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Abstract

The symmetron is a scalar field associated with the dark sector whose coupling to mat-

ter depends on the ambient matter density. The symmetron is decoupled and screened in

regions of high density, thereby satisfying local constraints from tests of gravity, but couples

with gravitational strength in regions of low density, such as the cosmos. In this paper we

derive the cosmological expansion history in the presence of a symmetron field, tracking the

evolution through the inflationary, radiation- and matter-dominated epochs, using a combi-

nation of analytical approximations and numerical integration. For a broad range of initial

conditions at the onset of inflation, the scalar field reaches its symmetry-breaking vacuum

by the present epoch, as assumed in the local analysis of spherically-symmetric solutions

and tests of gravity. For the simplest form of the potential, the energy scale is too small for

the symmetron to act as dark energy, hence we must add a cosmological constant to drive

late-time cosmic acceleration. We briefly discuss a class of generalized, non-renormalizable

potentials that can have a greater impact on the late-time cosmology, though cosmic accel-

eration requires a delicate tuning of parameters in this case.
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1 Introduction

The standard ΛCDM cosmology explains cosmic acceleration with a cosmological constant, a

logically sound but seemingly highly tuned explanation. Therefore there has been much interest

in exploring the possibility that the cosmic acceleration could be caused by a previously unobserved

dynamical component of the universe [1]−[5]. At the same time, nearly massless gravitationally

coupled scalars are generically predicted to exist by many theories of high energy physics. No

experimental sign of such a fundamental scalar has yet been seen, in spite of tests designed to

detect solar system effects and fifth forces that would generally be expected if such scalars were

present [6, 7].

If light scalars exist, they must utilize a screening mechanism [8] to hide themselves from

local experiments. Screening mechanisms rely on non-linearities whose behavior depends on the

ambient matter density. In regions of high density, such as the local environment, the scalars

develop non-linearities that effectively decouple them from matter. In regions of low density, such

as the cosmos, the scalars couple to matter with gravitational strength and mediate a long-range

force, thereby affecting the nature of gravity and the growth of structure on large scales [9].

Aside from cosmology, these theories find independent motivation in the vast experimental

effort aimed at testing the fundamental nature of gravity at long wavelengths [7]. Viable screening

theories make novel predictions for local gravitational experiments. The subtle nature of these

signals have forced experimentalists to rethink the implications of their data [10, 11] and have

inspired the design of novel experimental [12]−[16] and observational tests [17]−[21]. The theories

of interest offer a rich spectrum of testable predictions, from laboratory to extra-galactic scales.

Only a handful of successful and robust screening mechanisms have been proposed to date [8].

The first is the Vainshtein mechanism [34, 35, 36], which works when the scalars have derivative

self-couplings which become important in the vicinity of massive sources such as the Earth. The

strong coupling boosts the kinetic terms, so that after canonical normalization the coupling of

fluctuations to matter is weakened. This mechanism is central to the phenomenological viability

of brane-world modifications of gravity [37]−[52], massive gravity [36], [53]−[61] (see [62] for a

review), degravitation models [63]−[66] and galileon theories [67]−[80]. See [81]−[86] for some

phenomenological implications.

A second screening mechanism is the chameleon mechanism [22]−[31], which works when the
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scalars are non-minimally coupled to matter in such a way that their effective mass depends on

the local matter density. Deep in space, where the local mass density is low, the scalars are light

and display their effects, but near the Earth, where experiments are performed, and where the

local mass density is high, they acquire a mass, making their effects short range and unobservable.

The effective coarse-grained description of chameleon theories, including careful considerations of

averaging, has been derived in [28]. Chameleonic vector fields, such as gauged B − L, have been

proposed in [32]. See [33] for an attempt at realizing the chameleon in string compactifications.

Recently, two of us have proposed a third screening mechanism, called the symmetron [87],

based in part on earlier work [88, 89]. For this mechanism to operate, the vacuum expectation

value (VEV) of the scalar must depend on the local mass density. The VEV becomes large in

regions of low mass density, and small in regions of high mass density. In addition, the coupling

of the scalar to matter is proportional to the VEV, so that the scalar couples with gravitational

strength in regions of low density, but is decoupled and screened in regions of high density.

This is achieved through the interplay of a symmetry-breaking potential [87],

V (φ) = −1

2
µ2φ2 +

1

4
λφ4 , (1)

and a Z2-invariant universal conformal coupling to the trace of the matter stress tensor, ∼
φ2T µµ/M

2, so a local matter density contributes to the effective mass of the scalar. In vacuum,

the scalar acquires a VEV |φ| = φ0 ≡ µ/
√
λ, which spontaneously breaks the reflection symmetry

of the lagrangian φ → −φ. In the presence of sufficiently high ambient density, on the other

hand, the potential does not break the symmetry and the scalar is trapped near φ = 0. This

is shown in Figure 1. In addition, δφ fluctuations couple to matter as (φVEV/M
2)δφ ρ. Hence,

symmetron perturbations are weakly coupled in high density backgrounds and relatively more

strongly coupled in low density backgrounds.

The symmetron naturally takes the form of an effective field theory. The potential comprises

the most general renormalizable terms invariant under the Z2 symmetry φ→ −φ. The coupling to

matter is the leading such coupling compatible with the symmetry and the equivalence principle1.

It is non-renormalizable, suppressed by the mass scale M , thus the symmetron is an effective

1In general, there may be renormalizable equivalence principle violating couplings such as φ2H2 where H is the

standard model Higgs. Setting these to zero may be another source of tuning since the equivalence principle is not

respected by all quantum corrections.
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theory with cutoff M . Remarkably, tests of gravity constrain this cutoff to be around the GUT

scale [87], so any GUT theory with a low energy scalar might be expected to yield a symmetron-

type lagrangian at low energies. From this point of view, symmetron theories are more natural-

looking than chameleon models. As with all non-supersymmetric scalars, however, the coupling

to matter generates large quantum corrections to the mass which must be fine-tuned away.

