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We study the stability of 5D gravitational solutions containing an arbitrary number of scalar
fields. A closed set of equations is derived which governs the background and perturbations of
N scalar fields and the metric, for arbitrary bulk and boundary scalar potentials. In particular
the effect of the energy-momentum tensor of the scalar fields on the geometry is fully taken into
account, together with all the perturbations of the system. The equations are explicitly written as
an eigenvalue problem, which can be readily solved to determine the stability of the system and
obtain the properties of the fluctuations, such as masses and couplings. As an example, we study a
dynamical soft-wall model with two bulk scalar fields used to model the hadron spectrum of QCD
and the Higgs sector of electroweak physics. It is shown that there are no tachyonic modes, and
that there is a (radion) mode whose mass is suppressed by a large logarithm compared to that of
the other Kaluza-Klein modes.

PACS numbers:

I. INTRODUCTION

Brane-world models have proved to be very useful for
model building, providing a way to not only address
the hierarchy problem in the Standard Model [1–3], but
also to explain the hierarchy of fermion masses and mix-
ings [4–7]. A variety of constructions are usually em-
ployed with fields, other than gravity, in the bulk and/or
on the branes. Furthermore, aided by the AdS/CFT cor-
respondence, a dual description of strongly coupled four-
dimensional (4D) gauge theories can be obtained [8–10].
These fields are normally treated as test fields, where the
corresponding energy density is sufficiently small not to
disturb the background geometry. Therefore, for a given
geometry one performs a Kaluza-Klein (KK) decomposi-
tion. Solving the field equations in this geometry gives
the bulk profile and the eigenmasses of the KK modes.
The profile, in turn, determines the couplings of the KK
modes.
Eventually, a complete model has to provide the dy-

namical elements that determine the bulk geometry, and
the brane positions (when present). As an example, the
Randall-Sundrum model [3], does not solve the hierar-
chy problem until the exact location of the TeV brane is
fully specified. Most of stabilization mechanisms, start-
ing from [11], typically employ one scalar field, due to its
simplicity.
The system of perturbations in the presence of a bulk

scalar was studied, for example, in Ref. [12]. This anal-
ysis considered the properties of various excitations cou-
pled to SM fields, which were assumed to be localized on
the brane. Of particular relevance was the study of the

radion, which is the lightest of these scalar perturbations.
The analysis of [12] was limited to a regime of small back-
reaction of the bulk scalars on the bulk geometry. Later,
[13] generalized this study to a bulk field with arbitrary
bulk/brane potential.

However, there are systems in which more than one
dynamical scalar field is relevant. For instance, in the
soft-wall model of [14], two bulk scalar fields are used to
obtain a solution of the Einstein equations. Furthermore
in string theory, multiple scalar fields (such as the dila-
ton and moduli fields) are quite common. This motivates
generalizing the study of [13] to the case of N bulk (real)
scalar fields, which will be presented in this paper. The
generalization to N bulk scalar fields has also been pre-
viously considered in Refs. [15–17]. In our analysis we
make no assumption on the form of the bulk and bound-
ary potentials.

The perturbations are obtained by studying the lin-
earized problem. It is useful to distinguish them as
scalar/vector/tensor modes under Lorentz transforma-
tions of the ordinary 4D spacetime: we assume that the
noncompact space has a Minkowski metric. As a con-
sequence the scalar/vector/tensor modes are decoupled
from each other at the linearized level and therefore can
be studied separately. The mode count proceeds as fol-
lows. There are 15 perturbations in the five-dimensional
(5D) metric, and N perturbations from the bulk (real)
scalar fields. Of these, 5 are nondynamical and 5 more
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can be removed by a gauge choice1. This leaves 5 + N
modes of which, 5 are in the tensor sector (transverse
and traceless hµν) and N remain as scalar modes. There
are no vector modes. Finally, there is a scalar mode for
each brane (representing the fluctuation of its bulk po-
sition); however, we show that these modes are not ex-
cited as long as the branes have only a tension (namely,
no other brane source with a different equation of state
is dynamically relevant; this is the usual assumption in
brane compactifications) and so we will ignore them.

It is technically challenging to identify the N scalar
degrees of freedom because they can arise either from
the components of the metric perturbations or the ac-
tual bulk scalar field perturbations. The number can
be reduced to N by using constraint equations to derive
a manageable set of closed equations for the N modes.
This must be done for both the bulk and brane equa-
tions. The latter equations are boundary conditions and
we will consider both cases either with or without branes
at the boundaries (in the second case, the boundary con-
dition is typically given by the requirement of normaliz-
ability). We derive this system of equations, which for
convenience is written as an eigenvalue problem, with the
appropriate number of equations needed to obtain a so-
lution. Our goal is to provide an explicit formulation of
the eigenvalue problem that can be used to study any
5D model with an arbitrary number of bulk scalar fields.
By solving the eigenvalue problem the physical proper-
ties of the perturbations (masses and couplings) can be
obtained. This can then be used to check the stability of
the model, so that if m2 < 0 for some scalar modes, the
background solution is unstable.

While the eigenvalue problem may be solved ana-
lytically for the simplest cases, in general a numerical
method is needed to obtain a solution. We will employ
the shooting method since the boundary equations at one
boundary leave freedom for the choice of the mode func-
tions, and of the mass eigenvalue. We show that, for N
scalars, the boundary conditions at one of the two bound-
aries leave N unspecified quantities. The bulk equations
are then used to evolve the solution to the other bound-
ary, where there are precisely N constraints that must be
satisfied (given by the boundary condition at this bound-
ary). If these constraints are satisfied, then a physical
mode has been found.

As an example of the numerical method, we study the
perturbation properties, and the stability problem, for
the dynamical soft wall model of Ref. [14]. The model is
characterized by two scalar fields with a coupled poten-
tial term. It is interesting because it leads to a KK mass
spectrum with linear Regge-like trajectories, similar to
the hadron spectrum in QCD. We conduct a dense scan

1 Gauge invariant variables can also be used. We choose the ex-
plicit gauge choice here, for brevity of exposition, but the two
approaches are completely equivalent.

in parameter space and find approximately 100 modes
with positive m2, and no mode with negative m2. More-
over, we find an interesting behavior of the radion mass.
The mass is suppressed by a large logarithm, that in the
dual CFT interpretation corresponds to how scale invari-
ance is broken by quantum corrections. This is the same
suppression present in the Goldberger-Wise mechanism
[11, 12].
The paper is organized as follows. In Section II we

introduce the class of models that we are studying; we
present the Lagrangian, the background solutions, and
the most general set of perturbations. In the following
three Sections we study the scalar, vector, and tensor per-
turbations, respectively. We identify the physical modes,
and perform their Kaluza-Klein decomposition. We pro-
vide the explicit closed set of equations which can be
solved to obtain the mass and the bulk profile of these
modes through a boundary value problem. In Section
VI we formalize this boundary value problem for the two
sectors (scalar and tensor) that contain physical pertur-
bations. In Section VII we study the perturbations of
the model in Ref. [14] as an example of how to use our
formalism to solve the eigenvalue problem. In Section
VIII we briefly summarize our main findings. Some more
technical steps are then given in the three Appendices.

