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A classical thought-experiment to destroy black holes was envisaged byWald in 1974: it consists of
throwing particles with large angular momentum into an extremal black hole, checking whether their
capture can over-spin the black hole past the extremal limit and create a naked singularity. Wald
showed that in the test-particle limit, particles that would be otherwise capable of producing
naked singularities are simply scattered. Recently Jacobson and Sotiriou showed that if one considers
instead a black hole that is almost, but not exactly extremal, then in the absence of backreaction
effects particle capture could indeed over-spin the spacetime above the Kerr limit. Here we analyze
back-reaction effects and show that for some of the trajectories giving rise to naked singularities,
radiative effects can be neglected. However, for these orbits the conservative self-force is important,
and seems to have the right sign to prevent the formation of naked singularities.

PACS numbers: 04.70.Bw, 04.20.Dw

I. INTRODUCTION

The appearance of singularities as solutions of a the-
ory’s field equations often signals the breakdown of that
theory in some regime. In classical electrodynamics, for
instance, the field of a point-like charge (the basic object
of the theory) diverges at the particle’s location. This
singularity can be resolved only within quantum electro-
dynamics. Newton’s theory also exhibits singularities at
the location of point masses, and these singularities re-
main in General Relativity. In 1939, Oppenheimer and
Snyder [1] showed that under the assumption of perfect
spherical symmetry, a sufficiently massive star that runs
out of thermonuclear fuel will undergo indefinite collapse
to a point, where the curvature invariants diverge. In
fact, divergent curvature invariants as the outcome of
collapse are a generic feature of General Relativity, even
in the absence of spherical symmetry, as shown by Pen-
rose in 1965 [2]. It is expected that a quantum theory of
gravity will be able to smoothen and resolve this singular
behavior.

Fortunately, the equations of General Relativity seem
to contain a self-protection mechanism (from the unpre-
dictability of naked singularities), hiding curvature singu-
larities within event horizons and making them invisible
to outside observers and therefore to experiments. This is
known as the “Cosmic Censorship Conjecture”, and was
proposed by Penrose in 1969 [3]. While several counterex-
amples to this conjecture are known, they either rely on
using certain equations of state beyond their range of va-
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lidity (such as the pressureless matter equation of state
used by Ref. [4]1); or they are non-generic in nature (i.e.,
they only happen for very specific sets of initial data: see
Ref. [5]); or they are staged in higher-dimensional space-
times [6]. Therefore, while a general proof of the Cosmic
Censorship Conjecture remains elusive, all existing evi-
dence points at some version of it being true in generic
4-dimensional, asymptotically flat spacetimes [7]. This
is reassuring because it means that a quantum theory of
gravity is not needed to understand the astrophysics of
gravitationally-collapsed objects2, since all curvature sin-
gularities would be cloaked behind an event horizon and
would therefore be inaccessible to external observers.

Because, according to the Cosmic Censorship Conjec-
ture, curvature singularities are generically hidden be-
hind black-hole event horizons, the most natural way to
search for naked singularities is to look for instabilities of
the Kerr geometry, which is the most general stationary
vacuum black-hole solution of Einstein’s equations in a
four-dimensional, asymptotically flat spacetime [9]. At
the linearized level, all existing evidence points to the
stability of the Kerr event horizon3:

(i) the Kerr metric outside the event horizon is pertur-
batively stable against exponentially growing modes of

1 Note that pressureless matter gives rise to shell-crossing singu-
larities even in flat-spacetime evolutions, but these singularities
are unphysical because the pressureless equation of state does
not hold at infinite densities.

2 The only exception is given by Hawking radiation [8]. However,
that is a semiclassical effect, and is too weak to be relevant in
most astrophysical situations.

3 The Cauchy horizon of the Kerr metric, which lies inside the
event horizon, is instead known to be unstable both at the linear
and nonlinear level [10].
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massless fields [11]. The Kerr exterior geometry is un-
stable against massive scalar fields [12–17], but the in-
stability is thought to extract rotational energy from the
geometry, and does not in principle destroy the horizon.

(ii) Because naked singularities appear in the Kerr ge-
ometry when the angular momentum of the spacetime is
above the Kerr bound, i.e. for cJ/GM2 > 1, a simple
gedanken experiment was proposed by Wald [18] to try
to create naked singularities. This consisted of throwing
point particles having large angular momentum into an
extremal Kerr black hole. In the test-particle approxima-
tion (i.e. at the lowest order in the mass of the particle),
Wald finds that particles that would over-spin the ge-
ometry past the Kerr bound are not captured, but are
scattered. This conclusion generalizes to a wide variety
of backgrounds [19].

On the other hand, Kerr spacetimes that present
cJ/GM2 > 1, and which therefore contain naked sin-
gularities, are linearly unstable [20]. Thus, a consistent
picture emerges, suggesting that black holes are stable
and do not give rise to naked singularities.

At the full nonlinear level, all numerical-relativity evo-
lutions of Einstein equations that asymptote to the Kerr
geometry at late times are consistent with this sce-
nario, suggesting stability of the Kerr spacetime [21–
28]. In particular, a possible generalization of Wald’s
process to comparable mass ratios has been studied in
Refs. [21, 22], which considered high-energy collisions
between two comparable-mass non-spinning black holes.
Refs. [21, 22] found no evidence of formation of naked
singularities, because either the black holes are simply
scattered to infinity, or the full nonlinear equations make
the system radiate enough angular momentum to form a
single black hole. (More specifically, for finely tuned im-
pact parameters, the black holes spend a finite amount of
time in zoom-whirl orbits and radiate the excess angular
momentum, eventually being “allowed” to merge.)

Similarly, Abrahams et al. [29] studied the collapse of
axisymmetric tori made of collisionless matter, and found
that tori with cJ/GM2 < 1 (“sub-Kerr” configurations)
collapse to Kerr black holes, while “supra-Kerr” tori with
cJ/GM2 > 1 collapse to new equilibrium configurations.
The collapse of rotating stars has also been investigated
by a number of authors [30–35]. These studies show that
the collapse of sub-Kerr stellar models produces Kerr
black holes, while the collapse of supra-Kerr models does
not give rise to naked singularities. For instance, Ref. [35]
shows that the collapse of a supra-Kerr differentially ro-
tating polytropic star produces a torus, which then frag-
ments in clumps that merge again, forming a bar and
eventually a stable axisymmetric configuration.

Recently however, Jacobson and Sotiriou (JS) [36]
(building on Refs. [37]) have re-considered Wald’s pro-
cess, but using almost extremal black holes, rather than
exactly extremal ones. Surprisingly, JS showed that this
change is enough to allow test-particles with dangerously
large angular momentum to be captured, over-spinning
the black hole and creating naked singularities. How-

ever, the particles considered by JS need to have a finite
mass-energy to overspin the black hole, and in this sense
the situation that they consider is intermediate between
Wald’s original construction for test particles, and the
full nonlinear analysis of Refs. [21, 22] for comparable
masses. Therefore, as acknowledged by JS themselves,
a test-particle analysis such as that of Wald’s gedanken
experiment is likely not adequate for this scenario, be-
cause it neglects the conservative and dissipative self-
force, which may important [38].
Here we expand on our previous Letter [39], and show

that the dissipative self-force (equivalent to radiation re-
action, i.e. the energy and angular momentum losses
through gravitational waves) can prevent the formation
of naked singularities only for some of JS’s orbits. How-
ever, we will show that for all these orbits the conserva-
tive self-force is comparable to the terms giving rise to
naked singularities, and should therefore be taken into
account.
In particular, in Sec. II we review the orbits that JS

identified as giving rise to naked singularities. In Sec. III
we show how to calculate the gravitational-wave fluxes
produced by these orbits, both analytically (Sec. III A)
and numerically (Secs. III B and III C). A comparison
between the analytical and numerical fluxes is presented
in Sec. IV, while in Sec. V we analyze the effect of the
conservative self-force on the JS process. In Sec. VI we
present our conclusions. Hereafter we set G = c = M =
1.

