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Collinear and soft divergences in perturbative quantum gravity are investigated to arbitrary orders
in amplitudes for wide-angle scattering, using methods developed for gauge theories. We show
that collinear singularities cancel when all such divergent diagrams are summed over, by using the
gravitational Ward identity that decouples unphysical polarizations from the S-matrix. This analysis
generalizes a result previously demonstrated in the eikonal approximation. We also confirm that the
only virtual graviton corrections that give soft logarithmic divergences are of the ladder and crossed
ladder type.
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I. INTRODUCTION

Infrared divergences in perturbative quantum gravity
were investigated long ago in Ref. [1], where the expo-
nentiation of the singular contributions in ladder and
the crossed ladder diagrams was verified by analogy to
quantum electrodynamics. In the scattering of mass-
less particles, or at very high energies, graviton ladder
diagrams, like those in QED, also develop collinear sin-
gularities, or “mass divergences”. In contrast to QED,
however, collinear singularities turned out to cancel af-
ter the summation of all ladders, when treated in eikonal
approximation. The cancellation of the remaining, non-
collinear soft-graviton divergences between virtual and
real ladder emission processes was also pointed out in
[1], and subsequently confirmed in full quantum gravity
at the one-loop level in Ref. [2].

The infrared behavior of quantum gravity has been re-
visited recently in [3, 4] in the context of exploiting analo-
gies between gauge theories to gravity [5]. The study of
perturbative quantum gravity amplitudes and cross sec-
tions also complements studies of nonperturbative quan-
tum gravity at very high energies [6]. In this paper we
analyze amplitudes for fixed-angle scattering in quantum
gravity. We will identify at arbitrary orders the classes of
diagrams that give collinear or soft infrared divergences,
and generalize the cancellation of the former to energetic
lines, for which the eikonal approximation does not apply
in general.

We begin with a study of the collinear sector of quan-
tum gravity, including its coupling to gauge theory mat-
ter, with the aim of complementing the work in Refs. [3]
and [4], which concentrated primarily on soft gravitons.
We consider amplitudes with all massless external lines,
all at fixed angles relative to each other, both incoming
and outgoing. We will show that for such “wide-angle”
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scattering, perturbative amplitudes are free of collinear
singularities altogether to any fixed order, despite their
presence on a diagram-by-diagram basis. This result gen-
eralizes the observation of Ref. [1] in the eikonal approx-
imation. We go on to investigate soft graviton singular-
ities, and conclude that they originate only from ladder
exchange between finite-energy lines [3, 4]. To demon-
strate these results, we will use the general infrared anal-
ysis developed for gauge theories in [7], [8] and [9] and
elaborated in [10]. To be specific, we consider the har-
monic, or de Donder gauge for the quantization of quan-
tum gravity, with perturbation theory rules, including
ghosts [11, 12] as summarized, for example, in [13, 14]
and [15]. Happily, we will not need the detailed features
of the rules, only their covariance and a counting of num-
bers of derivatives.
The method of [7] begins with the observation that a

necessary condition for infrared enhancement, whether
soft or collinear, is the presence of pinch singularities in
subspaces (pinch surfaces) of virtual loop momentum in-
tegrals [16, 17]. Each such pinch surface is conveniently
characterized by a reduced diagram, consisting of the
lines that are forced on-shell at the surface in question.
This analysis is particularly straightforward for wide-

angle scattering. At leading power a single effective ver-
tex in the reduced diagram mediates the hard scattering.
Specifically, an analysis of the pinch surfaces for wide-
angle scattering gives for the most general reduced dia-
gram involving only massless lines (including gravitons)
the form shown in Fig. 1, where for purposes of illustra-
tion, only four external legs are shown. The letters J and
S denote respectively the jet and soft subdiagrams and
H is a hard vertex [7, 8]. At the pinch surface, all lines in
each Jet Ji are collinear to each other and to the external
line pi to which they attach, all lines in S carry zero mo-
mentum, and all lines in H are off-shell. In the following
sections we study the nature of the various subdiagrams
and find that a remarkably simple structure emerges, as
suggested by the eikonal analysis of Ref. [1]. The infrared
singular behavior of quantum gravity is simpler than that
of massless quantum electrodynamics.
In section II we introduce a power-counting proce-
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FIG. 1: A general reduced diagram at the pinched singular
point. J and S denote the jet and soft subdiagrams and H is a
hard vertex. Here each line may represent any number of soft
propagators connecting S to the remainder of the diagram, or
the jets Ji to the hard part H.

dure to identify the types of reduced diagrams that yield
collinear singularities in theories of pure gravity and of
gravity coupled to other matter. The infrared diver-
gences in the pure matter sector have been studied ex-
tensively in the literature so we only focus on the new
divergences that arise as a result of gravitational interac-
tions. We find that the only types of diagrams that give
mass divergences are those with no internal graviton jet
loops, and which contain only three point vertices. We
also show that mass divergences do not arise in diagrams
with both standard model particles and gravitons when
only the gravitons attach to an external leg.