II. 5D MODELS

The goal of this work is to provide the tools for study-
ing the perturbations, and the stability, of a wide class of
models with one extra dimension and N bulk scalar fields
{ϕi}. Specifically, we consider models characterized by
the action

S = 2

∫
d5x

√−g

[
M3

2
R− 1

2
(∂ϕi)

2 − V (ϕi)

]

−
∑

branes

∫
d4x

√−γ
{
2M3 [K]J + U (ϕi)

}
, (1)

where M is the 5D fundamental scale. The first line in
(1) contains the bulk terms, which are restricted to lie
between two boundary branes, if they are both present,
or else either between a boundary brane and infinity, or
between ±∞. The overall factor of 2 is adopted from
[13], where the bulk was assumed to be Z2 symmetric
across each brane, and the symmetry was accounted for
by restricting the bulk integral only to one side of each
brane. This notation will also be used here, even in the
cases where one or both branes are absent; it is trivial to
reabsorb this factor away by a rescaling of M , ϕi, and
V . We assume that the scalars have a standard kinetic
term in the bulk. Notice that the choice of sign for the
kinetic term corresponds to ηµν = diag (−1, 1, 1, 1). If
present, a bulk cosmological constant is included as a
constant term in V . The second line in (1) is instead the
brane action; γ denotes the induced metric on the brane,
and the notation [K]J with subscript J denotes the jump
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of the quantity inside the square parenthesis across the
brane, which in this case is the extrinsic curvature K. U
denotes the potential of the scalars on the brane (which is
a function of the value that the ϕi fields have at the brane
location), and, if present, a brane tension is included as
a constant term in U (note that when both boundary
terms are present, we do not require them to be equal).
In addition we disregard the possibility of brane kinetic
terms for the scalar fields.
From the action (1) we obtain the Einstein equations

in the bulk

GAB =
TAB

M3
, (2)

where capital Latin indices run over all the coordinates
and the energy momentum tensor is given by

TAB = ∂Aϕi∂Bϕi + gAB

[
−1

2
(∂ϕi)

2 − V (ϕi)

]
. (3)

We also obtain the N bulk equations for the scalars

1√−g
∂A
(√−g gAB∂Bϕi

)
− ∂V

∂ϕi
= 0 . (4)

Note that not all of the equations in (2) and (4) are in-
dependent, due to the Bianchi identities.
When a boundary brane is present, extremizing the

action (1) leads to the boundary conditions for the scalar
fields

[n · ∇ϕi]J =
∂U

∂ϕi
, (5)

as well as the so-called Israel conditions

[
K̂µν

]
J
= −Sµν

M3
, (6)

where K̂µν = Kµν − K γµν , and Sµν denotes the stress
energy tensor on the brane

Sµν = −U γµν . (7)

Note that Greek indices run over the usual 3 + 1 dimen-
sions only. The explicit definition and computation of
the induced metric and the extrinsic curvature are given
in Appendix A.

A. Background

At the background level, we assume a factorizable ge-
ometry with 4D Minkowski slices:

ds2 = A2 (z)
[
ηµνdx

µdxν + dz2
]
. (8)

It follows that the background bulk scalars can have a
nontrivial dependence on the extra coordinate only:

ϕi = φi (z) . (9)

The only nontrivial equations in (2) then arise from the
diagonal µν, and z components. We write here one linear
combination of these two equations, and the zz compo-
nent:

A′′

A
= 2

A
′2

A2
− φ

′2
i

3M3
,

6M3A
′2

A2
=

φ
′2
i

2
−A2 V , (10)

where prime (′) denotes differentiation with respect to z.
The scalar equations (4) give instead

φ′′
i + 3

A′

A
φ′
i −A2 V,i = 0 , (11)

where V,i ≡ ∂V
∂φi

. It is easy to check that the first equation

of (10) can be derived by combining (11) and the second
equation of (10) (this redundancy is a consequence of a
nontrivial component of the Bianchi identity).
From the background expressions of the induced met-

ric and the extrinsic curvature given in Appendix A, the
Israel conditions (6) have only a nontrivial part propor-
tional to ηµν :

A′

A2
= ∓ U

6M3
, (12)

while the boundary conditions (5) can be rewritten as

φ′
i

A
= ±U,i

2
, (13)

where U,i ≡ ∂U
∂φi

. The upper (lower) sign at the right

hand side of these two equations refers to a brane at the
left (right) of the bulk interval. If one or both branes
are absent, equations (12) and (13) can be replaced by
different boundary conditions at spatial infinity along the
bulk.
In the study of the perturbations, we often make use

of the background equations written in this Subsection
in order to simplify the linearized equations for the per-
turbations, without writing this explicitly each time.

B. Perturbations

It is convenient to characterize the perturbations ac-
cording to how they transform under 4D Lorentz trans-
formations. Due to the background symmetry, modes
that transform differently under these transformations
are decoupled at the linearized level, and can be studied
separately in our analysis. We therefore have the follow-
ing decomposition

gµν = A2 (z)
[
ηµν (1 + 2Ψ) + 2∂µ∂νE

+∂µEν + ∂νEµ + hµν

]
,

gµ5 = A2 (z) [∂µB +Bµ] ,

g55 = A2 (z) [1 + 2Φ] . (14)
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The modes Ψ, E, B, Φ are scalar (with respect to 4D
Lorentz transformations); the modes Eµ, Bµ are vector
(we impose that they are transverse, ∂µE

µ = ∂µB
µ = 0),

and hµν is a tensor (imposed to be symmetric, transverse,
and traceless, ∂µhµν = hµ

µ = 0). There are also addi-
tional scalar modes: the perturbations, δφi of the bulk
scalars ϕi = φi(z)+ δφi, and the perturbations, ζj of the
brane positions zj−th brane = zbackground position + ζj(x

µ)
(j runs over the number of branes). All the perturbations
are functions of both xµ and z, except for ζj which are
functions of xµ only. Note that the decomposition (14)
becomes ambiguous for massless scalar KK modes, but
can be studied using the light cone decomposition of [18].
We assume that there are no massless scalar modes in the
cases of interest.
We need to fix the freedom of general coordinate trans-

formations. Under the infinitesimal transformation

xA → xA + ξA , ξA =
(
∂µξ + ξµ, ξ5

)
, (15)

(with ∂µξ
µ = 0) the metric changes as

δgAB → δgAB − g
(0)
AB,Cξ

C − g
(0)
ACξ

C
,B − g

(0)
CBξ

C
A . (16)

We can use this relation to see how the various modes
in (14) transform. In particular we obtain:

E → E − ξ , B → B − ξ′ − ξ5 ,

Eµ → Eµ − ξµ , (17)

where we have only given the transformations relevant for
the present discussion. This allows us to set Eµ = 0 in
(14) and removes the freedom of the transformations in
(15) characterized by ξµ. Similarly we can also set E = 0
in (14), which fixes ξ, and choosing B = 0 then fixes ξ5.
Therefore we see that one can always choose the gauge
Eµ = E = B = 0; this completely fixes the freedom of
the coordinate transformations (15). This leaves the sets
of scalar {Ψ, Φ, δφi, ζj}, vector {Bµ} and tensor {hµν}
modes; these three systems are decoupled from each other
at the linearized level, and we will study them separately
in the following three sections.

III. SCALAR PERTURBATIONS

In this Section we write the linearized equations for
the scalar perturbations. The main goal is to remove
the nondynamical degrees of freedom. As we wrote in
the last paragraph of the previous Section, we start from
the system of perturbations {Ψ, Φ, δφi, ζj}, where i runs
over the number of bulk scalars (N), while j runs over
the number of branes.
We can immediately show that the brane displace-

ments are decoupled, and do not introduce any instabil-
ity. They only enter in the boundary conditions. Specif-
ically, let us assume that a brane is present and con-
sider the linearization of (6) at that location (omitting

the index j on the displacement ζj). Using the results in
Appendix A, we obtain

[{A′ (1− Φ + 2Ψ) +AΨ′} ηµν −Aζ,µν ]J

=
U

M3
A3 (1 + 2Ψ) ηµν . (18)

(Note that U also has a perturbation part). This equa-
tion has two tensorial structures that need to vanish inde-
pendently. In particular, we find that [ζ,µν ]J = 0. Using
the Z2 symmetry at the brane, and the fact that ζ is odd,
this equation in turns gives

�ζ = 0 , (19)

where � denotes the d’Alembertian operator in 4D
Minkowski space. As is well known for the single scalar
case, the brane bending mode is not sourced by the scalar
fields, and is just a decoupled massless mode in the cur-
rent context. Therefore, in the following we simply dis-
regard this brane mode(s).
We are left with the N + 2 scalar perturbations

{Ψ, Φ, δφi}. As we discussed in the Introduction, there
are only N physical perturbations in the scalar sector.
In Subsection IIIA we present the linearized bulk equa-
tions for the scalars, and show how the two nondynamical
modes can be eliminated from two constraint equations.
We actually define N scalar combinations vi, that cor-
respond to the canonical variables of the system. In the
following three subsections we then compute the bound-
ary conditions for these variables for different relevant
cases.