II. THE OVERSPINNING ORBITS OF

JACOBSON & SOTIRIOU

Let us consider a Kerr black hole with spin parameter
a ≡ J/M2 = 1 − 2ǫ2, with ǫ ≪ 1, and a non-spinning
test-particle with energy E, angular momentum L and
mass µ. By adopting suitable length units, we can set the
mass M of the black hole to 1 without loss of generality,
and it therefore follows that in order for the test-particle
approximation to be valid it must be µ ≪ 1 as well as
E ≪ 1 and L≪ 1.
Neglecting the loss of energy and angular momentum

through gravitational waves (which is equivalent to the
so-called dissipative self-force) and the conservative self-
force (i.e., the modifications of the effective potential for
the particle’s motion due to the small but finite mass
ratio of the system), the particle moves on a geodesic
of the background Kerr spacetime. JS then impose (i)
that this geodesic orbit fall into the black hole, and (ii)
that the Kerr black hole be spun up past the extremal
limit when the particle is captured, i.e. that the final
spin aJSf = (a+L)/(1 +E)2 be larger than 1. Condition
(i) implies an upper limit L < Lmax on the angular mo-
mentum, because particles with large angular momenta
are simply scattered, while condition (ii) implies a lower
limit L > Lmin on the angular momentum, because the
particle needs to transfer a sufficient amount of angular
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momentum to the black hole in order to spin it up past
the extremal limit. In particular, one finds

Lmin = 2ǫ2 + 2E + E2 < L < Lmax = (2 + 4ǫ)E . (1)

In order for orbits satisfying both (i) and (ii) to exist,
one has then to impose Lmax > Lmin, which yields

Emin = (2−
√
2)ǫ < E < Emax = (2 +

√
2)ǫ . (2)

This interval is indeed finite when ǫ > 0, while it shrinks
to zero when ǫ = 0 (i.e., when a = 1). This confirms
Wald’s results that an extremal black hole cannot be
spun up past the extremal limit by the capture of test
particles. Lastly, JS noticed that intervals (1) and (2)
contain both bound orbits (i.e. orbits that start with
zero radial velocity at finite radius) and unbound orbits
(i.e. orbits that start from infinity).
Parameterizing the above intervals as

E = Emin + x(Emax − Emin) = Emin + 2x
√
2ǫ (3)

L = Lmin + y(Lmax − Lmin) = Lmin + 8yǫ2(1− x)x (4)

with 0 < x < 1, 0 < y < 1, the final spin is

aJSf =
a+ L

(1 + E)2
= 1 + 8ǫ2(1− x)xy +O(ǫ3) > 1 , (5)

which is indeed larger than 1 by terms that are quadratic
in ǫ. It is clear, however, that the inclusion of the
gravitational-wave losses of energy and angular momen-
tum, Erad and Lrad, can in principle affect JS’s analysis
by changing the prediction (5) for the final spin to

af = 1 + 8ǫ2(1 − x)xy + 2Erad − Lrad +O(ǫ3) . (6)

In order to analyze the magnitudes of Erad and Lrad

relative to the spin-up term in (6), we restrict our at-
tention on unbound orbits,4 and following JS we assume
E/µ ≫ 1 and L/µ ≫ 1 (null orbits) to further simplify
our analysis. These relativistic orbits are characterized
by the impact parameter b = L/E alone. From Eqs. (1)
and (2), it follows that JS’s orbits have L = bE, with

b = 2+4ǫ[1−2x(x−1)(y−1)/(2+
√
2(2x−1))]. Varying

x and y between 0 and 1, one obtains b = 2 + δǫ with
2
√
2 < δ < 4. However, because bph = 2 + 2

√
3ǫ+O(ǫ2)

is the impact parameter of the circular photon orbit (or

“light-ring”), only orbits with 2
√
2 < δ < 2

√
3 are un-

bound.
When δ ≈ 2

√
3, the particle has an impact parameter

very close to that of the light-ring, and therefore orbits

4 As we mentioned, JS also considered bound orbits, falling into
the Kerr black hole from a Boyer-Lindquist radius r = rhor+O(ǫ)
(rhor being the horizon’s radius). However, these orbits pose
a problem, as we will show later, because the distance to the
horizon is comparable to the particle’s minimum attainable size
max(E,µ) & ǫ, so finite-size effects should be taken into account.

around the light-ring many times before plunging into the
black hole. The emission of gravitational waves should
be important for these orbits (because the gravitational-
wave fluxes will be proportional to the number of cycles
at the light-ring), and could prevent the formation of
naked singularities or at least invalidate JS’s analysis. In
fact, for δ arbitrarily close to 2

√
3, the particles would

orbit around the light-ring an arbitrarily large number of
times, and gravitational-wave emission must be impor-
tant [40]. We will show, however, that this is not true
for all of JS’s orbits but only for a subset of them. Nev-
ertheless, we will also show that for all of JS’s orbits,
the conservative self-force is always important and seems
to have the right sign to prevent the formation of naked
singularities.
To estimate the magnitudes of Erad and Lrad, we first

compute the number of cycles Ncycles described by the
relativistic particle at the light-ring using the geodesics
equations. As we have mentioned, Erad and Lrad are ex-
pected to be proportional to Ncycles, because the plunge
from infinity to the light ring and that from the light-ring
to the horizon are not expected to produce significant
amounts of gravitational waves, since they happen on a
dynamical timescale.
The geodesic equations for null equatorial orbits read

(dr/dλ)
2
= Vr(r) , dφ/dλ = Vφ(r) , (7)

Vr(r) = r
[

r3 − 4ab− b2(r − 2) + a2(r + 2)
]

, (8)

Vφ(r) =
[2a+ b(r − 2)]r

a2 + (r − 2)r
, (9)

where λ is a non-affine parameter (dλ = dλaffineE/r
2).

For b = bph(1 − k), with k ≪ ǫ ≪ 1, the radial potential
presents a minimum V min

r at r = rmin:

V min
r ≈ 8kǫ/

√
3 +O(kǫ2) +O(k2) , (10)

rmin ≈ rph − 4k(1 +
√
3ǫ)/3 +O(kǫ2) +O(k2) . (11)

Near this minimum one has

Vr(r)=V
min
r +

1

2
V ′′
r (rmin)(r − rmin)

2+O(r − rmin)
3 (12)

Vφ(r) =
8

3
+

√
3

2ǫ
+O (ǫ) +O (k) +O(r − rmin) , (13)

where V ′′
r (rmin) = 6 +O (ǫ) +O (k). Therefore, we get

dφ

dr
≈
(

8

3
+

√
3

2ǫ

)

[

8√
3
kǫ+ 3(r − rmin)

2

]−1/2

. (14)

Integrating from rmin−∆r1 to rmin+∆r2, with ∆r1,2 ≫
kǫ, the number of cycles near the minimum is

Ncycles ≈
∫ rmin+∆r1

rmin+∆r2

dφ

dr

dr

2π
= [A+B log (kǫ)]

(

8

3
+

√
3

2ǫ

)

(15)
A and B being constants depending on the integration
interval. Fixing ǫ, and thus the black-hole spin, we can
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FIG. 1: The radial evolution with coordinate time, for
geodesics having E = (Emax + Emin)/2 = 2ǫ and L =
bphE(1 − k) with k = µ = 10−5, in Kerr spacetimes with
a = 0.99, 0.994, 0.998 and 0.9998. In particular, r and rH
are the Boyer-Lindquist coordinates of the particle and of the
horizon.

see that Ncycles depends on log k, and diverges when k →
0 [40].
In Sec. IV we will study gravitational-wave emission

numerically for geodesics having E = (Emax+Emin)/2 =
2ǫ, L = bphE(1 − k) with k = µ = 10−5, in Kerr space-
times with a = 0.99, 0.994, 0.998 and 0.9998. In par-
ticular, we integrate these geodesics numerically (using
a 4th order Runge-Kutta integrator with Richardson ex-
trapolation). The Boyer-Lindquist radius a function of
coordinate time is shown in Fig. 1. As can be seen, after
an initial plunge, the orbits show a plateau (correspond-
ing to the particle orbiting at the light-ring) followed by
the final plunge towards the horizon. The time spent at
the light-ring increases with a [cf. Eq. (15)], and the hori-
zon radius is approached in an infinite coordinate time,
in agreement with the analytical behavior pointed out by
Ref. [41]. In order to estimate Ncycles, we count the num-
ber of cycles of these numerically-integrated geodesics
from r = 1.05rph to r = (1.9rph + 0.1rhor)/2 (rph be-
ing the light-ring radius). These values for Ncycles can be
obtained from Eq. (15) with A ≈ 0.620, B ≈ 0.01515, to
within 2.5% (∼ 0.17 cycles).

