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The gravitational interactions of the four-dimensional effective theory describing a general N -
brane model in five dimensions without radion stabilization are analyzed. Both uncompactified and
orbifolded models are considered. The parameter space is constrained by requiring that there be no
ghost modes in the theory, and that the Eddington parameterized post-Newtonian parameter γ be
consistent with observations. We show that we must reside on the brane on which the warp factor is
maximized. The resultant theory contains N−1 radion modes in a nonlinear sigma model, with the
target space being a subset of hyperbolic space. Imposing observational constraints on the relative
strengths of gravitational interactions of dark and visible matter shows that at least 99.8% of the
dark matter must live on our brane in this model.

PACS numbers: 04.50.-h, 11.25.Mj

1. INTRODUCTION AND SUMMARY

Over the past ten years, there has been a large amount of interest in extra-dimensional models of the Universe.
Models such as the ADD model [1, 2] and the Randall-Sundrum model [3, 4] have demonstrated the possibility of a
solution to the hierarchy problem through a modification of the fundamental gravitational scale, and the potential to
provide interesting models of dark matter.

Building on the success of the Randall-Sundrum model, many papers have considered various extensions to it,
including bulk fields [5], radion stabilization mechanisms [6, 7], and models including more than one or two branes
[8–13]. A wealth of knowledge of the phenomenology of these models has been accumulated [14–17]. A variety of
techniques to analyze such models have been devised, such as linearized analyses [18–22], the “covariant curvature
method” [23], the “gradient expansion method” [24–26], and derivative expansion methods [27]. However, relatively
little work has gone into analyzing a general N -brane model, and of the techniques mentioned previously, only
linearized analyses are well equipped to analyze such a situation. Even then, linearized analyses require a background
solution to perturb.

In a previous paper [28], we proposed an approximation scheme based upon a two-lengthscale expansion which can
be used to evaluate a four-dimensional low energy action for five-dimensional braneworld models, and demonstrated
its application to an uncompactified N -brane model. In this paper, we analyze the physics of the model, starting from
the four-dimensional action previously found, and also generalize the results to orbifolded models. Our motivation
in analyzing general N -brane models is to determine whether the presence of extra branes may overcome some of
the constraints the RS-I and RS-II models have, particularly with regards to radion stabilization requirements. We
investigate the parameter space of the general model, and find regions in which the theory has no ghosts. The
parameter space is further refined by imposing observational constraints from Solar System tests of gravity. We
consider the possibility of placing dark matter and Standard Model fields on separate branes, and by comparing to
observational data, find that the vast majority of the dark matter must reside on our brane in the models considered.

This paper is organized as follows. We begin in Section 2 by describing the model and recalling the results from [28]
upon which we build in this paper. In Section 3, we diagonalize the field space metric of the radion modes for the entire
parameter space. Only certain subsets of the model parameter space give rise to ghost-free four-dimensional theories;
we derive the corresponding conditions in Section 4. In Section 5, we derive the physical four-dimensional low-energy
action. Finally, in Section 6, we determine the observational consequences of this action, calculating the Eddington
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FIG. 1: An illustration of the model a) before and b) after gauge fixing. The bulk cosmological constants Λn, brane tensions
σn, and metrics gn αβ are labeled.

parameterized post-Newtonian parameter γ and the Newton’s matrix for gravitational interactions between branes.

The methodology considered here is also applicable to orbifolded models. In Appendix A, we show that the low
energy theory for orbifolded models is very similar to that for uncompactified models. In Appendix B, we discuss the
spectrum of Kaluza-Klein modes in both orbifolded and uncompactified multibrane models.

2. THE FOUR-DIMENSIONAL LOW ENERGY ACTION

In this section, we recall the results from [28] that we use in the rest of this paper.

Consider a five-dimensional model containing N four-dimensional branes, each with their own brane tension σn.
We denote the nth brane by Bn, where n is an integer with 0 ≤ n ≤ N − 1. In between each brane there exists a bulk
region of spacetime, which we denote R0, . . . ,RN , with Rn lying between branes n − 1 and n. In each bulk region
Rn we allow for a bulk cosmological constant Λn. We allow matter fields represented by φn to reside on each brane,
and include corresponding general four-dimensional matter terms in the action. The general five-dimensional action
we begin with is

S
[
gΓΣ , xn Γ, φn

]
=

∫
d5x
√
−g
(
R(5)[gΓΣ ]

2κ2
5

− Λ(xΓ)

)
−
N−1∑
n=0

σn

∫
d4wn

√
− hn +

N−1∑
n=0

Sn m[ hn ab, φn ], (2.1)

where gΓΣ is the bulk metric, Γ,Σ run from 0 to 4, xn Γ = xn Γ(wan) gives the location of the nth brane Bn in terms of
the brane coordinates wan with 0 ≤ α ≤ 3, κ2

5 is the five-dimensional Newton’s constant, hn ab is the induced metric
on a brane, and Λ(xΓ) takes the value Λn in the appropriate regions.

Our first step is to partially fix the gauge so that the branes lie at y = 0, 1, . . . , N − 1, as seen in Fig. 1 [28].
Next, applying a separation of lengthscales technique, we find the general bulk metric which solves the high energy
dynamics of the model,

dsn 2 = eχ(xc,y)γ̂ab(x
c)dxadxb +

χ2
,y(xc, y)

4k2
n

dy2. (2.2)

This metric is defined in each individual bulk region. The constants kn are defined by

kn =

√
−κ2

5Λn
6

, (2.3)

and the function χ(xc, y) is continuous across all branes, although it has discontinuities in its first derivative in y.
The metric γ̂ab(x

c) is a four-dimensional metric, related to the induced metric on slices of constant y by the warp
factor exp(χ). The solution requires that the brane tensions are tuned to some fixed values,

knPn − kn+1Pn+1 =
1

3
κ2

5σn, (2.4)
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where Pn = sgn(χ,y) in Rn and is constant in each bulk region. This condition arises from boundary conditions
involving the Gibbons-Hawking surface terms at the branes and the brane tensions.

Having solved for the high energy dynamics, we now proceed to integrate them out of the theory, thereby generating
a four-dimensional low energy action. We define the fixed parameters

An =

∣∣∣∣ 1

knPn
− 1

kn+1Pn+1

∣∣∣∣ , (2.5)

εn = sgn

(
1

knPn
− 1

kn+1Pn+1

)
, (2.6)

for 0 ≤ n ≤ N − 1. It is useful to note that εn = −sgn (σnPnPn+1) by Eq. (2.4). The values of the function χ(xc, n)
evaluated on the branes become N scalar fields in the four-dimensional action, and we denote these by

Ψn =
√
Aneχn , (2.7)

where we use χn = χ(xa, n). There is residual parameterization freedom which implies that one of the fields Ψn is
nondynamical, but before we fix this freedom, we first give the four-dimensional low-energy action using the definitions
so far. It is given by

S [γ̂ab,Ψn, φn ] =

∫
d4x
√
−γ̂ 1

4κ2
5

[
R(4) [γ̂ab]

(
N−1∑
n=0

εnΨ2
n

)
+ 6

N−1∑
n=0

εn(∇̂aΨn)(∇̂aΨn)

]
+

N−1∑
n=0

Sn m

[
Ψ2
n

An
γ̂ab, φn

]
(2.8)

where indices are raised and lowered using the four-dimensional metric γ̂ab, and ∇̂a is the covariant derivative as-
sociated with this same metric. In Appendix A, we show that an orbifolded N -brane model gives rise to this same
four-dimensional low-energy action with a rescaling of some parameters. Most of what follows from here is the same
for orbifolded and uncompactified models.

The residual parameterization freedom is

χ(xa, y)→ χ(xa, y) + δχ(xa) (2.9)

γ̂ab(x
a)→ γ̂abe

−δχ(xa), (2.10)

under which the metric (2.2) is invariant. We can fix this freedom by specifying the value of χ(xa, n) for any n. In
order to remain general, let us choose χ(xa, T ) = 0, for some T with 0 ≤ T ≤ N − 1. This causes the field ΨT to
become non-dynamical.

Some further field redefinitions now simplify the action. Let

Bn =
An
AT

, (2.11)

ψn =
√
Bneχn =

Ψn√
AT

. (2.12)

Our dynamical scalar fields are now ψn, 0 ≤ n ≤ N − 1, n 6= T . Finally, we can define a four-dimensional effective
Newton’s constant as

1

2κ2
4

=
1

4κ2
5

AT . (2.13)

The action with these definitions is

S [γ̂ab, ψn, φn ] =

∫
d4x
√
−γ̂ εT

2κ2
4

R(4) [γ̂ab]

1 +

N−1∑
n=0
n6=T

εT εnψ
2
n

+ 6

N−1∑
n=1

εT εn(∇̂aψn)(∇̂aψn)


+ ST m [γ̂ab , φT ] +

N−1∑
n=0
n 6=T

Sn m

[
ψ2
n

Bn
γ̂ab, φn

]
. (2.14)

We next discuss the transformation to the Einstein conformal frame. Let P be the number of elements of the
set {εT εn, 0 ≤ n ≤ N − 1, n 6= T} for which εT εn = +1, corresponding to the number of scalar fields with positive
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coefficients in the action. Note that 0 ≤ P ≤ N − 1. Also, let M = N − 1 − P be the number of elements with
εT εn negative, corresponding to the number of scalar fields with negative coefficients. It is convenient to relabel the
fields {ψn} based on which have positive kinetic coefficient (ψ1, . . . , ψP ) and which have negative kinetic coefficient
(ψP+1, . . . , ψP+M ), based on the action (2.14). We now define new coordinates ζ, θ1, . . . , θP−1 and η, λ1, . . . , λM−1,
such that

(ψ1, . . . , ψP ) = ζ (cos(θ1), sin(θ1) cos(θ2), . . . , sin(θ1) sin(θ2) · · · sin(θP−1)) , (2.15a)

(ψP+1, . . . , ψP+M ) = η (cos(λ1), sin(λ1) cos(λ2), . . . , sin(λ1) sin(λ2) · · · sin(λM−1)) . (2.15b)

We choose η, ζ > 0. All of the angular fields (θi and λj) have a domain of 0 to π/2, as each ψn is positive. We define
the function

Θ = 1 +

N−1∑
n=0
n 6=T

εT εnψ
2
n = 1 + ζ2 − η2, (2.16)

and transform to the Einstein conformal frame using the conformal transformation gab = γ̂ab|Θ|.
Using these field definitions, the four-dimensional low energy action can be written in Einstein conformal frame as

S[gab,Φ
A, φn ] =

∫
d4x
√
−gεT sgn (Θ)

[
R(4)[gab]

2κ2
4

− 1

2
γAB(ΦC)gab∇aΦA∇bΦB

]
+

N−1∑
n=0

Sn m

[
e2αn(ΦC)gab, φn

]
.

(2.17)

Here, R(4) and ∇a are associated with the metric gab, ΦA ≡ (ζ, η, θ1, . . . , θP−1, λ1, . . . , λM−1), and γAB(ΦC) is the
metric on field space, given by

dσ2 = γABdΦAdΦB =
µ2

Θ

[
−dζ2

(
1− η2

Θ

)
− ζ2dΩ2

p + dη2

(
1 + ζ2

Θ

)
+ η2dΩ2

m −
2ηζ

Θ
dηdζ

]
, (2.18)

where dΩ2
p = dθ2

1 + sin2(θ1)dθ2
2 + . . . is the metric on the unit (P − 1)-sphere, and similarly for dΩ2

m. The parameter

µ is defined by µ =
√

6/κ4. The coupling functions αn(ΦC) are given by

e2αT =
1

|Θ|
, (2.19a)

e2αn =
1

|Θ|
ψ2
n

Bn
, 0 ≤ n ≤ N − 1, n 6= T, (2.19b)

where Bn is given by Eq. (2.11), and ψn(ΦC) is defined by the relevant expression in Eq. (2.15).

3. PARAMETERIZATION OF FIELD SPACE

In this section, we find coordinates on field space which diagonalize the field space metric (2.18). We look at two
special cases before analyzing the general case.

A. Negative Definite Field Space Metric

In the case M = 0, the general metric reduces to

(1 + ζ2)

µ2
dσ2 = − 1

1 + ζ2
dζ2 − ζ2dΩ2

p. (3.1)

This can be rewritten as

dσ2 = − da2 − µ2 sin2

(
a

µ

)
dΩ2

p, (3.2)

where a = µ tan−1(ζ), with 0 ≤ a ≤ πµ/2.
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B. Positive Definite Field Space Metric

In the case of P = 0, the general metric reduces to

(1− η2)

µ2
dσ2 = dη2 1

1− η2
+ η2dΩ2

n. (3.3)

For the case where η < 1, this can be rewritten as

dσ2 = da2 + µ2 sinh2

(
a

µ

)
dΩ2

n, (3.4)

where a = µ tanh−1(η), with 0 < a <∞. This is shown in Section 4 to be the only physically relevant case.

For the case of η > 1, the metric (2.18) can be rewritten as

dσ2 = da2 − µ2 cosh2

(
a

µ

)
dΩ2

n, (3.5)

where a = µ coth−1(η), and 0 < a <∞.

We see that the two cases η > 1 and η < 1 are topologically disconnected, one being a metric on elliptic space and
the other being a metric on de Sitter space, and so the divergence at η = 1 in the metric (3.3) is simply a coordinate
singularity.

C. General Case

In the general case with M > 0, P > 0, the metric (2.18) is non-diagonal. It can be diagonalized using suitable
coordinate transformations in the three different cases Θ < 0, 0 < Θ < 1, and Θ > 1.

I. Θ < 0

For Θ to be negative, we require from Eq. (2.16) that η2− ζ2 > 1. Recall that η and ζ are non-negative. We define
new coordinates (a, b) by

η = a cosh

(
b

µ

)
, (3.6a)

ζ = a sinh

(
b

µ

)
, (3.6b)

where a > 1, b ≥ 0. The metric (2.18) becomes

dσ2 =
a2

a2 − 1

[
db2 +

µ2

a2(a2 − 1)
da2 + µ2 sinh2

(
b

µ

)
dΩ2

p − µ2 cosh2

(
b

µ

)
dΩ2

m

]
. (3.7)

Defining c by a = cosec(c/µ) with 0 < c < πµ/2, the metric becomes

dσ2 = sec2

(
c

µ

)(
db2 + dc2 + µ2 sinh2

(
b

µ

)
dΩ2

p − µ2 cosh2

(
b

µ

)
dΩ2

m

)
. (3.8)

II. 0 < Θ ≤ 1

In this regime, η > ζ as previously, but with η2 − ζ2 ≤ 1. We use the same coordinate definitions (3.6), but with
0 ≤ a < 1 and b ≥ 0. The metric is the same as Eq. (3.7). This time, define c = µsech−1(a) with 0 < c <∞, which
gives

dσ2 = cosech2

(
c

µ

)[
−db2 + dc2 − µ2 sinh2

(
b

µ

)
dΩ2

p + µ2 cosh2

(
b

µ

)
dΩ2

m

]
(3.9)

as the metric.
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III. 1 ≤ Θ

In this region of field space, ζ ≥ η. We define coordinates (a, b) by

η = a sinh

(
b

µ

)
, (3.10)

ζ = a cosh

(
b

µ

)
, (3.11)

with domains of a ≥ 0, b ≥ 0. The metric (2.18) in these coordinates is

dσ2 =
a2

1 + a2

[
− µ2

a2(1 + a2)
da2 + db2 − µ2 cosh2

(
b

µ

)
dΩ2

p + µ2 sinh2

(
b

µ

)
dΩ2

m

]
. (3.12)

If we define c = µcosech−1(a) with 0 < c <∞, the metric becomes

dσ2 = sech2

(
c

µ

)[
−db2 + dc2 − µ2 sinh2

(
b

µ

)
dΩ2

p + µ2 cosh2

(
b

µ

)
dΩ2

m

]
. (3.13)

The two cases 0 < Θ ≤ 1 and Θ ≥ 1 are two coordinate patches on the same manifold. We see that the apparent
divergence in the metric (2.18) at η2 − ζ2 = 1 is just a coordinate divergence; it delineates the boundary between
topologically disconnected spaces (Θ > 0 and Θ < 0). We show in Section 4 that only one of these cases is physically
realistic.

4. PHYSICALLY VIABLE MODELS

In this section, we impose the constraint that all kinetic terms in the Einstein conformal frame have the correct
signs, in order to exclude ghosts. This requires that the field space metric have positive definite signature. Of the
field space configurations, only those giving rise to the metrics (3.4) and (3.8) (with M = 1) meet this condition. We
investigate the constraints this imposes on the parameters of the model.

Recall that P is the number of parameters in the set {εT εn, n 6= T} which are positive, and M = N − 1− P is the
number which are negative. The metric (3.4) occurs when P = 0 and M = N − 1. This requires all εn to have the
same sign, except for εT which has the opposite sign. It also requires Θ > 0.

The metric (3.8) occurs with the correct signature when M = 1 and P = N − 2. This requires all εn (including εT )
to have the same sign except for one (not εT ), which has the opposite sign. This metric also requires Θ < 0.

Combining these two cases, we see that all εn (including εT ) must have the same sign except one, which must be
opposite. We now investigate what constraints these requirements impose.

At brane Bn, where the bulk regions n and n+ 1 meet, there are four possible combinations for the parameters Pn
and Pn+1, namely (Pn, Pn+1) = (−,−), (−,+), (+,−) and (+,+). Furthermore, the bulk cosmological constant can
either increase or decrease across the brane. The sign of the brane tension σn and the sign of εn for each of these eight
cases is given in Fig. 2, where the warp factor is plotted for each situation. Below, we refer to these eight possibilities
as cases 1 through 8. We begin by looking at the situation where a single εn is positive (0 ≤ n ≤ N − 1), and then
look at the situation where a single εn is negative.

A. A single brane with εn positive

Recall that Pn is the sign of the slope of the warp factor in Rn. Using P0 = +1 and PN = −1 (which was assumed
in deriving the four-dimensional low-energy action), we need a turning point in the warp factor somewhere in the
progression of branes, which restricts us to either case 2 or case 6. Both of these cases have positive ε, and so we
require that all other εn are negative. Given that if the warp factor turns back upwards after turning downwards, it
would need to turn around again using another case 2 or 6 which would introduce a second positive ε, we see that the
warp factor is only allowed to increase, turn around, and then decrease. The only way to continue increasing with
negative ε is using case 5, and the only way to decrease with negative ε is using case 4. Thus, the progression of cases
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FIG. 2: The behavior of the warp factor at a brane interface in the eight possible configurations. An increasing warp factor
in a region has Pn = +1, while a decreasing warp factor has Pn = −1. In cases 2, 3, 6 and 7, the adjacent bulk cosmological
constants can be equal. The horizontal axis in all plots is the y coordinate.

across the branes must go

5, . . . , 5, (2 or 6), 4, . . . , 4. (4.1)

It is unnecessary to have any branes with case 5 or 4 (the first or last case may be 2/6). Note that cases 2, 4, 5 and
6 all correspond to positive tension branes.

Given the growth and fall of the warp factor, there can only be one brane on which the warp factor is a maximum.
We call this the “central” brane. Choose T to be this brane, such that χ(xa, T ) = 0, and so the warp factor is unity
on the brane where the warp factor is a maximum. With the progression (4.1), εT = +1, and all other εn = −1. We
have P = 0 and M = N − 1, and so we require that Θ > 0 using these field definitions.

We are interested in the sign of Θ, to see if the requirement that Θ > 0 is met for the metric (3.4). As An > 0, it
is sufficient to know the sign of ATΘ. We have

ATΘ = AT −
∑
n 6=T

Ane
χn . (4.2)

Now, given that the warp factor is a maximum on BT and we know that Pn = −1 for n > T , it follows that χn > χn+1

for n > T . Similarly, we have χn < χn+1 for n < T . We now consider the expression for An [Eq. (2.5)] based on
what we know about Pn and kn from the progression (4.1).

AT = 1/kT + 1/kT+1, An = 1/kn − 1/kn+1 (n > T ), An = 1/kn+1 − 1/kn (n < T ) (4.3)

Thus, Θ may be written as

ATΘ =
∑
n≤T
n 6=0

1

kn
(eχn − eχn−1) +

1

k0
eχ0 +

∑
n≥T

n 6=N−1

1

kn+1
(eχn − eχn+1) +

1

kN
eχN−1 . (4.4)

Each term in both sums is positive, and so Θ > 0.

Thus, we see that a situation with all εn parameters negative bar one produces an action with no incorrectly signed
kinetic terms. Furthermore, this choice of parameters requires all the brane tensions to be positive. Finally, the
Ricci scalar in the action has positive coefficient, as εT sgn(Θ) = +1. We investigate the properties of models in this
parameter space in the remainder of this paper.
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B. A single brane with εn negative

Here, the number of possibilities is larger than in the previous case. By using the same logic as above, we find that
the following progressions of cases are the only ways to meet the required conditions:

Option 1: 1, . . . , 1, 5, 1, . . . , 1, (2 or 6), 8, . . . , 8 (4.5a)

Option 2: 1, . . . , 1, (2 or 6), 8, . . . , 8, 4, 8, . . . , 8 (4.5b)

Option 3: 1, . . . , 1, (2 or 6), 8, . . . , 8, (3 or 7), 1, . . . , 1, (2 or 6), 8, . . . , 8 (4.5c)

Each of these cases requires one or more negative tension branes. We consider each of these cases in turn.

Option 1:
Let the one negative εn be εT , corresponding to case 5. One brane will have the maximum warp factor; call this brane
X. Note that X 6= T , as brane T , being case 5, does not have the maximum warp factor. We now have εT = −1, and
all other εn = +1, and so we have P = 0 once again, which requires Θ > 0. Consider the sign of ATΘ. We have

ATΘ = AT −
∑
n6=T

Ane
χn . (4.6)

We can once again calculate An explicitly.

AT = 1/kT+1 − 1/kT , An = 1/kn − 1/kn+1 (0 ≤ n ≤ X − 1, n 6= T ),

AX = 1/kX + 1/kX+1, An = 1/kn+1 − 1/kn (n > X) (4.7)

ATΘ can then be expressed as

ATΘ = − 1

k0
eχ0 −

X∑
n=1

1

kn
(eχn − eχn−1)− 1

kN
eχN−1 −

N−2∑
n=X

1

kn+1
(eχn − eχn+1) . (4.8)

Here, all bracketed terms are positive. Thus, Θ < 0, in contradiction of the requirement that Θ > 0 necessary for this
situation.

Option 2:
This case proceeds in exactly the same manner as Option 1, and we again find Θ < 0, in contradiction of the
requirements for this situation.

Option 3.
This case is a little more complicated. Let T be the one brane with negative ε, corresponding to case 3 or 7. Two
branes will have a local maximum warp factor; let them be L and R (to the left and right of brane T ). Now, consider
ATΘ, which we require to be positive in this situation (as we once again have P = 0).

ATΘ = AT −
∑
n 6=T

Ane
χn . (4.9)

This time, we have

An =
1

kn
− 1

kn+1
, 0 ≤ n < L, T < n < R, An =

1

kn+1
− 1

kn
, L < n < T, R < n,

AL =
1

kL
+

1

kL+1
, AT =

1

kT
+

1

kT+1
, AR =

1

kR
+

1

kR+1
. (4.10)

Combining these, we find

ATΘ = − eχ0

k0
−

L∑
n=1

1

kn
(eχn − eχn−1)−

T−1∑
n=L

1

kn+1
(eχn − eχn+1)

−
R∑

n=T+1

1

kn
(eχn − eχn−1)−

N−1∑
n=R

1

kn+1
(eχn − eχn+1)− eχN−1

kN
. (4.11)

Once again, Θ is negative, and so this configuration also creates a contradiction.
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y
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Bulk 
cosmological 
constants Λ 

χ

FIG. 3: A diagram of the warp factor between branes and the associated bulk cosmological constants (dashed). Branes are
represented as vertical lines. The bulk cosmological constants are negative, while the warp factor lies between 0 and 1.

C. The Effect of Negative Tension Branes

From the above arguments, we see that the only ghost-free configurations are those which do not have any negative
tension branes. This is consistent with the well-known local arguments for the instability of a negative tension brane.
We note that by just using positive tension branes with the assumption that P0 = +1 and PN = −1 (and ignoring
the requirement of the different εn parameters having specific signs), the only possible combination is (4.1), and so it
is the presence of negative tension branes which are giving rise to the instability. Any valid configuration which only
has positive tension branes will not have this instability.

The combination of cases (4.1) provides a rather tight restriction on the progressions of the bulk cosmological
constant which can give rise to physically viable scenarios. Recalling that the bulk cosmological constants are negative,
we require the bulk cosmological constants to increase across the branes monotonically to a maximum, and then
decrease monotonically (see Fig. 3). Note that in the special case where the first (last) brane has the maximum warp
factor, then |Λ| can be monotonically increasing (decreasing).

5. SPECIALIZING TO PHYSICALLY VIABLE CASES

In this section, we specialize to the physically viable cases discussed above, and find a set of variables which simplifies
the action.

A. The Physical Action

We previously found that the only physically viable configuration for the model is the configuration (4.1), in which
the warp factor increases to a maximum, and then decreases again, with all brane tensions positive. We denote by
n = T the index of the brane with the maximum warp factor, and call this brane the “central brane”. Specializing
Eq. (2.14) to these parameters, we find

S[γ̂ab, ψn, φn ] =

∫
d4x
√
−γ̂ 1

2κ2
4

R(4) [γ̂ab]

1−
N−1∑
n=0
n 6=T

ψ2
n

− 6

N−1∑
n=0
n 6=T

(∇̂aψn)(∇̂aψn)


+ ST m

[
γ̂ab , φT

]
+

N−1∑
n=0
n 6=T

Sn m

[
ψ2
n

Bn
γ̂ab, φn

]
. (5.1)

This is the action in the Jordan conformal frame of the central brane.

As P = 0, M = N − 1, the function Θ is now given by

Θ = 1−
N−1∑
n=0
n 6=T

ψ2
n = 1− η2, (5.2)
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and we know that Θ > 0 from the arguments of the previous section. We now follow the field redefinitions (2.15b)
exactly, transforming into spherical polar coordinates. Let (λ1, . . . , λN−2) be angular coordinates such that

ψ0

η
= cos(λ1) = f0 (5.3a)

ψ1

η
= sin(λ1) cos(λ2) = f1 (5.3b)

...

ψT−1

η
= sin(λ1) . . . sin(λT−1) cos(λT ) = fT−1 (5.3c)

ψT+1

η
= sin(λ1) . . . sin(λT ) cos(λT+1) = fT+1 (5.3d)

...

ψN−2

η
= sin(λ1) . . . sin(λN−3) cos(λN−2) = fN−2 (5.3e)

ψN−1

η
= sin(λ1) . . . sin(λN−3) sin(λN−2) = fN−1. (5.3f)

Defining a = µ tanh−1(η) with a > 0 as in Section 3 B, we have our final four-dimensional low-energy action, written
in the Einstein conformal frame, where gab = Θγ̂ab.

S[gab, a, λn, φn ] =

∫
d4x
√
−g

[
R(4)[g]

2κ2
4

− 1

2

(
(∇aa)(∇aa) + µ2 sinh2

(
a

µ

)N−2∑
n=1

{
n−1∏
m=1

sin2(λm)

}
(∇aλn)(∇aλn)

)]

+ ST m

[
cosh2

(
a

µ

)
gab , φT

]
+

N−1∑
n=0
n 6=T

Sn m

[
sinh2

(
a

µ

)
f2
n

B′n
gab, φn

]
(5.4)

In a more convenient notation, the field space metric is

dσ2 = da2 + µ2 sinh2

(
a

µ

)
dΩ2

n, (5.5)

where dΩ2
n = dλ2

1 + sin2(λ1)dλ2
2 + . . . is the metric on the unit N − 2 sphere. This is the metric on hyperbolic space.

The target space will not be all of the quadrant of (N − 1)-dimensional hyperbolic space for which all the field
coordinates are positive, as we have yet to impose the constraint of having no branes intersecting, which was implicit
in the derivation of the action. In the general case, these constraints are

χn < χn+1, n < T, (5.6a)

χn > χn+1, n > T, (5.6b)

where χn is related to ψn by Eq. (2.12).

B. The Effect of One Brane on Another

Given the low energy action (5.4), it is interesting to ask about the effect one brane has on another, depending on
how they are located. To investigate this, we consider two separate scenarios, one with N branes, and one with N + 1
branes, where an extra brane has been added after the last brane in the original scenario. The effect of this extra
brane on η2 is to add an extra term to the sum (5.2). In the scenario with N + 1 branes,

η2 = η2
0 +BN+1e

χN , (5.7)

where η0 is the value of η in the scenario with N branes.
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The continuity of χ(xa, y) across branes requires that

eχN = eχN−1e−2kNdN , (5.8)

where dN is the geodesic distance between the now second last and last (newly added) branes. As exp(χN−1) ≤ 1
(χT = 0 is the maximum χ), this contribution to η2 becomes exponentially small as the distance to the new brane
increases. Looking at Eqs. (5.3), we see that the change to the angular fields is also exponentially suppressed, and
so the contribution of this new brane to the gravitational coupling is exponentially suppressed on all other branes.
We therefore infer that the effect of the position of one brane on another, insofar as that information is coded into
the radion fields, grows exponentially small as the distance between the branes increases. Given that the interbrane
distances must be large compared to the AdS radii of curvature in order to meet the constraint from γ (see Section
6 A), this implies that the physics of a model with a large number of branes will dominated by the central brane and
the nearest brane to it.

6. OBSERVATIONAL CONSTRAINTS

The theories (5.4) that are not ruled out by instabilities contain several massless radion fields, which will mediate
long range forces and give rise to corrections to general relativity. Therefore, these theories will be subject to
constraints arising from Solar System and other tests of general relativity. The nature of these constraints depends
on which brane normal visible matter is assumed to reside. In this section, we investigate the extent to which these
radion fields modify general relativity, and determine the corresponding observational constraints on the parameters
of the theory.

A. Eddington PPN Parameter

The Eddington parameterized post-Newtonian (PPN) parameter γ, which measures deviations from general rela-
tivity, is one of the most tightly constrained numbers from Solar System measurements of gravity. In this section, we
compute this parameter from the action (5.4).

As shown in Ref. [29], for a theory of the form

S[gab,Φ
A, φn ] =

∫
d4x
√
−g
{

1

2κ2
4

R(4)[gab]−
1

2
γAB(ΦC)gab∇aΦA∇bΦB

}
+

N−1∑
n=0

Sn m

[
e2αn(ΦC)gab, φn

]
(6.1)

where ΦA are scalar fields and γAB(ΦC) is the metric on field space, the Eddington PPN γ parameter for observers
on brane n is given by

1− γ =
2 αn 2

0

1 + αn 2
0

(6.2)

where

αn 2
0 =

2

κ2
4

γAB
∂αn
∂ΦA

∂αn
∂ΦB

(6.3)

and γAB is the inverse field space metric. For our theory (5.4), we have ΦA ≡ (a, λ1, . . . , λN−2), the field space metric
is given by Eq. (5.5), and the functions αn are given by Eqs. (5.3) and (5.4).

We calculate γ for each of our branes. On the central brane, we find that

αT 2
0 =

1

3
η2, (6.4)

where η = tanh(a/µ) has been used. As 0 < η < 1, it is possible for αT 2
0 to be sufficiently small on this brane to meet

experimental constraints, which require that [30]

|γ − 1| ≤ 2.3× 10−5. (6.5)
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This constraint implies that the brane which is closest to the central brane must be at least 5 times the bulk curvature
scale away from it (from Eqs. (2.12), (5.2), and Eq. (5.18) in Ref. [28]).

For the other branes, let

p(n) =

{
n, n < T

n− 1, n > T
(6.6)

in order to account for the hole in the sum over the matter actions in Eq. (5.4). For brane n, we calculate αp 2
0 to find

αp 2
0 =

1

3η2

1 + (1− η2)


p∑
j=1

cot2(λj)∏j−1
m=1 sin2(λm)

+ (1− δp,N−2)
tan2(λp+1)∏p
m=1 sin2(λm)


 (6.7)

>
1

3η2
. (6.8)

As 0 < η < 1, none of these branes can give rise to a γ parameter consistent with our observed Universe, and thus
for this type of model not to be observationally excluded requires that we live on the central brane, where the warp
factor is maximized. This implies that models of the form we are considering are unsuitable for explanations of the
hierarchy problem, as no hierarchy can be obtained when considering Standard Model fields to be living on the central
brane. Solving the hierarchy problem requires stabilizing at least some of the radion modes.

B. Dark Matter Limits

One of the motivations behind braneworld models is that the sequestering that occurs between matter on different
branes may provide a natural explanation for the weakness of the coupling between normal matter and dark matter.
Because of the different coupling factors of the metric to matter on different branes, there is a different Newton’s
constant for each brane, as well as different interaction strengths between matter on separate branes. As such,
the Newton’s constant becomes a Newton’s matrix. In this section, we calculate the Newton’s matrix measured by
observers on different branes.

The Newton’s matrix depends on the brane on which the observer resides, since the units in terms of which the
Newton’s constant is measured vary from one brane to another. As the above section constrains normal matter to live
on the central brane, we calculate the Newton’s matrix from the perspective of the central brane. Generalizing the
arguments presented in the appendix of [31], for a theory of the form (6.1), we calculate the elements of the Newton’s
matrix to be

Gmneff =
κ2

4

8π
e2αT

(
1 +

2

κ2
5

γAB
∂αm
ΦA

∂αn
ΦB

)
, (6.9)

where Gmneff measures the strength of the gravitational interaction between matter on brane n and matter on brane
m. Note that for m = n, the quantity in the brackets is 1 + αn 2

0.

When calculating the elements of (6.9), it is again convenient to write the quantities in terms of η = tanh(a/µ).
We also use p(n) (6.6), and similarly define q(m), in order to account for the missing term in the matter action sum
in Eq. (5.4). We find

GTTeff =
κ2

4

8π
e2αT

(
1 +

η2

3

)
, (6.10a)

GTpeff =
κ2

4

8π
e2αT

(
1 +

1

3

)
, (6.10b)

Gppeff =
κ2

4

8π
e2αT

1 +
1

3η2

1 + (1− η2)


p∑
j=1

cot2(λj)∏j−1
k=1 sin2(λk)

+ (1− δp,N−2)
tan2(λp+1)∏p
k=1 sin2(λk)


 , (6.10c)

Gpqeff =
κ2

4

8π
e2αT

1 +
1

3η2

1 + (1− η2)


q∑
j=1

cot2(λj)∏j−1
k=1 sin2(λk)

− 1∏q
k=1 sin2(λk)


 , (6.10d)
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where m 6= n 6= T , and m < n. In all cases, the “1” in the outermost brackets arises from graviton exchange, while
the remaining terms come from the exchange of scalar quanta.

By considering the formation of the Sagittarius tidal streams, Kesden and Kamionkowski [32] have placed limits on
the relative strengths of gravitational interaction between dark matter and normal matter. The constraint is roughly∣∣∣∣∣ GM−DM√

GM−MGDM−DM
− 1

∣∣∣∣∣ . 0.02 (6.11)

where “M” indicates matter, and “DM” indicates dark matter. If we assume that all the dark matter lives on branes
other than the central brane, we can calculate the constraints on our model that this provides, finding that η & 0.8.
This disagrees with the constraint (6.5), which implies η . 6 × 10−3. Thus, this model is unable to explain dark
matter by positing the existence of matter fields on other branes1.

We next consider the possibility that some fraction of the dark matter lives on our (central) brane, and some
fraction lives on other branes. We can then calculate the percentage of dark matter which must reside on the central
brane in order to be compatible with the observational constraints (6.5) and (6.11). On average, a mass M of dark
matter will be composed of a mass αM on our brane, say, and (1 − α)M on other branes. The effective matter to
dark matter coupling strengths will then be

GMM
eff = GTTeff (6.12a)

GDDeff = GTTeff α
2 +Gnneff (1− α)2 +GTneff α(1− α) (6.12b)

GMD
eff = GTTeff α+GTneff (1− α). (6.12c)

For simplicity, we use

Gnneff = Gmneff ∼
κ2

4

8π
e2αT

(
1 +

1

3η2

)
(6.13)

as the “off-brane to off-brane” coupling strength. Combining values for GTTeff , G
Tn
eff and Gnneff with Eqs. (6.12) in the

constraint (6.11) and using η2 ∼ 3.5× 10−5, we find α & 0.998, indicating that the vast majority of the dark matter
must reside on our brane in this simplified model.

7. DISCUSSION AND CONCLUSIONS

We have analyzed the observational constraints on a general five-dimensional braneworld model with arbitrary
numbers of branes and without a radion stabilization mechanism, in the low energy, four-dimensional regime. The
parameter space of such models was restricted by excluding ghost modes, and the phenomenology of the resulting
models was analyzed. For such models to be viable, there is only one brane upon which Standard Model fields
may reside, and such a configuration was unable to provide any benefit for the hierarchy problem, nor a natural
explanation for the weakness of the coupling between normal matter and dark matter by sequestration. The Kaluza-
Klein modes in such a model behave very similarly to the original RS-II model. Our model was not found to be ruled
out experimentally, although observational constraints on the change in the value of GN between nucleosynthesis and
today may do so.

Overall, we found that models with N branes are quantitatively very similar to the two-brane case. Furthermore,
uncompactified and orbifolded models were also found to be very similar, giving rise to identical four-dimensional
low-energy theories.

Our approach to analyzing the five-dimensional model and obtaining a four-dimensional effective theory is straight-
forward and versatile. The general approach of a two length scale expansion is applicable to actions involving different
contributions, such as induced gravity on branes (for example, the DPG model [33]) and Gauss-Bonnet curvature
terms in the bulk. However, to acquire the four-dimensional effective theory for such models would require performing
the analysis of [28] again.

1 Note, however, that if the radion fields are stabilized, then it is possible to circumvent this restriction. As such, we can only rule out
braneworld models with no moduli stabilization as an explanation for the observed weak interaction strength between dark matter and
normal matter.
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Braneworld models such as the ones we have analyzed are often complemented by a radion stabilization mechanism.
Radion stabilization is particularly useful in circumventing the observational constraints that we calculated here, as
massive radion modes will be subject to Yukawa suppression and thus will have suppressed contributions to deviations
in γ. A radion stabilization mechanism may be implemented in the model explicitly by including it in the action,
and the new model analyzed in the two length scale expansion. In the case where a bulk scalar field is used [6, 7],
we expect interactions between the radion modes and the scalar field to give rise to nontrivial dynamics. On the
other hand, if radion stabilization is implemented by hand, such as by giving masses to the ψn fields in Eq. (2.14)
(corresponding to fixing the distance between successive branes), then our analysis will proceed unchanged, although
our calculations of the observational constraints will not apply.

The approach of using a two length scale expansion has been demonstrated to be a useful method for understanding
the low energy theory of braneworld models, as we have shown here in the case of simple N -brane models in a five-
dimensional bulk. We hope that others find the method applicable to a broad range of models.
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Appendices

Appendix A: Results on an Orbifold

In this appendix, we derive the four-dimensional low-energy action of an orbifolded N -brane model, and show that
it is equivalent to the uncompactified model up to the rescaling of parameters.

B0 B1 B2 BN-1B-1B-2B-N+1

y
R-1 R1 R2 RN-1R-2R-N+1

Equivalent by Orbifold

Equivalent by periodic boundary conditions

FIG. 4: Diagram indicating how the branes are labeled in the construction of the orbifolded model. The orbifold symmetry
identifies y with −y, and we impose the periodicity condition of identifying y with y + 2N − 2. To calculate the action, the
model is broken up into 2(N − 1) bulk regions Rn, but regions Rn and R−n coincide by the orbifold symmetry.

We begin by describing the construction of the model. We use the notation established in Ref. [28]. Consider a
model with N branes on an orbifold. The first and last branes are taken to be at the orbifold fixed points. The other
N − 2 branes lie between these two branes on one half of the orbifold, and are duplicated on the other half by the
symmetry. These regions lie on a circle, and so the coordinate describing the extra dimension will be periodic. To
calculate the action for this model, we take there to be 2(N − 1) regions and 2(N − 1) branes. Let the first brane be
labeled by B0, situated at y = 0, where y is the coordinate describing the extra dimension. After gauge specializing,
let there be N − 1 branes located at y = 1, 2, . . . , N − 1. In between the branes, we have N − 1 bulk regions. To
account for the orbifolding, continue the extra dimension in the negative y direction, with another N − 1 branes
located at y = −1,−2, . . . ,−N + 1, with the coordinates y and −y identified. The y coordinate varies from −N + 1
to N − 1, and these endpoints are identified under periodic boundary conditions in y. The branes labeled N − 1 and
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−N + 1 are thus the same brane. Labellings are described in Fig. 4. The action for this model is given by

S
[
gΓΣ , xn Γ, φn

]
=

(
N−1∑
n=1

+

−1∑
n=−N+1

)∫
Rn

d5xn
√
− gn

(
Rn (5)

2κ2
5

− Λn

)
+

N−2∑
n=−N+1

1

κ2
5

∫
Bn

d4wn
√
− hn

(
Kn + + Kn −)

−
N−2∑

n=−N+1

σn

∫
Bn

d4wn
√
− hn + S0 m [ h0 ab, φ

0 ] +
1

2

(
N−1∑
n=1

+

−1∑
n=−N+1

)
Sn m[ hn ab, φn ] (A.1)

The sums over branes which only run to N − 2 are written so because the branes −N + 1 and N − 1 are the same
brane. Note that the brane tensions at the orbifold fixed points are included once only, while the brane tensions on
the other branes are doubly included. This is just a choice of how to describe the brane tensions in the orbifold. The
choice of the factor of 1/2 in the matter actions accounts for the doubling that occurs with the orbifolding.

The procedure described in Ref. [28] may now be followed for each region. We gauge specialize to the straight
gauge, before separating length-scales in the action. Writing the metric in each region as

dsn 2 = e χn (xc
n,yn) γ̂n ab(x

c
n, yn)dxandx

b
n + Φn 2(xcn, yn)dy2

n (A.2)

with det(γ̂) = −1, we can find the equations of motion at lowest order in the separation of length-scales. The
following equations and boundary conditions arise, corresponding to Eqs. (3.12, 3.13, 5.3-5.7) in Ref. [28]. Note that
the equations in regions n and −n are identical, as required by the orbifolding condition:

χn (wcn, n) = χn+1 (wcn, n), (A.3)

2

3
κ2

5σn =
χn ,y

Φn

∣∣∣∣
yn=n

−
χn+1
,y

Φn+1

∣∣∣∣∣
yn+1=n

, (A.4)

γ̂n ab(w
c
n, n) = γ̂n+1

ab(w
c
n, n), (A.5)

1

Φn
γ̂n ab,y(wcn, n) =

1

Φn+1
γ̂n+1
ab,y(wcn, n), (A.6)

0 =
1

4
γ̂n ab γ̂n bc,y γ̂n cd γ̂n da,y − 3 χn 2

,y − 2κ2
5 Φn 2Λn, (A.7)

γ̂n ad,yy = γ̂n ab,y γ̂n bc γ̂n cd,y − γ̂n ad,y

(
2 χn ,y −

Φn ,y

Φn

)
, (A.8)

0 =
1

12
γ̂n ab γ̂n bc,y γ̂n cd γ̂n da,y + χn 2

,y + χn ,yy −
Φn ,y

Φn
χn ,y +

2

3
κ2

5 Φn 2Λn. (A.9)

The boundary conditions at the first and last branes are

0 = γ1 ab,y

∣∣
y1=0+ , (A.10)

0 = γN−1
ab,y

∣∣∣
yN−1=(N−1)−

, (A.11)

−P1
1

3
κ2

5σ0 =
χ1 ,y

Φ1

∣∣∣∣∣
y1=0+

, (A.12)

and

PN−1
1

3
κ2

5σN−1 =
χN−1
,y

ΦN−1

∣∣∣∣∣
yN−1=(N−1)−

. (A.13)

Equation (A.8) should be solved first. The solution (in matrix notation and suppressing indices n) is

γ̂(xa, y) = A(xa) exp

(
B(xa)

∫ y

Φ(xa, y′)e−2χ(xa,y′)dy′
)

(A.14)

where A(xa) and B(xa) are arbitrary 4× 4 matrices such that γ̂ has the properties of a metric. Combining this with
Eqs. (A.5) and (A.6), we see that B is independent of region. The boundary conditions Eqs. (A.10) and (A.11) then
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imply that B = 0 in all regions. Finally, the condition (A.5) then implies that A is independent of region, and so we
can write γ̂n ab(x

c, y) = γ̂ab(x
c) for all regions.

The remaining equations of motion are then solved straightforwardly. Defining

kn =

√
−κ2

5Λn
6

, (A.15)

we find

χn ,y = 2Pnkn Φn (A.16)

and the brane tuning condition

knPn − kn+1Pn+1 =
1

3
κ2

5σn. (A.17)

For the first and last branes, this condition is

k1P1 = − 1

6
κ2

5σ0, (A.18)

kN−1PN−1 =
1

6
κ2

5σN−1. (A.19)

The metric in each bulk region is

dsn 2 = e χn (xc,y)γ̂ab(x
c)dxadxb +

χn 2
,y(xc, y)

4k2
n

dy2. (A.20)

Following the prescription of [28], we now substitute this into the action (A.1) and integrate over the fifth dimension.
The result is

S [γ̂ab,Ψn, φn ] =

∫
d4x
√
−γ̂ 1

2κ2
5

[
N−1∑
n=1

(
eχn

knPn
− eχn−1

knPn

)
R(4) +

3

2

N−1∑
n=1

(
eχn

knPn
(∇χn)2 − eχn−1

knPn
(∇χn−1)2

)]

+

N−1∑
n=0

Sn m[eχn γ̂ab, φn ], (A.21)

where χn(xa) = χn (xa, n).

We now make the following definitions.

An =

∣∣∣∣ 1

knPn
− 1

kn+1Pn+1

∣∣∣∣ (A.22)

A0 =

∣∣∣∣− 1

k1P1

∣∣∣∣ =
1

k1
(A.23)

AN−1 =

∣∣∣∣ 1

kN−1PN−1

∣∣∣∣ =
1

kN−1
(A.24)

εn = sgn

(
1

knPn
− 1

kn+1Pn+1

)
(A.25)

ε0 = sgn(−P1) = −P1 (A.26)

εN−1 = sgn(PN−1) = PN−1 (A.27)

Ψn =
√
Aneχn (A.28)

With these definitions, the action is given by

S [γ̂ab,Ψn, φn ] =

∫
d4x
√
−γ̂ 1

2κ2
5

[
R(4) [γ̂ab]

(
N−1∑
n=0

εnΨ2
n

)
+ 6

N−1∑
n=0

εn(∇aΨn)(∇aΨn)

]
+

N−1∑
n=0

Sn m

[
Ψ2
n

An
γ̂ab, φn

]
.

(A.29)
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This is identical to Eq. (2.8) above except for a factor of two multiplying 1/4κ2
5, which arises from integrating each

region twice rather than once. Otherwise, only the definitions of ε0, A0, εN−1 and AN−1 have changed, which corrects
for the removal of the regions between the first and last branes and infinity in the bulk. Thus, the four-dimensional
low energy action for this model is the same as for the uncompactified case (2.17), although some parameters have
been modified. A special case of the orbifolded model is the two-brane case, the Randall-Sundrum model [3]. In this
case, the action (A.29) reduces to previously known four-dimensional actions [25].

Most of the analysis for the orbifolded scenario is identical to that for the orbifolded scenario. The only place
time when the orbifolded scenario requires a separate analysis is when removing ghost modes. In the orbifolded case,
we again want all εn parameters to have the same sign except for one, which is opposite. Note that we now have
ε0 = sgn(σ0) = −P1 and εN−1 = sgn(σN−1) = PN−1. For the first and last branes, we may only choose whether ε is
positive or negative, while for the intermediary branes, all of the previously discussed cases are possibilities.

For a single positive εn, we need one of the following configurations:

−, 5, . . . , 5, (2 or 6), 4, . . . , 4,−,
+, 4, . . . , 4,−,
−, 5, . . . , 5,+.

For a single negative εn, the options are

−, 1, . . . , 1,+,
+, 8, . . . , 8,−,
+, 8, . . . , 8, (3 or 7), 1, . . . , 1,+.

The analysis of each configuration proceeds exactly as in Sec. 4. We find that we must have a single positive εn, with
all other εn negative. This implies that all branes must be positive tension, with the possible exception of the first and
last branes, which may be negative. Again, the warp factor thus rises to a maximum and then falls again. If the first
brane has the maximum warp factor, it has a positive tension, and similarly for the last brane. The four-dimensional
low energy action specialized to such a configuration is described by (5.4) above.

As the constraints on the Eddington γ factor and the dark matter limits arise only from this action, the constraints
on this orbifolded model are identical to those in the uncompactified model.

In arriving at the four-dimensional low energy action (A.29), we make the same approximations as in Ref. [28],
namely that the separation of length-scales is valid everywhere between the branes. However, we don’t have any issues
with the separation of length-scales breaking down towards infinity in the bulk, and nor do we need to invoke global
hyperbolicity to constrain the behavior of the warp factor outside the collection of branes. Furthermore, the boundary
conditions imposed by the orbifolding ensures that the degree of freedom B is projected out. In these regards, the
orbifolded analysis is more robust than the uncompactified analysis.

Appendix B: Kaluza-Klein Modes

In this appendix, we venture away from the four-dimensional theory to investigate the Kaluza-Klein modes of our
model. The methods and results here mimic the original RS-II model [4] closely.

Consider an uncompactified model with N branes (with brane tensions tuned) and no matter. The solution for the
five-dimensional metric will be

ds2 = eχ(y)ηabdx
adxb + dy2 (B.1)

where χ,y = 2knPn, and χ is continuous. Now consider metric fluctuations of the form

ds2 =
(
eχ(y)ηab + hab(x

c, y)
)
dxadxb + dy2. (B.2)

Decomposing hab into Fourier modes hab(x
c, y) = habψ(y) exp(ipcx

c), where pc is a four-momentum with p2 = −m2,
we find to first order in h (

−1

2
m2e−χ − 1

2

∂2

∂y2
+

1

2
(χ,y)

2
+
χ,yy

2

)
ψ = 0. (B.3)
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Our gauge choice is haa = ∂ahab = 0. Eq. (B.3) is equivalent to Eq. (8) in [4]. As discussed there, the solutions
to this equation are Bessel functions (although here, they must be defined piecewise because of the piecewise nature
of χ). There is a massless graviton mode, which has been integrated to give the four-dimensional effective graviton
in our low-energy theory (5.4), and a continuum of massive Kaluza-Klein graviton modes, which in this paper were
previously truncated.

As in the RS-II model, there is no mass gap. Note that there are no so-called “ultra-light” [10, 11, 34] modes
present in this model, as such modes occur in a model where the mass spectrum is quantized. Although the presence
of extra branes complicates the mathematics, the physical effect of the Kaluza-Klein modes in our model is essentially
the same as in the RS-II model.

In an orbifolded model, the analysis of the Kaluza-Klein modes follows similarly, but the orbifolding condition
implies that the mass spectrum is quantized, and we expect ultra-light modes to be present (see [34] and citations
therein).
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