A. Bulk equations

We start by considering the scalar projection of the
linearized Einstein equations (2) in the bulk. The µν
components read

(. . . ) ηµν − (Φ + 2Ψ),µν = 0 . (20)

The off-diagonal part requires that

Ψ = −Φ

2
. (21)

From now on, we will enforce this constraint to eliminate
Ψ. The µ5 linearized equations then give

1

2
Φ′ +

A′

A
Φ− 1

3M3
φ′
iδφi = 0 . (22)

Eqs. (21) and (22) are the two constraints that allow the
remaining two nonphysical modes in the scalar sector to
be eliminated after the gauge fixing.
Next, we introduce the N combinations

vi ≡ −
√
2A3/2

(
δφi +

Aφ′
i

2A′ Φ

)
, (23)
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which generalize the canonical variable introduced in [13]
for the case of a single scalar field. These modes are the
canonical variables of the system. After the conditions
(21) and (22) are used to eliminate the nondynamical
modes, one can show (see Appendix B) that the remain-
ing bulk equations are equivalent to the following system
of N equations for the N modes vi:

�vi + v′′i −
[
A2V,ij +

2A3

3M3A′
(
V,iφ

′
j + V,jφ

′
i

)

+
2φ′

iφ
′
j

3M3

(
−4 +

A2φ′
kφ

′
k

3M3A′2

)

+

(
15

4

A
′2

A2
− φ′

kφ
′
k

2M3

)
δij

]
vj = 0 . (24)

This is the explicit set of equations for the dynamical
scalar modes of the system.

B. Boundary conditions for finite brane potential

After disregarding ζ, only the term proportional to ηµν
survives in the Israel conditions (18). Using (21) and the
Z2 symmetry, we rewrite it as

24
A′

A2

(
Φ +

AΦ′

2A′

) ∣∣∣∣∣
brane

= ± 4

M3
U,k δφk , (25)

where the left hand side is evaluated in the bulk imme-
diately next to the brane, and the upper (lower) sign at
the right hand side refers to a brane at the left (right) of
the bulk interval. This equation does not provide any ad-
ditional information with respect to the bulk equations.
We can indeed rewrite the right hand side in terms of bulk
quantities using eq.(13); the resulting equation is simply
the constraint equation (22) at the brane location. The
linearization of (5) is instead nontrivial:

δφ′
i − φ′

iΦ
∣∣∣
brane

= ±A

2
U,ijδφj , (26)

where again the left hand side is evaluated in the bulk
immediately next to the brane.

The role of the boundary conditions is to complement
the bulk equations (24) and form an eigenvalue problem
that can be immediately solved to obtain the physical
scalar excitations of the system. By looking at eqs. (24),
we see that the most useful form in which these equations
can be written is v′i =

∑
j cijvj , where the coefficients cij

depend on background quantities. Considerable algebra
is required to obtain this equation starting from (26).

The final result is

v′i

∣∣∣
brane

=
3A′

2A
vi +

(
Aφ′

i φ
′
j

3M3A′ ±
A

2
U,ij

)
vj

+
4A′

A φ′
kvk −A2V,kvk ± A

2 U,rsφ
′
rvs

3M3√
2
�− 2

√
2φ′

pφ
′
p +

A3φ′
pV,p√
2A′ ∓ A2

2
√
2A′U,pq φ′

pφ
′
q

×
(
2
√
2φ′

i −
A3V,i√
2A′

±
A2 U,ij φ

′
j

2
√
2A′

)
, (27)

which are indeed equivalent to (26) (we show this in Ap-
pendix C). We stress that these equations are valid at
the brane location; brane quantities are evaluated imme-
diately next to the brane, and whenever an upper/lower
sign appears on the right hand side, it refers to a brane at
the left/right of the bulk interval, respectively. Finally,
let us clarify the role of the � operator on the right hand
side. The bulk equations (24) allow for a factorizable
solution

vi
(
xλ, z

)
=
∑

n

ṽ
(n)
i (z) Q(n)

(
xλ
)
, (28)

with

�Q(n) = m2
nQ

(n) . (29)

Eq. (28) is the decomposition in Kaluza-Klein modes;

each mode is characterized by a wave function ṽ
(n)
i in

the bulk, as well as a 4D (quantum) field Q(n). Equa-

tions (24) and (27), with the substitution vi → ṽ
(n)
i and

� → m2
n, provide the complete eigenvalue problem to

determine the eigenmasses and the bulk profiles of the
scalar modes of the system. It is clear from the form of
the equations that this problem is well posed, and can be
uniquely solved. We discuss this in detail in Section VI,
and provide an explicit example in Section VII.

C. Boundary conditions for (infinitely) stiff brane
potential

One can obtain a simpler set of boundary conditions
than (27) in the limit of infinitely stiff brane potentials.
Let us Taylor expand the brane potential for small fluc-
tuations δφi around the background values φi:

U (ϕi = φi + δφi) = U + U,i δφi +
1

2
U,ijδφi δφj + . . . ,

(30)
where the potential and its derivatives on the right hand
side are evaluated at the background solution φi. As can
be seen from (12) and (13), only the expectation values
of the brane potential U and its first derivatives U,i are
relevant at the background level. The brane “masses”
m2

ij ≡ U,ij only enter in the boundary conditions for the
linear perturbations; higher-order terms in (30) are in-
stead relevant only beyond the linearized level, and can
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be disregarded in our study. The stiff potential limit is

the limit for which the “masses”
√
m2

ij are much greater

than any other mass scale in the problem. In the original
Goldberger-Wise [11] stabilization mechanism, this is the
limit of large λh,v; it is also explicitly noted there, that
the equations considerably simplify in this limit. This
limit can always be imposed by simply adding a quadratic
potential term ∆U = λij (ϕi − φi) (ϕj − φj) centered on
the background solution, and then taking the limit of
large λij . Adding this term does not modify the back-
ground solution.
The simplification occurs because in this limit δφi → 0

at the brane location; this can be seen from eqs. (26).
More precisely the fluctuations δφi on the brane “ad-
just themselves” to the O

(
U−1
,ij

)
level required to sat-

isfy (26). We actually do not need the explicit solutions
for the scalar fluctuations. If we consider the equations
in the original set of variables {δφi, Φ} we see that the
boundary conditions (26) are the only terms in which
the second derivatives U,ij are present. These equations
can be solved for sufficiently small δφi,brane, but then,
once they are satisfied, the only role that these equations
play in the stiff limit is to impose that δφi,brane at the
boundary can be set to zero in all the other equations of
the system. The situation is completely analogous to the
scattering of light massive objects against an infinitely
heavy object. An object of large mass M acquires an in-
finitesimally small, O (1/M), velocity in the scattering.
For M → ∞ we simply disregard the motion of the heavy
object, and the value of M drops from the problem; the
role of the heavy object is to ensure that the momentum
conservation equation is satisfied, but then this momen-
tum conservation equation plays no role in the dynamics
of the light mass(es) participating in the scattering. Eqs.
(26) are analogous to the momentum conservation equa-
tions, U,ij is the analog of the mass M , and δφi,brane are
analogous to the velocity acquired by the heavy object.
In this limit, eq. (23) then imposes the condition

vi,brane = N φ′
i,brane , (31)

where the proportionality constant N is the same for
all modes. Eq. (31) provides a system of N − 1 inde-
pendent boundary conditions in the eigenvalue problem.
The reason why the number is N − 1 (rather than N) is
because the overall normalization of a mode - which is
proportional to N - cannot be specified by the linearized
problem we are solving (if one multiplies the solutions
of a linear system by a common factor, one still has a
solution). Fortunately, we do not need to know N if
we are only interested in solving the linearized problem
for the eigenmasses of the modes, and therefore we can
simply set N to any convenient nonvanishing value (see
Section VI). 2

2 The normalization of the modes, or, equivalently, the value of

The “missing” boundary condition, in addition to the
N−1 independent boundary conditions (31), is obtained
by evaluating the constraint equation (22) at the brane
location, for δφi,brane = 0 :

Φ′ +
2A′

A
Φ
∣∣
brane

= 0 . (32)

We need to rewrite this equation in terms of v′i and N .
Using (31) and δφi,brane = 0 in eqs. (23), we obtain

Φ
∣∣
brane

= −
√
2A′

A5/2
N . (33)

To obtain the desired expression for Φ′|brane, we then dif-
ferentiate with respect to z the second of the bulk equa-
tions (A-4). 3 Using (33) in the resulting expression, we
obtain a relation for Φ′|brane in terms of v′i,brane and N .