Symmetron theories predict a host of observational predictions, some of which are distin-

guishable from other screening mechanisms. Although the local environment is dense, and there-

fore one in which the symmetron-mediated force is weak, the symmetron nevertheless leads to

small deviations from General Relativity in the solar system. As reviewed in Section 2.3, the

predicted signals for Lunar Laser Ranging and Mercury’s perihelion precession are just below

current bounds and within reach of next-generation experiments [87]. On the other hand, the

signal from binary pulsars is much weaker and should not be observed, since both neutron stars

are screened. This makes the symmetron distinguishable from over-the-counter scalar-tensor the-

ories, such as Brans-Dicke (BD) theories, for which solar system and binary pulsar signals are

comparable. The symmetron solar system predictions are also distinguishable from chameleon

and Vainshtein screening [87].

Symmetrons, like chameleons, predict effective macroscopic violations of the equivalence

principle between large (screened) and small (unscreened) bodies. Dwarf galaxies in low-density

environments, in particular, offer a fertile playground for testing these ideas [18, 21]. The stars are

oblivious to the symmetron whereas the hydrogen gas experiences an additional force, resulting

in an enhanced rotational velocity for the gas [18]. Meanwhile, the infall motion of a dwarf galaxy

can lead to a segregation of the stellar disk from the dark matter and the hydrogen gas [21].

We begin with an extensive overview of symmetron physics in Section 2, reviewing the

spherically-symmetric solution (Section 2.2) and constraints from solar system tests of gravity

(Section 2.3). Section 2.1, in particular, offers a novel perspective of the symmetron in terms

of Jordan-frame variables. In this frame, the action describes a Brans-Dicke type scalar-tensor

theory, with a field-dependent Brans-Dicke parameter. The screening mechanism is understood

as the Brans-Dicke parameter becoming large in regions of high-density, corresponding to the

decoupling of the scalar. In this respect, the symmetron is qualitatively similar to the Vainshtein

mechanism, though its non-linearities stem from potentials rather than derivative self-couplings.

The remainder of the paper focuses on the cosmological evolution in the presence of a sym-
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Figure 1: Schematic plots of the symmetron effective potential, illustrating the symmetry breaking

phase transition.

metron field. Specifically, we are interested in checking whether a symmetron leads to an ac-

ceptable cosmology and, more interestingly, whether it can act as dark energy driving cosmic

acceleration. We derive the evolution of the scalar field from the inflationary epoch until the

present. The dependence of the symmetron effective potential on the matter density has implica-

tions for the cosmological evolution of the scalar field. Since the matter density redshifts in time,

the effective potential is time-dependent and results in a phase transition when the matter density

falls below a critical value. We will choose parameters such that the phase transition occurs in

the recent past (ztran∼< 1).

A key question is whether the evolution allows the scalar field to reach the symmetry-

breaking vacuum by the present epoch, as assumed in the analysis of solar system tests and other

phenomenological studies. The short answer is that the coupling to matter efficiently drives the

field towards the symmetry-restoring point, so that for a broad range of initial conditions it reaches

φ ' 0 well before the phase transition. How the field makes it there, however, is an interesting

story, as summarized below.

In Section 3 we describe the symmetron evolution during the radiation- and matter-dominated

eras of standard big bang cosmology. The effective mass squared of the symmetron due to its cou-

pling to matter fields is m2
eff ∼ T µµ/M

2 ∼ (1− 3w)ρ/M2, where w is the equation of state. During

the radiation-dominated era, T µµ is dominated by the (subdominant) non-relativistic component,

hence m2
eff ∼ ΩmH

2M2
Pl/M

2. At early times, therefore, m2
eff � H2, and the symmetron remains
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essentially frozen at its initial value, denoted by φrad−i. As the universe cools and Ωm increases,

eventually m2
eff ' H2, and the symmetron starts rolling and undergoes damped oscillations around

φ = 0. Since M �MPl, this rolling phase is triggered deep in the radiation-dominated epoch, prior

to Big Bang Nucleosynthesis (BBN). From this moment onwards, the field amplitude decreases by

a factor of (M/MPl)
3/2 until matter-radiation equality. The damped oscillations continue during

the matter-dominated era, and the field amplitude decreases by an additional factor of 10−3 until

the present epoch. Thus, for a broad range of initial field values, the symmetron ends up close to

the origin by the onset of the phase transition.

In Section 4, we follow the evolution of the symmetron through the phase transition. For

the quartic potential (1), the symmetron nicely tracks the effective minimum and settles to the

symmetry-breaking vacuum by the present time. However, the energy scale of the potential is too

small to drive cosmic acceleration, and the symmetron backreaction is negligible. Hence we must

add a suitable cosmological constant, thereby making the expansion history indistinguishable from

ΛCDM cosmology.

We also consider generalized, non-renormalizable forms of the potential, with scales chosen

to have a greater impact on late-time cosmology: i) the potential energy difference between

maximum and minima is of order H2
0M

2
Pl, as desired to act as dark energy; and ii) the mass of

small fluctuations around the minima is of order H0, such that the symmetron can impact the

growth of structure on the largest observable scales. The resulting potential is sharply peaked

at φ = 0, and displays very shallow minima. Because of this asymmetric form, shortly after the

onset of the phase transition the symmetron overshoots the minimum and reaches a value of order

MPl. As a result, the field does not converge to the symmetry-breaking vacuum by the present

time, which is problematic for tests of gravity. Meanwhile, the symmetron energy density quickly

becomes irrelevant after the transition. One way to circumvent these problems is by requiring the

phase transition to occur in the very recent past (ztran � 1), but this requires a delicate choice of

parameters.

In Section 5 we go back to the early universe and describe the evolution of the symmetron dur-

ing a period of inflation and subsequent reheating. Since the effective mass m2
eff ' 12H2

infM
2
Pl/M

2

is � H2
inf during inflation, the scalar undergoes rapid oscillations with exponentially decaying

amplitude, thanks to Hubble damping. The end result is that a field initially displaced from

φ = 0 ends up exponentially close to this point. At the end of inflation, however, as the inflaton
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oscillates around its minimum, its equation of state also oscillates between w = −1 and w = 1.