III. THE GRAVITATIONAL-WAVE FLUXES

A. Analytics

The radiation emitted by point particles on
circular geodesics in the Kerr geometry was
studied semi-analytically by Chrzanowski and
by Chrzanowski & Misner, among others [42–
45]. The original motivation for these investiga-
tions was the possible existence of synchrotron

radiation in the Kerr geometry, a possibility
that was ruled out by these studies. Perform-
ing a WKB analysis of the Teukolsky equation,
Chrzanowski [42] and Chrzanowski & Misner [43]
concluded that the energy flux by a particle on
the innermost stable circular orbit (ISCO) is sup-
pressed as the geometry approaches the extremal
Kerr geometry. In particular, they found that the
flux and therefore the total energy radiated by a
particle with mass µ scales as

E1 ∼ (r − rH)µ2 , (16)

where the orbital radius r approaches the horizon
radius rH in the extremal limit (because rISCO =
rH for a = 1, cf. Ref. [46]).
This suppression of the energy flux in the ex-

tremal Kerr limit is common to other massless
fields, like scalar or electromagnetic fields [42–
44]. A possible interpretation for this behavior
was put forward by Breuer [44], who argues that
in the a → 1 limit, a particle close to the ISCO
approaches a principal null direction of the Kerr
geometry, for which tidal and radiation effects are
strongly suppressed [47, 48].
Alternatively, Eq. (16) can be derived from di-

mensional arguments, which suggest that dE/dτ ∼
µ2 [τ being the particle’s proper time; see also
Eq. (41)], with the factor (r− rH) coming from the
gravitational redshift at the ISCO. In fact, for al-
most extremal black holes the ISCO is very close
to the horizon, and for near-horizon orbits one
has dt/dτ ∼ rH/(r − rH) [41]. This second deriva-
tion suggests that the scaling (16) should be valid
also for the fluxes falling into the black-hole hori-
zon, and not only for the fluxes at infinity stud-
ied by Refs. [42–44]. In fact, Kesden [45] has re-
cently revisited the problem of studying the grav-
itational emission by a particle on the ISCO of a
Kerr spacetime. He used the frequency-domain
Teukolsky code GREMLIN [49], which can calcu-
late both the fluxes at infinity and those falling
into the horizon, and confirmed that the scal-
ing (16) holds not only for the outgoing fluxes but
also for the total ones.
Because the ISCO approaches the light ring in

an almost extremal Kerr spacetime (the ISCO,
light-ring and horizon actually coincide in the ex-
tremal case [46]), it should be possible to use the
Eq. (16) to infer the scaling of the gravitational
radiation emitted by a photon at the light-ring.
The same scaling will then hold also for ultra-
relativistic particles (i.e. ones with E/µ ≫ 1)
that orbit near the light-ring many times, such
as those in which we are interested in this paper
(cf. Sec II). This is because any null geodesic
(in a generic geometry) can be obtained as the
limit of a series of timelike geodesics for which the
particle’s 4-momentum is kept finite and the par-
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ticle’s rest-mass goes to zero. [More intuitively,
this amounts to saying that in General Relativity
the (unbound) orbits of a neutrino, which has a
small but non-zero mass, are very similar to those
of a photon.]
Therefore, in order to take the null-geodesic

limit of Eq. (16), we first have to rexpress it in
terms of the energy E of the (massive) particle at
the ISCO. Because for such a particle E ∼ µ, we
can recast Eq. (16) in the form

E1 ∼ (r − rH)E2 . (17)

Because when a → 1 the ISCO radius approaches
the light-ring, this scaling must be also valid for a
particle on an unstable circular orbit (such orbits
exist between the ISCO and the light-ring [50]).
The energy of the unstable circular orbits be-
comes positive near the light-ring (more specif-
ically, it is positive for orbits with radius rph <
r < rmb, where rmb is the radius of the marginally
bound circular orbit [50]). We can then take a
series of unstable circular orbits with constant
positive energy E and with radius approaching
the light-ring. The rest-mass of these orbits will
clearly go to zero as r → rph, because the specific

energy E/µ must diverge at the light-ring [50].
Therefore, this series of timelike geodesics satis-
fies the conditions, outlined above, necessary to
approach a null geodesics. This null geodesics will
of course be a circular orbit at the light-ring with
the same energy E as the sequence of unstable
circular orbits that we have just mentioned, and
its flux must too be described by the scaling (17).
We stress that this result makes sense physi-

cally because in General Relativity it is the en-
ergy and not the rest-mass that gravitates. In
fact, a more direct derivation of Eq. (17) for a pho-
ton at the light-ring should be possible by solving
the Teukolsky equations using the stress-energy
tensor for a photon, which is

T µν
ph (x) =

∫

pµ(λ)pν(λ)
δ(4)(x− z(λ))

(−g)1/2 dλ (18)

where z(λ) is the wordline and pµ = dzµ/dλ is the
4-momentum. (See for instance Ref. [51] for a
derivation of the stress enery tensor of the elec-
tromagnetic field in the geometric-optics limit.)
Clearly, T µν

ph is non-zero despite the mass of the
photon being zero, because the photon does have
an energy, which curves the geometry. Of course,
T µν
ph agrees with the stress-energy tensor of mas-

sive particle [cf. Eq. (19.3) of Ref. [52]], when
the mass is sent to zero keeping the 4-momentum
finite.
Assuming then the validity of Eq. (17) for ul-

trarelativistic orbits and for photons as a working
hypothesis, to be confirmed numerically later in

this paper, we can explore its consequences for
the JS orbits considered in the previous section.
For those orbits, E ∼ r − rH ∼ ǫ and we therefore
expect

E1 ∼ ǫ3 . (19)

Also, we can now derive the behavior of the to-
tal radiated energy for high-energy plunges with
near-critical impact parameter. Because for these
orbits the particle spends most of its time on almost cir-
cular orbits at the light ring, one can write

Erad = ∆E(ǫ)×Ncycles , Lrad = ∆L(ǫ)×Ncycles , (20)

where ∆E and ∆L are the fluxes in a single orbit. From
a frequency-domain analysis, ∆E/∆L must equal the

light-ring frequency, Ωph ≈ 1/2− (
√
3/2)ǫ, hence

∆E(ǫ) = E1(ǫ)(1 + e2ǫ) , (21)

∆L(ǫ) = 2E1(ǫ)[1 + (
√
3 + e2)ǫ] . (22)

Here e2 is an undetermined coefficient.

B. Numerics

The Teukolsky master equation describes scalar, vector
and tensor field perturbations in the space-time of Kerr
black holes [53]. In Boyer-Lindquist coordinates, this
equation takes the form

−
[

(r2 + a2)2

∆
− a2 sin2 θ

]

∂ttΨ− 4ar

∆
∂tφΨ

−2s

[

r − r2 − a2

∆
+ ia cos θ

]

∂tΨ

+∆−s∂r
(

∆s+1∂rΨ
)

+
1

sin θ
∂θ (sin θ∂θΨ) +

[

1

sin2 θ
− a2

∆

]

∂φφΨ+ 2s

[

a(r − 1)

∆
+
i cos θ

sin2 θ

]

∂φΨ

−
(

s2 cot2 θ − s
)

Ψ = −4π(r2 + a2 cos2 θ)T, (23)

where ∆ = r2 − 2r + a2 and s is the “spin weight” of
the field. The s = −2 version of this equation describes
the evolution of the Weyl scalar ψ4 = Ψ/(r − ia cos θ)4

that characterizes the outgoing gravitational radiation.
This is sufficient for the present work, because in order
to determine the final spin af one only needs to account
for the gravitational-wave radiation that leaves the bi-
nary system, while the fluxes emitted by the particle into
the black-hole horizon (“ingoing fluxes”) cancel out when
computing the total angular momentum and energy and
therefore do not affect the final spin parameter.5