Using this relation, and eq. (33), we can then cast the
condition (32) into the desired form. In terms of the
bulk wave functions, the condition reads:

1

N φ′
iṽ

′(n)
i

∣∣∣
brane

= A2φ′
iV,i − 3M3A

′

A
m2

n

−5

2

A′

A
φ′
iφ

′
i +

A

3M3A′ (φ
′
iφ

′
i)

2
.(34)

In the stiff brane limit the N equations (31) and (34)
replace the conditions (27).

D. Boundary conditions without a boundary brane

Next we comment on the possibility that one or both
boundary branes are absent. Assume that the bulk coor-
dinate extends to infinity in that particular direction(s).
In this case, the boundary conditions for the perturba-
tions can be dictated by the specific problem under con-
sideration. A typical requirement is the one of normal-
izability. The set of differential equations (24) has 2N
solutions. In the example that we study in Section VII,
one finds that half of these solutions exponentially grow
at z → ∞, while the remaining half exponentially de-
crease. Therefore, eliminating the exponentially growing
solutions provides precisely N boundary conditions, as
it was the case for the boundary conditions enforced by
a boundary brane. Other models are characterized by a
horizon at some bulk position, and one then typically re-
quires that the solutions should be purely infalling modes
at the horizon. Also this requirement corresponds to N
boundary conditions.

N in eqs. (31), is needed if one instead wants to compute the
couplings of the perturbations to each other, or to other fields
(because the couplings are determined by the actual value of the
wave function). The normalization is obtained by canonically
normalizing the modes in the quadratic action of the perturba-
tions, see Subsection III E.

3 Note that eq. (33) is a boundary condition, and so we cannot
obtain an expression for Φ′|brane by simply differentiating it.



7

E. Quadratic scalar action, and normalization of
the scalar modes

To properly normalize the scalar modes, we compute
the kinetic term of their quadratic action, obtained by
expanding the starting action (1) at second order in these
perturbations. We find

S2,kin =

∫
d5xA3ηµν

[
6M3∂µΨ∂ν (Ψ + Φ)− ∂µδφi∂νδφi

]

=

∫
d5x

[
1

2
vi�vi + ∂y

(
3M3A4

4A′ ηµν∂µΦ∂νΦ

)]
.

(35)

If we replace Ψ in the first line of this expression through
the constraint equation (21), Ψ = −Φ

2 , we can imme-
diately see that the kinetic term is manifestly positive
(recall that η00 = −1), which ensures that the scalar
system has no ghosts. The second line of (35) has been
obtained following the steps outlined before eq. (19) of
[13], where an analogous computation was performed for
the case of a single scalar field. By decomposing vi as
in (28), and, analogously, Φ =

∑
n Φ

(n) (z)Q(n) (x), we
arrive at

S2,kin =
∑

m,n

Cmn

∫
d4xQ(m)

�Q(n) , (36)

where

Cmn ≡ 1

2

∫
dz v

(m)
i v

(n)
i +

3M3A4

4A′ Φ(m) Φ(n)
∣∣∣
zmax

zmin

. (37)

In evaluating the boundary term, one can make use of

eq. (A-7) to express Φ(n) in terms of v
(n)
i and v

′(n)
i .

We note that the result (37) is the most immediate
generalization to N fields of the expression (26) obtained
in [13] for the single field case (we note that the sign of
the boundary term in the intermediate expression in eq.
(26) of [13] is incorrect). Hermiticity of S2 ensures that
eigenmodes with different mass are orthogonal, so Cmn ∝
δmn. Imposing Cnn = 1

2 , we then recover a diagonal and
canonically normalized kinetic term

S2,kin =
∑

n

1

2

∫
d4xQ(n)

�Q(n) . (38)

If the linearized equations can be solved analytically,
one can leave the normalization of the modes (specifi-
cally, the quantity N , in the case of a stiff boundary
potential), and then fix it through Cnn = 1

2 . If the equa-
tions can be only integrated numerically, one needs to
set a provisory value for the normalization by (arbitrar-
ily) fixing the value of one of the wave functions at one
boundary (for instance, in the example that we study in

Section VII we set v
(n)
2 = 1 at the UV boundary); after

performing the numerical integration, one can then in-
sert the solutions in (37) and obtain the provisory result

Cnn,prov. The rescaling v
(n)
i → 1√

2Cnn,prov

v
(n)
i provides

the correctly normalized modes.

IV. VECTOR PERTURBATIONS

For the vector modes, the 5µ and µν components of
the linearized Einstein equations (2) in the bulk give,
respectively,

�Bµ = 0 ,[
B′

µ + 3
A′

A
Bµ

]

,ν

= 0 , (39)

while the 55 component trivially vanishes. Moreover, the
linearization of equations (4) has no contributions from
the vector modes. The bulk equations therefore enforce
Bµ

(
xλ, z

)
= bµ

(
xλ
)
A−3 (z), with �bµ = 0. This imme-

diately implies that there are no Kaluza-Klein modes in
the vector sector, except for a zero mode.
If branes are present, it is also immediate to see that

the linearization of the boundary conditions for the scalar
fields, eqs. (5) have no contributions from the vector
perturbations. The linearization of the Israel junction
conditions, eqs. (6), is instead nontrivial. We see from
(7) and (A-2) that the brane stress-energy tensor is
Bµ−independent. Using (A-3), we therefore have

[Bµ]J = 0 . (40)

Under the assumption of a Z2 symmetry, Bµ needs to
be odd across the brane,4 which then enforces Bµ = 0.
The absence of vector modes agrees with the counting of
the number of physical degrees of freedom given in the
Introduction.

V. TENSOR PERTURBATIONS

The µν components of the linearized Einstein equa-
tions (2) in the bulk give

�hµν + h′′
µν + 3

A′

A
h′
µν = 0 , (41)

while the other components trivially vanish. Moreover,
the linearization of equations (4) has no contributions
from the tensor modes.
If branes are present, we again find that the lineariza-

tion of the boundary conditions for the scalar fields, eqs.
(5) have no contributions from the tensor perturbations.
The linearization of the Israel junction conditions, eqs.
(6) instead gives

[
h′
µν

]
J
= 0 . (42)

4 The simplest way to see this is to consider the gauge invariant
combination out of the two vector perturbations appearing in
the metric (14). As shown in (17), Eµ → Eµ − ξµ under the
infinitesimal coordinate transformation (15). One can also show
that, under this transformation, Bµ → Bµ − ξ′

µ
. Therefore, the

gauge invariant combination is Bµ − E′
µ
. As E′

µ
is odd across

the brane, this implies that Bµ is also odd.
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We note that the tensor modes only “respond” to
the background geometry, and not to the details of the
sources. Therefore, these results are similar to those al-
ready derived for the case of a single scalar in the bulk
(see, for example, [19]). In Ref. [19] the Kaluza-Klein
eigenmasses were shown to be nonegative, so that there
is no instability in the tensor sector. For completeness,
we summarize this computation here:
One starts by decomposing the 5D tensor field as

hµν

(
xλ, z

)
= A−3/2 (z)

∑

n

h̃n (z) Q
(n)
µν

(
xλ
)
,

�Q(n)
µν = m2

n Q
(n)
µν , (43)

where h̃n satisfies the Schroedinger-like equation

h̃′′
n +

[
m2

n − 3A′′

2A
− 3A

′2

4A2

]
h̃n = 0 . (44)

One can further define the operators 5

D± ≡ ∂z ±
3A′

2A
, (45)

so that the bulk and brane equations become, respec-
tively,

−D+ D− h̃n = m2 h̃n ,[
D− h̃n

]
J
= 0 ⇒

(
D− h̃n

) ∣∣∣
brane

= 0 , (46)

where in the last step we have used the Z2 symmetry
across the brane.
If the first equation of (46) is multiplied by h̃∗

n from the
left and integrated over the bulk coordinate z, the left
hand side can be then integrated by parts. The result-
ing boundary term then vanishes because of the second
equation of (46) and leads to the condition [19]

m2
n =

∫
dz|D− h̃n|2∫
dz|h̃n|2

≥ 0 . (47)

Using Eqs. (46) we can also immediately determine
the existence of a tensor massless mode, characterized
by the bulk profile

D− h̃0 = 0 ⇒ h̃0 ∝ A3/2 . (48)

From (43) and the metric decomposition (14), we re-
cover the well-known fact that the massless tensor mode
has an identical bulk profile as the background geometry.
Incidentally there is no issue with using the decomposi-
tion (14) for the massless tensor mode because the tensor
equation of motion does not change [18].