In turn, m2
eff oscillates between negative and positive values, which can result in amplification.

With a simple parametrization of w(t), we find that the symmetron evolution can be de-

scribed at early times by a Mathieu equation, with solution given by the Mathieu cosine function.

As usual with Mathieu functions, the stability behavior depends on parameter choices, in this case

the inflation mass (setting the rate of oscillations in m2
eff), its decay rate (setting the duration of

the unstable phase) and the effective symmetron mass during inflation. We place a constraint on

these parameters by demanding that the symmetron displacement be within effective field theory

bounds. We summarize our results and discuss future directions in Section 6.

2 Review of the Symmetron

The symmetron is a special case of a general scalar-tensor theory,

S =

∫
d4x
√
−g
[
M2

Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
+

∫
d4x

√
−g̃Lm (ψ, g̃µν) , (2)

where the metric has mostly-plus signature, and Lm is the lagrangian for the matter fields, denoted

collectively by ψ. The matter fields couple minimally to the Jordan frame metric,

g̃µν ≡ A2(φ)gµν , (3)

related to the Einstein frame metric gµν by a positive function A(φ). In particular, φ couples

universally to all matter fields, hence the weak equivalence principle holds, at least classically2.

The scalar field equation of motion is given by

�φ = V,φ − A3(φ)A,φ(φ)T̃ , (4)

where T̃ = g̃µνT̃µν is the trace of the the matter stress-energy tensor, T̃µν ≡ −(2/
√
−g̃)δLm/δg̃

µν ,

covariantly conserved with respect to g̃µν : ∇̃µT̃
µ
ν = 0. Meanwhile, the Einstein equations are

M2
PlGµν = T φµν + A2(φ)T̃µν . (5)

2Note that quantum corrections do not in general preserve universal coupling to all loop order. However, the

leading corrections involving only the scalar sector do preserve the equivalence principle [90, 91], and others are

likely to suppressed in the present model by at least the ratio of the scalar VEV to the mass scale M . Depending

on the exact form of the corrections, this may be considered an additional source of fine tuning in such theories.
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Note that because φ couples conformally to matter, its stress-energy tensor,

T φµν = ∂µφ∂νφ−
1

2
gµν(∂φ)2 − gµνV (φ) , (6)

is of course not covariantly conserved: ∇µT φµν 6= 0.

The form of the functions A(φ) and V (φ) is crucial to the operation of the symmetron

mechanism. These functions are assumed symmetric under φ→ −φ and are such that the effective

symmetry breaking potential (41) has a zero VEV for large ρ and a large VEV for small ρ. In

addition, the function A(φ) should be such that the coupling of scalar fluctuations to matter is

proportional to the VEV.

The simplest symmetron theory, considered in [87], is that of a quartic potential (1) and

quadratic coupling:

A(φ) = 1 +
1

2M2
φ2 +O

(
φ4

M4

)
. (7)

The potential V (φ) comprises the most general renormalizable form invariant under the Z2 sym-

metry φ → −φ. The coupling to matter ∼ φ2/M2 is the leading such coupling compatible with

the symmetry. However, as we will see shortly, once we impose constraints from tests of gravity,

the energy scale in this potential is too small to act as dark energy. In Section 4.2, we will consider

generalizations that have a greater impact on cosmic acceleration.

The model involves two mass scales, µ and M , and one positive dimensionless coupling λ.

The mass term is tachyonic, so that the Z2 symmetry φ → −φ is spontaneously broken. With

this canonical choice, we will see shortly that the relevant field range is φ � M , such that any

O(φ4/M4) terms in A(φ) can be consistently neglected. For the case of non-relativistic matter,

which is relevant for most applications including local tests of gravity, T̃ ' −ρ̃. Expressing (4)

in terms of ρ = A3(φ)ρ̃, which is φ-independent, the effective potential is, up to an irrelevant

constant,

Veff(φ) =
1

2

( ρ

M2
− µ2

)
φ2 +

1

4
λφ4 . (8)

Whether the quadratic term is negative or not, and hence whether the Z2 symmetry is sponta-

neously broken or not, depends on the local matter density.

The screening mechanism works roughly as follows: in vacuum or in large voids, where

ρ ' 0, the potential breaks reflection symmetry spontaneously, and the scalar acquires a VEV

|φ| = φ0 ≡ µ/
√
λ; in regions of high density, such that ρ > M2µ2, the effective potential no longer
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breaks the symmetry, and the VEV goes to zero. Meanwhile, to lowest order the symmetron-

matter coupling is ∼ ρφ2/M2. Fluctuations δφ around the local background value φVEV, which

would be detected by local experiments, couple to density as

∼ φVEV

M2
δφ ρ . (9)

In particular, the coupling is proportional to the local VEV. In high-density environments where

the symmetry is restored, the VEV should be near zero and fluctuations of φ do not couple to

matter. In less dense environments, where ρ < M2µ2 and the symmetry is broken, the coupling

turns on.

We will be interested in the case where the field becomes tachyonic around current cosmic

density,

H2
0M

2
Pl ∼ µ2M2 , (10)

so that the phase transition occurs around the onset of cosmic acceleration. This fixes µ in terms

of M , and hence the mass m0 of small fluctuations around the symmetry-breaking vacuum:

m0 =
√

2µ ∼ MPl

M
H0 . (11)

As reviewed in Section 2.3, constraints from local tests of gravity require M ∼< 10−4MPl. Hence the

range m−1
0 of the symmetron-mediated force in regions of low mass density is ∼< 0.1 Mpc — too

heavy to act as a slowly-rolling quintessence field, but light enough to impact structure formation

and have interesting astrophysical implications.

The symmetron-mediated force Fφ relative to the Newtonian force FN between two test

masses in vacuum is set by the symmetry-breaking value φ0:

Fφ
FN

= 2M2
Pl

(
d lnA

dφ

∣∣∣∣
φ0

)2

' 2

(
φ0MPl

M2

)2

. (12)

If the scalar-mediated force is to be comparable to gravity in vacuum, then we must impose

φ0/M
2 ∼ 1/MPl, that is,

φ0 ≡
µ√
λ

= g
M2

MPl

, (13)

where g ∼ O(1). To be precise, it follows from (12) that g measures the strength of scalar force

in vacuum relative to gravity: Fφ = 2g2FN.
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Combined with (11) and the requirement M ∼< 10−4MPl, (13) fixes the dimensionless quartic

coupling to be exponentially small:

λ ∼ M4
PlH

2
0

M6 ∼> 10−96 . (14)

Note that since M � MPl from tests of gravity considerations, (13) implies that φ � M , hence

the entire field range of interest lies within the regime of the effective field theory.

Unfortunately, these requirements imply that the potential energy is too small to have sig-

nificant backreaction and drive cosmic acceleration. Indeed, using (10) and (13), the potential

height difference between φ = 0 and φ = φ0 is

∆V =
µ4

4λ
∼ H2

0M
2 � H2

0M
2
Pl . (15)

In Section 4.2 we will consider generalized forms of the potential that have ∆V ∼ H2
0M

2
Pl and are

therefore better candidates for dark energy applications.

2.1 Jordan-Frame Description

Because the scalar is assumed to couple universally to matter, we can also understand the sym-

metron mechanism in Jordan frame. We will see that the coefficient of the symmetron kinetic

term depends on the local value of the scalar field. This coefficient becomes large in regions of

high density, which effectively decouples the scalar field from matter. From this point of view,

the symmetron mechanism is qualitatively similar to Vainshtein screening, though it relies on a

potential rather than derivative self couplings.

In terms of the Jordan-frame metric g̃µν = A2(φ)gµν , the action (2) takes the form

S =

∫
d4x

√
−g̃
[
M2

Pl

2
ΨR̃− M2

Plω(Ψ)

2Ψ
g̃µν∂µΨ∂νΨ−Ψ2V (Ψ)

]
+

∫
d4x

√
−g̃Lm (ψ, g̃µν) , (16)

where Ψ ≡ A−2(φ). Thus the symmetron behaves as a Brans-Dicke scalar field, with field-

dependent Brans-Dicke parameter

ω(φ) =
1

2

[
1

2M2
Pl (d lnA/dφ)2 − 3

]
' 1

2

[
1

2

(
M2

MPlφ

)2

− 3

]
, (17)

where in the last step we have substituted the quadratic form A(φ) ' 1 + φ2/2M2 and used the

fact that A(φ) ' 1 for all field values of interest.
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The nature of the screening mechanism in this frame is crystal clear. In regions of high

density, where φ ' 0, the Brans-Dicke parameter is large,

ω '
(

M2

2MPlφ

)2

� 1 (high density regions) , (18)

indicating that the scalar field decouples and General Relativity is recovered. In regions of low

density, where |φ| ' φ0 = gM2/MPl, the Brans-Dicke parameter is of order unity,

2 + 3ω ' 1

2g2
(low density regions) , (19)

hence the scalar field generates order unity corrections to General Relativity.

2.2 Spherically Symmetric Solution

To study the implications for tests of gravity, we are interested in the symmetron profile around

astrophysical sources, such as the Sun. For this purpose, we can safely work in the Newtonian

limit, ignoring non-linear effects in gravity and the back-reaction of the scalar field on the metric.

Moreover, the source is approximated as static, spherically symmetric and pressureless (T̃ ' −ρ̃).

It has radius R and homogeneous mass density ρ, such that ρ� µ2M2. For simplicity, we further

assume the object lies in vacuum.

Written in terms of the density ρ = A3ρ̃, which is conserved in Einstein frame, the scalar

field equation (4) in spherical coordinates reduces to

d2

dr2
φ+

2

r

d

dr
φ = V,φ + A,φρ . (20)

Analogously to what was done in [22], this radial field equation can be thought of as a fictional

particle rolling in an inverted effective potential −Veff(φ), subject to a “friction” term (2/r)dφ/dr.

The boundary conditions are that the solution be smooth at the origin, and approach its symmetry-

breaking value at infinity:
d

dr
φ(0) = 0 ; φ(r →∞) = φ0 . (21)

First consider the solution inside the object. Since the objects of interest are much denser

than the current critical density, ρ� µ2M2 ∼ H2
0M

2
Pl, the effective potential can be approximated

as Veff(φ) ' ρφ2/2M2. The interior solution satisfying the first of (21) is

φin(r) ' C
R

r
sinh

(√
ρ

M
r

)
(for r < R) . (22)
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This involves one undetermined constant C to be fixed shortly.

Next consider the exterior solution. It turns out that the potential is negligible, and the

symmetron evolves as a free field, until it reaches the vicinity of the minimum. In the mechanical

analogy, this corresponds to the fictional particle having a large velocity as it exits the object and

begins its climb towards the maximum of the inverted potential. Since the potential is irrelevant

except near φ = φ0, we can make the quadratic approximation Veff(φ) = m2
0(φ − φ0)2/2 for all

r > R. The solution satisfying the second of (21) is then given by

φout(r) = D
R

r
e−m0(r−R) + φ0 (for r > R) , (23)

with one undetermined constant D.

The coefficients C and D are fixed by matching the field and its radial derivatives at the

interface r = R. In doing the matching, we can safely assume that m0R� 1, since the symmetron

Compton wavelength m−1
0 is cosmologically large (∼< 0.1 Mpc). It is convenient to express the

result as

C = φ0

√
∆R

R
sech

(√
R

∆R

)

D = −φ0

[
1−

√
∆R

R
tanh

(√
R

∆R

)]
. (24)

where we have introduced the thin-shell factor,

∆R

R
≡ M2

ρR2
=

M2

6M2
PlΦ

=
φ0

6gMPlΦ
. (25)

Here Φ ≡ ρR2/6M2
Pl denoting the gravitational potential of the source, and where in the last step

we have used (13). As the notation suggests, ∆R/R will soon be interpreted as a thin shell factor

for the solutions, in analogy with the chameleon mechanism. In fact, (25) precisely matches the

chameleon thin shell expression, with φ0 being interpreted as the ambient chameleon value. Hence

one can immediately anticipate that symmetrons and chameleons will have similar phenomenology,

in particular for astrophysical tests [18, 21].

Consider a test particle a distance R � r � m−1
0 away from the object, such that φ ' φ0

and d lnA/dφ ' g/MPl. Substituting the expression for D into (23) and using (25), the scalar

force on this particle relative to gravity is

Fφ
FN

= − g

MPl

dφ/dr

FN

= 6g2 ∆R

R

[
1−

√
∆R

R
tanh

(√
R

∆R

)]
. (26)
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Aside from the coefficient g, the magnitude of the scalar force is thus determined by a single

parameter, ∆R/R.

Screened objects have relatively large gravitational potential such that ∆R/R � 1. In this

case the tanh term can be neglected and (26) reduces to

Fφ
FN

∣∣∣∣
screened

' 6g2 ∆R

R
� 1 . (27)

The scalar force between a screened object and a test particle is therefore suppressed by a thin-shell

factor ∆R/R � 1. This can be understood as an analogue of the thin-shell effect of chameleon

models [22, 23]. It is clear from the interior profile,

φin(r) ' φ0

√
∆R

R

R

r

sinh
(√

R
∆R

r
R

)
cosh

(√
R

∆R

) , (28)

that the field is exponentially suppressed compared to φ0 everywhere inside the object, except

within a thin-shell ∆R beneath the surface. The symmetron is thus weakly coupled to the core

of the object, hence its exterior profile is dominated by the thin shell contribution.

Unscreened objects, on the other hand, have relatively small gravitational potential such that

∆R/R in (25) is formally � 1. In this regime, we can Taylor expand the tanh and (26) simplifies

to
Fφ
FN

' 2g2 . (29)

There is no thin shell in this case, and the result is consistent with the scalar force between two

test masses given by (12) and (13). Indeed, we see from (28) that φ ' φ0 everywhere inside the

object, hence the symmetron couples with gravitational strength to the entire source.

2.3 Constraints from Tests of Gravity

For the theory to be phenomenologically viable, it must of course satisfy all constraints from tests

of gravity. Here we review and expand on the original analysis of [87]. Because the symmetron has

a long Compton wavelength in all situations of interest, tests of the inverse-square-law are trivially

satisfied. And because its coupling to matter is universal, the weak equivalence principle is also

satisfied. In fact, as shown in Section 2.1, the symmetron can be understood as a Brans-Dicke

scalar field with an effectively density-dependent Brans-Dicke parameter. Hence the relevant tests
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are the same that apply to standard Brans-Dicke theories, namely post-Newtonian tests in the

solar system and binary pulsar observations.

What matters for solar system tests is the local field value, since this determines the coupling

of the symmetron to matter. At a generic point in the solar system, this is determined by the

symmetron profile interior to the galaxy. Clearly a necessary condition to satisfy local tests is that

the Milky Way galaxy be screened, ∆RG/RG � 1, in which case the local value is given by (28)

φG ' φ0

√
∆RG

RG

RG

Rus

sinh
(√

RG

∆RG

Rus

RG

)
cosh

(√
RG

∆RG

) , (30)

where RG ∼ 100 kpc is the Milky Way radius, and Rus ∼ 10 kpc is our distance from the galactic

center. Recall that for the quartic potential considered here, φ0 = gM2/MPl. We will see that

post-Newtonian constraints in the solar system translate to a bound on ∆RG/RG, and hence on

M .

General scalar-tensor theories of the form (16) have two non-vanishing post-Newtonian pa-

rameters, β and γ, defined in terms of the Jordan-frame metric as

g̃00 = −
(
1 + 2ΦJ + 2βΦ2

J

)
;

g̃ij = (1− 2ΦJγ) δij . (31)

In terms of ω(φ), these parameters are given by [7]

γ =
1 + ω(φ)

2 + ω(φ)
;

β = 1 +
1

(3 + 2ω)2 (4 + 2ω)

dω

d(A−2)
. (32)

From (18), the local value of these parameters satisfy

|γ − 1|G '
(

2MPlφG

M2

)2

= 4g2

(
φG

φ0

)2

;

|β − 1|G ' 2g2M
2
Pl

M2

(
φG

φ0

)2

. (33)

The tightest constraint on γ comes from time-delay measurements with the Cassini spacecraft [92]:

|γ − 1| ∼< 10−5. The most stringent bound on β comes from the Nordvedt effect, which describes
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the difference in free-fall acceleration of the Moon and the Earth towards the Sun due to scalar-

induced differences in their gravitational binding energy. Lunar Laser Ranging observations give

the constraint |β − 1| ∼< 10−4 [7].

Although the experimental bound on β is weaker, it actually yields the tightest constraint on

our model parameters, since the predicted deviation in (33) is ∼M2
Pl/M

2 larger than γ. Assuming

g ∼ O(1) and using the fact that ΦG ' 10−6 for the Milky Way galaxy, we find that |β−1| ∼< 10−4

is satisfied for

∆RG

RG
∼< 6× 10−3 . (34)

In terms of the coupling mass scale M , this translates to

M ∼< 10−4 MPl . (35)

In turn, this corresponds to |γ− 1|G ∼ 10−10, which lies well below the current limit. Intriguingly,

the upper bound on M is near the GUT scale. Note that if M nearly saturates this bound, then

objects with Φ∼> 10−8, such as the Sun (Φ� ∼ 10−6) will be screened but those with Φ∼< 10−8,

such as the Earth (Φ⊕ ∼ 10−9), will not.

If the symmetron is a low energy scalar associated with GUT-scale physics, such that M

nearly saturates (35), then near-future experiments probing post-Newtonian corrections can poten-

tially detect symmetron effects. The APOLLO observatory, in particular, should improve Lunar

Laser Ranging constraints by an order of magnitude [93]. As we have seen, the predicted signal

for time-delay and light-deflection are much more suppressed.

Meanwhile, the constraints from binary pulsars are trivially satisfied, since both the neutron

star and its companion are screened. The force between these bodies is therefore suppressed by

two thin-shell factors:

Fφ
FN

=

(
∆R

R

)
pulsar

×
(

∆R

R

)
companion

∼ 10−5

(
∆RG

RG

)2

∼< 10−10 , (36)

where we have estimated Φpulsar ∼ 0.1 ∼ 105ΦG and Φcompanion ∼ 10−6 ∼ ΦG, and the last step

follows from (34). This is well below the current pulsar constraints on Brans-Dicke scalar-tensor

theories, which translate to Fφ/FN∼< 10−4 [7].
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3 Cosmological Evolution

Central to the phenomenological viability of symmetron theories is whether the resulting expansion

and growth histories are consistent with observations. In the remainder of the paper, we will study

the cosmological evolution of the symmetron field, from the inflationary epoch until today. In this

Section, we begin by setting up the equations and solving them for the standard radiation and

matter dominated eras. Given the scales involved, the scalar potential is completely negligible at

early times, and the symmetron evolution is determined by the interplay of Hubble friction and

its direct coupling to matter.

A key question is whether the evolution allows the scalar field to reach the symmetry-breaking

vacuum by the present epoch, as assumed in the analysis of local tests discussed in Section 2.3.

We will see that the coupling to matter is efficient in bringing the field close to φ = 0 by the onset

of the phase transition (z ∼ 1), for a broad range of initial conditions.

3.1 Preliminaries

Consider the homogeneous evolution of the scalar field, φ = φ(t), in a Friedmann-Robertson-

Walker (FRW) background: ds2
E = −dt2 + a2(t)d~x2. We assume that inflation takes place at

early times, so that the universe is nearly spatially-flat. The above line element is in Einstein

frame, hence the label “E”. Throughout the analysis, dots will represent derivatives with respect

to (Einstein-frame) cosmic time t.

The matter content is modeled as a set of non-interacting perfect fluids indexed by i, each

with constant equation of state wi. The trace of the stress tensor therefore becomes T̃ =
∑

i(−1+

3wi)ρ̃i. Substituting this into (4), the symmetron equation of motion reduces to

φ̈+ 3Hφ̇+ V,φ + A3(φ)A,φ
∑
i

(1− 3wi)ρ̃i = 0 . (37)

By assumption, each matter component is separately conserved:

ρ̃i ∼ a
−3(1+wi)
J = A−3(1+wi)a−3(1+wi) , (38)

where aJ = A(φ)a is the Jordan-frame scale factor. To make the φ-dependence explicit in (37), it

is convenient to define a rescaled energy density,

ρi ≡ A3(1+wi)ρ̃i , (39)
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such that ρi ∼ a−3(1+wi) satisfies the usual conservation law in Einstein frame. Note that ρi does

not represent the physical density in Einstein frame — it is a mathematical construct, which can

be treated as independent of φ when integrating (37).

In terms of ρi, the symmetron equation of motion becomes

φ̈+ 3Hφ̇+ V,φ +
∑
i

A,φ
A3wi

(1− 3wi)ρi = 0 . (40)

For regions of nearly constant ρi, we can think of this as a scalar field moving in an effective

potential

Veff(φ) = V (φ) +
∑
i

A1−3wi(φ)ρi . (41)

As the universe expands and the densities ρi redshift, this effective potential correspondingly

evolves in time. Note that the difference between ρ̃i and ρi is negligible for most of the history of

the universe, since A(φ) ' 1 until the phase transition.

Meanwhile, the Einstein-frame Friedmann equation, obtained from the (0, 0) component

of (5), is given by

3M2
PlH

2 =
1

2
φ̇2 + V (φ) + A4(φ)

∑
i

ρ̃i . (42)

In terms of the φ-independent density ρi, this becomes

3M2
PlH

2 =
1

2
φ̇2 + V (φ) +

∑
i

A1−3wi(φ)ρi =
1

2
φ̇2 + Veff(φ) . (43)

In summary, the independent cosmological equations are the scalar field equation (40), the Fried-

mann equation (43) and the conservation laws ρi ∼ a−3(1+wi). In the remainder of this Section, we

will study the evolution of the scalar field during the standard radiation- and matter-dominated

eras. The most recent history, including the phase transition and the onset of cosmic acceleration

will be discussed in Section 4.

3.2 Radiation-Dominated Era

We imagine that after inflation the symmetron ends up at rest at some field value φrad−i. Later on

in Section 5 we will estimate φrad−i by studying the inflationary and reheating dynamics in detail,

but for the time being let us consider it as a free parameter. To simplify the analysis, we assume
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that φrad−i �M , so that higher-order corrections in (7) for the coupling function are negligible:

A(φ) ' 1 +
φ2

2M2
. (44)

Moreover, the self-interaction potential V (φ) can be neglected until the late-time phase transition.

Indeed, given (11) and (14) the quartic potential satisfies V (φ) ' V (0) ∼ µ4/
√
λ� H2

0M
2
Pl. The

symmetron kinetic energy is also negligible, as argued shortly. Hence, for most of the evolution

the symmetron dynamics are governed by a tug-of-war between the coupling to matter driving

the field and Hubble friction slowing it down.

Since A(φ) ' 1, the Friedmann equation (43) in the radiation-dominated epoch takes the

standard form

3H2M2
Pl = ρr(a) , (45)

where ρr ∼ a−4. Meanwhile, since the radiation stress energy has negligible trace, it drops out of

the scalar equation of motion, and (40) reduces to

φ̈+ 3Hφ̇+ ρm(a)
φ

M2
= 0 , (46)

where ρm ∼ a−3. Note that we have neglected the potential term V,φ, by the argument below (44).

The physics of this equation is clear — it describes a simple harmonic oscillator subject to friction

with a weakening spring constant (weakening since ρm redshifts in time). At very early times,

when H2 � ρm/M
2, the oscillator is overdamped, and the field remains stuck at φ ' φrad−i.

At late times, when H2 � ρm/M
2, the oscillator is underdamped, and the symmetron oscillates

around its minimum. In other words, we expect the field to remain frozen at its initial value until

a = aunfreeze, where aunfreeze satisfies

1 =
ρm(a)

H2M2
=

3M2
Pl

M2

aunfreeze

aeq

. (47)

Here aeq is the scale factor at matter-radiation equality. That is,

aunfreeze = aeq
M2

3M2
Pl

. (48)

Since M2 �M2
Pl, the scalar field begins to roll well before matter-radiation equality. For instance,

with M = 10−4 MPl, this occurs at z ' 1012, i.e., well before BBN.
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These considerations are borne out by the explicit solution. Defining

s ≡ 2
√

3MPl

M

(
a

aeq

)1/2

, (49)

the scalar equation of motion (46) simplifies to

s2 d2φ

ds2
+ 3s

dφ

ds
+ s2φ = 0 . (50)

The solution with φ→ φrad−i for s� 1 is given by a Bessel function:

φ =
2φrad−i

s
J1(s) . (51)

As advocated, the field remains essentially constant until s ∼ 1, which indeed corresponds to

a ∼ aunfreeze. Subsequently, the field undergoes damped oscillations. At late times s � 1, in

particular, (51) implies

φ ∼ φrad−i
cos s

s3/2
∼ φrad−i

(
M

MPl

)3/2 (aeq

a

)3/4

cos

(
2
√

3MPl

M

(
a

aeq

)1/2
)
, (52)

up to an irrelevant phase. Thus, by matter-radiation equality the amplitude of the scalar field has

dropped by a factor of

|φeq|
|φrad−i|

∼
(
M

MPl

)3/2

. (53)

With M = 10−4MPl, for instance, this corresponds to a suppression factor of 10−6.

We are now in a position to check that the symmetron kinetic energy is indeed a negligible

contribution in the Friedmann equation, as assumed throughout. From the properties of Bessel

functions, and since H ∼ a−2 in the radiation-dominated epoch, we have

|φ̇|
H

=
s

2

∣∣∣∣dφds
∣∣∣∣ ∼<φrad−i �MPl . (54)

It follows that φ̇2 � H2M2
Pl, which confirms our approximation. Physically, this can also be

understood from (46), describing a damped oscillator with potential energy ρmφ
2/2M2. Once

the field starts oscillating, the friction term can be ignored over the course of a few oscillations.

The virial theorem then implies 〈φ̇2〉 = ρm〈φ2〉/M2 < ρmφ
2
rad−i/M

2 � ρm, where φrad−i � M by

assumption. The symmetron kinetic energy is therefore subdominant to the matter component.
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3.3 Matter-Dominated Era

In the matter-dominated era, ρm ' 3H2M2
Pl, the scalar equation of motion becomes

d2φ

dN2
+

3

2

dφ

dN
+

3M2
Pl

M2
φ = 0 , (55)

where N = ln(a/aeq) is the number of e-folds since matter-radiation equality. Up to an irrelevant

phase, the solution with initial condition φ = φeq at equality is

φ = φeqe
−3N/4 cos

(√
3M2

Pl

M2
− 9

16
N

)
= φeq

(aeq

a

)3/4

cos

(√
3M2

Pl

M2
− 9

16
ln

(
a

aeq

))
. (56)

Again the field undergoes damped oscillations. By the onset of the phase transition (z ' 1), the

amplitude has dropped by

|φ0|
|φeq|

∼
(

2

1 + zeq

)3/4

∼ 10−3 . (57)

Interestingly, note from (52) and (56) that φ ∼ a−3/4 both in the radiation- and matter-

dominated eras. Combining (53) and (57), the total decay in the field amplitude from the moment

it starts to evolve deep in the radiation-dominated era to the onset of the phase transition is

|φ0|
|φrad−i|

= 10−3

(
M

MPl

)3/2

. (58)

These results have been confirmed numerically. Figure 2a) shows the results of integrating

the combined scalar field equation (40) and Friedmann equation (43) from z = 1015 to z = 1, with

φrad−i = 10−2M and M = 10−4MPl. For this purpose, we approximated A(φ) as the quadratic

form (44) and chose µ = MPlH0/M and λ = M4
PlH

2
0/M

6, as in (11) and (14), respectively,

even though V (φ) is irrelevant at these redshifts. As expected, the field remains stuck at its

initial value until zunfreeze ∼ 1012, in agreement with (48). The field subsequently undergoes

damped oscillations, with an amplitude decaying as (1 + z)3/4. By matter-radiation equality, the

field amplitude has decreased by a factor of ∼ 10−6, consistent with (53). During the matter-

dominated era, the amplitude decays by an additional factor of ∼ 10−3, which agrees with (57).

Figure 2b) zooms in on the boxed region in Figure 2a), highlighting the fact that the oscillations

are completely smooth, despite appearing jagged in Figure 2a).
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Figure 2: Numerical solution of the symmetron evolution as a function of redshift through the

radiation- and matter-dominated eras, starting from φrad−i = 10−2MPl, withM = 10−4MPl. Figure

(a) confirms that the field is initially frozen because of Hubble friction, but eventually undergoes

damped oscillations. See main text for details. Figure (b) is a zoom-in on the boxed region,

highlighting that the oscillations are smooth.

4 Phase Transition and Late-Time Evolution

In the previous Section, we have seen that starting from φrad−i∼<M deep in the radiation-

dominated phase, the symmetron subsequently evolves towards the symmetry-restoring point,

culminating to a value ∼ 10−3(M/MPl)
3/2φrad−i by the onset of the phase transition.

In this Section, we describe the symmetron dynamics during this late-time phase transition.

For the quartic potential (1), as already mentioned in (15), the symmetron potential energy

is insufficient to drive cosmic acceleration. Hence we will include a cosmological constant to

reproduce the ΛCDM expansion history. Our main interest will be to check that the symmetron

ends up near the symmetry-breaking value by the present time, as assumed in the analysis of

spherically-symmetric solutions and tests of gravity. In Section 4.2 we will extend the analysis to

potentials with greater promise of impacting both the recent expansion history and the growth

history on linear scales today.

20



1 1.5 2 2.5 3

10-4

10-6

10-8

10-10

10-12

10-14

1+z

ÈΦ
�M

È

(a)

1.9 1.92 1.94 1.96 1.98 2

2

4

6

8

10

1+z

10
-

5 ÈΦ
�M

È

(b)

Figure 3: Evolution of the symmetron around the phase transition. a) At the onset of the

transition (ztran = 1), the symmetron rapidly evolves towards φ0, the minimum of the potential,

and undergoes damped oscillations around this point. The dashed line indicates φmin, where we

have chosen M = 10−4MPl. b) Zoom-in on the boxed region, which shows that the oscillations are

smooth. The solid line indicates φmin(z), the minimum of the effective potential given by (62).

4.1 Quartic Potential

For this analysis, we add a constant to the quartic potential 1,

V (φ) = −1

2
µ2φ2 +

1

4
λφ4 +

µ4

4
√
λ
, (59)

such that the minima have zero potential energy. As shown in (13), the minimum lies at φ0 ∼
M2/MPl � M , hence we can still approximate the coupling function as quadratic: A(φ) '
1+φ2/2M2. We also include a cosmological constant, with energy density ρΛ = 3H2

0M
2
Pl(1−Ω

(0)
m ),

where Ω
(0)
m denotes as usual the present fractional energy density in matter. The scalar equation

of motion (40) then takes the form

φ̈+ 3Hφ̇+
3H2

0M
2
Pl

M2

(
4
(
1− Ω(0)

m

)
+ Ω(0)

m (1 + z)3

)
φ− µ2φ+ λφ3 = 0 . (60)

The phase transition occurs at a redshift ztran when the effective mass vanishes, that is,

µ2 =
3H2

0M
2
Pl

M2

(
4
(
1− Ω(0)

m

)
+ Ω(0)

m (1 + ztran)3

)
. (61)
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Figure 4: The fractional energy density in the symmetron for the quartic potential.

For instance, the transition will happen at ztran = 1 for µ =
√

15H0MPl/M , where we have

substituted Ω
(0)
m = 0.25. This is consistent with (11).

Since µ � H0, shortly after the mass becomes tachyonic we expect the evolution of the

symmetron to be adiabatic, in the sense that the field should track the minimum of the effective

potential:

φmin(z) =
1√
λ

[
µ2 − 3H2

0M
2
Pl

M2

(
4
(
1− Ω(0)

m

)
+ Ω(0)

m (1 + z)3

)]1/2

=

√
3Ω

(0)
m
H0MPl√
λM

[
(1 + ztran)3 − (1 + z)3

]1/2

. (62)

This “tracking” solution, valid for z < ztran, is an attractor because the effective potential is

everywhere convex around this point.

To check these results, we have numerically integrated the combined equation (40) and (43)

from z = 3 until today, including a matter component and a cosmological constant, with Ω
(0)
m =

0.25. For the quartic potential, we chose µ =
√

15H0MPl/M , corresponding to ztran = 1, and

λ = M4
PlH

2
0/M

2, consistent with (14). As initial conditions for the symmetron, we choose φ(z =

3) = 10−11M , which matches the example of Figure 2.

Figure 3 shows the evolution of the symmetron field as a function of redshift. At the onset

of the transition, the symmetron rapidly rolls towards the minimum φ0 = M2/MPl (denoted by

the dashed line) and oscillates around this point. Figure 3b) zooms in on the oscillations in the

boxed region, confirming that the symmetron nicely tracks φmin(z), the minimum of the effective

potential, as given by (62).
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Figure 5: The generalized potential studied in Section 4.2, shown here for illustrative purposes

with M = 0.1MPl. The minima occur at φ ∼ ±M . By construction, the height of the potential is

∼ H2
0M

2
Pl, and the mass around the minima is ∼ H0.

Figure 4 shows the fractional energy density in the symmetron. This confirms that the

symmetron backreaction is negligible, as assumed in the analytical approximations above. The

resulting expansion history is therefore indistinguishable from ΛCDM in the quartic case.

4.2 Generalized Potential and Coupling Function

To maximize the impact on the late-time expansion and growth histories, we generalize V (φ) such

that the height of the potential is comparable to the dark energy scale, V0 ∼ H2
0M

2
Pl, and the mass

around the minimum is of order Hubble, m0 ∼ H0. The following general form satisfies these

requirements:

V (φ) = H2
0M

2
Pl

(
e−αφ

2/2M2

+
M

MPl

eφ
2/2M2

Pl

)
, (63)

where α is a constant. This is sketched in Figure 5. For |φ| �M ,

V (φ) ' H2
0M

2
Pl −

1

2

αH2
0M

2
Pl

M2
φ2 + . . . , (64)

this matches (1) to quadratic order, up to a constant, with µ =
√
αH0MPl/M , which is consistent

with (11).

The minima in this case are located at values of order M ,

φ0 '
√

6

α
M ln1/2

(
α1/3MPl

M

)
. (65)
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Although one would have to carefully revisit the various tests of gravity analyzed in Section 2.3,

a naive application of the thin shell condition ∆RG/RG = φ0/ΦGMPl � 1 for our galaxy would

imply a tighter bound M ∼< 10−6MPl. We will keep this bound in mind, though our conclusions

will be insensitive to the precise choice of M .

Note that the potential evaluated at the minima is V (φ0) ' H2
0MMPl � H2

0M
2
Pl, hence the

difference in potential energy with the maximum, ∆V ' H2
0M

2
Pl, is of the order of the dark energy

scale, as desired. Meanwhile, the mass of small fluctuations around the minima is

m0 = H0

√
6M

MPl

ln1/2

(
α1/3MPl

M

)
. (66)

With M = 10−6MPl and α = 1, this gives m0 ' 10−2H0, which is smaller than Hubble. Hence, as

desired, the symmetron-mediated force extends to the largest observable scales. Thus, as Figure 5

illustrates, the potential has a sharply-peaked maximum at φ = 0 and shallow minima at φ = ±φ0.

Because φ reaches values of order M in this case, the quadratic approximation (44) for A(φ)

breaks down. Not only are corrections expected for φ ