

the bulk Ramond-Ramond field is not by itself gauge invariant, but must include a Yang-Mills

source term that is nonvanishing on the intersection between the D4 and D6 branes. (This takes

the form of an anomalous term in the Bianchi identity for the RR field strength, similar to a Dirac

monopole). There is no massless pole in the gauge invariant correlator by virtue of a cancellation

between q2 = 0 poles in the bulk RR correlator (on the I2 brane surface) and the Chern-Simons

correlator. Note that, even though there is a mass gap, the q2 = 0 pole in the CS current correlator

must be present in order to have nonzero topological susceptibility. There must therefore also be a

q2 = 0 pole in the (non gauge invariant) RR correlator, in order to provide a Kogut-Susskind dipole

cancellation [14] in gauge invariant amplitudes. The pole in the RR correlator arises not from the

potential C1 (which couples to gauge invariant topological charge density) but from the magnetic

dual potential C7, which couples minimally to D6 branes. As we will show, this RR pole couples

to the chiral field only through derivative couplings, thereby reducing the exchange interaction to

a local contact term. This is precisely analogous to the 2D Schwinger model. In that model (e.g.

in Coulomb gauge) the local contact term that gives the η′ a mass is generated by a long-range

Coulomb potential with derivative couplings. Upon integration by parts, the long range interaction

reduces to a local η′ mass term because the linear potential satisfies ∂x∂yV (x− y) ∝ δ(x − y).

We find other interesting phenomenological effects of RR exchange by considering open-

string/closed-string duality (OS/CS) for quark loops. The quark is represented by an open string

attached at one end to a color D4 brane and at the other end to a flavor D8 brane. A closed quark

loop in the field theory is represented by a one-loop open string diagram which can be reinterpreted

via OS/CS duality as the tree-level exchange of a closed Ramond-Ramond string between the flavor

branes and the color branes (see Fig. 1). This provides an interesting separation between the flavor

and color structure of the quark loop. This closed-string description of a quark loop is particularly

appropriate for discussing its ultraviolet behavior, which is determined in the string theory by

low-energy structure in the closed string channel. Just as anomaly inflow arguments can be used

to determine the coupling of the RR field to the color branes, similar arguments determine the RR

coupling to the flavor branes [2]. In this case, anomaly inflow relates the RR gauge field to the U(1)

chiral Goldstone (η′) field, giving the familiar equivalence between a shift of θ and a chiral rotation.

By arguments similar to those leading to the contact term in the topological charge correlator, we

show that RR exchange between quark lines induces an effective 4-quark contact term. In the

flavor singlet channel for quark-antiquark scattering, s-channel RR exchange provides the η′ mass

insertion quark diagram (“double hairpin” graph, Fig. 3). In addition to reproducing the Witten-
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FIG. 1: An open string quark loop as a closed string exchange between D4 and D8 branes.

Veneziano relation for the η′ mass [15, 16], the RR exchange picture provides an explanation of the

pure double pole behavior observed in Monte Carlo calculations of the quenched double-hairpin

correlator [17]. It has long been known that at large Nc, chiral Lagrangian arguments [18–20] lead

to a specific form for the effective action term which correctly describes the axial U(1) anomaly.

This term must have the form of a pure η′ mass insertion:

La ∝ −(log DetU − log DetU †)2 (1)

where Uab ∝ qa(1+γ5)qb is the Nf×Nf chiral field. This large Nc expectation is quite distinct from

the effective action induced by instantons, which would be proportional to the chiral determinant

itself and therefore include OZI-violating six-quark interactions. We will show that an effective

action of the form (1) is exactly what is expected from the 4-quark contact term generated by RR

exchange. This follows essentially from the fact that the RR field couples, by anomaly inflow, to

the U(1) phase of the chiral field. Thus, the anomaly term (1) is interpreted as describing a contact

term generated by RR exchange between two chiral densities.

In addition to its role in QCD topological susceptibility and the η′ mass insertion, RR exchange

may also play a direct role in spontaneous chiral symmetry breaking and the formation of the
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chiral condensate. The η′ mass insertion arises from the q-q annihilation diagram (Figure 3), i.e. s-

channel RR exchange. This diagram appears only in the flavor singlet channel and explicitly breaks

axial U(1) symmetry. But there is also a 4-quark contact term generated by RR exchange in the t-

channel of the quark-antiquark amplitude (Figure 4). This interaction is the same for flavor singlet

and nonsinglet channels. It is a U(Nf )×U(Nf ) conserving Nambu-Jona Lasinio-type interaction,

suggesting that RR exchange may be the driving force behind SχSB. Finding that topological

fluctuations play a role in the formation of the chiral condensate would not be that surprising.

An analogous mechanism in the framework of the instanton liquid model has been discussed [21].

In that model, the ’tHooft near-zero modes of the instantons provide the eigenstates occupied by

the quarks in the chiral condensate. Similarly, in a vacuum of topological charge membranes (D6

branes), the chiral condensate forms from the surface modes of the quarks on the codimension one

brane surfaces. RR exchange in the t channel provides an attractive interaction between a D6

brane and a neighboring anti-D6 brane, and hence an attractive quark-antiquark interaction.

The holographic framework and the connection between QCD topological charge and Ramond-

Ramond charge highlights an old and long-discussed dichotomy between two rather different sce-

narios for the origin of topological susceptibility in QCD [22], one based on instantons and one

based on large-Nc chiral Lagrangian arguments. In the large-Nc framework, topological gauge ex-

citations are associated with the existence of quasistable “k-vacua”, where the effective local value

of the θ parameter is shifted by 2πk with k an integer. These quasivacua are separated by codi-

mension one membranes (domain walls), where the local value of the θ parameter changes by ±2π

across a domain wall. Witten has argued [22] that for large Nc, the contribution of instantons is

exponentially suppressed and that the leading O(1/NC) contribution to χt must come from gauge

field fluctuations associated with these domain walls, which appear in the holographic framework

as the intersection (I2 brane) of the color D4 branes with a D6 brane [1]. In the 4-dimensional

Yang-Mills theory, the step in θ is equivalent to a codimension one sheet of Chern-Simons 3-form

flux of the color gauge field. The topological charge excitation that arises from the presence of

a θ domain wall is a dipole layer with opposite sign sheets of topological charge juxtaposed on

opposite sides of the Chern-Simons sheet. (Such a structure closely resembles what is seen in

Monte Carlo studies [9, 12].) The appearance of codimension one topological charge membranes

separating discrete vacua was originally suggested by large Nc chiral Lagrangian arguments. In

terms of the chiral field U for a theory with one or more light quarks, the correct form of the

axial U(1) anomaly is a pure η′ mass term (1) [18–20]. The existence of multiple discrete vacua in

QCD is a direct reflection of the multibranch structure of the log in the η′ mass term. [This is in
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contrast to the ’tHooft vertex induced by an instanton, which is proportional to Det U itself and

not multivalued.] It was later shown [1] that the codimension one membranes expected from large

Nc arguments had a natural holographic interpretation as D6 branes wrapped around a compact

S4, which appear as 2+1 dimensional membranes in spacetime. From the holographic view, the

two scenarios for generating topological susceptibility correspond to an “electric” condensate of

instantons or D0 branes (which are electric sources of RR field), and a “magnetic” condensate of

D6 branes.

Both the instanton and codimension one membrane scenarios are realized in well-studied two-

dimensional models [22]. For example, the topological susceptibility in the U(1) Higgs model can

be analyzed in terms of instantons. On the other hand, the massive Schwinger model has finite

topological susceptibility but instantons do not appear anywhere in the theory. The mechanism

for generating χt in the Schwinger model is a 2-dimensional analog of the multiple discrete k-

vacua in 4-dimensional QCD. In the 2-dimensional model, the θ parameter may be interpreted as

a background electric field [23]. In one spatial dimension, a pointlike charged particle plays the

role of a domain wall separating vacua that are characterized by different values of background

electric flux on opposite sides of the charge. The flux in these adjacent vacua differs by one unit by

Gauss’s law. The unit step in electric field across a charged particle corresponds to a 2π step in θ.

To see this consider a θ term in 2D Euclidean space where θ = θ0 inside a closed region R bounded

by a contour C = ∂R, and zero outside C. In 2D, the Chern-Simons current is Kµ = ǫµνA
ν , and

the topological charge is ∂µKµ = 1

2
ǫµνF

µν . Thus a θ term with a nonzero constant θ0 inside the

contour C and zero outside can be written as a 1D surface integral of the Chern-Simons current,

which is just an ordinary Wilson loop operator around the boundary C = ∂R,

θ0
2π

∫

R
d2xǫµνF

µν =
θ0
2π

∮

C

Aµdxµ (2)

The charge that appears in the exponentiated Wilson loop is θ0/2π, so a Wilson loop with unit

charge corresponds to a step in θ of ±2π across the boundary. For the Schwinger model, the q2 = 0

pole in the Chern-Simons correlator which leads to nonzero χt is just the photon propagator.

Photon exchange produces a linear confining potential between charges on opposite sides of the

Wilson loop. The difference in energy between the k = 0 vacuum outside the loop and the k = ±1

vacuum with a unit of flux inside the loop determines the topological susceptibility, which is just

given by the strength of the linear potential. Of course there is no propagating photon in 2D. In a

covariant treatment, the photon pole cancels against another unphysical q2 = 0 pole corresponding

to a decoupled Goldstone boson. What remains is a physical massive η′ meson. This is the
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“Kogut-Susskind dipole” mechanism. The η′ mass term is the physical remnant of the long range

Coulomb interaction between charges, as can be seen by bosonizing the fermion current, writing

ψ̄γµψ = ǫµν∂
νη′. The Coulomb interaction reduces to a local η′ mass term when integrated by

parts,

∫

dxdx′∂xη
′|x− x′|∂′xη

′ = 2

∫

dxη′2 (3)

In 4-dimensional Yang-Mills theory, the analog of the Wilson loop (2) in 2D U(1) gauge theory

is the “Wilson bag” operator [5], which is the integral of the 3-index Chern-Simons tensor over a

3-dimensonal surface C. In the holographic description, this 3-dimensional surface is an I2-brane,

i.e. the intersection of a D6 brane and the color D4 branes. The q2 = 0 pole in the Chern-Simons

correlator represents a linear potential between sides of the bag and gives a “volume law” for

Wilson bags which is equivalent to finite χt. Witten has argued [1, 22] that for 4D SU(Nc) gauge

theory in the large Nc limit, instantons are exponentially suppressed and topological structure is

dominated by multiple discrete k-vacua and domain walls between them.

In the holographic framework, the contrast between the instanton (D0 brane) condensate and

the codimension one membrane (D6 brane) condensate serves to emphasize the very different role

played by the electric (C1) and magnetic (C7) Ramond-Ramond potentials in the two cases. The θ

term in QCD arises from a 5-dimensional Chern-Simons term which couples the QCD topological

charge to the C1 potential,

Lθ =

∫

D4

C1 ∧ Tr(F ∧ F ) (4)

Instantons or D0 brane excitations are localized in 4-dimensional spacetime, and they generate a

contact term (not a pole) in the C1 correlator. In fact even in the D6 brane condensate, one does

not expect a q2 = 0 pole in the C1 correlator, because it couples to the gauge invariant topological

charge Tr(F∧F ). In the presence of D6 branes, the contact term in the topological charge correlator

derives from a q2 = 0 pole in the Chern-Simons correlator. The q2 = 0 Ramond-Ramond pole

that cancels the pole of the Chern-Simons correlator in gauge invariant amplitudes arises not from

C1 but from the magnetic Ramond-Ramond potential C7. It is this potential which is minimally

coupled to D6 branes. On the 3-dimensional I2 brane defined by the intersection of the D6 brane

with the color D4 branes, the anomaly inflow constraint requires that the gauge variation of the

bulk RR field strength dC7 on the I2 brane surface under a Yang-Mills transformation must cancel

the gauge variation of the Chern-Simons tensor. This equates the gauge variation of dC7 to that

of an 8-form δD4 ∧ K3. Here δD4 is a 5-form delta function in the coordinates transverse to the
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D4 branes, and K is the Chern-Simons 3-form. The q2 = 0 pole in the dC7 correlator plays the

same role as the unphysical massless Goldstone pole in the Kogut-Susskind mechanism, i.e. in

gauge invariant amplitudes it cancels the pole in the Chern-Simons correlator. Note that in the

presence of D6 branes (magnetic RR sources), the RR field strengths dC1 and dC7 = ∗(dC1) are

simply related, but there is no simple local relationship between potentials C7 and C1, so the C7

pole does not contradict our expectation that C1 will have no q2 = 0 pole, since it couples directly

to topological charge rather than to the Chern-Simons form.

We note that the analysis of the topological susceptibility and η′ mass generation in Ref. [2] in

terms of the coupling of C1 to Tr(F ∧ F ) applies to either mechanism for generating topological

excitations, i.e. whether they are generated by D0 branes or D6 branes. In either case, the

topological charge correlator is dominated by a positive contact term, and as discussed in [6], this

is all that is necessary to give the Witten-Veneziano relation between χt and mη′ .

II. INSTANTONS AND TOPOLOGICAL CHARGE MEMBRANES AS ELECTRIC

AND MAGNETIC SOURCES OF RAMOND-RAMOND FIELD

The origin of the QCD theta term was first discussed in the holographic framework in Ref. [1].

In Witten’s construction, the color D4 branes are compactified around an S1 with SUSY breaking

boundary conditions. The QCD theta term arises from a 5-dimensional Chern-Simons term which

couples the Wilson line of the RR gauge potential C1 around the compact S1 to the topological

charge density of the 4-dimensional gauge field,

SCS =

∫

D4

C1 ∧ Tr (F ∧ F ) . (5)

Here, Tr is a trace over color indices. As shown in Ref. [4] and discussed below, the form of the

Chern-Simons term is dictated by anomaly inflow arguments. In the full IIA string theory, this

term represents the fact that fluctuations of the color gauge fields on the D4 brane can absorb

and emit closed RR string states which propagate in the bulk. In the field theory limit, after

compactification around the S1 (with the circumference of the S1 playing a role analogous to

lattice spacing in lattice QCD), the surviving part of this Chern-Simons term is proportional to

the RR Wilson line around the compact direction,

∫

S1

C1 ≡ θ(x) (6)
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Here we denote 4-dimensional spacetime coordinates by x. If θ is a spacetime constant θ0, the CS

term reduces to a QCD theta term,

SCS → θ0

∫

R4

Tr(F ∧ F ) (7)

where R4 is 4-dimensional spacetime. As shown by Witten [1, 20], large Nc chiral Lagrangian

arguments suggest that the physical vacuum in 4-dimensional gauge theory should exhibit domain

walls between discrete θ-vacua, i.e. codimension one surfaces where the effective local value of

the θ parameter jumps by ±2π. In the Witten D4 brane construction of holographic QCD, these

domain walls are identified as D6 branes wrapped around S4. The anomaly inflow picture discussed

here shows that the 4D Yang-Mills topological charge should be localized on the codimension one

membranes represented by the intersection of D4 and D6 branes. This can be contrasted with an

instanton liquid model, which would correspond to D0 brane excitations [24]. With respect to the

10-dimensional RR U(1) gauge field, D0 branes and D6 branes can be regarded as electric and

magnetic sources, respectively. In the D6 brane condensate model we consider here, the transition

from the perturbative to the physical, confining vacuum is caused by a condensation of magnetic

Ramond-Ramond charge [13]. In the large-Nc physical vacuum, populated by D6 branes, the role

of the Chern-Simons term (5) is crucial even when the overall QCD theta parameter is set to zero.

In fact, in the presence of magnetic D6 brane sources, the RR potential C1 cannot be uniquely

specified globally, but must be defined in terms of overlapping sections, as with Dirac monopoles

in 4D Maxwell theory. Because of this nonuniquenes of C1, it is more meaningful to write the

Chern-Simons term in the form obtained by integrating by parts,

SCS → −

∫

D4

dC1 ∧ K (8)

where K is the Chern-Simons 3-form satisfying dK = Tr(F ∧ F ). Specifically,

K = Tr

(

A ∧ F −
1

3
A ∧A ∧A

)

(9)

Here and elsewhere the color gauge field potential on the D4 branes is denoted by A. The D8 brane

gauge potential will be called A. We associate the 3-form (9) with the 3-dimensional intersection

between the D4 branes and the D6 brane. We will choose axes in 4D spacetime such that the

D4-D6 “I-brane” intersection spans the x0, x1, and x2 coordinates, with x3 being the spacetime

direction transverse to the I-brane (and hence transverse to the topological charge membranes of

the color gauge field). (From detailed Monte Carlo studies [9, 11, 12, 25], the topological charge

membranes are expected to be locally flat over a distance scale comparable to the confinemenet



11

FIG. 2: View of a D6 brane as a magnetic monopole of the Ramond-Ramond gauge field in the 3 dimensions

transverse to its worldvolume.

scale. Over larger distances, the branes bend and fold and their orientation decorrelates.) In the

construction of Ref. [1], the three dimensions transverse to the D6 brane consist of the holographic

(radial) direction x5, the compact S1 (angular) direction x4, and one spacetime direction, which

we take to be x3. This 3D space can be represented as a solid cylider, as depicted in Fig. 2. The

D6 brane is a point magnetic RR charge in this space, and the construction of a nonsingular gauge

potential which is continuous away from the source requires C1 to be defined separately on two

disks or hemispheres on opposite sides of the D6 brane and matched together by a topologically

nontrivial U(1) gauge transformation around the equator, leading to the quantization of D6 brane

charge. By Eq. (6), this quantization enforces the fact that the value of θ(x) on opposite sides

of the D6 brane must differ by an integer multiple of 2π. So, rather than reducing to a constant

theta parameter in the field theory limit, θ(x)/2π becomes an integer valued field which jumps

by ±1 at the location of a D6 brane. With the Chern-Simons action written in the form (8), the

codimension one topological charge membrane in the color gauge field appears at the intersection of

the D6 brane and the D4 branes, where low-mass open D4-D6 strings reside. Open-string/closed-

string duality implies a coupling due to massless RR exchange between D4 and D6 brane. Just as

an instanton in the gauge theory can be interpreted as a D0 brane bound to the D4 color branes

[24, 26], the topological charge membrane can be seen as a D6 brane (wrapped on S4) bound to

the color branes.
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III. ANOMALY INFLOW AND RAMOND-RAMOND COUPLINGS

The Chern-Simons 3-form K in (8) is not invariant under a color gauge transformation. To

maintain overall gauge invariance, we must assume that a color gauge transformation is accompa-

nied by a U(1) transformation of the RR gauge field C1. The RR field strength G2 satisfies an

anomalous Bianchi identity, G2 6= dC1, which includes a magnetic source term arising from the

color gauge field,

G2 = dC1 − µ [∗(K ∧ δD4
)] (10)

Here, δD4
is a 5-form given by a product of delta functions in the coordinates transverse to the D4

brane, so the second term in (10) is nonvanishing only on the D4 brane surface. In this term the ∗

represents the Hodge dual in 10-dimensional space of the 8-form K∧δD4
. It is a 2-form with indices

that are both on the D4 branes and transverse to the 0-1-2 I-brane. Thus the source term from

the D6 brane contributes only to the 3-4 component of the Ramond-Ramond field. µ is fixed by

the quantization condition. In terms of the D4 brane tension T4 it is given by µ = T4/16π
2. Under

a Yang-Mills transformation A → g−1Ag + g−1dg, the RR field transforms in a manner dictated

by the descent equations [4]. This is most easily expressed in terms of the dual magnetic RR field

strength G8 = ∗(G2) and associated potential C7,

G8 = dC7 − µ(K ∧ δD4
) (11)

It is the potential C7 that couples directly (i.e. minimally) to the 7-dimensional world volume of

the magnetically charged D6 branes. Under a Yang-Mills transformation g, this transforms as

δ(dC7) = µ(δK ∧ δD4
) (12)

The explicit transformation of the Chern-Simons 3-form is given by

δK = µ

[

d Tr(dg g−1 ∧A) +
1

3
Tr(g−1dg ∧ g−1dg ∧ g−1dg)

]

(13)

The second term in (13) is proportional to the winding number density of the 3-dimensional gauge

transformation on the I-brane,

w(x) =
1

24π2
Tr(g−1dg ∧ g−1dg ∧ g−1dg) (14)

With appropriate boundary conditions on g, w(x) integrates to an integer over the 3-dimensional

I-brane. The quantization of this Chern-Simons winding number term incorporates the 2π step
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function discontinuity in θ(x3) associated with the presence of a D6 brane. A Yang-Mills trans-

formation g with nonzero winding number on the 3-dimensional I-brane describes the matching of

gauges on the two sides of the brane needed to implement the anomalous Bianchi identity for the

RR U(1) field.

The gauge invariance of the RR field strength G2, Eq.(10), ties the behavior of the bulk field

dC1 to fluctuations of the Wilson bag operator K on the D4 brane world volume. To see the

implications of this connection for the 4-dimensional gauge theory, let us consider the D4 brane

gauge theory in the presence of a D6 brane source. In the field theory limit, the relevant component

of the RR field strength is (G2)34 where x3 is the direction in 4-dimensional spacetime transverse

to the D6 brane, and x4 is the compact S1 direction. Integrating (10) around S1, defining θ(x) by

(6), and writing indices explicitly, we have

∮

S1

(G2)34 = ∂3θ −K3 (15)

where we define the Chern-Simons current of the 4D Yang-Mills field (µ = 0, 1, 2, 3)

Kµ ≡ ǫµνλτTr

(

AνF λτ −
1

3
AνAλAτ

)

(16)

satisfying

∂µKµ = ǫµνστTr(F
µνF στ ) (17)

The first term on the right hand side of (15) is a delta-function at the location of the D6

brane (because θ is a step function). A Yang-Mills gauge transformation induces a U(1) gauge

transformation of the second term in (15) which must be cancelled by the variation of the first

term. Roughly speaking, a gauge invariant excitation consists of the charged D6 brane and its

attached color gauge field (a topological charge membrane), which must fluctuate together to

form a physical propagating wave. The mechanism by which this generates a contact term in

the topological charge correlator and nonzero susceptibility is essentially the same as the Kogut-

Susskind dipole mechanism in the 2-dimensional massive Schwinger model [14]. It is useful to recall

the essential ingredients of this simple example of anomaly inflow to point out the parallels with

the D6-brane/topological-charge system. In the 2D massive Schwinger model one has a choice

of defining a conserved axial vector current j5µ which is not gauge invariant, or a gauge invariant

current ĵ5µ which is not conserved:

∂µj5µ = 0 (18)

∂µĵ5µ = ǫµνF
µν (19)
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The difference between the two can be obtained by a point-splitting regularization, where the gauge

invariant current acquires an extra term from the gauge link between the fermion operators. This

gives the correct form of the anomaly in 2D U(1) gauge theory,

ĵ5µ = j5µ − ǫµνA
ν (20)

In covariant Lorentz gauge quantization, the Hilbert space contains unphysical, negative metric

states. In the chiral limit, the terms on the right hand side of (20) can be represented in terms of

a pair of massless scalar fields φ1 and φ2, where φ2 is a ghost field with negative norm. Physical

states only couple to the gauge invariant combination φ1−φ2. As a result, the massless poles in the

φ1 and φ2 propagators always cancel in physical amplitudes. The physical meson has a finite mass

due to the chiral anomaly (20). This is the Kogut-Susskind dipole mechanism. For 4-dimensional

QCD, the anomaly inflow constraint on the RR field strength, Eq. (15), plays a role analogous to

(20) in the Schwinger model. After introducing quark flavors (see Section IV), θ is identified with

the U(1) chiral field η′ via anomaly inflow on the D8 branes (c.f. Eq. (26)). The quantity ∂µθ

will be identified with the non gauge invariant flavor singlet axial vector current ĵ5µ −Kµ, so the

first term on the right hand side of (15) is the analog of the first term in (20) for the Schwinger

model. The form of the second term, which represents the gauge anomaly in these two equations,

reflects the structure of a codimension one domain wall in the two cases. In 2D the discontinuity

is represented by a Wilson line, while in 4D Yang-Mills, the D6 brane discontinuity is represented

by a 3-dimensional Wilson bag integral [5].

By a generalization of the Kogut-Susskind pole cancellation mechanism, if we look at matrix

elements of the gauge invariant field strength (15), the pole due to the massless RR gauge boson

is cancelled by a “wrong sign” pole in the correlator of Chern-Simons currents Kµ,

∫

d4xeiqx〈(Kµ(x)Kν(0)〉
q→0
∼

qµqν
(q2)2

χt (21)

Since ∂µKµ is the gauge invariant topological charge, the topological susceptibility χt is given

exactly by the residue of the massless pole in the Kµ correlator (21). By the anomaly inflow

cancellation, this residue must be equal in magnitude to the residue of the RR gauge boson pole.

(Note that the “wrong sign” of the Kµ correlator that allows it to play the role of the Kogut-

Susskind ghost is the same sign that allows it to contribute a positive contact term to the otherwise

negative topological charge correlator.)
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IV. THE RAMOND-RAMOND FIELD AND CHIRAL QUARK DYNAMICS

So far we have only considered the anomaly inflow on the D4 color branes due to a D6 brane

source. The inclusion of D8 flavor branes into the system [2] allows us to consider the implications of

the Ramond-Ramond gauge field for the chiral dynamics of quarks. This is most easily formulated

in terms of the U(Nf )× U(Nf ) chiral field constructed from quark bilinears,

U ∝ q(1 + γ5)q (22)

As discussed in Ref. [2], the chiral field is obtained from the Wilson line of the D8 brane gauge field

taken along a U-shaped path on the 2-dimensional disk D starting on the D8 brane and ending on

the D8 brane at holographic infinity. Following Ref. [2] we choose coordinates y and z on the disk

which are, respectively, transverse and parallel to the D8 brane. The chiral field is then give by

the Wilson line of the D8 brane gauge field along the holographic direction,

U(x) = P exp

(

−

∫ ∞

−∞

dz′Az(x, z
′)

)

(23)

Of particular interest is the flavor singlet η′ meson field, which is given by the U(1) phase of the

chiral field,

η′(x) =
−ifπ
√

2Nf

log DetU =
ifπ
√

2Nf

∫ ∞

−∞

dz′tr(Az) (24)

(Throughout this paper, we use upper case Tr to denote color traces and lower case tr to denote

a trace over flavor indices.) We have seen that an anomaly inflow requirement on the color branes

led to the result that only the combination of operators in (10) is invariant under a color gauge

transformation. A similar anomaly inflow argument on the flavor-brane end of the quark string

leads to the usual identification of the chiral U(1) phase and the theta parameter, which can be

seen as follows: The gauge invariant Ramond-Ramond field strength in the presence of D8 branes

is given by [2]

G2 = dC1 + i tr(A) ∧ δD8
≡ dC1 + i tr(A) ∧ δ(y)dy (25)

(The factor tr(A) here comes from the leading term in the expansion of the general Chern-Simons

interaction of the form dC1 ∧ tr
(

A ∧ eiF/2π
)

.) Note that here a quark is an electric source of G2,

while in (11), the topological charge membrane is a magnetic source of G8. If we consider the

component (G2)45 and integrate it over the 2-dimensional disk, we get

∫

D
(G2)45 = θ +

√

2Nf

fπ
η′ (26)
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Thus the invariance of the RR field G2 under a chiral gauge transformation on the D8 branes

leads to the usual identification of θ with a chiral phase rotation. The Witten-Veneziano formula,

relating the anomalous mass of the η′ meson to the topological susceptibility χt of pure glue QCD

is obtained in a straightforward way by the cancellation of massless poles required by anomaly

inflow. As we have seen, the gauge invariance of the RR field strength on the color branes required

a cancellation between the massless RR gauge boson pole in the dC1 correlator and the massless

pole in the 〈KµKν〉 correlator. The residue of the latter is the topological susceptibility χt. The

expression (26) for the gauge invariant RR field strength on the flavor branes imposes an anomaly

inflow cancellation between the massless RR pole in dC1 and the Goldstone pole in the jµ
5
correlator.

Working to leading order in 1/Nc, we assume fη′ = fπ and write

〈0|ĵ5µ|η
′〉 = fπpµ (27)

so the residue of the Goldstone pole is f2πm
2

η′ . Equating the two residues gives the Witten-Veneziano

relation

χt =
f2πm

2

η′

4Nf
(28)

More directly, we may construct the effective action term that represents the effect of Ramond-

Ramond exchange between quarks. The massless RR propagator in 4D momentum space has the

same form as the Chern-Simons current correlator (c.f. Eq. (21))

G̃µν = −
qµqν
(q2)2

χt (29)

In coordinate space, this satisfies

∂µ∂νGµν(x− y) = χtδ
4(x− y) (30)

Combining the anomaly inflow constraints of (15) and (26) we see that the RR gauge boson couples

to the η′ field with an effective action

Sint =
2Nf

f2π

∫

d4xd4y∂µη′(x)Gµν(x− y)∂νη′(y) = −
2Nfχt

f2π

∫

d4x η′2(x) (31)

Thus, the RR exchange model reproduces the chiral Lagrangian form of the axial anomaly that was

originally deduced from large Nc and OZI rule arguments [18–20], namely, a pure η′ mass term,

Lint =
χt

4

(

log DetU − log DetU †
)2

(32)

The result (31) is the same as that obtained in Ref. [2], and in fact our derivation can be understood

as a reformulation of the calculation in [2]. In [2] the η′ mass term is obtained directly from the



17

supergravity kinetic term ∝ (Gµν)
2 for the Ramond-Ramond field strength G2, using (26), which

gives a term in the effective action of the form

SC1
=

1

2
χt

∫

d4x

(

θ +

√

2Nf

fπ
η′

)2

(33)

With the anomaly inflow connection (26) between the θ parameter and the η′ field, the derivation

of the η′ mass follows from the θ dependence of the vacuum energy. The correct form of the η′

mass term thus follows from the quadratic θ dependence of the vacuum energy density

E(θ) =
1

2
χtθ

2 (34)

But we can also obtain the θ-dependence of the vacuum energy by considerng the energy density

inside a Wilson bag obtained by integrating the Chern-Simons 3-form over a closed codimension

one surface C enclosing a 4-volume V . The massless pole in the Chern-Simons correlator produces

a linear potential between opposite sides of the bag (i.e. a volume law E ∝ V for the Wilson bag

energy) [5]. If the charge on the Wilson bag is taken to be θ/2π, then the volume law for the

Wilson bag gives E(θ), which is proportional to the square of the bag charge and hence has the

form (34). Thus the connection between our derivation of the result (31) and that of Ref. [2] can

be understood as analogous to two equivalent ways of calculating the energy stored in a capacitor,

either by integrating the Coulomb interaction between charges on opposite plates, or directly from

the Maxwell action for the energy density of the electric field between the plates. This comparison

also emphasizes the fact that the RR field strength provides a 4-dimensional generalization of the

“background electric field” interpretation of the θ parameter that is intuitively useful in the 2D

Schwinger model. That is, the domain walls carry RR charge and separate vacua which differ by

one unit of RR flux.

Further information about the nature of quark-antiquark annihilation has been obtained from

lattice studies of the spin-parity structure of the OZI rule [27]. It was found that, while the pseu-

doscalar hairpin correlator was easily measured and gave a reasonably accurate determination of

the η′ mass, the hairpin correlators in the vector and axial vector channels (e.g. 〈qγµq(x) qγµq(y)〉)

are zero within errors, more than an order of magnitude smaller than the pseudoscalar case. This is

also what is required by phenomenology, e.g. by the very small ρ-ω splitting compared to the large

π-η′ splitting. In Ref [27] the scalar hairpin correlator was also found to be large and comparable

in magnitude to the pseudoscalar one. The s-channel RR exchange diagram, Fig. 3, provides a

nice explanation for all of the observed properties of the quark-antiquark annihilation process in

QCD. To a good approximation, a quark and antiquark will annihilate only if they are in a state
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FIG. 3: (a) The quenched double hairpin correlator which measures the gluonic η′ mass insertion. The

indicated quark propagators are assumed to be summed over all gauge field configurations. (b) The s-

channel RR exchange picture for the hairpin correlator. RR exchange results in a local 4-quark contact

interaction due to its derivative coupling to the chiral field. These qµ factors cancel the massless pole and

convert it to a delta-function.

of zero total angular momentum, i.e. in either a scalar or pseudoscalar meson state.. In the RR

exchange model of the quark-antiquark annihilation process, this property follows from the fact

that the RR field couples directly to the chiral phase field ∝ log DetU .

V. ORIGIN OF THE NAMBU-JONA LASINIO 4-QUARK INTERACTION

We have seen that RR exchange in the gluon sector explains the existence of a positive contact

term in the Tr(F ∧ F ) correlator and thereby, the nonzero topological susceptibility of QCD.

Extended to the quark sector, RR exchange in the s-channel of quark-antiquark scattering induces

a 4-quark contact term which provides the annihilation vertex responsible for the η′ mass insertion.

We next consider the effect of t-channel RR exchange in the quark-antiquark amplitude, Fig.

4(b). To understand this effect, let us rewrite the anomaly-induced η′ mass insertion as a 4-quark

amplitude by expanding the log of the chiral field in (32) in small fluctuations around its vacuum
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(a) 

(b) 

FIG. 4: (a) The valence diagram for quark-antiquark scattering in a meson. (b) The contribution of t-channel

RR exchange to the valence diagram.

expectation value. Define

Uab =
1

〈qq〉
qa(1 + γ5)qb (35)

Then we can write U = 1 + δU and expand to lowest order in δU ,

log DetU = tr logU ≈ trδU (36)

The η′ mass term can then be rewritten as a 4-quark interaction,

(

log DetU − log DetU †
)2

→
1

〈qq〉2





Nf
∑

a=1

qaγ5qa





2

(37)

To determine the 4-quark interaction that is induced by t-channel RR exchange, we compare

the string theoretic view of quark-antiquark scattering to the field theory description. In a field-

theoretic calculation, the pseudoscalar, flavor singlet meson propagator is given by the sum of

valence (Fig. 4) and hairpin (Fig. 3) correlators. The nonsinglet Goldstone pion propagators are

given by the valence diagrams alone. Thus, the valence contribution to the correlator is invariant

under U(Nf ) × U(Nf ) chiral transformations. The axial U(1) anomaly comes entirely from the
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FIG. 5: String representation of the intermediate state in the double hairpin diagram for quark-antiquark

scattering, which takes place by quark strings joining at the flavor ends. Here the cylinder represents the

partition function of the D4-D4 intermediate string.

hairpin correlator. Now consider quark-antiquark scattering as the scattering of a D4-D8 and a

D4-D8 string. The tree level open string scattering amplitude is given by the sum of two diagrams,

corresponding to joining and splitting apart at either the color end or the flavor end. If the flavor

ends of the D4-D8 and D4-D8 strings join and separate, the intermediate state is a pure glue

D4-D4 string, Fig. 5, so this corresponds to the hairpin annihilation diagram, Fig. 3 in the field

theoretic description. (In the Sakai-Sugimoto model, the joining of the flavor ends of the quark

and antiquark string is allowed by the fact that the D8 and D8 branes are joined together in the

strong coupling region into a single U-shaped brane.) The valence Feynman diagram, Fig. 4,

corresponds to the scattering of quark strings by joining together at the color end, on the D4-

brane world volume, Fig. 6. This would be the only diagram for e. g. a charged pion, where

the flavor ends of the two quark strings are on different D8 branes. The intermediate state is a

quark-antiquark D8-D8 string. Using open string/closed string duality, the D8-D8 string can be

described in the field theoretic limit by t-channel Ramond-Ramond exchange between quark and

antiquark. We expect the Lorentz and flavor structure of the induced 4-quark interaction to be
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FIG. 6: String representation of the intermediate state in the valence diagram for quark-antiquark scattering,

which takes place by quark strings joining at the color ends. Here the cylinder represents the partition

function of the D8-D8 intermediate string.

similar to the 4-quark anomaly term, Eq. (37). However, because the flavor string-ends don’t

participate, this diagram does not depend on whether the initial quark and antiquark were on the

same or different flavor branes, i.e. whether the meson is a flavor singlet or nonsinglet. Thus, the

effective interaction from t-channel RR exchange, Fig. 4(b) should be U(Nf ) × U(Nf ) invariant.

Note that the (qγ5q)
2 anomaly term includes both a U(1) conserving term 2q†LqRq

†
RqL and a U(1)

violating term (q†RqL)
2 + h.c.. By adding scalar (qq)2 interactions to cancel the U(1) violating

terms, we are led to an effective action for t-channel RR exchange of the form

Lt ∝





Nf
∑

i=1

qi(1 + γ5)qi









Nf
∑

j=1

qj(1− γ5)qj



 (38)

Here we defer a quantitative analysis to a subsequent paper and simply observe that the suggested

form for t-channal RR exchange has the standard form of a U(Nf )×U(Nf ) preserving Nambu-Jona

Lasinio interaction [28]. (A similar mechanism for generating an NJL interaction in holographic

QCD by integrating out the compactified component of the D4 brane gauge field has been discussed

in [29].) NJL models have an extensive and highly successful phenomenology. Note that, although
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the interaction (38) is pure flavor singlet in the t-channel, the Fierz transformed expression de-

scribes a U(Nf )×U(Nf ) invariant interaction in the s-channel which is equal for flavor singlet and

nonsinglet channels. In the usual NJL Bethe-Salpeter analysis, this will produce massless pions in

the nonsinglet channels. It is a longstanding idea in QCD that topological charge fluctuations are

responsible not only for resolving the U(1) problem but also for driving the spontaneous breaking

of SU(Nf )×SU(Nf ) and forming the chiral condensate [21, 30]. Previous discussions of topological

charge driven SχSB have been framed in the context of the instanton liquid picture, in which the

approximate ’tHooft zero modes of the instantons form the chiral condensate [21]. From a slightly

different viewpoint, Carlitz et al [30] argued that instantons would generate an attractive NJL

quark-antiquark interaction which could drive SχSB. The RR exchange picture presented here

suggests a reformulation of topological charge driven chiral symmetry breaking in the framework

of holographic QCD.

VI. DISCUSSION

In many respects, the holographic framework for QCD provides an alternative to a lattice cutoff.

The Monte Carlo evidence [9, 12] that the QCD vacuum is dominated by a laminated array of

topological charge membranes fits very naturally into the holographic framework [13]. The lattice

studies show clearly that the spacing between the alternating-sign membranes is fairly regular

and of order a few lattice spacings, and remaining roughly constant in lattice units for a range of

correlation lengths [9, 11, 25]. This implies that the scaling limit of QCD follows a non-Landau-

Ginsburg paradigm, similar to that of antiferromagnetic systems, where alternating substructure

at the lattice spacing scale can give rise to topological excitations in the scaling limit. In the

holographic formulation, the Ramond-Ramond gauge field describes the collective fluctuations of

the layered arrangement of D6 and D6 branes. The Chern-Simons current Kµ of the color gauge

field is related by anomaly inflow to ∂µθ(x), i.e to the µ4 component of the RR field strength.

When crossing a D6 brane, θ(x) jumps by 2π, representing the net outgoing RR flux from the

charged D6 brane. By anomaly inflow, this discontinuity must coincide with the topological charge

membrane of the color gauge field, represented in field theory by a “Wilson bag” integral of the

Chern-Simons 3-form K over the 3-dimensional world volume of the bag surface. The q2 = 0 pole

in the Kµ correlator combines with the massless pole in the RR correlator in a Kogut-Susskind

dipole mechanism. In the K-S dipole for the 2D Schwinger model, the gauge invariant axial vector

current operator describes the motion of a charged fermion along with its attached gauge field. The
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massless pole in the conserved (non-gauge invariant) current matrix element is cancelled by the

ghost pole describing the gauge field propagation. In holographic QCD the K-S dipole mechanism

connects the motion of a charged D6 brane, represented by a 2π discontinuity in θ(x), with the

topological charge membrane excitation in the color gauge field, represented by the Chern-Simons

operator K.

It may seem that the appearance of the Ramond-Ramond field, in the form of a spacetime

dependent θ(x), represents an additional degree of freedom in the holographic framework compared

to, say lattice QCD, where θ is assumed to be a constant θ0 (usually zero). But in fact the

spacetime dependent θ(x), which is constant between D6 branes with a ±2π discontinuity at the

brane surfaces, can be interpreted as a singular gauge transformation which smoothly connects the

color fields on opposite sides of the brane. Note that the Wilson bag operator, given by the integral

of K over a codimension one surface in spacetime is the gauge field operator which effectively inserts

a discontinuity in θ. (For example, a Wilson bag operator over a closed surface is equivalent to

a theta term in the interior of the bag, since ∂µKµ = TrF F̃ .). Thus, in a purely 4-dimensional

Yang-Mills framework the RR field θ(x) can be regarded as an auxilary field which separates off

the singular, sheet-like excitations in the Yang-Mills field and treats their dynamics separately.

The requirement of overall gauge invariance of the RR field strength removes the redundancy of

the auxiliary field and locks the motion of the θ(x) discontinuities to that of the topological charge

membranes of the Yang-Mills field. It is very clear from Monte Carlo studies [9, 25] that these

singular, sheet-like gauge excitations are responsible for the positive contact term that appears in

the Euclidean topological charge correlator. In this paper, we have shown that such a contact term

is the expected low-energy manifestation of Ramond-Ramond gauge boson exchange. This effect

appears not only in the topological charge correlator, but also in the anomaly-induced 4-quark

contact term that produces an η′ “hairpin” mass insertion. We also discussed the possibility that

RR exchange in the t-channel of quark-antiquark scattering generates a U(Nf )×U(Nf ) symmetric

Nambu-Jona Lasinio type interaction which could be responsible for the formation of the quark

condensate. This provides an appealing physical picture of spontaneous SU(Nf )×SU(Nf ) breaking

and Goldstone boson propagation and its relation to vacuum topological charge structure in gauge

theory. The picture that emerges is of a left handed chiral condensate of q(1 − γ5)q living on

the surfaces of the D6 branes interleaved with sheets of right-handed q(1 + γ5)q on the surfaces

of the anti-D6 branes. This is reminiscent of the instanton liquid model, in which left and right

condensate modes live on instantons and antiinstantons, respectively, averageing out to a 〈qq〉 6= 0

condensate. But a crucial difference for the D6 brane condensate is that the quarks modes in
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the condensate are delocalized along codimension one sheets instead of being ’tHooft zero modes

confined to localized lumps. This provides a much more natural mechanism for Goldstone boson

propagation than the mode-mixing or “hopping” that must be invoked in instanton liquid models.

This work was supported by the Department of Energy under grant DE-FG02-97ER41027.

[1] E. Witten, Phys. Rev. Lett. 81: 2862 (1998).

[2] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005).

[3] C. Callan and J. Harvey, Nucl. Phys. B250, 427 (1985).

[4] M. Green, J. Harvey, and G. Moore, Class. Quant. Grav. 14, 47 (1997).

[5] M. Luscher, Phys. Lett. 78B, 465 (1978).

[6] E. Seiler, I.O. Stamatescu, MPI-PAE/Pth 10/87.

[7] A. Armoni, JHEP 0406 (2004) 019.

[8] J. Barbon et al., JHEP 0410 (2004) 029.

[9] I. Horvath et al., Phys. Rev. D68: 114505 (2003);.

[10] I. Horvath et al., Phys. Lett. B617: 49 (2005).

[11] I. Horvath et al, Phys. Lett. B612: 21 (2005);.

[12] E. Ilgenfritz, et al., Phys. Rev. D76, 034506 (2007).

[13] H. Thacker, Phys. Rev. D81, 125006 (2010).

[14] J. Kogut and L. Susskind, Phys. Rev. D11, 3594 (1975).

[15] E. Witten, Nucl. Phys. B156, 269 (1979).

[16] G. Veneziano, Nucl. Phys. B159, 213 (1979).

[17] W. Bardeen, E. Eichten, and H. Thacker, Phys. Rev. D69: 054502 (2004).

[18] P. Di Vecchia and G. Veneziano, Nucl. Phys. B171: 253 (1980);

[19] C. Rosenzweig, J. Schechter, C. Trahern, Phys. Rev. D21:3388 (1980).

[20] E. Witten, Ann. Phys. 128, 363 (1980)..

[21] D. Diakonov and V. Petrov, Phys. Lett. B147, 351 (1984).

[22] E. Witten, Nucl. Phys. B149, 285 (1979).

[23] S. Coleman, Ann. Phys. 101, 239 (1976).

[24] J. L. F. Barbon and A. Pasquinucci, Phys. Lett. B458, 288 (1999).

[25] S. Ahmad, J. T. Lenaghan and H. B. Thacker, Phys. Rev. D72: 114511 (2005).

[26] E. Witten, Nucl. Phys. B460, 541 (1996).

[27] N. Isgur and H. B. Thacker, Phys. Rev. D64, 094507 (2001).

[28] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); Phys. Rev. 124, 246 (1961).

[29] E. Antonyan, et al., hep-th/0604017.

[30] R. Carlitz and D. Creamer, Ann. Phys. 118, 429 (1979).


