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Correlation functions of matrix-valued fields are not generally known for massive renormalized field theories.
We find the large-N limit of form factors of the(1+1)-dimensional sigma model with SU(N)×SU(N) symme-
try. These form factors give a correction to the free-field approximation for theN = ∞ Wightman function. The
method is a combination of the 1/N-expansion of the S-matrix and Smirnov’s form-factor axioms. We expand
the renormalized field in terms of a free massive Bosonic fieldasN→ ∞.
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I. INTRODUCTION

The planarity of Feynman diagrams in the large-N limit of matrix theories [1] has convinced many people that this limit is
solvable. Unfortunately, little is known with precision about the 1/N-expansion of (N×N)-matrix-valued field theories with
propagating degrees of freedom(i.e. particles). Aside from maximally-supersymmetric, conformal-invariant theories, the only
exceptions are (1+ 1)-dimensional quantum chromodynamics [2] and string models with Chan-Paton factors [3]. Massive
matrix-field theories are not solvable by straightforward saddle-point approaches. The saddle-point method works only for field
theories whoseN = ∞ diagrams are not just planar, but linear. In this paper, we make some progress by melding the large-N
expansion with the form-factor bootstrap. Perhaps our results will point to the solution of the planar limit in situations where
this bootstrap does not work.

The S-matrix of the (1+1)-dimensional nonlinear sigma model with SU(N)×SU(N) symmetry is known. Unfortunately, its
form factors are not, with the notable exception of SU(2)×SU(2) ≃ O(4)[4]. We study here the leading 1/N-expansion of
the form factors of this sigma model, also known as the principal chiral model. The bare field is a matrixU(x), lying in the
fundamental representation of SU(N), wherex0 andx1 are the time and space coordinates, respectively, of (1+1)-dimensional
Minkowski space-time. The action is

S=
N

2g2
0

∫

d2x ηµν Tr∂µU(x)†∂µU(x), (1.1)

whereµ ,ν = 0,1, U(x) ∈ SU(N) (that is,U(x) is anN×N unitary matrix of determinant one), and the metric is that offlat
Minkowski space,η00 = 1, η11 = −1, η01 = η10 = 0. The action does not change under the global transformation U(x)→
VLU(x)VR, for two constant matricesVL,VR ∈ SU(N). We do not consider the addition of a Wess-Zumino-Witten term to this
action. The sigma model is asymptotically free. All the evidence indicates that the Hamiltonian spectrum has a mass gapm1,
though no rigorous proof exists.

We study here the one-particle and three-particle form factors of the renormalized field operatorΦ(x) (there are no two-particle
form factors forN > 3). This field may be expressed in a theory with ultraviolet cut-off Λ as

Φ(x) = Z (g0,Λ)−1/2U(x), (1.2)

whereg0 is the coupling. The renormalization factorZ (g0(Λ),Λ) vanishes in the limitΛ→ ∞, where the running coupling
g0(Λ) is defined so that the mass gapm1(g0(Λ),Λ) is independent ofΛ.

The S-matrix of the principal chiral model has been found using the integrable bootstrap [5], [6] and a subtle BetheAnsatz
argument [7]. The essential ideas of the former approach begin from a general classification of U(N)-symmetric S-matrices for
vector particles [8]. One such S-matrix has no backward scattering [9], hence the effective symmetry is SU(N). The tensor
product of two of these vector-particle S-matrices yields the general S-matrix with SU(N)×SU(N) symmetry, up to a CDD
factor. The requirement of a sine formula for bound-state masses (which follows from relativistic kinematics [10]) restricts the
form of the CDD factor.

In this paper, we combine the 1/N-expansion of the S-matrix [6] with Smirnov’s axioms [11], to obtain the three-particle form
factors of the renormalized field operatorΦ(x). The LSZ reduction formula is used to fix the overall normalization [12].
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There is an obvious advantage using the 1/N-expansion to study correlation functions. Field theorieswith unitary symmetry
have both fundamental orelementaryparticles and bound states. Particle masses are given by thesine formula mentioned above:

mr = m1
sin πr

N

sin π
N

, r = 1, . . . ,N−1, (1.3)

where each choice ofr > 1 corresponds to a bound state ofr elementary particles. These bound states reveal themselves as
poles in S-matrix elements. Particles withr > 1 make the determination of form factors difficult, though progress has been made
[13]. The picture simplifies dramatically asN→ ∞, because the binding energy per particle number vanishes. The asymptotic
states of the S-matrix, withr or N− r finite, consist only ofr = 1 particles andr = N− 1 antiparticles, to any finite order
of 1/N. There are, however, bound states of infinite numbers of elementary particles, which correspond to keepingr/N = ρ
fixed, asN→ ∞ [14]. These bound states of infinitely many particles have mass≈ Nm1(sinρ)/π , which becomes infinite in
the ’t Hooft limit, with m1 fixed. There are continuously many such bound states, so their measure of integration must also be
considered. We believe, however, that such bound states do not contribute to theN→ ∞ Wightman correlation function; they
would produce unphysical cuts in momentum space. In an alternative large-N limit (not the ’t Hooft limit, which we examine
here), withm1/sin π

N ≈ Nm1/π fixed, the parameterr/N becomes continuous, playing the role of a third space-time dimension
[15].

The main drawback of our approach is that bound-state corrections are not analytic in powers of 1/N. In our view, this is
outweighed by the simplicity of the form-factor bootstrap in the planar limit.

Our interest in this problem began with applications of exact S-matrices and form factors of the SU(N) sigma model to
(2+ 1)-dimensional SU(N) gauge theories [16]. The quark-antiquark potential [17] and the gluon mass spectrum [18] can
be found at arbitrarily small, but anisotropic gauge coupling.There is, unfortunately, a crossover from(1+ 1)-dimensional to
(2+1)-dimensional behavior. A similar crossover is an obstacle to using the form factors of the two-dimensional Ising spin field
to calculate critical exponents of the three-dimensional Ising model. Konik and Adamov were able to overcome this dimensional
crossover for the Ising case with a density-matrix real-space renormalization group [19]. The triviality of the S-matrix asN→∞
may help defeat the crossover for SU(N) gauge theories. The reason is that the energy eigenstates of the SU(∞)L×SU(∞)R sigma
model are simply Fock states of Bosons, in the appropriate basis. Our hope is that this will make a real-space-renormalization-
group approach feasible for the non-Abelian gauge theory.

We assume no previous knowledge of exact form factors. The reader unfamiliar with integrable-bootstrap methods could
simply take the 1/N-expanded form of the S-matrix (in Equation (2.6) below) on faith. Otherwise, we recommend starting with
the summary by Zamolodchikov and Zamolodchikov [20]. The task of working through Reference [20] may be simplified by
consulting Reference [21] (especially for infinite-product formulas for the S-matrix) and the appendix of the first of References
[17] (in which some results are derived from scratch). We also recommend Reference [10], in which the sine law is explained.
From there, the papers on U(N)- and SU(N)-invariant theories of Berg et. al. [8] and Kurak and Swieca[9] should be accessible.
With this preparation, the reader should be ready to follow the derivation of the S-matrix of the principal chiral model [5], [6].

In the next section we discuss integrability and the 1/N-expansion of the principal chiral model. We find the matrix element
of the field operator between the vacuum and three-particle (more precisely one-antiparticle, two-antiparticle) state in Section 3.
We write the leading terms of two-point Wightman function inSection 4. The form factors may be thought of as an expansion
of the field operator in terms of a a free field, which we briefly discuss in Section 5. We present some conclusions and open
questions in Section 6.

II. THE 1/N-EXPANSION OF THE S-MATRIX AND THE FIELD ALGEBRA

The basic Wightman correlation function is

W (x) =
1
N
〈0|TrΦ(0)Φ(x)†|0〉, (2.1)

where the scaling fieldΦ is defined by (1.2) and the normalization condition

〈0|Φ(0)b0a0|P,θ ,a1,b1〉= N−1/2δa0a1δb0b1, (2.2)

where the ket on the right is a one particle (r = 1) state, with rapidityθ (that is, with momentum componentsp0 = mcoshθ ,
p1 = msinhθ ) and we implicitly sum over left and right colorsa1 andb1, respectively.

The expression (2.2) is the most elementary form factor. It is similar to the definition of the scaling field in the Ising model
[12]. We will determine the normalization of the other form factors using (2.2) and the LSZ reduction formula. The leading con-
tribution to the Wightman function comes from the one-particle-intermediate-state approximation (or free-field approximation)

W (x)≈ 1
N

∫

dθ
4π

eim(x0 coshθ−x1 sinhθ) 〈0|Φ(0)b0a0|P,θ ,a1,b1〉in in〈P,θ ,a1,b1|Φ(0)∗b0a0
|0〉, (2.3)
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wheremdenotesm1 and the sum over all repeated color indices is implicit. Forx0 = 0, x1 =±|x|, this is

W (x)≈ 1
4π

K0(m|x|).

Note that this expression is of order(1/N)0. We are assuming that there is no contribution from the one-antiparticle state
(with r = N−1), i.e.

〈0|Φ(0)b0a0|A,θ ,b1,a1〉in = 0.

The S-matrix can be determined, assuming unitarity, factorization (the Yang-Baxter relation) and maximal analyticity. The
basicr = 1 excitations have two color indices from 1 toN. One can view these excitations as a bound pair of two quarks of
different color sectors (or alternatively as a quark in one color sector and an antiquark in the other). Such quarks can beregarded
as the elementary physical excitations of the chiral Gross-Neveu model [8], [9], [22].

Next we show the S-matrix of two elementary particles of the sigma model, with incoming rapiditiesθ1 andθ2 (we use the
definition(p j)0 = mcoshθ j , (p j)1 = msinhθ j , relating the momentum vectorp j and rapidityθ j ), outgoing rapiditiesθ ′1 andθ ′2
and rapidity differenceθ = θ12 = θ1−θ2. This is

SPP= SPP(|θ |) 4πδ (θ ′1−θ1) 4πδ (θ ′2−θ2),

whereSPP(|θ |) is a function which acts on the quantum numbers of the particles (in some papers,δ (p j − p′j) is written, in-
correctly, in place of 4πδ (θ j − θ ′j)). The quantitySPP(|θ |) is nearly always referred to as the S-matrix in the literature. It is
explicitly given by

SPP(θ ) =
sin(θ/2−π i/N)

sin(θ/2+π i/N)
SCGN(θ )L⊗SCGN(θ )R, (2.4)

whereSCGN(θ )L,R, for either the subscript L (left) or R (right), is the S-matrix of two elementary excitations of the chiral
Gross-Neveu model:

SCGN(θ )=
Γ(iθ/2π +1)Γ(−iθ/2π−1/N)

Γ(iθ/2π +1−1/N)Γ(−iθ/2π)

(

1− 2π i
Nθ

P

)

, (2.5)

whereP switches the colors of the elementary Gross-Neveu particles. S-matrix elements for which one or both particles have
r > 1 can be found by fusion.

We shall define the generalized S-matrix to be (2.4) with|θ | replaced byθ = θ12 = θ1− θ2. This is consistent with the
definition given in Reference [23] (where it is called the auxillary S-matrix).

The first few terms of the 1/N-expansion of (2.4) are [6]

SPP(θ ) =
[

1+O(1/N2)
]

[

1− 2π i
Nθ

(P⊗1+1⊗P)− 4π2

N2θ 2P⊗P

]

. (2.6)

We can find the scattering matrix of one particle and one antiparticleSAP(θ ) from (2.6), using crossing.
There is are exceptional values ofθ where the particle-particle S-matrix does not become unityasN→ ∞. One of these

is at θ = 0. For vanishing relative rapidity, equation (2.4) yieldsSPP(0) = −P⊗P, independently ofN; thus the expansion
(2.6) is not valid atθ = 0. A similar breakdown of the 1/N-expansion atθ = 0 occurs for models with O(N) symmetry [20],
[24]. This point corresponds to the thresholds= 4m2, wheres is the Mandelstam variable, related to the relative rapidity by
s= 2m2+2m2coshθ . At this threshold, both particles have vanishing momenta in the center-of-mass frame, and exchange their
left and right colors with probability one. In relativisticscattering theory the S-matrix has a cut from thes-channel threshold
s= 4m2 to s= ∞, and another cut from thet-channel thresholds= 4m2− t = 0 tos=−∞. Another exceptional value where the
S-matrix is not unity asN→ ∞ is θ = 2π i/N, where ther = 2 bound state occurs. In the complexθ -plane, the first cut is the
image of the line Imθ = 0, and the other cut is the image of the line Imθ = 2π [20]. Between these two lines, in the interior
of the so-called physical strip, excluding bound-state poles, the expansion (2.6) is valid, which is sufficient for the remaining
discussion in this paper.

The basic properties of particle states is encoded in the Zamolodchikov algebra. Let us introduce particle creation operators
A

†
P(θ )ab and antiparticle creation operatorsA†

A(θ )ba. This algebra is essentially a non-Abelian particle-statistics relation:

A
†
P(θ1)a1b1 A

†
P(θ2)a2b2 = SPP(θ12)

c2d2;c1d1
a1b1;a2b2

A
†
P(θ2)c2d2 A

†
P(θ1)c1d1

A
†
A(θ1)b1a1 A

†
A(θ2)b2a2 = SAA(θ12)

d2c2;d1c1
b1a1;b2a2

A
†
A(θ2)d2c2 A

†
A(θ1)d1c1

A
†
P(θ1)a1b1 A

†
A(θ2)b2a2 = SAP(θ12)

d2c2;c1d1
a1b1;b2a2

A
†
A(θ2)d2c2 A

†
P(θ1)c1d2 . (2.7)
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The Yang-Baxter relation is necessary as a consistency condition for (2.7). That is one way to understand why the absenceof
particle production implies integrability.

An in-state is defined as a product of creation operators in the order of increasing rapidity, from right to left, acting onthe
vacuum,e.g.

|P,θ1,a1,b1;A,θ2,b2,a2, . . . 〉in = A
†
P(θ1)a1b1A

†
A(θ2)b2a2 · · · |0〉, whereθ1 > θ2 > · · · (2.8)

Similarly, an out-state is a product of creation operators in the order of decreasing rapidity, from right to left, acting on the
vacuum.

The expression (2.6) becomes unity asN→ ∞, as we would expect. The algebra (2.7) thereby trivializes.Consider the field

M(x) =
∫

dθ
4π

[

AP(θ )eimx0 coshθ−imx1 sinhθ +A
†
A(θ )e

−imx0 coshθ+imx1 sinhθ
]

, (2.9)

whereAA is the destruction operator of an antiparticle. It is simplythe adjoint of the operatorA†
A. In the limit N → ∞,

[AA,P(θ ),A†
A,P(θ )]→ 4πδ (θ − θ ′), with all other commutators approaching zero (the commutators are more complicated for

finiteN). The N×N-matrix-valued field operatorM(x) is a massive free field. The form factors give the coefficientsof an
expansion of the renormalized fieldΦ(x) in terms of this field.

The form factors are matrix elements between the vacuum and multi-particle in-states of the field operatorΦ. The action of
the global-symmetry transformation onΦ and the creation operators is

Φ(x)→VLΦ(x)VR, A
†
P(θ )→V†

RA
†
P(θ )V

†
L , A

†
A(θ )→VLA

†
P(θ )VR. (2.10)

Thus we expect that, for largeN, the condition

〈0|Φ(0)|Ψ〉 6= 0,

on an in-state|Ψ〉, which is an eigenstate of particle number, holds only if|Ψ〉 containsm particles andm−1 antiparticles, for
somem= 1,2, . . . . In the next section, we will find these matrix elements form= 2 (them= 1 case has already been discussed
above).

III. MAXIMALLY-ANALYTIC FORM FACTORS

In this section we will study matrix elements of the form〈0|Φ(0)|Ψ〉, where|Ψ〉 is an in-state with two elementary particles
and one antiparticle,i.e. m= 2. This matrix element is defined for general choices of rapidity. Here are the form factors
corresponding to different orderings of rapidities:

〈0|Φ(0)b0a0 |A,θ1,b1,a1;P,θ2,a2,b2;P,θ3,a3,b3〉in = 〈0|Φ(0)b0a0 A
†
A(θ1)b1a1A

†
P(θ2)a2b2A

†
P(θ3)a3b3 |0〉,

=
1

N3/2
F1(θ1,θ2,θ3)δa0a2δb0b3δb1b2δa1a3 +

1

N3/2
F2(θ1,θ2,θ3)δa0a3δb0b2δa1a2δb1b3

+
1

N3/2
F3(θ1,θ2,θ3)δa0a2δb0b2δa1a3δb1b3 +

1

N3/2
F4(θ1,θ2,θ3)δa0a3δb0b3δb1b2δa1a2, (3.1)

for θ1 > θ2 > θ3,

〈0|Φ(0)b0a0 |P,θ1,a1,b1;A,θ2,b2,a2;P,θ3,a3,b3〉in = 〈0|Φ(0)b0a0 A
†
P(θ2)a2b2A

†
A(θ1)b1a1A

†
P(θ3)a3b3 |0〉

=
1

N3/2
F̃1(θ1,θ2,θ3)δa0a2δb0b3δb1b2δa1a3 +

1

N3/2
F̃2(θ1,θ2,θ3)δa0a3δb0b2δa1a2δb1b3

+
1

N3/2
F̃3(θ1,θ2,θ3)δa0a2δb0b2δa1a3δb1b3 +

1

N3/2
F̃4(θ1,θ2,θ3)δa0a3δb0b3δb1b2δa2a1, (3.2)

for θ2 > θ1 > θ3, and

〈0|Φ(0)b0a0 |P,θ1,a1,b1;P,θ2,a2,b2;A,θ3,b3,a3〉in = 〈0|Φ(0)b0a0 A
†
P(θ2)a2b2A

†
P(θ3)a3b3A

†
A(θ1)b1a1 |0〉

=
1

N3/2
˜̃F1(θ1,θ2,θ3)δa0a2δb0b3δb1b2δa1a3 +

1

N3/2
˜̃F2(θ1,θ2,θ3)δa0a3δb0b2δa1a2δb1b3

+
1

N3/2
˜̃F3(θ1,θ2,θ3)δa0a2δb0b2δa1a3δb1b3 +

1

N3/2
˜̃F4(θ1,θ2,θ3)δa0a3δb0b3δb1b2δa2a1, (3.3)
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for θ3 > θ1 > θ2. We note that (3.1) is equivalent to

〈0|Φ(0)b0a0 |A,θ1,b1,a1;P,θ3,a3,b3;P,θ2,a2,b2〉in = 〈0|Φ(0)b0a0 A
†
A(θ1)b1a1A

†
P(θ3)a3b3A

†
P(θ2)a2b2 |0〉,

=
1

N3/2
F2(θ1,θ3,θ2)δa0a2δb0b3δb1b2δa1a3 +

1

N3/2
F1(θ1,θ3,θ2)δa0a3δb0b2δa1a2δb1b3

+
1

N3/2
F4(θ1,θ3,θ2)δa0a2δb0b2δa1a3δb1b3 +

1

N3/2
F3(θ1,θ3,θ2)δa0a3δb0b3δb1b2δa1a2, (3.4)

for θ1 > θ3 > θ2.
We generalize the form factor [23], so that (3.1), (3.2), (3.3) and (3.4) are valid without the inequalities on the arguments

θ1,2,3.
In each of the expressions (3.1), (3.1), (3.1) and (3.4), we have written the quantity on the right in a similar way. Each ofthe

products of Kronecker deltas is a possible covariant tensorof the global color symmetry. No other combinations are allowed for
N > 3, by equation (2.10).

Notice that Lorentz invariance implies that the scalar functionsF , G andH are unchanged under an overall boostθ j→ θ j +∆θ ,
j = 1,2,3. This means that the form factors depend only on differences of the rapidities.

If we examine the contribution of these form factors to the Wightman functionC(x), defined in (2.1), we see thatF , F̃ and ˜̃F
must be multiplied byN−3/2, as we have in (3.1), (3.1), (3.1) and (3.4). We will eventually show in this section thatF3,4, F̃3,4

and ˜̃F3,4 are down by a further power ofN. This means we could have written (3.1), (3.2) and (3.2) withthe coefficient 1/N5/2

in front of the last two entries, instead of 1/N3/2. These are the coefficients of tensors where the both quantumnumbers of the
antiparticle coincide with both of those for the one of the particles. For the time being, however, we will treatF3,4, F̃3,4 and ˜̃F3,4
just like the other functions.

First we apply the scattering form-factor axiom, also called Watson’s theorem. This axiom can be most simply understood
as the application of the Zamolodchikov algebra to the vacuum expectation values in the first lines of equations (3.1), (3.2) and
(3.3) above. It is essentially the assumption that we can continue the functionsF , G andH outside the domainθ1 < θ2 < θ3, in
such a way that the Zamolodchikov algebra is satisfied. For example, if we apply Watson’s theorem on the incoming antiparticle
with rapidityθ1 and the incoming particle with rapidityθ2, on the left-hand side of (3.1) we find

〈0|Φ(0)b0a0 A
†
P(θ1)a1b1A

†
A(θ2)b2a2A

†
P(θ3)a3b3 |0〉= SAP(θ12)

d2c2;c1d1
a1b1;b2a2

〈0|Φ(0)b0a0 A
†
A(θ2)d2c2A

†
P(θ1)c1d1A

†
P(θ3)a3b3 |0〉. (3.5)

The 1/N-expansion of the S-matrix element in (3.5) is

SAP(θ12)
d2c2;c1d1
a1b1;b2a2

=
[

1+O(1/N2)
]

×
[

δ d2
b2

δ c2
a2

δ c1
a1

δ d1
b1
− 2π i

Nθ̂12

(

δa1a2δ c1c2δ d2
b2

δ d1
b1

+ δ c2
a2

δ c1
a1

δb1b2δ d1d2
)

− 4π2

N2θ̂ 2
12

δa1a2δ c1c2δb1b2δ d1d2

]

, (3.6)

whereθ̂12= π i−θ12 is the rapidity difference after crossing from thes-channel to thet-channel. Inserting the explicit expressions
on the right-hand sides of (3.1) and (3.2) into (3.5) and after some work, we find

F̃(θ1,θ2,θ3) =











1− 2π i
θ̂12

0 − 2π i
Nθ̂12

0

0 1− 2π i
θ̂12

− 2π i
Nθ̂12

0

0 0 1 0
− 2π i

Nθ̂12
(1− 2π i

θ̂12
) − 2π i

Nθ̂12
(1− 2π i

θ̂12
) 0 (1− 2π i

θ̂12
)2











F(θ1,θ2,θ3)+O

(

1
N2

)

, (3.7)

where we have denoted the four-component vectors in the obvious way,e.g.

F(θ1,θ2,θ3) =







F1(θ1,θ2,θ3)
F2(θ1,θ2,θ3)
F3(θ1,θ2,θ3)
F4(θ1,θ2,θ3)






.

In finding (3.7) some factors ofN appeared as a result of contracting indices. These factors of N canceled some factors of
1/N in the second and third terms of the S-matrix element in (3.6).

There are two more useful relations following from the scattering axiom. These are

〈0|Φ(0)b0a0A
†
P(θ2)a2b2A

†
P(θ3)a3b3A

†
A(θ1)b1a1|0〉= SAP(θ13)

d1c1;c3d3
a3b3;b1a1

〈0|Φ(0)b0a0A
†
P(θ2)a2b2A

†
A(θ1)d1c1A

†
P(θ3)c3d3|0〉,
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which may be re-expressed as

˜̃F(θ1,θ2,θ3) =











1− 2π i
θ̂13

0 0 − 2π i
Nθ̂13

0 1− 2π i
θ̂13

0 − 2π i
Nθ̂13

− 2π i
Nθ̂13

(1− 2π i
θ̂13

) − 2π i
Nθ̂13

(1− 2π i
θ̂13

) (1− 2π i
θ̂13

)2 0

0 0 0 1











F̃(θ1,θ2,θ3)+O

(

1
N2

)

, (3.8)

and finally

〈0|Φ(0)b0a0A
†
A(θ1)b1a1A

†
P(θ2)a2b2A

†
P(θ3)a3b3|0〉= SPP(θ23)

c2d2;c3d3
a2b2;a3b3

〈0|Φ(0)b0a0A
†
A(θ1)b1a1A

†
P(θ3)c3d3A

†
P(θ2)c2d2|0〉,

which reduces to

F(θ1,θ2,θ3) =











0 1 − 2π i
Nθ23

− 2π i
Nθ23

1 0 − 2π i
Nθ23

− 2π i
Nθ23

− 2π i
Nθ23

− 2π i
Nθ23

0 1

− 2π i
Nθ23

− 2π i
Nθ23

1 0











F(θ1,θ3,θ2)+O

(

1
N2

)

. (3.9)

Now in (3.8), some factors of 1/N in S-matrix elements were canceled after summing over indices, as we noted above for
(3.7). This did not happen in obtaining (3.9). The reason is that the particle-particle S-matrix (2.6) does not contractcolors of
incoming particles; colors can only be exchanged.

Another of Smirnov’s axioms is the periodicity condition. This axiom is an application of crossing. Explicitly:

〈0|Φ(0)b0a0 A
†
I1
(θ1)C1A

†
I2
(θ2)C2 · · ·A

†
IM
(θM)CM |0〉= 〈0|Φ(0)b0a0 A

†
IM
(θM−2π i)CM A

†
I1
(θ1)C1 · · ·A

†
IM−1

(θM−1)CM−1|0〉, (3.10)

whereIk, k= 1, . . . ,M is P or A (particle or antiparticle) andCk denotes a pair of indices (which may be writtenakbk, for Ck = P
andbkak, for Ck = A). A brief explanation of (3.10) follows. For more details, see Reference [23]. Consider what happens when
a creation operator in front of the ket is replaced by an annihilation operator behind the bra by crossing. Consider the vacuum
expectation value of creation operators andΦ(0)b0a0

〈0|AI1(θ1)C1 Φ(0)b0a0 A
†
IM
(θM)CMA

†
IM−1

(θM−1)CM−1 · · ·A
†
I2
(θ2)C2|0〉connected

= 〈0|AI1(θ1)C1 Φ(0)b0a0 A
†
IM
(θM)CMA

†
IM−1

(θM−1)CM−1 · · ·A
†
I2
(θ2)C2|0〉

− 〈0|AI1(θ1)C1 Φ(0)b0a0|0〉〈0|A
†
IM
(θM)CMA

†
IM−1

(θM−1)CM−1 · · ·A
†
I2
(θ2)C2|0〉 .

The subscript “connected” is included because the vacuum intermediate channel is subtracted [23]. This expression meansM−1
incoming particles are absorbed by a “probe”, corresponding to the operatorΦ(0)b0a0. This probe then emits a single particle.
Consider the pair of particles, with labels 1 (the outgoing particle) andM. Under crossing, these both become incoming particles,
but with θ1 replaced byθ1−π i. The reason is thatθ1→ θ1−π i preserves the relativistic invariantssj j+1 = (p j + p j+1)

2, and
t j j+1 = (p j − p j+1)

2, where j = 2, . . . ,M−1, while interchanging the two invariantss1M = (p1+ pM)2 andt1M = (p1− pM)2.
Thus

〈0|AI1(θ1)C1 Φ(0)b0a0 AIM (θM)†
CM

AIM−1(θM−1)
†
CM−1
· · ·AI2(θ2)

†
C2
|0〉connected

= 〈0|Φ(0)b0a0A
†
I1
(θ1−π i)C1A

†
I2
(θ2)C2 · · ·A

†
IM
(θM)CM |0〉 . (3.11)

Suppose that instead of interchanging the invariantss1M and t1M, we interchange the invariantss12 = (p1 + p2)
2 and t12 =

(p1− p2)
2. Then we find

〈0|AI1(θ1)C1 Φ(0)b0a0 AIM (θM)†
CM

AIM−1(θM−1)
†
CM−1
· · ·AI2(θ2)

†
C2
|0〉connected

= 〈0|Φ(0)b0a0A
†
I2
(θ2)C2A

†
I3
(θ3)C3 · · ·A

†
IM
(θM)CMA

†
I1
(θ1+π i)C1|0〉 . (3.12)

The periodicity axiom (3.10) follows from (3.11) and (3.12).
Notice that integrability was not used to justify (3.10). The periodicity axiom follows from very general considerations in

1+1 dimensions [25].
The periodicity axiom implies the three relations

〈0|Φ(0)b0a0A
†
A(θ1−2π i)b1a1A

†
P(θ2)a2b2A

†
P(θ3)a3b3|0〉 = 〈0|Φ(0)b0a0A

†
P(θ2)a2b2A

†
P(θ3)a3b3A

†
A(θ1)b1a1|0〉,

〈0|Φ(0)b0a0A
†
P(θ2−2π i)a2b2A

†
A(θ1)b1a1A

†
P(θ3)a3b3|0〉 = 〈0|Φ(0)b0a0A

†
A(θ1)b1a1A

†
P(θ3)a3b3A

†
P(θ2)a2b2|0〉,

〈0|Φ(0)b0a0A
†
P(θ2−2π i)a2b2A

†
P(θ3)a3b3A

†
A(θ1)b1a1|0〉 = 〈0|Φ(0)b0a0A

†
P(θ3)a3b3A

†
A(θ1)b1a1A

†
P(θ2)a2b2|0〉,
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which may be written as

F(θ1−2π i,θ2,θ3) =
˜̃F(θ1,θ2,θ3), (3.13)

F̃(θ1,θ2−2π i,θ3) = F(θ1,θ3,θ2), (3.14)
˜̃F(θ1,θ2−2π i,θ3) = F̃(θ1,θ3,θ2), (3.15)

respectively.
Our work is simplified by expanding the form factors in powersof 1/N:

F(θ1,θ2,θ3) = F0(θ1,θ2,θ3)+
1
N

F1(θ1,θ2,θ3)+ · · · , (3.16)

and similarly for F̃(θ1,θ2,θ3) and ˜̃F(θ1,θ2,θ3). We truncate this expansion to leading order, keeping onlyF0(θ1,θ2,θ3),

F̃0(θ1,θ2,θ3) and ˜̃F
0
(θ1,θ2,θ3).

Combining (3.7) and (3.8) with (3.13), we find

F0
1 (θ1−2π i,θ2,θ3) =

θ12+π i
θ12−π i

θ13+π i
θ13−π i

F0
1 (θ1,θ2,θ3) ,

F0
2 (θ1−2π i,θ2,θ3) =

θ12+π i
θ12−π i

θ13+π i
θ13−π i

F0
2 (θ1,θ2,θ3) ,

F0
3 (θ1−2π i,θ2,θ3) =

(

θ13+π i
θ13−π i

)2

F0
3 (θ1,θ2,θ3) ,

F0
4 (θ1−2π i,θ2,θ3) =

(

θ12+π i
θ12−π i

)2

F0
4 (θ1,θ2,θ3) . (3.17)

Thus the components of the form factor are periodic, except for phases. Furthermore, (3.9) implies that

F0
1 (θ1,θ2,θ3) = F0

2 (θ1,θ3,θ2) , F0
3 (θ1,θ2,θ3) = F0

4 (θ1,θ3,θ2). (3.18)

The general solution of (3.17) and (3.18) is

F0
1 (θ1,θ2,θ3) = (θ12+π i)−1(θ13+π i)−1g1(θ1,θ2,θ3) ,

F0
2 (θ1,θ2,θ3) = (θ12+π i)−1(θ13+π i)−1g1(θ1,θ3,θ2) ,

F0
3 (θ1,θ2,θ3) = (θ13+π i)−2 g3(θ1,θ2,θ3) ,

F0
4 (θ1,θ2,θ3) = (θ12+π i)−2 g3(θ1,θ3,θ2) , (3.19)

where the functionsg1 andg3 are periodic inθ1:

g1(θ1−2π i,θ2,θ3) = g1(θ1,θ2,θ3) , g3(θ1−2π i,θ2,θ3) = g3(θ1,θ2,θ3) .

We now turn to the remaining periodicity conditions (3.14) and (3.15). Combining (3.8) with (3.14), we find

θ12+3π i
θ12+π i

F0
1,2(θ1,θ2−2π i,θ3) = F0

2,1(θ1,θ2,θ3) ,

F0
3 (θ1,θ2−2π i,θ3) = F0

4 (θ1,θ2,θ3) ,
(

θ12+3π i
θ12+π i

)2

F0
4 (θ1,θ2−2π i,θ3) = F0

3 (θ1,θ2,θ3) , (3.20)

and combining (3.7) and (3.8) with (3.15) yields

θ12+3π i
θ12+π i

θ13+π i
θ13−π i

F0
1,2(θ1,θ2−2π i,θ3) =

θ13+π i
θ13−π i

F0
2,1(θ1,θ3,θ2) ,

(

θ13+3π i
θ13+π i

)2

F0
3 (θ1,θ2−2π i,θ3) =

(

θ12+π i
θ12−π i

)2

F0
4 (θ1,θ2,θ3) ,

(

θ12+3π i
θ12+π i

)2

F0
4 (θ1,θ2−2π i,θ3) = F0

3 (θ1,θ2,θ3) . (3.21)
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The first of (3.20) and the first of (3.21) are the same equation. The last of (3.20) and the last of (3.21) are the same equation.
The second of (3.20) and the second of (3.21) are inconsistent unless

F0
3 (θ1,θ2,θ3) = F0

4 (θ1,θ2,θ3) = 0, (3.22)

which we claimed at the beginning of this section. Thus the double poles in (3.19) are absent. The conditions (3.20) and (3.21)
imply

g1(θ1,θ2−2π i,θ3) = g1(θ1,θ3,θ2).

The minimal choice of the form factor, with no unnecessary poles or zeros, satisfying both Watson’s theorem and the period-
icity axiom, is obtained by setting the functiong1(θ1,θ3,θ2) equal to a constant:

F0
1 (θ1,θ2,θ3) =

g1

(θ12+π i)(θ13+π i)
, F0

2 (θ1,θ2,θ3) =
g1

(θ12+π i)(θ13+π i)
.

We fix the constant with the annihilation-pole axiom.
The annihilation-pole axiom concerns the residues of form factors at singularities. This axiom follows from the LSZ reduction

formula. The derivation can be found in Reference [23], but some clarification may be helpful to the reader. We take the field
Φ in the left-hand side of (3.1) on the mass shell, and compare with the S-matrix. We first cross the antiparticle:θ1→ θ1−π i.
So now we are considering two particles, of rapiditiesθ2 andθ3, in the initial state. These scatter and there is a particle (not
antiparticle) of rapidityθ1 in the final state. There must also be a second particle in the final state, which corresponds to taking
Φ on shell; we denote its rapidity byθ0. The reduction formula is

out〈P,θ1,a1,b1;P,θ0,a0,b0|P,θ2,a2,b2;P,θ3,a3,b3〉in = out〈P,θ1,a1,b1|P,θ2,a2,b2〉in out〈P,θ0,a0,b0|P,θ3,a3,b3〉in
+ out〈P,θ1,a1,b1|P,θ3,a3,b3〉in out〈P,θ0,a0,b0|P,θ2,a2,b2〉in
+ i
√

N
∫

d2x eimx0 coshθ0−imx1 sinhθ0 out〈P,θ1,a1,b1| (∂ 2
0 − ∂ 2

1 +m2)Φ(x)b0a0 |P,θ2,a2,b2;P,θ3,a3,b3〉in, (3.23)

where the factor
√

N comes from the normalization ofΦ (2.3). The second term on the right-hand side of (3.23) vanishes if
θ1 < θ0. The right-hand side is the particle-particle S-matrix element, which can be directly compared with (2.6).

To evaluate the right-hand side of (3.23), we use the the formulas for the Klein-Gordon operator [12]

(p1− p2− p3)
2−m2 =−8m2sinh

θ12

2
sinh

θ13

2
cosh

θ23

2
, (3.24)

and for the covariant delta function

δ 2(p1+ p0− p2− p3) = δ [(p1)++(p0)+− (p2)+− (p3)+] δ [(p1)−+(p0)−− (p2)−− (p3)−]

=
2

m2 δ [(p1)++(p0)+− (p2)+− (p3)+] δ [(p1)
−1
+ +(p0)

−1
+ − (p2)

−1
+ − (p3)

−1
+ ]

=
2

m2

∣

∣

∣

∣

1

(p3)2
+

− 1

(p2)2
+

∣

∣

∣

∣

−1

δ [(p1)+− (p2)+] δ [(p3)+− (p0)+]

+
2

m2

∣

∣

∣

∣

1

(p3)
2
+

− 1

(p2)
2
+

∣

∣

∣

∣

−1

δ [(p1)+− (p3)+] δ [(p2)+− (p0)+]

=
δ (θ12)δ (θ30)

m2|sinhθ13|
+

δ (θ13)δ (θ20)

m2|sinhθ12|
, (3.25)

where the components of each of the momenta along the light cone arep± = 2−1/2(p0± p1) = 2−1/2e±θ . We hope the indices
cause no confusion; we have written(pi)µ for theµ th component of the momentum of theith particle.

Inserting (3.24) and (3.25) into (3.23), finally crossing the out-particle with rapidityθ1 back to an in-antiparticle withθ1→
θ1+π i, gives the annihilation-pole axiom for the problem in thissection. Explicitly:

Res|θ12=−π i〈0|Φ(0)b0a0 |A,θ1,b1,a1;P,θ2,a2,b2;P,θ3,a3,b3〉= 2i〈0|Φ(0)b0a0 |P,θ3,a3,b3〉
[

δa1a2δb1b2−Sa1b1
a2b2

(θ23)
]

,

Res|θ13=−π i〈0|Φ(0)b0a0 |A,θ1,b1,a1;P,θ2,a2,b2;P,θ3,a3,b3〉= 2i〈0|Φ(0)b0a0 |P,θ2,a2,b2〉
[

δa1a3δb1b3−Sa1b1
a3b3

(θ23)
]

. (3.26)
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The leading terms of each side of (3.26) are both of orderN−3/2. Our final Lorentz-invariant expression for the large-N limit of
the one-antiparticle, two-particle form factor is

F0
1 (θ1,θ2,θ3) = F0

2 (θ1,θ2,θ3) = − 4π
(θ12+π i)(θ13+π i)

,

F0
3 (θ1,θ2,θ3) = F0

4 (θ1,θ2,θ3) = 0. (3.27)

The other functions̃F0
j (θ1,θ2,θ3) and ˜̃F

0
j (θ1,θ2,θ3) are the same asF0

j (θ1,θ2,θ3), up to irrelevant phases (these phases disap-
pear upon evaluation of Wightman functions).

IV. THE WIGHTMAN FUNCTION IN THE ’T HOOFT LIMIT

We can use the result of the previous section to find an improved expression for theN = ∞ two-point Wightman function
(2.1):

W (x) =
1
N

∫

dθ
4π

eim(x0 coshθ−x1 sinhθ) 〈0|Φ(0)b0a0 |P,θ ,a1,b1〉in in〈P,θ ,a1,b1|Φ(0)∗b0a0
|0〉

+
1
N

∫

dθ1

4π

∫

dθ2

4π

∫

dθ3

4π
1
2!

eim∑3
j=1(x

0 coshθ j−x1 sinhθ j ) 〈0|Φ(0)b0a0 |A,θ1,a1,b1;P,θ2,a2,b2;P,θ3,a3,b3〉in
× in〈A,θ1,a1,b1;P,θ2,a2,b2;P,θ3,a3,b3|Φ(0)∗b0a0

|0〉 + · · · , (4.1)

where, as in (2.3), we sum over repeated color indices.
All of the one-antiparticle, two-particle form factors aregiven by (3.27) up to an irrelevant phase. When summing over color

indices, we find that contributions quadratic in eitherF0
1 or F0

2 are of order one. The mixed contributions, linear in bothF0
1 and

F0
2 are down by a power of 1/N. We therefore drop the latter contributions. Thus the expansion (4.1) is

W (x) =
1

4π

∫

dθ eim(x0 coshθ−x1 sinhθ)+
1

4π

∫

d3θ eim∑3
j=1(x

0 coshθ j−x1 sinhθ j ) (θ 2
12+π2)−1(θ 2

13+π2)−1+ · · · . (4.2)

The first term on the right-hand side is the free-field approximation, discussed in Section 2. The result (4.2) should be extremely
good at large distances, as contributions from more intermediate particles fall off more quickly. Unfortunately, we cannot
recover the short-distance behavior predicted by perturbation theory. It is necessary to sum over all intermediate states to obtain
the Wightman function for smallx. In other words, all the form factors ofΦ are needed to compare with the perturbative result.

V. THE CORRESPONDENCE WITH A FREE FIELD

The renormalized field can be written in terms of the Zamolodchikov particle-creation operators, and their adjoints (together
these form the Faddeev-Zamolodchikov algebra, which we do not discuss here). At largeN, these are the standard operators
used to build a free complex(∞×∞)-matrix fieldM(x) in (2.9).

Examining the definitions of the functionsF, F̃ and ˜̃F gives an expansion forΦ(x):

Φ(x)b0a0 =
1

N1/2
M(x)b0a0

− 1

N3/2

∫

d3θ
(4π)3 [AA(θ1)a1b1e

imx0 coshθ1−imx1 sinhθ1 +A
†
P(θ1)a1b1e−imx0 coshθ1+imx1 sinhθ1]

× 1
2!
[AP(θ2)b2a2eimx0 coshθ2−imx1 sinhθ2 +A

†
A(θ2)b2a2e−imx0 coshθ2+imx1 sinhθ2]

× [AP(θ3)b3a3eimx0 coshθ3−imx1 sinhθ3 +A
†
A(θ3)b3a3e−imx0 coshθ3+imx1 sinhθ3]

× 4π
(θ12+π i)(θ13+π i)

(

θ12+π i
θ12−π i

)Θ(θ12)
(

θ13+π i
θ13−π i

)Θ(θ13)

(δa0a2δb0b3δa1a3δb1b2 + δa0a3δb0b2δa1a2δb1b3)

+ · · · , (5.1)
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whereΘ is the step function,Θ(θ ) = 0, for θ < 0 andΘ(θ ) = 1, for θ > 0, and the operatorsA andA† are expressed in terms
of the free field as

A
†
A(θ )ba = (2micoshθ )−1

∫

dx1 eimx0 coshθ1−imx1 sinhθ1
←→
∂ 0 M(x)ba

A
†
P(θ )ab = (2micoshθ )−1

∫

dx1 eimx0 coshθ1−imx1 sinhθ1
←→
∂ 0 [M(x)†]ab , (5.2)

and their adjoints. The matrix elements of this expression (5.1) between the vacuum bra and an in-state ket are unchangedif we
suppress the creation operators. The creation operators are needed, however, for matrix elements of (5.1) to satisfy crossing.

VI. CONCLUSIONS

To summarize, we found exact form factors for the (1+1)-dimensional principal chiral model at largeN. We expanded the
two-point Wightman function in terms of these form factors.Finally, we identified an underlying free matrix field operatorM(x),
and discussed how the renormalized field can be obtained fromM(x).

The 1/N-expansion of the principal chiral model is quite differentfrom the expansion of vector models, such as the O(N)
sigma model. The renormalized field of a vector model is a freefield, asN→ ∞.

There is little difference between the free massive fieldM(x) and the classical master field of the large-N limit. The response
of this field to a source is the same, whether or not it is quantized.

The ingredients to find higher-order corrections in the 1/N-expansion (3.16) are already in Section 3. This problem is under
investigation.

It would be interesting to understand form factors for in-states with more particles. The number of functions rapidly increases
with more particles. Nonetheless, two-antiparticle, three-particle form factors seem possible to obtain. It may be that all the
form factors can be found. This would yield the complete sum of planar diagrams and a direct comparison with perturbation
theory could be made.

We have not discussed operators other than the renormalizedfield in this paper. It seems possible to find the form factors of
currents and the energy-momentum tensor by similar methods.
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