5 Notice that [19] defines D± in the opposite way, since their Ω is
1/A.

VI. EIGENVALUE PROBLEM

In the three previous Sections we have obtained the
canonical modes in both the scalar and tensor sector,
while we have shown that there are no physical vector
modes. We have decomposed the canonical perturba-
tions in a Kaluza-Klein sum, and obtained the equations
satisfied by the wavefunction of the modes. In the two
following Subsections we outline the eigenvalue problem
that can be solved to obtain the properties of the physical
modes.

A. Scalar sector

When N bulk scalars are present, the scalar sector of
the perturbations is characterized by the N physical 5D
perturbations vi, defined in (23). The wave functions of
the corresponding Kaluza-Klein modes satisfy the N sec-
ond order differential equations (24). Each KK mode is
therefore characterized by 2N + 1 parameters (the mass
mn, and the 2N values required to specify the Cauchy
problem), so that the bulk differential equations need to
be supplemented by 2N + 1 conditions. Each bound-
ary brane enforces N conditions, given by eq. (27) in
the case of finite brane potentials, and by eqs. (31) and
(34) in the case of infinitely stiff brane potentials. We
discussed in Subsection III D the typical boundary con-
ditions that can be imposed in the case that one or both
branes are absent (in general, we expect N conditions
per boundary). One additional condition is obtained by
fixing the overall normalization of the modes. One can
typically start by fixing a provisory (and, generally, in-
correct) normalization; for instance, one can require that
one of the wave functions evaluates to 1 at one bound-
ary. This, together with the 2N conditions coming from
the two boundaries, allows the system of linearized equa-
tions to be completely solved. In this way, one obtains
the masses of the physical modes, and the wavefunctions,
up to an overall, yet to be specified, normalization. We
stress that the overall normalization of the solutions is
an irrelevant quantity in a linearized system of equations
(if we rescale all the modes of a solution by a common
factor, we still have a solution). Therefore, the system of
equations can be solved, and gives the correct values of
the eigenmasses, for any arbitrary overall normalization.
Still, the overall normalization is crucial to determine the
couplings of the perturbations, (since the couplings are
determined by the values of the wavefunctions); Subsec-
tion III E explains how to rescale the solutions, so as to
obtain the correct normalization, once the linearized sys-
tem has been solved.
In many cases, the bulk equations cannot be solved

analytically; we expect this to be the norm in the scalar
sector, where the perturbations are coupled in the equa-
tions (this happens even if the bulk potential is a sum of
separate terms, due to the mixing of the scalar field per-
turbations with the metric perturbations). In this case,
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the eigenvalue problem needs to be solved with a shoot-
ing method; one fixes half of the 2N parameters that are
necessary to determine the bulk evolution, by enforcing
the N conditions at one of the two boundaries. Next
one guesses the remaining N parameters, and solves the
bulk equations which enable the wave functions to be
evaluated on the other boundary. If the resulting so-
lutions happen to satisfy the boundary conditions also
there, then one has obtained a physical mode of the sys-
tem. Typically, the initial guess is not correct, and one
needs to employ some numerical scheme to obtain the so-
lutions. For example, one can compute by how much the
wavefunctions evaluated at the second brane differ from
the expected boundary conditions, as a function of the
initial guesses. An N -dimensional Newton’s method can
then be implemented to find the zeros of this function.
We perform this algorithm in the example studied in the
next Section.

B. Tensor sector

The tensor sector is significantly simpler than the
scalar sector. The wave functions h̃n, defined in equa-
tion (43), satisfy the second order differential equation
(44) in the bulk. Each solution is in principle character-
ized by three parameters: the mass mn of the eigenmode,
and two integration constants C1n, C2n. However, as for
the scalar case, only the ratio of these two constants, and
not the overall normalization of the solution, can be de-
termined from the linearized problem. Therefore to just
obtain the eigenmasses and bulk profiles we can simply fix
an arbitrary normalization by requiring that h̃n acquires
a nonzero (but arbitrary) value at a given position (typ-
ically, at one boundary brane). This gives one condition.
The other two conditions are enforced by the boundary
branes (each brane enforces one condition, given by the
last expression in (46)), or if a brane is absent, by the re-
quirement that the wavefunction is normalizable. These
three conditions then allow mn, C1n, and C2n to be de-
termined with the bulk profiles known up to an overall
normalization. The correct normalization can be then
obtained from the quadratic action of the tensor modes,
analogously to what we dicussed for the scalar sector.

VII. AN EXPLICIT EXAMPLE: THE
DYNAMICAL SOFT WALL

As an explicit example of the general method that we
have outlined above, we will consider the dynamical soft-
wall solution found in Ref. [14]. In addition to the met-
ric, this solution involves two bulk scalar fields. It pro-
vides a dynamical realization of the holographic soft-wall
model for QCD [20, 21], as well as applications to the
electroweak sector of the Standard Model [22].

A. The 5D model

We review the soft wall background solution [14] (with
the only difference that we use our convention for M3,
that corresponds to M3/2 in [14]). The model is charac-
terized by the two fields φ and T , with the bulk potential

V =
1

8
ν2k2T 2 e

νT2

6M3(1+ν) +
1

2
ν2 k2φ2 e

2√
3

φ

M3/2

−12k2

[
(1 + ν)

M3/2

√
2

e
νT2

12M3(1+ν)

−ν

(
M3/2

√
2

− φ√
6

)
e

1√
3

φ

M3/2

]2
. (49)

One obtains the background solution

A (z) =
e−

2
3 (µz)

ν

k z
,

φ (z) =
2√
3
M3/2 (µz)ν ,

T (z) = −2
√
2
√
1 + 1/νM3/2 (µz)

ν/2
. (50)

The parameter ν is a dimensionless constant, while µ is
the soft-wall mass scale. As the bulk volume diverges
at z → 0, a UV brane is placed at z0 = 1/k. The po-
tential U on this brane is chosen so that the solutions
(50) satisfy the boundary conditions there: specifically,
the background values of U and U,i are determined from
(12) and (13). We then assume that the brane potential
contains large quadratic terms (30), so that the bound-
ary conditions for the perturbations can be given in the
infinitely stiff limit of Subsection III C.
The scalar field configuration provides a finite bulk ge-

ometry in the limit z → ∞, so that there is no need to
include a boundary IR brane at large z (in fact this is
the reason for why it is a “soft wall”, as opposed to a
sharp brane or hard-wall cut-off). As we will see in the
next two Subsections, the requirement that the perturba-
tions are normalizable there provides sufficient boundary
conditions to fully determine them. We focus our study
of the perturbations of this model to the choice ν = 2,
as this gives rise to a linear Regge-like mass spectrum,
m2

n ∝ n, for the KK modes, which is similar to that
encountered in the hadron spectrum of QCD.

B. Tensor modes

The tensor modes for the model were already studied in
[22]. We summarize these results here for completeness,
and to provide an example of an eigenvalue problem that
can be solved analytically (and that is technically simpler
than the problem for the scalar modes studied in the next
Subsection).
It is convenient to use the variable hµν = δgTT

µν /A2 (z)
(where TT denotes the transverse-traceless component)
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for the eigenvalue problem. The Kaluza-Klein decompo-
sition is analogous to (43), and we denote by hn the wave

function of the n−th mode (hn = A−3/2 h̃n, where h̃n is
introduced in (43)). In the background (50), the bulk
equation eq. (41) becomes

d2hn

dz̃2
−
(
4 z̃ +

3

z̃

)
dhn

dz̃
+ m̃2

n hn = 0 , (51)

where we have introduced the dimensionless quantities
z̃ ≡ µ z and m̃ ≡ m/µ. The boundary condition at the
UV brane then has the form

dhn

dz̃

∣∣∣
z̃=µ̃

= 0 , (52)

(where µ̃ ≡ µ/k corresponds to the location of the UV
brane) while the normalizability requirement at z̃ → ∞
translates into the requirement that the solution de-
creases sufficiently fast at large z̃. More precisely, since
the wave function of the canonically normalized mode is
h̃n = A3/2 hn, we require that

∫
dzA3 h2

n < ∞.
The normalizable solution of Eq. (51) is (up to a nor-

malization constant) the Kummer’s confluent hypergeo-
metric function

hn = U

(
−m̃2

n

8
, −1, 2z̃2

)
. (53)

The eigenmasses are obtained by imposing (52). In the
limit µ̃ = µ/k ≪ 1, we can expand (53) at small z̃, and
obtain

hn = const.+
16z̃2

(−8 + m̃2
n) Γ

(
− m̃2

n

8

) +O
(
z̃4
)
. (54)

Eq. (52) is approximately satisfied at the poles of the
gamma function, namely for

m̃n ≃ 2
√
2n , n = 0, 2, 3, . . . , (55)

(we verified numerically that there is indeed no physical
mode corresponding to n = 1). We note that m̃2

n ≥ 0 in
agreement with the general result (47).

C. Scalar modes

For the background solution (50), and in terms of the
dimensionless quantities z̃, m̃n defined in the previous
Subsection, the bulk equations (24) become

v′′1=

{
−m̃2 +

−9 + 8z̃2
[
−9 + 16z̃2

(
−3 + z̃2 + 2z̃4

)]

4z̃2 (3 + 4z̃2)
2

}
v1

−16z̃
(
−9 + 24z̃2 + 16z̃4

)

3 (3 + 4z̃2)
2 v2 ,

v′′2=

{
−m̃2 +

243 + 8z̃2
[
81 + 8z̃2

(
171 + 78z̃2 + 4z̃4

)]

36z̃2 (3 + 4z̃2)2

}
v2

−16z̃
(
−9 + 24z̃2 + 16z̃4

)

3 (3 + 4z̃2)2
v1 , (56)

where prime (′) denotes differentiation with respect to z̃,
and where the subscript 1 (2) corresponds to the field φ
(T ). As we discussed in Section III, to fully determine a
mode we must specify the five quantities (2N + 1, with
N = 2)

v1|µ̃ , v2|µ̃ , v′1|µ̃ , v′2|µ̃ , m̃2
n , (57)

where we recall that µ̃ is the position of the UV brane in
the rescaled variable z̃.

We assume a stiff brane potential on the UV brane,
which enforces the Dirichlet boundary conditions δφ =
δT = 0 (see Subsection III C). This in turn results in the
two boundary conditions (31) and (34). Moreover, we fix
the arbitrariness of the overall normalization by fixing
the value of v2 = 1 at the UV brane. This, together with
Eq. (31) gives

v1|µ̃ = −2

3
µ̃ , v2|µ̃ = 1 . (58)

We are left with the three parameters v′1|µ̃, v′2|µ̃, m̃2
n

subject to the constraint (34):

v′1|µ̃ − 3

2 µ̃
v′2|µ̃ = − m̃2

n

8 µ̃2

(
3 + 4 µ̃2

)

+
1

12 µ̃2

(
9 + 16 µ̃4

)
+ 4 +

8

3 + 4 µ̃2
. (59)

We used this constraint to determine v′1|µ̃ as a function
of v′2|µ̃ and m̃2

n.

The bulk coordinate z̃ extends to +∞. To understand
the role of the associated boundary conditions, we stud-
ied the bulk equations in the limit of large z̃:

v′′1 =
[
4µ4z2 +O

(
z0
)]

v1 +

[
−16µ3

3
z +O

(
z−3

)]
v2 ,

v′′2 =

[
−16µ3

3
z +O

(
z−3
)]

v1 +

[
4µ4

9
z2 +O

(
z0
)]

v2 .

(60)

We obtained the approximate solutions to these equa-
tions under the assumption that one mode is significantly
larger than the other one in this limit; the subdominant
mode can then be disregarded in the equation of the dom-
inant mode; this equation can be solved analytically, and
we can then insert this solution in the remaining equa-
tion to obtain the subdominant mode. We then studied
the large z̃ limit of the solutions, and verified that the
starting assumption (the subdominant mode can be ne-
glected in the equation of motion of the dominant one)
holds. In this way, we obtained four solutions, that form
a complete basis for the solutions of the bulk equations.
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At z̃ ≫ 1, the four solutions read

v2 ≃ − 3C1

2z̃3/2
e−z̃2 ≪ v1 ≃ C1√

z̃
e−z̃2

,

v2 ≃ − 3D1

2z̃3/2
ez̃

2 ≪ v1 ≃ D1√
z̃
ez̃

2

,

v1 ≃ 3C2

2z̃3/2
e−

1
3 z̃

2 ≪ v2 ≃ C2√
z̃
e−

1
3 z̃

2

,

v1 ≃ 3D2

2z̃3/2
e

1
3 z̃

2 ≪ v2 ≃ D2√
z̃
e

1
3 z̃

2

. (61)

We note that two of these solutions are exponentially de-
creasing at large z̃, while the other two are exponentially
increasing.
As we discussed in the previous Section, at this stage

of the computation we can only guess some values for
the initial parameters v′2|µ̃, m̃2

n. This guarantees that
the boundary conditions at the UV brane are satisfied.
If we start from any point in this two dimensional space
of initially guessed parameters, and solve the bulk equa-
tions (56) from the UV brane to the asymptotic z̃ ≫ 1
region, we obtain solutions whose large z̃ asymptotics is
a linear combination of the four modes (61). Only lin-
ear combinations that have D1 = D2 = 0 correspond to
a normalizable, and hence physical, Kaluza-Klein mode.
Given that we need to satisfy two conditions, and the
space of initial parameters has dimension two, we expect
that only a discrete set of points in this space corresponds
to a physical mode. Our goal is to identify these points.
As can be expected, none of the initial guesses cor-

responds to a physical mode, and therefore we resorted
to the following numerical algorithm. For the present
discussion, let us denote by α ≡ m̃2

n and β ≡ v′2|µ̃ the
two coordinates in the space of initial parameters, and by
f (α, β) and g (α, β) the values of the two wavefunctions
v1 and v2, respectively, at some large value z̃end. Physi-
cal modes correspond to zeros of these two functions. We
numerically searched for zeros using Newton’s method:
starting from an initial guess {α0, β0} we initiate a suc-
cession {αn, βm} that, if it is convergent, converges to a
zero of f and g. The iteration step of the succession is

αn+1 = αn +
f,β g − g,β f

f,α g,β − f,β g,α
,

βn+1 = βn +
g,α f − f,α g

f,α g,β − f,β g,α
, (62)

where the subscript comma denotes differentiation us-

ing finite differences, namely f,α ≡ f(α+ǫ, β)−f(α−ǫ, β)
2ǫ ,

and similarly for the other derivatives. The iteration
step is obtained by Taylor expanding f (αn+1, βn+1) and
g (αn+1, βn+1) in terms of f, g and their first deriva-
tives, evaluated at {αn, βn}. The expressions (62) are
the algebraic solutions of these equations, after setting
f (αn+1, βn+1) = g (αn+1, βn+1) = 0.
Ideally, the algorithm converges to real solutions only

for z̃end = ∞. In practice however, the numerical prob-
lem we are solving is rather challenging. Indeed, we need

to identify exponentially decreasing solutions among ex-
ponentially growing ones. No numerical solution starts
from values of {α, β} that exactly correspond to a solu-
tion. The discrepancy, however small, necessarily results
in an exponentially growing solution at z̃ ≫ 1. The larger
the value of z̃end, the smaller the initial discrepancy needs
to be, if one hopes that the growing mode is still subdom-
inant at z̃end. After some trials, we found that values of
z̃end ≃ 5 result in successions that converge after ∼ 102

or ∼ 103 iteration steps of (62). For larger values of z̃end,
the successions typically keep spanning large areas of the
{α, β} plane without showing any sign of convergence.
We note that z̃end ≃ 5 are the values for which the ex-
ponential suppression/enhancement in (61) starts to be
significant.

We generally expect that the effect of having a finite
value for z̃end, rather than z̃end = ∞, is the following: any
zero of f and g that we find arises because the exponen-
tially decreasing and the exponentially growing modes of
(61) provide an equal contribution to the wave function
at z̃ ≃ z̃end (if this was not the case, the wave func-
tion would exponentially decrease, and not vanish, at
z̃end). For sufficiently large z̃end, this however implies
that the growing mode is extremely subdominant at the
UV brane, and that the initial choice of v′2|µ̃, m̃2

n is very
close to the physical one. For instance, in obtaining the
eigenmasses that we show in Figure 5, we tried to push
z̃end to the highest possible values that allowed for a con-
vergence of (62), and we verified that a small decrease of
z̃end from this highest possible value did not significantly
change the values of v′2|µ̃, m̃2

n to which (62) converged
to.

Our main goal in the current example is to study
whether the soft wall model [14] is stable. Clearly, our
numerical search will never produce a definite proof of
this, since one may in principle think that modes with
negative m2 exist, but our numerical scheme could not
find them. However, as we now discuss, our search al-
gorithm converged to more than 100 eigenmodes with
m̃2

n > 0, and there were no modes with m̃2
n < 0. We

believe that this provides substantial evidence that the
soft wall model is stable.

We performed two extensive searches, with different
values of µ̃2. In the first search, we fixed µ̃ = 0.01, and
z̃end = 5, and we took a grid of 250 × 500 values in
the plane of initial values; specifically, the values of m̃2

n

ranged from −49.9 to −0.1 in steps of 0.2, and v′2|µ̃ from
−49.9 to 49.9 in steps of 0.2 (starting from negative val-
ues of m̃2

n so as to maximize the chance of finding some
tachyonic solution, if it existed). Starting from each of
the 125, 000 points in the grid, we performed 400 itera-
tions of (62). The iterations converged to 118 final points

with m̃2
n > 0, and with

√
f2 + g2 ≪ 1 (therefore, they

correspond to stable solutions of the problem). In the
second search, we fixed µ̃ = 0.001, and z̃end = 5. We
took a grid of 100 × 200 values in the plane of initial
values; specifically, the values of m̃2

n ranged from −59.7
to −0.3 in steps of 0.6, and v′2|µ̃ from −597 to 11343 in
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steps of 60. We performed 400 iterations of (62), which
converged to 67 final points, with m̃2

n > 0, and with√
f2 + g2 ≪ 1.

-20000
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 40000

 60000
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 120000
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v 2
,0
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FIG. 1: Values of m̃2

n ≡ m2

n/µ
2 and v′2,0 ≡ v′2|µ̃ to which the

algorithm described in the main text converged (with µ̃ =
0.01). Note that all the solutions have positive mass-squared,
m̃2

n. Also shown is the linear fit along which the parameters
of the solutions are approximately distributed.

The values of m̃2
n and v′2|µ̃ of the convergence points

are shown in Figure 1, for the search with µ̃ = 0.01. We
see from the Figure that many of the solutions have a
final value of these parameters outside the range of the
starting grid. This shows that the algorithm is able to
find solutions in a broad region of the parameters. We
see that the values shown in the figure are roughly dis-
tributed along the line, v′2|µ̃ ≃ 25m̃2

n−42, although some
scatter is present (for the search with µ̃ = 0.001, we
found that the parameters of the solution are roughly
distributed along the line v′2|µ̃ ≃ 250m̃2

n − 520). We also
notice that the solutions we have found are not equally
spaced along this line: this is a clear sign that the search
has not found all the modes with the parameters in the
range shown in the Figure. Particularly, it is natural to
expect that the method failed to obtain modes with val-
ues of m̃2

n and v′2|µ̃ very different from those in the initial
grid. While the exact spectrum of the soft wall model [14]
is by itself a very interesting subject worth studying, this
is not the goal of the present work. The main purpose
of Figure 1 is to show that the algorithm that we have
implemented did not find any unstable (m̃2

n < 0) mode.
In Figures 2 and 3 we show the bulk profile of v1

and v2, respectively, of the three lightest modes obtained
from this search. These wavefunctions are shown with
the “provisory” normalization set by eq. (58). In Fig-

ure 4 we show instead the bulk profile
√
v21 + v22 of the

three modes after they have been properly normalized
(see Subsection III E). As typical, the profile of modes of
increasing mass presents an increasing number of maxima
and minima, and extends further in the bulk.
The hierarchy in the model (namely, the ratio between

-2000
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FIG. 2: Bulk wavefunctions of v1 for the three lightest scalar
Kaluza-Klein modes for µ̃ = 0.01. The corresponding eigen-
masses are m̃2 ≃ 0.41, 3.47, 6.25.
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FIG. 3: Bulk wavefunctions of v2 for the same modes appear-
ing in Figure 2.

the IR and the UV mass scale) is given by µ̃. While a
solution to the hierarchy problem requires µ̃ ≃ 10−16, the
two searches we have performed are limited to very mod-
erate hierarchies, namely µ̃ = 0.01 and 0.001. However,
we also studied how the lightest eigenmasses scale with
µ̃, and we believe that our results can be extrapolated to
small hierarchies. In Figure 5 we present the value of four
light eigenmasses for µ̃ as small as 10−5. We find that
the lightest eigenmode shown behaves differently than
the heavier ones. For all these other modes, the ratio
m̃2

n = m2
n/µ

2 approaches a constant value at small µ̃2.
Instead, we find that the numerical values obtained for
the lightest eigenmass are extremely well approximated
by

m2
radion

µ2
≃ 1.9

log
(

k
µ

) . (63)
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FIG. 4: Properly normalized bulk profile of the same modes
appearing in Figures 2 and 3.
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FIG. 5: Values of the lightest eigenmasses as a function of
µ̃ = µ/k.

We were actually able to obtain this eigenmass for values
of µ̃ as small as 10−10 (for smaller values, the algorithm
was no longer able to converge to the solution), and we
verified that the fit (63) continues to be valid also at such
low µ̃.
In eq. (63) we referred to this mode as a radion, be-

cause the behavior of its mass is consistent with that
of the radion in the Goldberger-Wise [11] stabilization
mechanism, while the behavior of the heavier masses is
consistent with the behavior of the higher KK modes in
[11]. We recall that µ is the IR scale of the model, while
k is associated with the UV scale. We therefore find
that the wave function of the radion and of the higher
KK modes are peaked at values of the bulk coordinate z
of the order of the inverse IR scale. Moreover, we find
that the higher KK modes obtain a mass of order the
IR scale, while the radion mass is suppressed with re-
spect to this value by the logarithm of the ratio between
the UV and the IR scale. These properties coincide with

those obtained in the Goldberger-Wise [11] stabilization
mechanism, as shown in the analysis of [12, 23] (in the
computation of [12], the logarithmic suppression is en-
coded in the factor u/k ∼ 1/ (k r0) ∼ 1/log (UV/IR)).
The nature of these modes as IR modes is also con-

firmed by the computation of their normalization, that
we performed for the specific case of µ̃ = 0.01. Specifi-
cally, we evaluated Cnn in eq. (37) for the four modes of
Figure 5. We found that the contribution to Cnn from
the bulk integral is about 5 orders of magnitude greater
than the contribution from the UV boundary at z̃ = µ̃.
Since the wavefunctions vi (and, thus, their bulk inte-
gral) are peaked at values of z of the order of the inverse
IR scale, this confirms the IR nature of the modes. In an
analytic computation, one would expect no contribution
to Cnn from the boundary at z = ∞. In our numerical
computation, the contribution from the IR “fictitious”
boundary at z̃end = 5 ranges from being 5 to 7 orders
of magnitude smaller than the bulk integral. This is a
measure of the goodness of our numerical results.
A second check on our numerics is provided by the

orthogonality of the modes. Ideally, the modes should be
perfectly orthogonal to each other: Cmn = 0 for m 6= n.
We find that smn ≡ Cmn/

√
Cmm Cnn for m 6= n is of

O
(
10−5

)
for the four modes of Figure 5. As a final check

of the numerics, we verified that the wave functions vi of
the four modes of Figure 5 is in good agreement with the
analytic large z̃ solution that we wrote in the third line of
eq. (61). We recall that normalizable modes must behave
as linear combinations of the first and third line of (61)

at large z̃. Since the mode in the third line (∝ e−z̃2/3)

decreases less than the mode in the first line (∝ e−z̃2

),

only the e−z̃2/3 component will be visible if the mode is a
generic linear combination of these two solutions at large
z̃.

VIII. CONCLUSION

The main goal, and result of this work is to provide a
formalism to study the perturbations, and the stability
of codimension one brane compactifications with N bulk
scalar fields. We obtained the closed set of equations
for such perturbations, and arranged them in an explicit
eigenvalue problem. These equations are valid for arbi-
trary bulk and brane potentials for the scalar fields, and
therefore can be readily employed to study any such con-
figuration. Specifically, we identified the canonical per-
turbations of the system, eqs. (23). They satisfy the sec-
ond order bulk equations (24). Such equations must be
supplemented by boundary conditions. In Section III B,
and in the following two Subsections, we provided such
conditions for the case of generic brane potentials, in-
finitely stiff brane potentials, and no brane, respectively.
As an example, we studied the system of perturbations in
the soft-wall model of [14], which is characterized by two
bulk scalar fields. We found the scalar perturbations in
this model behave identically to those of the Goldberger-
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Wise stabilization mechanism [11]; namely, there is tower
of KK modes with mass at the IR scale, and a lighter
radion mode, whose mass is suppressed with respect to
the KK tower by a large logarithm; all these modes are
peaked at IR values of the bulk coordinate. Note that
our formalism assumes that there are no massless scalar
modes, but can be straightforwardly generalized to study
examples in this class.
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APPENDIX A: Brane boundary conditions

We give the definitions and intermediate steps relevant
for the computation of the brane junction conditions,
mostly following the notation of [24]. The brane posi-
tion in the bulk is characterized by the vector xA (yµ),
denoting the bulk coordinate xA of a point identified by
the position yµ on the brane. This defines the basis vec-

tor eA(µ) ≡ ∂xA

∂xµ . The normal of the brane is then defined

by the requirement that it is orthogonal to the basis vec-
tors, and normalized to one: eA(µ) nA = 0 and nAn

A = 1.

The induced metric γµν and the extrinsic curvature Kµν

are then

γµν = eA(µ) e
B
(ν) [gAB − nA nB] , Kµν = eA(µ) e

B
(ν)∇AnB .

(A-1)
We are interested in the results up to first order in

the perturbations. We use the metric (14), in the E =
B = Eµ = 0 gauge. We denote the brane position in the
extra space as zbrane = zbackground position+ ζ (xµ), where
ζ is a perturbation. In vector notation, using the first
component for the ordinary coordinates (A = 0, . . . , 3),
and the final component for the extra coordinate (A = 5),
we have eA(µ) =

(
δAµ , ζ,µ

)
and nA = A (−δζ,µ δ

µ
A, 1 + Φ).

This gives

γµν = A2 [(1 + 2Ψ) ηµν + hµν ] , (A-2)

and

Kµν = [A′ (1− Φ+ 2Ψ) +AΨ′] ηµν −Aζ,µν

− A

2
(Bµ,ν +Bν,µ) +

A

2
h′
µν +A′ hµν . (A-3)

APPENDIX B: Scalar equations in the bulk

We linearize the bulk equations (2) and (4) in the scalar
perturbations (14), in the E = B = 0 gauge. As men-
tioned in the main text, the off diagonal µν Einstein
equations enforce Ψ = −Φ/2, which we use to elimi-
nate Ψ. Among the remaining equations, the µ5 Einstein

equation is already given in eq. (22) of the main text. One
can then show that the part of the µν equation propor-
tional to ηµν (the one with the ellipsis in eq. (20)) can
be written as a combination of (22) and its z derivative.
We can therefore disregard it.
We are left with eq. (4) and the 55 component of (2),

which are, respectively,

−�δφi − δφ′′
i − 3A′

A
δφ′

i

+3φ′
iΦ

′ + 2A2V,iΦ +A2V,ijδφj = 0 ,

−�Φ+
2φ′

kφ
′
k

3M3
Φ

− 2

3M3

(
φ′
kδφ

′
k +

4A′

A
φ′
kδφk −A2V,kδφk

)
= 0 ,

(A-4)

where we have used (22) to simplify the second of these
equations. The left hand side of these equations (A-4)
will be denoted as Eqi and Eq55, respectively and also

the left hand side of eqs. (24) are denoted as Ẽqi. Using
(22) repeatedly, one can show that

1

2

d

dz
Eq55 +

A′

A
Eq55 −

1

3M3
φ′
kEqk = 0 ,

−
√
2A3/2

(
Eqi +

Aφ′
i

2A′ Eq55

)
+ Ẽqi = 0 . (A-5)

The first relation indicates that one equation in
the {Eqi = 0, Eq55 = 0} system is redundant. The
first and second relations together show that the
{Eqi = 0, Eq55 = 0} system of equations for the N + 1
variables {δφi, Φ} is equivalent to the system of equa-

tions
{
Ẽqi = 0

}
for the N variables {vi}. This is pos-

sible because the variables {δφi, Φ} are subject to the
constraint (22).

APPENDIX C: Scalar boundary conditions

In this Appendix we summarize the algebra needed to
rewrite the boundary condition (26) into the expression
(27). We recall that our goal is to write the boundary
conditions as expressions of the form v′i =

∑
j cijvj .

We start by taking the z derivative of the definition
of vi, eq. (23). We then eliminate δφ′ and Φ′ from the
resulting expression using (22) and (26). Finally, we elim-
inate δφi using (23). This gives rise to the expressions,

v′i −
3A′

2A
vi −

(
Aφ′

i φ
′
j

3M3A′ ±
A

2
U,ij

)
vj

=

(
2
√
2A3/2φ′

i −
A9/2V,i√

2A′
± A7/2

2
√
2A′

U,ij φ
′
j

)
Φ ,

(A-6)

which are equivalent to the boundary conditions (22),
once we assume that the modes satisfy the bulk equations



15

in the bulk (which clearly must be the case). We need to
eliminate Φ in favor of a linear combination of vi. From
the second equation of (A-4), together with (22) and (23),
we find

�Φ =

√
2

3M3A3/2

[
φ′
kv

′
k −A2V,kvk

+

(
5

2

A′

A
− A

A′
φ′
kφ

′
k

3M3

)
φ′
qvq

]
. (A-7)

In principle, we can solve and obtain Φ from this relation,
and insert it in (A-6). The resulting equations would
be functions of vi and v′i only, but would not be of the
required form (the linear combination ∝ φ′

k v
′
k on the

right hand side of (A-7), means that a nontrivial inversion
is needed to solve for v′i).
Instead to achieve our goal, Φ should be expressed as

a linear combination of vi only. This can be obtained if
there is a second relation between Φ, φ′

k v
′
k, and vi. This

is readily achieved if we multiply (A-6) by φ′
i, and sum

over i:

φ′
iv

′
i =

(
3

2

A′

A
+

Aφ′
kφ

′
k

3M3A′

)
φ′
ivi ±

A

2
U,ijφ

′
ivj

+

(
2
√
2A3/2φ′

kφ
′
k − A9/2φ′

kV,k√
2A′

± A7/2

2
√
2A′

U,ij φ
′
iφ

′
j

)
Φ .

(A-8)

Substituting this expression into (A-7) gives rise to an
equation containing only the modes Φ and vi. This equa-
tion is then used to express Φ as a linear combination
of vi. Inserting this expression into (A-6) provides the
boundary conditions (27) in the required form.
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