Next, in Sec. III we develop a power-counting proce-
dure to find what types of reduced diagrams with vir-
tual gravitons give soft divergences. We find that for the
case of virtual soft graviton corrections to a hard ver-
tex, only diagrams of the ladder type give rise to soft
divergences, as previously observed in Refs. [3] and [4].
In addition, we observe that the representation of diver-
gent soft graviton interactions in terms of Wilson lines,
as explicitly conjectured in [3], follows readily from the
cancellation of collinear singularities.

Sec. IV is devoted to the proof that collinear singu-
larities cancel when all collinear-divergent diagrams are
combined, using a gravitational Ward identity. As an il-
lustration of how the arguments of section IV work, in
the appendix we develop an extension of the analysis of
Ref. [1], to show explicitly the cancellation of the gravi-
ton collinear singularities for kinematic regions where the
eikonal approximation applies.

II. JET POWER COUNTING

In this section we will build upon a power counting
procedure for infrared divergences developed in Refs. [7–
9]. Let us consider a graviton jet attached to a massless
on-shell line with momentum p in an arbitrary diagram
as in Fig. 2. The graviton jet reattaches to the rest of
the diagram, labeled “rest” in the figure. For purposes
of classification, gravitons that reattach to the same ex-
ternal leg from which they were emitted are considered
as part of the jet, rather than attached to “rest”. Such
external leg corrections do not give rise to collinear sin-
gularities, as we will show later.
Let LJ be the number of loops, NJ the number of lines

in jet J, and Nnum the total power of what we will call
“normal variables” in the numerator that arise from the
vertices and propagators of the jet. Normal variables are
chosen such that they vanish at the pinch singular point
that causes the infrared divergence. Then, singularities
of the integrand appear through their dependence on nor-
mal variables.
The loop momentum integrand corresponding to any

Feynman diagram can be made a homogenous function of
the normal variables by keeping only the lowest power in
both the numerator and denominator factors. Counting
powers of normal variables then enables us to determine
the finiteness or potential for divergence of the pinch sur-
face in question. This is measured by the degree of di-
vergence, given by the number of normal variables, mi-
nus the homogeneity (power in normal variables) of the
product of denominators, plus the homogeneity for the
numerators. For examples, see Eqs. (3) and (15) below.
In order to identify the normal variables for collinear

singularities, let us make a change of variables in each jet
loop integral such that:

∫

d4l ∼
∫

dl2⊥dl
+dl− , (1)

where l2⊥ includes the two components of the loop mo-
menta l that are transverse to p and l± is defined as
1√
2
(l0 ± ~l · p̂), with p̂ a unit 3-vector in the direction of

the jet. This change of variables actually requires one
to evaluate a Jacobian, but we omit this step as this
factor will not contain any singularities. Note that for
a collinear line we can rotate to a frame such that l−

and l2⊥/l
+ become small, so we choose these as the nor-

mal variables (for convenience, both with dimensions of
mass). With this choice, each jet loop will contribute
two normal variables to the total collinear degree of di-
vergence of the diagram. The consistency of this choice is
discussed in Ref. [10] and [18]. A similar power counting
plays a role in soft-collinear effective theory [19].
In the de Donder gauge, the graviton propagator is [14]

i

2
[ηαγηβδ + ηβγηαδ − ηαβηγδ] 1

l2 + iǫ
. (2)

Since l2 = 2l+l− − l2⊥, each graviton propagator will be
linear in normal variables in the denominator. Thus, each
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FIG. 2: A diagram with a graviton jet attached to an external
leg. We show the case where there are two gravitons being
emitted from the external line and two gravitons attaching to
“rest” but these can be any numbers. The analysis in section
II shows that the number of gravitons emitted and attached
do not need to be the same.

graviton jet line will contribute −1 to the degree of di-
vergence from the diagram. In summary, we can write
the total collinear degree of divergence of diagrams of the
type shown in figure 2 as

γCO = 2LJ −NJ +Nnum . (3)

A diagram can have a collinear singularity whenever
γCO ≤ 0, and γCO = 0 corresponds to a logarithmic
divergence.
As each jet line connects two vertices, we can also use

the relation,

2NJ =
∑

i≥3

iVi +NG , (4)

where Vi is the total number of i-point vertices in the
diagram, not counting those that attach to “rest” (see
Fig. 2) and NG is the number of gravitons in the jet that
attach to “rest”. Here we treat “rest” as an NG+1-point
vertex in the jet subdiagram, and we do not count the
external line of the jet in NJ .
We can write the minimum homogeneity of normal

variables in the numerator as

Nnum =
1

2
Nmom −min[

1

2
Nmom,

∑

k

k

2
Nk] , (5)

where Nmom is the total power of momentum vectors
from the vertices in the jet subdiagram and Nk is the
number of vertices with k powers of momentum that are
contracted with non-collinear vectors from “rest”. The
factor of 1

2 reflects that the scalar product of the mo-
menta of any two jet lines is linear in the normal variables
of the jet, and hence adds unity to the overall homogene-
ity of the numerator. We subtract

∑

k
k
2Nk from Nnum

because each graviton line attaches to “rest” at a vertex
involving some integer, k, of powers of momenta, collec-
tively denoted p′µ, that are not collinear with pµ. This is
why we do not classify gravitons reattaching to the same
leg they were emitted from as part of “rest”, as in this
case p′ = p. The graviton propagator can then contract
the momenta in the vertex in “rest” with momentum vec-
tors from a vertex in the graviton jet. This will result in

terms of order (p · p′)k. These terms are zeroth order
in normal variables. That is, at each such vertex, k/2
factors of momenta that are nearly proportional to pµ

can “escape” the jet, forming “large” invariants that do
not vanish at the pinch surface. Thus, we must subtract
k/2 from Nnum for each of the Nk vertices from “rest”.
The last term in (5) is inserted simply to ensure that
Nnum ≥ 0 in all cases.

For gravity we make the expansion gµν = ηµν + κhµν
and take the quantum field to be hµν . Gravitational ver-
tices correspond to terms in the Lagrangian that are sym-
bolically of the form κi+j−4∂jhi. Let Vi,j be the number
of i-point vertices with j powers of momentum in the di-
agram (not including those in “rest”). This allows us to
write Nmom as

Nmom =
∑

j

j
∑

i≥3

Vi,j . (6)

For the case of pure gravity we can write the Einstein-
Hilbert Lagrangian as [20]

LEH =
√−gR =

1

2
(ĝακĝρσ ĝ

ρσ
,α + 2ĝακ,α ),κ

+
1

8
ĝακ,ρ ĝ

λβ
,σ (2ĝρσĝλαĝκβ − ĝρσ ĝακĝλβ − 4ησκη

ρ
λĝαβ) ,

(7)

where a comma denotes an ordinary partial derivative
and ĝαβ =

√
ggαβ . When written in this form, it is

easy to see that LEH only has terms with j = 2, so we
take all i-point graviton vertices as having two powers
of momentum. Of course from an effective field theory
point of view [15] there should be higher order terms in
R but this will serve only to increase j in the vertices.
Since it is clear from equations (3), (5), and (6) that
increasing the number of derivatives, j will only increase
γCO, considering only the linear term in R gives the most
infrared divergent case.

The coupling of matter to gravity is given by κhµνT
µν ,

where T µν is the energy momentum tensor of the matter
field. For bosons, the energy momentum tensor has at
least two derivatives, so this situation is similar to the
pure gravity case. For fermions, the energy momentum

tensor is proportional to ψ̄γµ(
−→
∂ ν −←−∂ ν)ψ. However, for

power counting purposes, using the Gordon identity we
may replace γν by ∂ν/m, where m is the fermion mass.
(For massless fermions, the vanishing normalization of
spinors leads to simply ∂ν .)

If we combine the Euler identity (note that for the
jet subdiagram we consider “rest” to be a vertex so the
number of vertices in the jet subdiagram is

∑

i Vi + 1),

LJ = NJ −
∑

i≥3

Vi , (8)
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FIG. 3: A typical ladder diagram.

with equations (3), (4), (5), and (6) we get the relation,

γCO =
∑

i≥3

(
i

2
− 2)Vi +

1

2
NG +

1

2

∑

j

j
∑

i≥3

Vi,j

−min[
1

2

∑

j

j
∑

i≥3

Vi,j ,
∑

k

k

2
Nk] . (9)

Let us consider the case where

min[
1

2

∑

j

j
∑

i≥3

Vi,j ,
∑

k

k

2
Nk] =

∑

k

k

2
Nk , (10)

as this is the more divergent case (since the other option
is available solely to prevent Nnum having an artificially
negative contribution to γCO). In this case,

γCO =
∑

i≥3

(
i

2
− 2)Vi +

1

2
NG +

1

2

∑

j

j
∑

i≥3

Vi,j −
∑

k

k

2
Nk .

(11)

We readily deduce the consequences of this result.

Ladder Diagrams

As a first example, let us consider the simplest case
of ladder diagrams (Fig. 3). In this case, we only have
3-point vertices, which have two powers of momentum,
and no internal jet loops. Thus i = 3, and j = 2. For the
case of gravitational couplings k = 2, so

∑

k
k
2Nk = NG.

Applying these conditions we have

γCO = −1

2
V3 + V3,2 −

1

2
NG . (12)

For ladder diagrams it is easy to see that V3 = V3,2 = NG,
so we have γCO = 0, which corresponds to logarithmic
divergence.

Diagrams with only three point vertices

Once again we have i = 3, j = 2. So, V3 = V3,2
and again for gravitational couplings

∑

k
k
2Nk = NG.

Therefore we (again) have

γCO =
1

2
(V3 −NG) . (13)

Rest

FIG. 4: A diagram with no internal jet loops and only three
point vertices.

Rest

FIG. 5: An example of an external leg correction. These do
not result in collinear singularities.

Note in the case of diagrams with no internal jet loops as
in Fig. 4, we have V3 = NG and again we have a logarith-
mic collinear divergence. On the other hand, if we add
any internal jet loops V3 > NG and there is no collinear
singularity. Adding a four-point (or higher) vertex will
only increase the collinear degree of divergence and will
prevent a mass divergence. Thus, the only diagrams that
give mass divergences are those with no internal jet loops,
and with only three-point vertices. These include the lad-
der diagrams discussed as the first example.

External Leg Corrections

As mentioned earlier, graviton lines that reattach to
the same leg from which they were emitted are not con-
sidered as lines that attach onto “rest”. This is because
in this case the momenta at the two vertices the gravi-
ton line connects are collinear, so we get a numerator
factor that is quadratic in normal variables. Thus, these
vertices do not contribute to the subtraction of Nk from
momentum factors in the numerator in equation (5). Be-
cause of this, diagrams such as the one in Fig. 5 do not
have collinear singularities. For Fig. 5 in particular, us-
ing Eq. (11) we see that γCO = 1. Gauge invariance en-
sures the cancellation of the single particle pole (which
for power counting purposes corresponds to matching +1
from the normal variables of the numerator with −1 from
the on-shell propagator.) We can see from equation (11)
that adding further graviton lines cannot decrease the
collinear degree of divergence wherever they are attached.
Thus, self energy and other diagrams with graviton lines
that reattach to the same leg from which they were emit-
ted do not have collinear singularities.
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FIG. 6: A graviton jet turning into two gluons.

Rest

FIG. 7: A graviton jet turning into four gluons.

Diagrams with gravitons turning into standard model
particles

Let us consider the case where a graviton emitted from
one of the external line turns into standard model parti-
cles such as gluons. Such an example is given in Fig. 6.
For this particular case, Eq. (3) tells us that

γCO = 2(2)− 4(1) +Nnum = Nnum . (14)

If the gluons were gravitons, according to Eqs. (5) and
(6), we would have Nnum = 1

2 (4) − 2 = 0 = γCO and
thus a logarithmic collinear singularity. This is because
k = 2 for all vertices of “rest” to which gravitons attach.
However, for the case of gluons we would have k = 1 for
all vertices on “rest”. This means that for the case of glu-
ons, Nnum = 1

2 (4)−1 = 1 = γCO, so there is no collinear
singularity. Note that since γCO ≥ 0 for any diagram in-
volving just gravitons, adding further graviton lines does
not change the situation. Adding a higher point gluon-
graviton vertex such as the one in Fig. 7 does not help, as
in this case the the contribution to γCO from LJ and NJ

will already be positive and Nnum is at least zero. For
instance, for the process shown in Fig. 7, 2LJ −NJ = 2.
Thus, it is impossible to have a collinear-divergent dia-
gram with both standard model particles and gravitons
where only the gravitons attach to the on-shell line. Pre-
cisely the same reasoning applies to the vector ghosts of
quantum gravity [11], because, although their interac-
tions with gravitons are not identical to those of photons
or gluons, the numbers of derivatives at the vertex is the
same.
In summary, we have found that collinear divergences

may be found in diagrams: (1) with no internal jet loops,
(2) with only three-point vertices among gravitons, and
(3) that do not link gravitons to collinear standard model
particles. We now turn to soft divergences.

III. SOFT POWER COUNTING

So far, we have concentrated on the “jet” subdiagrams
of the arbitrary pinch surface represented in Fig. 1. We
now describe the inclusion of interacting soft gravitons
[3, 4], and show how our power counting arguments con-
firm the conclusion that to fixed order only ladder-like
graphs show soft divergence, factorizable onto products
of Wilson lines.
We can carry out power counting for soft divergences

simultaneously with collinear divergences, by considering
diagrams of the type shown in Fig. 8, which shows soft
virtual graviton corrections to a hard vertex. All of the
graviton lines in S are soft. Each solid line represents
any set of collinear jet lines. In principle, the particles
represented by the solid finite momentum lines can have
any spin, as the dominant coupling of soft gravitons is to
momentum flow, and independent of spin [1]. We now
define, by analogy to Eq. (3) for the degree of collinear
divergence, a degree of soft divergence,

γsoft = 4LS − 2NS −NE +Nsn , (15)

where LS is the number of loops in S, including loops that
link S with the jets, NS is the number of soft graviton
lines, NE is the number of virtual finite momentum lines
in the diagram, and Nsn is the contribution of soft nor-
mal variables to the numerator (for clarification of these
quantities, see the example given in Fig. 9). Specifically,
we may take NE to denote the change in the number
of finite-momentum lines due to the attachment of soft
gravitons to the jet. For simplicity, therefore, we choose
the most singular case, in which all soft gravitons attach
to the jets at vertices with only two finite-momentum
lines.
For the soft subdiagram we can choose the normal vari-

ables to be all four components of the loop momenta, so
that there is a factor of four times LS in (15). With this
choice, all soft graviton denominators are quadratic in
normal variables, so there is a factor of minus two mul-
tiplying NS . The denominators of the propagators cor-
responding to the (nearly on-shell) virtual finite momen-
tum lines are, by contrast, linear in graviton momenta.
Thus, NE is associated with a factor of minus one. No-
tice that this requires the scales of normal variables for
soft and collinear momenta to be the same. If, for exam-
ple, the soft normal variables are larger than the collinear
normal variables, the denominators of finite energy lines
will be independent of the latter, which would eliminate
collinear singularities.
The linearity of finite energy lines in soft normal vari-

ables, combined with the dominance of jet momenta in
the coupling of soft gravitons to finite energy lines is
equivalent to the eikonal approximation. We note that
for wide angle scattering there are no additional pinches
that would invalidate the eikonal approximation. We will
return to this point below.
Using similar reasoning as with the case of collinear
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FIG. 8: Arbitrary diagram with virtual soft graviton correc-
tions to a hard vertex. The finite momentum lines are drawn
with a solid line.

H

FIG. 9: An example of the type of diagram that we discuss
in section III. In this diagram LS = 4, NS = 8, and NE=4.

power counting we arrive at the relations,

2NS =
∑

i≥3

iVi +
∑

m

mN
(m)
hs , (16)

NE = Nhs , (17)

Nsn =
∑

j

j
∑

i≥3

Vi,j , (18)

LS = NS +NE −
∑

i≥3

Vi −Nhs , (19)

where again Vi is the number of i-point vertices in S and
Vi,j are the number i-point vertices in S with j powers

of momentum. The term N
(m)
hs is the number of ver-

tices at which m soft lines attach to a finite momentum
line, and Nhs =

∑

mN
(m)
hs . Note the vertices that count

towards Nhs do not contribute to the homogeneity of
normal variables from the numerator, Nsn, as their nu-

merator momentum factors are given to leading power
by the momenta of finite momentum lines, independent
of soft normal variables. Combining equations (15), (16),
(17), (18), and (19), we get

γsoft =
∑

i≥3

(i− 4)Vi +
∑

j

j
∑

i≥3

Vi,j +
∑

m

mN
(m)
hs −Nhs .

(20)

Using this relation, we see that if there are no soft gravi-
ton vertices in S (Vi = 0, Vi,j = 0) and only vertices with
one soft graviton attached to the finite momentum lines

(
∑

mmN
(m)
hs = N

(1)
hs = Nhs) then γsoft = 0, indicating

a logarithmic soft divergence. An example of a diagram
that gives a logarithmic divergence is shown in Fig. 10.
On the other hand if there is even one soft vertex in S
with j ≥ 2 (as is the case for graviton vertices), or if
there is even one vertex with more than one soft gravi-
ton coming off a finite momentum line (in which case
∑

mmN
(m)
hs > Nhs) then γsoft > 0 and there is no soft

divergence. Thus, in agreement with [3, 4] we have seen
that the only diagrams that give rise to soft graviton di-
vergences are ladder and crossed ladders with only three
point vertices where the ladders attach to finite momen-
tum lines.
The above conclusions apply whether or not the jet

subdiagrams consist of single lines or contain loops. As
we shall see in the next section, however, collinear singu-
larities associated with nontrivial jet subdiagrams cancel,
leaving only single finite-energy lines to couple to the soft
gravitons. In this sense, the factorization of soft infrared
gravitons conjectured in Ref. [3] is automatic, because as
noted above, soft divergences are reproduced by consid-
ering only the linear dependence of finite-energy denom-
inators on soft graviton momenta. In addition, as we
have seen, infrared divergences are associated with the
coupling of soft gravitons to a finite-energy graviton (or
matter) line of momentum p through the vertex κpµpν

only. Together, these features of soft graviton infrared
divergences are precisely the perturbation theory rules
of the Wilson lines described in Ref. [3], and this dis-
cussion serves as a proof of the conjecture there. The
importance of the cancellation of collinear singularities
was also noted in Ref. [4], and we now turn to a proof of
this cancellation independent of the eikonal approxima-
tion for the collinear gravitons.

IV. CANCELLATION OF COLLINEAR

SINGULARITIES

In this section we give a general argument for the can-
cellation of gravitational collinear singularities using the
basic gravitational Ward identity [23] that decouples un-
physical graviton polarizations from physical processes.
Our argument is independent of the eikonal approxima-
tion. A combinatoric proof of this cancellation along the
lines of [1], in the special case of the eikonal approxima-
tion, is given in the appendix.
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H

FIG. 10: An example of a diagram with only three point
couplings to hard lines that will lead to a soft divergence.

We have shown by power counting that collinear singu-
larities require graviton jets that have no internal loops
and only three point vertices. Let us consider the addi-
tion of such a jet to an arbitrary external line with mo-
mentum pµ as in Fig. 2, where j gravitons with momen-
tum lµi and the now off-shell continuation of the original
external line with momentum pµ−∑ lµi attach to “rest”.
We can represent the matrix element corresponding to
such a diagram as [21]

iM =

∫

d4li
(2π)4

J(pµ −
j
∑

i=1

lµi

i , {l
µi

i }){µiνi}

×R(pµ −
j
∑

i=1

lµi , {l
µi

i }){µiνi} , (21)

where R and J correspond to the “rest” and jet subdi-
agrams, respectively, and where {µiνi} represent the 2j
spacetime indices corresponding to the j collinear gravi-
tons attached to “rest”.

Since all the lines attaching to R from J have momenta
collinear with the jet momentum pµ, we can isolate the
leading power behavior near the collinear pinch surface,
by making the replacement lµ → lαv̄

αvµ, where we define
the lightlike vectors vµ = δµ+, and v̄

µ = δµ−. Here we are
working in the basis of normal variables where momen-
tum vectors now have the components lµ = (l+, l−, l⊥)
and l2 = 2l+l−− l2⊥. After making this replacement and
pulling out the factors of vµ and v̄µ, we can write the
function J as

J(pµ −
∑

lµi

i , {l
µi

i }){µiνi}

→J(pα −
∑

lαi

i , {lαi

i }){αiβi}
∏

i

v̄αi v̄βivµi
vνi . (22)

Rest Rest

FIG. 11: The Ward identity for the case n = 1

It is easy to see that to leading power in normal variables

J(pα −
∑

lαi

i , {lαi

i }){αiβi}v̄
αi v̄βivµi

vνi =

J(pα −
∑

lαi

i , {lαi

i }){αiβi}
nαi

n · li
nβi

n · li
li,µi

li,νi , (23)

for any vector nα that is not collinear with lµi by making
the substitution lµ → lαv̄

αvµ on the right hand side of
(23). Thus, we can write (21) as

iM =

∫

d4li
(2π)4

J(pα −
∑

lαi

i , {lαi

i }){αiβi}

×
∏

i

nαi

n · li
nβi

n · li
lµi
lνi

×R(pµ −
∑

lµi

i , {l
µi

i }){µiνi} . (24)

This is known as the “collinear approximation” [21, 22].
We see from (24) that in the collinear approximation the
j gravitons that attach to “rest” are longitudinally, or
“scalar”, polarized. This allows us to use the on-shell
Ward identity for gravitons [23], which inforces the de-
coupling of such unphysical polarizations,

lµj
lνjS...µjνj ... = 0 . (25)

where S...µjνj ... is an arbitrary S-matrix element with
the polarization tensors factored out. For our particu-
lar case, we can apply the Ward identity to the subdi-
agram “rest”, which includes an external line with mo-
mentum pµ −∑ lµi . In R, the latter may be considered
on-shell with physical or scalar polarization, up to cor-
rections that are higher order in normal variables. Di-
agramatically this can be expressed by Fig. 11, which
corresponds a single longitudinally, or scalar, polarized
graviton (n = 1) attached to “rest”, which is drawn with
a dotted line. The Ward identify (25) tells us that the
sum of the diagrams shown on the left hand side of Fig.
11 and the attachment of the longitudinally polarized
graviton on the external line shown on the right hand
side is zero. The right hand side of Fig. 11 has the same
collinear degree of divergence as a self energy correction,
which we previously showed does not have a collinear
singularity.
The application of the Ward identity to the case of

two longitudinally polarized gravitons (j = 2) attached
to “rest” is shown in Fig. 12. Note the first and third
diagrams on the right hand side of Fig. 12 contain a self
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Rest Rest Rest

Rest Rest

FIG. 12: The Ward identity for the case n = 2. We do not
explicitly show the diagrams where the longitudinal gravitons
are interchanged.

energy-like correction, so these are not collinearly diver-
gent. The second and fourth diagrams result in an in-
ternal jet loop, and we know diagrams containing such
loops are also not collinear-divergent. So there are no
collinear singularities for this case either. Thus, the use
of the Ward identities on (24) allows us to rule out any
collinear singularity in the sum of diagrams contributing
to it. For gauge theories, by contrast, collinear singular-
ities remain in the corresponding set of diagrams when
the Ward identities are applied [21]. The application of
this reasoning to collinear gauge particles results in the
factorization, rather than cancellation, of collinear singu-
larities.

It is clear that adding any number of longitudinally
polarized gravitons and applying the Ward identity in
the manner above will always result in either additional
self energy-like corrections or internal jet loops, which as
we have seen preclude collinear singularities. Thus, while
diagrams where an external leg emits a graviton jet with
no internal loops and only three point vertices may be
divergent on a diagram by diagram basis, when we con-
sider the attachment of such a jet with the rest of the
diagram, the Ward identity insures that collinear singu-
larities cancel. It is instructive to verify the cancellation
for the case where collinear gravitons are relatively soft,
so that we may apply the eikonal approximation. This is
shown in the appendix.

V. CONCLUSION

In this paper we have introduced a power-counting pro-
cedure in order to see what types of reduced diagrams
yield collinear and soft divergences in perturbative quan-
tum gravity. For the fixed-angle elastic scattering am-
plitudes that we have considered, we find that the only
types of reduced diagrams that give soft divergences are
those of the ladder and crossed ladder type, where the
soft gravitons interact only with finite momentum lines
and not with each other [3, 4]. These diagrams give rise
to logarithmic soft divergences, which do not cancel when
all diagrams of a given order are summed for an ampli-
tude with fixed external lines.

For the case of collinear singularities, we see that the
only types of diagrams that give mass divergences are
those with no internal jet loops and only three-point
vertices. These include the ladder and crossed ladder
diagrams [1]. When all possible diagrams of this class
are summed the Ward identity insures that the collinear
singularities cancel. This is in contrast to the case of
massless QCD or other massless gauge theories, where
collinear singularities factorize rather than cancel.
The absence of collinear singularities has its basis in

classical physics, where gravitational radiation is more
suppressed in the collinear direction than electromagnetic
radiation. Indeed, the leading multipole contributing to
electromagnetic radiation is dipole while for gravitational
radiation it is quadrupole. This can be seen conveniently
in the rates of the lowest order modes of radiation in the
two theories [24]. For electromagnetic radiation sourced
by an electric dipole with dipole moment p oscillating
with frequency ω, the energy rate is

d2E

dΩdt
= ω2(

ω2p2

8πc3
) sin2 θ . (26)

For gravitational radiation sourced by a mass M with
trajectory R(t) = R0 sinωt the energy rate is

d2E

dΩdt
=
Gω6M4R4

0

4πc3
sin4 θ, (27)

which clearly shows the additional suppression in the for-
ward direction.
The discussion in this paper has dealt with wide-angle

scattering only. These methods may be useful as well,
however, in studies of higher order corrections for the
Regge limit in quantum gravity [25], and of higher-order
cancellations between virtual and real radiation.
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Appendix A: Cancellation of Collinear Singularities

in the Eikonal Approximation

In this appendix, we review how the cancellation of
collinear singularities is realized in the eikonal approxi-
mation, as discussed by Weinberg in Ref. [1]. We present
this argument for completeness, and also because it con-
firms the use of the Ward identity illustrated by Figs.
11 and 12. In particular, we emphasize that although
we derive the factorization (and hence cancellation) of
collinear gravitons from the hard scattering by using the
Ward identity of Eq. (25), at no point does the hard
scattering, whether in the eikonal approximation or not,
include all the diagrams of an S-matrix element (see Fig.
12).
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We start by rewriting Eq. (24), using the left-hand side
of Eq. (23),

iM =

∫

d4li
(2π)4

Jm(pαm −
∑

lαi

i , {lαi

i }){αiβi}

×
j
∏

i=1

v̄αi

m v̄βi

m vmµi
vmνi

×R(eik)(pµm −
∑

lµi

i , {l
µi

i }, {pn}){µiνi} ,

(A1)

where we now consider explicitly all of the E external
legs in the full diagram. The indices i refer to gluons
li attaching Jm to R, i = 1 . . . j. The external leg con-
nected to the jet we consider has momentum pm (the
nearly on-shell portion of this line is not included in R)
and the remaining E− 1 non-collinear external legs have
momentum pn, n 6= m (these non-collinear legs are in-
cluded explicitly in R).
In this discussion, we follow Ref. [1] by taking for the

function R, representing the remainder of the diagram,
a product of eikonal lines, linked at a point-like vertex
H({pn}), and treat all connections of collinear gravitons
to R in the eikonal approximation, summing over all di-
agrams.
Let us denote by P ({Nn}) any unordered partition of

the j external gravition lines of Jm into a set of bins with
Nn gravitons attached to line pn. At fixed momenta li,
each ordering corresponds to a distinct diagram, and we
must still sum over all orderings of graviton connections
to each line pn, n 6= m. In these terms we write the
contraction of the function R with vectors v in Eq. (A1)
as

R(eik)(pµm −
∑

lµi

i , {l
µi

i }, {pn}){µiνi}
∏

i

vmµi
vmνi =

∑

P ({Nn})
Enum({Nn}) Eden({Nn})H({pn}, ({Nn})) .

(A2)

In this expression, the eikonal numerator factors are
given by

Enum({Nn}) =
E−1
∏

n6=m

((pn · vm)2)Nn , (A3)

since each graviton attached to a non-collinear external
line contributes a numerator factor of (pn · vm)2.
Similarly, Eden summarizes all eikonal denominators,

including the sum over orderings of graviton lines (la-
beled with the index i) from the jet Jm to each of the
other incoming massless lines, pn for a given choice of
P ({Nn}). That is, for each partition P , we sum over all
permutations π(Nn) of the connections of these lines to
each of the pn. To the sum of these connections we may
apply for each external line pn the well-known identity

for eikonal denominators, giving

Eden({Nn}) =
∏

n6=m

∑

π(Nn)

Nn
∏

a=1

(

a
∑

i=1

pn · q(n)πNn(i)

)−1

=
∏

n6=m

Nn
∏

i=1

(pn · q(n)i )−1 , (A4)

where q
(n)
i denotes the momentum of the ith graviton

attached to the nth non-collinear external line. The sub-
script πNn

denotes that it is the momenta q
(n)
i that we

are permuting over. This identity shows that the mo-
mentum dependence associated with denominators fac-
tors into simple products for each external graviton of
R(eik).
Before combining equations (A3) and (A4) for the

eikonal numerator and denominator factors, respectively
we define

q
(n)
i = αivm , (A5)

which holds in the leading collinear region. Each momen-

tum q
(n)
i and hence each αi, is independent of to which

pn the collinear graviton attaches. In these terms, we
have

Eden({Nn}) =
∏

all i

∏

n6=m

1

αi
(pn · vm)

−Nn , (A6)

so that the energy-dependence of the collinear gravitons
is collected into a universal factor that is independent of
the partition P . Substituting the numerator and denom-
inator forms (A3) and (A6) into Eq. (A2) for R(eik), we
find

R(eik)(pµm −
∑

lµi , {l
µ
i }, {pn}){µiνi}

∏

i

vmµi
vmνi =

H({pn}, ({Nn}))
(

∏

all i

1

αi

)

×
∑

P ({Nn})





E−1
∏

n6=m

(pn · vm)Nn



 . (A7)

In this form we see explicitly that the factor R(eik) de-
pends only on the numbers Nn of each unordered assign-
ment of the collinear gluons li to the external lines pn.
For fixed {Nn}, the result is the same for every choice of
unordered partition P ({Nn}).
We may make this independence explicit by replacing

the sum over unordered assignments by a sum over all
Nn that add up to j, multiplying each term in the sum
by the appropriate combinatoric weight. We thus have
the sum

R(eik) ∝
∑

{Nn/
∑

Nn=j}

j!

N1!N2! . . . Nm! . . . NE !

×





E
∏

n6=m

(pn · vm)Nn



 , (A8)
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where Nm! indicates that this factor is omitted in the
product. If we use the multinomial theorem, this directly
simplifies to

R(eik) ∝





∑

n6=m

(pn · vm)





j

= (−pm · vm )
j

= 0 , (A9)

where in the second line we have used momentum con-
servation, and in the third the assumed masslessness of
pm, which implies pm · vm = 0.
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