5 It is conceivably possible, however, that the ingoing fluxes might
overspin the black hole and possibly create a naked singularity
before the particle is captured. We will comment on this effect
in Sec. IV.
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Computing the radiative energy and angular momen-
tum loss is fairly straightforward from Ψ. More specif-
ically, we use the following expressions for the radiated
energy and angular momentum fluxes

dE

dt
= lim

r→∞

{

1

4πr6

∫

Ω

dΩ

∣

∣

∣

∣

∫ t

−∞

dt̃Ψ(t̃, r, θ, ϕ)

∣

∣

∣

∣

2
}

dLz

dt
= − lim

r→∞

{

1

4πr6
Re

[
∫

Ω

dΩ

(

∂ϕ

∫ t

−∞

dt̃Ψ(t̃, r, θ, ϕ)

)

×
(

∫ t

−∞

dt′
∫ t′

−∞

dt̃ Ψ̄(t̃, r, θ, ϕ)

)]}

. (24)

The variable T on the right hand side of Eq. (23) is a
point-particle source-term constructed from the energy-
momentum tensor describing a particle moving in a Kerr
spacetime. The particle energy-momentum tensor has
the form

Tαβ = µ
uαuβ

Σṫ sin θ
δ [r − r(t)] δ [θ − θ(t)] δ [φ− φ(t)] .(25)

where uα is the 4-velocity of the particle. It is note-
worthy that ṫ ≡ dt/dτ appears in the denominator of
this expression. As the particle approaches the horizon,
ṫ → ∞, which is just the well-known “infinite redshift”
effect at the horizon of a black hole. Thus the particle
source-term smoothly “redshifts away” as the particle ap-
proaches the horizon, therefore allowing the Teukolsky
equation to gradually transition into its homogeneous
form. This smoothly and naturally connects the grav-
itational radiation from the last few orbital cycles to the
black hole’s quasi-normal modes.
To solve Eq. (23) numerically in time-domain we take

the approach first introduced by Krivan et al. in Ref. [54].
Our code that solves the Teukolsky equation uses the
same approach, therefore the contents of this section are
largely a review of the work presented in the relevant
literature.
Our time-domain code uses the tortoise coordinate r∗

in the radial direction and azimuthal coordinate φ̃. These
coordinates are much better suited for performing nu-
merical evolutions, as detailed in Ref. [54]. They are re-
lated to the usual Boyer-Lindquist coordinates through
the equations,

dr∗ =
r2 + a2

∆
dr (26)

and

dφ̃ = dφ +
a

∆
dr . (27)

Following Ref. [54], we factor out the azimuthal depen-
dence by using the m-mode decomposition,

Ψ(t, r∗, θ, φ̃) = eimφ̃r3Φ(t, r∗, θ). (28)

Defining

Π ≡ ∂tΦ+ b ∂r∗Φ , (29)

b ≡ r2 + a2

Σ
, (30)

where

Σ2 ≡ (r2 + a2)2 − a2∆ sin2 θ (31)

allows the Teukolsky equation to be rewritten in first-
order form

∂tu+M∂r∗u+Lu+Au = T , (32)

where

u ≡ {ΦR,ΦI ,ΠR,ΠI} (33)

is the solution vector. The subscripts R and I refer to
the real and imaginary parts respectively (recall that the
Teukolsky function Ψ is a complex valued quantity). Ex-
plicit forms for the matrices M , A and L can be easily
found in the relevant literature [54].
Lastly, an explicit time-evolution numerical scheme is

developed for this first-order, linear PDE system using
the two-step, 2nd-order Lax-Wendroff finite-difference
method. Explicit details on this approach can be found
in Ref. [54]. Symmetries of the spheroidal harmonics are
used to determine the angular boundary conditions: For
even |m| modes, we have ∂θΦ = 0 at θ = 0, π while Φ = 0
at θ = 0, π for modes of odd |m|. We set Φ and Π to zero
on the inner and outer radial boundaries.
One major challenge in numerically solving Eq. (23)

is representing a point-like particle source on a numeri-
cal grid. There are multiple approaches towards tackling
this problem, such as representing the particle as a nar-
row Gaussian distribution [55] or taking a more efficient
“discrete Dirac-delta” approach as presented in Ref. [56].
One observation that we make specific to this work is that
for near-extremal black holes in Boyer-Lindquist coordi-
nates, the particle’s orbit, the light-ring and the hori-
zon are extremely close, therefore we modeled the point-
particle to have a fixed width in the tortoise coordinate
r∗ as opposed to r. This allows our code to resolve these
distinct regions, because they are relatively widely sep-
arated in r∗. To test that our entire numerical scheme
is working properly we performed extensive convergence
tests on the data generated by our code, especially for
the near-extremal Kerr hole cases. For these convergence
tests, we kept the ratio of the particle’s width to grid
spacing constant i.e. upon doubling grid-density we con-
sistently halved the particle width. Sample convergence
results for the a = 0.9998 and mode m = 2 case are pre-
sented in Fig. 2. We observe a convergence rate that is
extremely close to the expected 2nd-order convergence.
One possible complication in our analysis comes from

the fact that the convergence rate is actually slightly
faster than the theoretical 2nd-order convergence, as can
be seen from Fig. 2. This makes a Richardson extrapo-
lation to further reduce discretization errors difficult to
implement (because one should account for the changes
of the convergence rate along the trajectory in order to
obtain an accurate result). Therefore, we simply decide
to decrease the grid spacing and particle’s width until
our numerical results change by no more than 0.5%. The
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FIG. 2: Demonstration of our time-domain Teukolsky code’s
convergence-rate, for a a = 0.9998 and m = 2.

final grid spacing that we use in this work is 1/100 in the
r∗-coordinate and 0.02 radians in the θ-grid, and we use
1/500 as the time-step. We also verify a posteriori that
our numerical errors are less than 0.5% by checking that
the ratio ∆E/∆L coincides with the light-ring frequency
to within 0.35%.

Our code that implements this numerical scheme is
a Fortran-code that is fully parallelized to execute effi-
ciently on a computer cluster. The parallelization ap-
proach taken is the standard domain-decomposition ap-
proach (on the radial-coordinate numerical grid) with
message-passing enabled using OpenMPI. Good scaling
has been observed for several hundred processor-cores.
In this current work, we made use of 200 processor-cores
for computing each m-mode for every case that we stud-
ied.

C. Summing over m-modes

As noted above, our evolution code evolves each m-mode
separately. Therefore, we obtain the fluxes and radiated
energy and angular momentum for eachm-mode through
distinct and separate numerical simulations. In order to
compute the total radiated quantities, we would need to
perform a sum over the results obtained from these differ-
ent simulations. However, for higherm-modes it becomes
increasingly difficult to perform accurate numerical com-
putations mainly due to the requirement of significantly
higher resolution (higher m-modes involve higher values
of ℓ that require higher angular grid resolution for ac-
curate representation; there is also a Courant condition
that requires us to reduce the time-step with higher an-
gular resolution, thus making the computation even more
demanding). Therefore, we use an alternative approach
to estimate the radiated quantities from m-modes higher
than m = 10. For the case of circular and equatorial

orbits, Finn & Thorne [57] show that

Ėm =
2(m+ 1)(m+ 2)(2m+ 1)!m2m+1

(m− 1)[2mm! (2m+ 1)!!]2
η2Ω̃2+2m/3 Ė∞m

(34)

where Ω̃ in Eq. (34) is the Keplerian angular frequency

of the orbit i.e. Ω̃2/3 = 1/r.
Because the gravitational-wave fluxes for JS orbits are

produced, for the most part, during the quasi-circular
equatorial cycles at the light-ring, our numerically calcu-
lated fluxes should satisfy this scaling, and in particular
they should be in a geometric progression for large values
of m, because Eq. 34 implies Ėm+1/Ėm −→ constant for
m ≫ 1. We have indeed verified that this is the case,
i.e. we have checked that Ėm+1/Ėm and L̇m+1/L̇m are
constant to within 0.5% already for m & 9.
This behavior allows us to reconstruct the total fluxes

in the following way: (1) We use our Teukolsky evolution
code described above to compute the fluxes and the radi-
ated quantities form-modes up tom = 10; (2) We use the
fluxes calculated for m = 9 and m = 10 to estimate the
ratio entering the geometric progression described above
and thus obtain an estimate of the contribution from the
higher m-modes; (3) We finally add in this estimate to
the explicitly computed values in step (1) and thus ob-
tain the total radiated amount for both the energy and
the angular momentum.
We stress that while the fluxes summed up to m = 10

are accurate at least to within 0.5% (cf. discussion in
the previous section), the procedure that we have just
described introduces larger errors into the total fluxes.
For the orbits that we consider in this paper, the asymp-
totic ratios Ėm+1/Ėm and L̇m+1/L̇m grow from 0.928
for a = 0.99 to 0.94 for a = 0.9998. Since the sum
of a geometric series is proportional to 1/(1 − r), r be-
ing the asymptotic ratio, a 0.5% error in estimating r
would lead to a ∼8% error in the sum of the fluxes with
m > 10. This propagates into a significant error in the to-
tal fluxes, because for relativistic plunging orbits around
almost-extremal Kerr black holes such as those that we
are considering in this paper, the contribution of the large
multipole moments to the total fluxes decays slowly with
m. In particular, because the contribution of the fluxes
with m > 10 grows from 1.25 times the contribution of
the fluxes with m = 0− 10 for a = 0.99, up to 1.7 times
for a = 0.9998, we estimate the error of our total fluxes
to be . 5%.

IV. COMPARING THE ANALYTICAL AND

NUMERICAL GRAVITATIONAL-WAVE FLUXES

In our previous Letter [39], we considered black holes
with a = 0.99, 0.992, 0.994, 0.996, 0.998, 0.999 and
0.9998, and geodesics having E = (Emax+Emin)/2 = 2ǫ,
L = bphE(1 − k) with k = 10−5, and µ = 0.001. Using
the time-domain Teukolsky code that we described in
Sec. III B, we verified that the theoretical scaling given
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by Eqs. (19)-(22) works well for a < 0.999, but predicts
fluxes that are too large for a = 0.999 and a = 0.9998.
More specifically, for a < 0.999 the deviations of the
numerical results from the theoretical scaling are about
1− 3% and therefore comparable to the errors discussed
in Sec. III B. However, for a = 0.999 and a = 0.9998 the
fluxes predicted by Eqs. (19)-(22) are respectively 12%
and 84% larger than the numerical ones.

Because our Letter [39] was only concerned about
whether the gravitational-wave fluxes could prevent
naked singularities from forming, this discrepancy did
not affect our conclusions. In particular, it reinforced our
finding that there are orbits giving rise to naked singular-
ities even when radiation reaction is taken into account.
In this section, however, we will investigate the origin of
this discrepancy between our theoretical scaling and our
numerical results.

First, let us note that a crucial assumption in the
derivation of the scaling (19)-(22) is that the orbits be
relativistic. In fact, only under that assumption we can
expect the fluxes to depend only on the energy E (and
therefore on ǫ) and not on the rest mass µ. However,
because the orbits considered in Ref. [39] have energy
E = (Emax+Emin)/2 = 2ǫ and mass µ = 10−3, the ratio
E/µ is ∼ 22 for a = 0.999 and 10 for a = 0.9998. There-
fore, a possible explanation for the disagreement between
our analytical and numerical results is that the orbits
that we considered are simply not relativistic enough.
In order to test this hypothesis, we have tried produc-
ing orbits that have exactly the same energy and an-
gular momentum as those considered in Ref. [39], but
which have different rest mass. More specifically, we
have considered black holes with a = 0.99, 0.992, 0.994,
0.996, 0.998, 0.999 and 0.9998, and geodesics having
E = (Emax + Emin)/2 = 2ǫ, L = bphE(1 − k) with
k = µ = 10−5. If the orbits with µ = 10−3 were al-
ready sufficiently relativistic to satisfy the scaling (19)-
(22), then their fluxes should coincide, to within the nu-
merical errors, with those of the orbits with µ = 10−5,
since the two set of orbits have exactly the same energies
and angular momenta.

In Fig. 3 we therefore show the fractional difference be-
tween the energy fluxes (in a single orbit at the light ring)
for the two sets of orbits. In particular, we have calcu-
lated this difference both for the total fluxes (obtained by
summing over all multipole moments m as described in
Sec. III C) and for the “partial” fluxes obtained by sum-
ming up to m = 10. As can be seen the difference is less
than 0.5% for a < 0.999, is about 1% for a = 0.999 and
grows to ∼10% for a = 0.9998, thus suggesting that at
least in this last case the orbit with µ = 10−3 is not suf-
ficiently relativistic. As a further confirmation, we have
produced numerical fluxes for a particle moving in a Kerr
spacetime with a = 0.9998, and having the same energy
and angular momentum as the previous orbits but rest
mass µ = 10−7. As can be seen from Fig. 3, this or-
bit gives fluxes that agree with those produced for the
µ = 10−5 orbit to within less than 0.1%.

This test confirms that orbits with µ = 10−5 are suffi-
ciently relativistic for the scaling (19)-(22) to hold. How-
ever, although using these orbits improves the agreement
with the expected scaling, the deviations remain as large
as 5% for a = 0.999 and 70% for a = 0.9998. In fact,
a careful analysis of the convergence of all our numeri-
cal fluxes with respect to the grid spacing and particle’s
width revealed that the modes with m & 8 did not com-
pletely converge in the case of the orbits around black
holes with a = 0.999 and a = 0.9998 considered in our
previous work [39]. This convergence error was then am-
plified by the procedure that we use to reconstruct the
contribution of the large-m modes. (As we discussed in
Sec. III C, this procedure is very sensitive to the numer-
ical results for m = 9 and m = 10.)

The resolution that we used was instead sufficient in
the case of the other multipole moments for a = 0.999
and a = 0.9998, and for all the multipole moments at
lower spins. Indeed, it is not surprising that this prob-
lem affected only the high-m modes for spins very close
to 1. When a ∼ 1, the frequency of the light-ring be-
comes very close to that of the horizon, and so does the
radius (in Boyer-Lindquist coordinates). It is therefore
necessary, as already mentioned in Sec. III B, to use a
very high resolution in the near-horizon region to calcu-
late the fluxes accurately for m ≫ 1 (because large m’s
correspond to small lengthscales).

In order to amend this problem, we focused on just
four orbits – namely orbits around black holes with a =
0.99, 0.994, 0.998 and 0.9998, and having E = (Emax +
Emin)/2 = 2ǫ, L = bphE(1− k) with k = µ = 10−5 – but
calculated the fluxes with very high grid resolution and
small particle’s width. More specifically, as explained in
Sec. III B, we estimated the error connected to the finite
grid resolution and particle’s width to be less than 0.5%,
and the error due to the reconstruction of the large-m
modes to be less than 5%.

As discussed in Sec. II, the number of cycles described
by these orbits at the light ring is reproduced by Eq. (15)
with A ≈ 0.620 and B ≈ 0.01515 to within 2.5%. As-
suming then E1 = e1ǫ

n, we fit the numerical energy and
angular-momentum fluxes with Eqs. (20)-(22), obtaining
n ≈ 2.95. Because this value is very close to the theo-
retical value n = 3 [cf. Eq. (19)], we then assume n = 3
and fit the data with only two free parameters, e1 and
e2, obtaining e1 = 233.72 and e2 = −5.83.6 With these

6 This value of e1, which represents the overall normalization of
the fluxes emitted in a single orbit, is significantly different from
that reported in Ref. [39]. This is due to the different ways of
calculating the number of orbits Ncycles at the light ring that
we used in this paper and in Ref. [39]. In Ref. [39], we defined
Ncycles as the number of cycles between r = 1.05rph and r =
(rph + rhor)/2, while here we decided to bracket the light ring
more closely and considered the number of cycles between r =
1.05rph and r = (1.9rph +0.1rhor)/2. These different definitions
are also the reason why the values of A and B that we report in
this paper are significantly different from those of Ref. [39].
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FIG. 3: Fractional difference between the energy fluxes emit-
ted in a single orbit at the light ring for µ = 10−3 and
µ = 10−5 (filled symbols), and for µ = 10−7 and µ = 10−5

(empty symbols). The fluxes are obtained by summing over
all multipole moments (“total” fluxes, represented by squares)
using the prescription outlined in Sec. IIIC, or by summing
only up to m = 10 (fluxes “up to m = 10”, represented by
circles).

values, Eqs. (19)-(22) reproduce the numerical data with
residuals . 4%. As discussed in Secs. III B and III C,
these residuals are comparable to the errors affecting our
total fluxes, thus confirming our expected scaling.
Utilizing Eq. (6), it is now straightforward to deter-

mine the consequences of this scaling for the final spin
af . From Eqs. (20)–(22), we obtain

Lrad − 2Erad = 2
√
3ǫE1Ncycles , (35)

which implies in particular Lrad − 2Erad > 0, i.e. the
fluxes tend to decrease the final spin. Moreover, using
expression (15) for Ncycles and expression (19) for E1,
we obtain that Lrad − 2Erad ∼ ǫ3 log(kǫ). Comparing
this scaling with the “overspinning” term 8ǫ2(1 − x)xy
in Eq. (6), it is clear that if k is kept constant and ǫ is
sent to 0 (i.e., if one considers initial spins larger than
some critical value acrit), the effect of the fluxes eventu-
ally becomes subdominant relative to the “overspinning”
term. In other words, the fluxes tend to decrease the fi-
nal spin af , but their effect is not sufficient to prevent
the formation of naked singularities if the initial spin is
sufficiently close to 1. Our numerical results confirm this
picture, as can be seen from Table I, where we show the
initial spin a, the final spin aJSf as computed by JS (i.e.,

without including the effect of the fluxes), and the fi-
nal spin af , taking into account radiation reaction. As
can be seen, for the orbits that we consider af > 1 al-
ready for a = 0.9998, and therefore the critical spin
mentioned above is acrit ≈ 0.9998 (corresponding
to ǫ ≈ 0.01 [39]).
Finally, let us further comment on the effect of the

ingoing fluxes. As already mentioned in Sec. III B, the

a 0.99 0.994 0.998 0.9998

af 0.886 0.963 0.997 1.00004

aJS
f 1.0043 1.0026 1.0009 1.00009

TABLE I: Initial and final black-hole spin after absorbing a
relativistic particle with energy E =

√

2(1− a) and angular
momentum L = bphE(1− 10−5), neglecting conservative self-
force effects, but not radiation reaction. We also show the
final spin without radiation reaction (aJS

f ) predicted by JS.

ingoing fluxes do not affect the final spin, which only de-
pends on the energy and angular momentum that leave
the binary system. However, the energy and angular mo-
mentum fluxes falling into the horizon might in principle
spin the black hole up and even create a naked singularity
before the particle is captured.
Because our code only calculates the outgoing fluxes,

we cannot test this conjecture explicitly. However, we
can notice that the analytic derivation of our scaling for
the fluxes [Eqs. (19)–(22)] applies both to the outgoing
and ingoing fluxes, because nowhere in the derivation we
make use of the fluxes being ingoing or outgoing. (Also,
as already stressed, Ref. [45] found that the scal-
ing (16) from which we start holds not only for the
outgoing fluxes but also for the total ones). Be-
cause we have validated our scaling [Eqs. (19)–(22)] by
comparing it to numerical results for the outgoing fluxes,
we can now use it to assess the effect of the ingoing ones.
In particular, the spin of the black hole before the particle
is captured is given by

a′ = 1− 2ǫ2 + Lrad,in − 2Erad,in =

1− 2ǫ2 + 2
√
3ǫEin

1 Ncycles , (36)

where we have used Eqs. (20)–(22) to estimate the ingo-
ing fluxes Erad,in and Lrad,in. Using expressions (19) for
Ein

1 and (15) for Ncycles, we obtain Lrad,in − 2Erad,in ∼
ǫ3 log(kǫ). As for the outgoing fluxes, this scaling shows
that for fixed k the ingoing fluxes are negligible with re-
spect to the term 2ǫ2 in Eq. (36), if the initial spin is
sufficiently large. In other words, if the initial spin is
larger than some critical value a′crit, no naked singular-
ity can form before the particle is captured. However,
if a < a′crit, the effect of the ingoing fluxes is dominant
over the term quadratic in ǫ. The exact value of a′crit
will depend on the normalization of the ingoing fluxes
Erad,in and Lrad,in. However, since the ingoing fluxes
are expected to be comparable to the outgoing ones –
because the fluxes for JS orbits are produced when the
particle sits at the light-ring, which roughly corresponds
to the maximum of the effective potential for gravita-
tional waves – a′crit should be similar to the critical spin
acrit ≈ 0.9998 (corresponding to ǫ ≈ 0.01 [39]) rele-
vant for the outgoing fluxes.
Even more worryingly, the ingoing energy flux Ein

1

must be positive. This is because the ingoing energy
flux can be negative only in the superradiant regime,
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which would require that the particle’s orbital frequency
be smaller than the horizon frequency. Since Ωph ≈
1/2 − (

√
3/2)ǫ is larger than the horizon’s frequency

Ωhor ≈ 1/2−ǫ, it must be Ein
1 > 0, which implies that the

intermediate spin (36) is larger than the initial spin. In
particular, for a < a′crit, the ingoing fluxes would overspin
the black hole past the extremal limit and create a naked
singularity before the particle is captured. We will see in
the next section how the conservative self-force provides
a mechanism which has the correct order of magnitude
and (possibly) the right sign to prevent both the forma-
tion of naked singularities due to the ingoing fluxes (for
a < a′crit), and the formation of naked singularities due
to the particle’s capture (for a > a′crit).

A. Suppressing dissipative effects with a ring of

particles

The above analysis shows that dissipative effects are
not sufficiently strong to invalidate JS analysis. In fact,
there is another simple argument indicating that dissi-
pative effects can almost be neglected. Ours and JS’s
analysis considered a test particle of energy E, rest-mass
µ and angular momentum L. Take now instead N par-
ticles each of energy E/N , rest-mass µ/N and angular
momentum L/N . Throw these N particles separated by
2π/N radians along the equator. JS calculation proceeds
in exactly the same way, and the same results will be ob-
tained. However, radiation effects will be suppressed. In
fact, when N → ∞, radiation should be suppressed com-
pletely. The reason is that the ring can be thought of as
a sum of point particles, and the fluxes result from the
interference between the gravitational waveforms from
all the particles. Generically, this interference always re-
duces the energy output relatively to a single particle
[58–61].

In fact, for rings with angular momentum close to the
critical one, most of the radiation is emitted in a quasi-
circular orbit, as we have argued before. Because the con-
tribution from particles in circular orbits has terms of the
form δ(ω −mΩ) and because m = 0 for a ring, then the
radiation in the circular regime is actually totally sup-
pressed. This has been verified numerically by a number
of authors. For trajectories plunging into a Schwarzschild
black hole Oohara and Nakamura found that radiation is
suppressed as the angular momentum of the ring is in-
creased [61], while Kojima and Nakamura found similar
results for plunging rings into rotating black holes [60].

Thus, the construction of a ring of JS-like particles
is able to suppress radiation, while violating the Cos-
mic Censorship Conjecture, just like in the original JS
analysis. This is our final argument showing why dis-
sipative effects can not prevent naked singularities from
forming in this scenario, and that instead conservative
effects must be taken into account.

V. THE CONSERVATIVE SELF-FORCE

In the previous section, we have shown that the radi-
ation reaction can prevent the formation of naked singu-
larities only for some of the JS orbits. More specifically,
the final spin af , which includes the effect of the radi-
ated energy and angular momentum, is smaller than 1
only for orbits with impact parameter b extremely close
to the light-ring’s impact parameter bph, and the differ-
ence |b − bph| needed to ensure af < 1 becomes smaller
and smaller as the initial spin a approaches 1, i.e. the
radiation reaction becomes less and less effective near the
extremal limit.

Also, we have shown that in the cases in which af < 1,
the gravitational-wave fluxes that enter the horizon be-
fore the particle is captured tend to spin the black hole
up past the extremal limit, forming a naked singularity.
While the capture of the particle would then offset this
spin-up and produce a final spin af < 1, it is unclear
whether the capture would happen at all, because the
black-hole horizon would have disappeared and the par-
ticle may simply be scattered by the naked singularity.
Also, even if the particle were captured, a naked singu-
larity would exist for a finite amount of time, and the
Cosmic Censorship Conjecture would still be violated.

We will now use the results of the previous section to
estimate another effect, the so-called conservative self-
force [52, 62–65], and show that its order of magnitude
is sufficient to solve both these problems and prevent the
formation of naked singularities for all of the JS orbits,
provided that it carries a certain sign. Because our ap-
proach can only estimate the order of magnitude of the
conservative self-force, but not its sign, our result can be
viewed as putting forward a simple test of the Cosmic
Censorship Conjecture using self-force codes. Unfortu-
nately, to date none of the existing self-force codes [66]
can handle orbits that, like the JS orbits, are relativis-
tic and around almost extremal Kerr black holes. As
we will show, however, the existing calculations for non-
relativistic orbits around non-spinning black holes seem
to hint at a conservative self-force sign consistent with
no formation of naked singularities. While more general
self-force codes than those available today will be needed
to say the last word on whether the JS orbits might cre-
ate naked singularities, this result seems to hint at the
conservative self-force playing a crucial role in enforcing
the Cosmic Censorship Conjecture.

In order to introduce the concept of conservative self-
force, let us consider a black hole with gravitational ra-
diusRg = 2Gµ/c2, moving in a curved background space-
time with L ≫ Rg.

7 In order to study the motion of
this black hole in a completely rigorous way, one would

7 This discussion is completely general because the motion of a
black hole is the same as that of a particle with the same mass
µ, at leading and next-to-leading order in Rg/L [62].
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need to set up a proper initial value formulation, but
a reasonable alternative for practical purposes is to use
a matched asymptotic expansion [62–64]. In particular,
near the black hole (i.e. at distances r to the black hole
smaller than some limiting radius ri ≪ L), the metric
can be written as

ginternal = gBH +H1(r/L) +H2(r/L)2 + ... , (37)

where gBH is the metric of an isolated black hole and
H1(r/L), H2(r/L)2 are corrections due to the presence
of the “external” background.
Far from the black hole (i.e. for r > re, re being a

suitable radius ≫ Rg), the geometry is that of the back-
ground spacetime plus perturbations due to the black
hole’s presence, and the metric can therefore be written
as

gexternal = gbackground+h1(Rg/L)+h2(Rg/L)2+... , (38)

h1 and h2 being functions (of time and position) repre-
senting the perturbations produced by the black hole.
Because Rg ≪ L, there exists a region re < r < ri

where both pictures are valid and the two metrics can
be matched. Doing so, one obtains that the black-hole
equations of motion are [62–65]

uµ∇µu
ν = fν

cons + fν
diss +O(Rg/L)2 , (39)

where ∇ is the Levi-Civita connection of the background
spacetime. The terms fν

cons and fν
diss are O(Rg/L), and

are dubbed the conservative and dissipative self-force.
Remarkably, Eq. (39) turns out to be the geodesic equa-
tion of a particle in a “perturbed” metric g̃ = g + hR,
where hR is a smooth tensor field of order O(Rg/L):

ũµ∇̃µũ
ν = 0 . (40)

In this equation, the Levi-Civita connection ∇̃ and the 4-
velocity ũµ are defined with respect to the “perturbed”
metric g̃ = g + hR, and hR can be interpreted as the
(regularized) metric perturbation produced by the black
hole itself.
The dissipative self-force can be shown [70] to be equiv-

alent to the effect of the energy and angular-momentum
fluxes on the particle’s trajectory, which we considered
in the previous sections. We can therefore use the re-
sults of Sec. IV to say something about the scaling of
the self-force. Considering for instance the energy lost in
gravitational waves, from the definition of the particle’s
energy E = −pt and from Eq. (39) one obtains

dE/dτ = −µfdiss
t = O(Rg/L)2 . (41)

Assuming now that the background spacetime is a black
hole with mass M ∼ L ≫ Rg, and specializing to orbits
near the horizon, from the geodesics equation one imme-
diately obtains dt/dτ ∼ rH/(r − rH) [41], which implies

dE/dt ∼ (r − rH)O(Rg/L)2 . (42)

Because in the extremal Kerr geometry the ISCO,
the marginally bound circular orbit and the light
ring coincide with the horizon [46], this equation
will be valid for the circular obits between the
ISCO and the light-ring in the almost-extremal
case. Also, because for these orbits the energy
E is proportional to the mass µ, we can think
of Rg as being proportional to the energy E in
Eq. (42) (this corresponds to replacing µ with E
when going from Eq. (16) to Eq. (17) in Sec. IIIA).
We can then follow the same procedure that we
used in Sec. IIIA, i.e. we can consider consider
a sequence of unstable circular orbits between
the marginally bound orbit and the light-ring,
with constant positive energy (and therefore with
rest-mass going to zero as the light-ring is ap-
proached). Taking the limit of Eq. (42) along this
sequence of orbits shows that Eq. (42) should also
be valid for a photon at the light-ring, provided
that Rg interpreted as proportional to the photon
energy.

As already stressed, the numerical results of
Sec. IV support this interpretation of Eq. (42).
In fact, for the JS orbits Rg should scale like the
particle energy E ∼ ǫ, and because rph − rH ∼ O(ǫ)
we have that Eq. (42) gives dE/dt ∼ O(ǫ)3, which
is indeed the scaling that we found numerically in
Sec. IV. It therefore seems that for a black hole
with E ≫ µ, the size entering the matched asymp-
totic expansion analysis that we sketched above is
Rg = 2GE/c2 and not Rg = 2Gµ/c2. This is hardly
surprising, since the size associated with a black
hole or particle moving at relativistic speeds is
given by its energy and not by its mass, simply
because in General Relativity energy gravitates.

Further evidence comes from the so-called
Aichelburg-Sexl metric, which represents a
Schwarzschild black hole as seen by an observer
moving at nearly the speed of light. (More pre-
cisely, the Aichelburg-Sexl metric can be obtained
by boosting the Schwarzschild metric to the speed
of light, keeping the total energy fixed.) As one
would expect from physical intuition, this met-
ric depends on the total energy E and not on
the rest-mass [71], and in particular this boosted
black hole absorbs particles within a distance ∼ E
from it.

To make the argument more rigorous, one may
attempt to set-up a matched asymptotic expan-
sion for a photon in a generic curved background.
Because the stress-energy tensor of a photon
[Eq. (18)] depends on its energy and not on its
rest-mass (which is of course zero), and because
the metric near a photon is presumably given by
the Aichelburg-Sexl metric, the only size entering
the matched asymptotic expansion and therefore
the self-force will be Rg = 2GE/c2. Developing
such a formalism goes beyond the scope of this
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paper, but the picture that we described above
is physically clear, and it is remarkable that we
were able to test it with the numerical results
presented in Sec. IV.

Based on these argument, the size of a black hole or
particle moving on a JS orbit is given by E ∼ ǫ, which
is sufficient to conclude that the conservative self-force
affects JS’s analysis. This is easy to see from Eq. (40)
(although the same result can be obtained from Eq. (39):
see Ref. [72]): because the regularized metric “pertur-
bation” hR is O(Rg/L) = O(ǫ), the effective potential
for the radial motion differs from the “geodetic” one
by O(Rg/L) = O(ǫ) [72, 73]. In particular, the light
ring’s impact parameter bph becomes bph + δbph, with
δbph = O(Rg/L) = O(ǫ). Because the JS orbits have
bph − b = O(Rg/L) = O(ǫ), the conservative self-force
may prevent them from plunging into the horizon. This
effect is intuitive: if the particle’s size is ∼ ǫ, finite-size ef-
fects are important for impact parameters b = bph+O(ǫ)
(i.e. the impact parameter is so close to the light ring’s
impact parameter, which discriminates between plung-
ing and scattering orbits, that finite size effects must be
taken into account).

Clearly, what remains to be determined in this analysis
is the coefficient of the impact parameter change δbph
produced by the conservative self-force. In particular,
the sign of δbph is crucial, because if δbph > 0 the light
ring’s impact parameter would increase, actually making
it easier for the JS orbits to plunge into the black hole
and produce a naked singularity. If instead δbph < 0, the
light ring’s impact parameter and therefore the black-
hole photon cross section would shrink, thus making it
harder for the JS orbits to hit the black hole.

As we have already mentioned, a calculation of δbph is
not feasible with present self-force codes [66], which can
only handle non-relativistic orbits around non-spinning
black holes. Nevertheless, we can try to use the ex-
isting results for these orbits to guess how the impact
parameter of the light ring might change under the ef-
fect of the conservative self-force. In particular, Ref. [72]
showed that the ISCO frequency in a Schwarzschild black
hole increases due to the conservative self-force. If the
same behavior applies to relativistic orbits in almost ex-
tremal Kerr black holes, i.e. if Ωph for these spacetimes
increases under the effect of the conservative self-force,
then bph should decrease (i.e., δbph < 0), because for
circular photon orbits one has bph = 1/Ωph. (This fol-
lows from the fact that the photon 4-momentum is a null
vector: from pµpµ = 0 and from pµ = −Eδtµ + Lδφµ
and pµ = pt(δµt + Ωδµφ), one immediately obtains

b = L/E = 1/Ω.) This would imply, as already men-
tioned, that the black-hole photon cross section would
shrink under the effect of the conservative self-force, pos-
sibly preventing the JS orbits from being captured and
naked singularities from being formed.
Clearly, explicit self-force calculations for rela-

tivistic orbits around almost extremal Kerr black
holes will be needed to confirm this conjecture

and determine the exact numerical value of δbph
(in order to go beyond the order of magnitude
result δbph = O(ǫ) derived above). It is of course
very well possible that such explicit calculations
will find that bph increases rather than decreases
for almost extremal black holes, or that its de-
crease is too small to prevent the JS orbits from
being captured. Hints at a possible change of
sign of δbph when going from a = 0 to a ∼ 1 come
for instance from Ref. [67], in which Warburton
and Barack found that the ISCO frequency for
a scalar particle increases under the effect of the
(scalar) self-force when |a| . 0.9, but decreases for
a & 0.9. A similar result was found by Refs. [68],
who calculated the ISCO shift due to the con-
servative self-force using an effective one-body
model for spinning black-holes [68, 69], calibrated
in the a = 0 case with the results of Ref. [72],
and found that the ISCO frequency decreases at
high spins. These results, albeit still inconclusive,
highlight even more compellingly the need for a
rigorous calculation of the gravitational self-force
for ultrarelativistic particles (or photons) moving
in an almost extremal Kerr background. Such a
calculation will probably be a very significant step
towards an understanding of the range of validity
of the Cosmic Censorship Conjecture.

If, however, we assume that δbph decreases in the
almost-extremal limit under the effect of the gravitational
self-force, a change of order δbph = O(ǫ) may also be
enough to prevent the ingoing fluxes from falling into
the horizon and create a naked singularity. Suppose in
fact that δbph were negative enough to prevent ultra-
relativistic particles with impact parameter b in the JS
range (b = 2 + δǫ with 2

√
2 < δ < 4, cf. Sec. II) from

falling into the horizon. These particles will then de-
scribe a large number of quasi-circular orbits near the
periastron before being scattered. During these quasi-
circular orbits, they will emit gravitational fluxes Erad

and Lrad into the horizon, with Lrad/Erad = 1/Ωperi = b,
and these fluxes tend to spin the black hole up, possi-
bly above the Kerr limit [cf. discussion around Eq. (36)].
However, it is well known that in the eikonal limit (i.e., in
the small-wavelength limit, corresponding to large m’s
in the decomposition of Secs. III B and III C) gravita-
tional waves behave like massless particles (“gravitons”),
their propagation in a Kerr spacetime being regulated
by a radial effective potential that is the same as the ra-
dial effective potential regulating the motion of photons
[cf. Eq. (8)].8 We can therefore think of the ingoing fluxes
as being made of wavepackets with impact parameter bg
ranging from 0 to +∞, but with a distribution centered

8 The eikonal approximation is a very good one for the gravita-
tional waves emitted by the JS orbits because, as we stressed in
Sec. III C, the fluxes in the large-m multipole moments turn out
to be very important for these orbits.
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(roughly) on the impact parameter b of the particle pro-
ducing them (because the ratio of the total ingoing fluxes
must be Lrad/Erad = b). Clearly, the only wavepackets
capable of overspinning the black hole are those with bg
in the JS range bg = 2+ δǫ with 2

√
2 < δ < 4. However,

if the effective potential for ultrarelativistic orbits (and
therefore for gravitons) changes under the effect of the
self-force in such a way as to prevent the JS orbits from
being captured [i.e. if δbph = O(ǫ) is sufficiently nega-
tive], it will also scatter the gravitational wavepackets
with bg in the JS range.
We stress that Jacobson and Sotiriou proposed also

a different scenario in which naked singularities might
form. In particular, they consider a spinning particle
having energy E and spin S, with the energy satisfying
the limits (2) and the spin satisfying the limits (1) (where
we identify L with the particle’s spin S). They also as-
sume that the particle has spin parallel to the black-hole
spin and that it is dropped into the black-hole horizon
along the common direction of their spins. The final spin
aJSf of the resulting black hole will be larger than 1, be-

cause the lower bound in Eq. (1) is achieved precisely
by imposing aJSf > 1. Also, the condition for a spinning

particle to fall into a Kerr black hole is E > ΩHS [36],
where ΩH ≈ 1/2−ǫ is the horizon frequency, and the up-
per bound of Eq. (1) can indeed be written in that form,
i.e. the upper bound of Eq. (1) ensures that the spinning
particle actually falls into the black-hole horizon.
From the discussion above, however, it is clear that the

conservative self-force will modify the metric and there-
fore the horizon frequency by terms of order E ∼ ǫ. In
particular, if the horizon frequency increases under the
effect of the conservative self-force (just like the ISCO fre-
quency increases in a Schwarzschild spacetime [72]) and

becomes Ω̃H = ΩH + κǫ ≈ 1/2 − (1 − κ)ǫ (with κ > 0
being a coefficient), Eq. (1) would become

2ǫ2 + 2E + E2 < S < [2 + 4(1− κ)ǫ]E . (43)

Imposing that the upper bound in this equation be larger
than the lower bound [i.e., imposing that the interval de-
scribed by Eq. (43) is not empty], we immediately obtain

that if κ > 1−1/
√
2 ≈ 0.293 there are no orbits that both

fall into the black hole and create a naked singularity. In
other words, the conservative self-force may be enough
to prevent the JS from forming naked singularities even
in the case of particles with spin.
Finally, proceeding exactly in the same way as we just

did for spinning particles, it possible to show that the
self-force may also be enough to prevent naked singulari-
ties from forming in the case of non-spinning particles on
bound JS orbits. As we stressed in Sec. II, these orbits

start from very close to the black-hole horizon and do
not orbit the light ring multiple times, so the analysis of
the previous sections does not apply to them. However,
because their energy and angular momentum must still
satisfy Eqs. (1) and (2), the horizon frequency will change
by O(ǫ) due to the conservative self-force. In particu-
lar, if the horizon’s frequency increases, then the upper
bound in Eq. (1) will be lowered and the allowed angular
momentum interval might possibly shrink to nothing.

VI. CONCLUSIONS

As discussed in the introduction, there is strong cir-
cumstantial evidence for the stability of Kerr black holes,
which leads us to believe that rumors of their death
may have again been greatly exaggerated. Neverthe-
less, the particular mechanism proposed by Jacobson
and Sotiriou [36] is exciting enough to deserve careful
thought. The mechanism can be at play in astrophysical
settings and the understanding of why it fails (or not)
will certainly shed light on highly dynamical processes
close to extremal Kerr black holes. We have shown that
radiation by point particles close to the last stable circu-
lar geodesic is suppressed as the black hole approaches
extremality, providing further support to earlier results
by Chrzanowski and Misner [42, 43]. Indeed, we have
shown that if one modifies Jacobson and Sotiriou’s anal-
ysis by replacing the test particle with a ring of particles,
the gravitational radiation is suppressed by interference
effects. It therefore seems that the conservative self force
might be the main effect preventing violations of the Cos-
mic Censorship Conjecture. While we have provided ar-
guments in favor of this picture, a rigorous proof is still
unavailable, and the role of the conservative self-force in
the Cosmic Censorship Conjecture remains an outstand-
ing open issue.
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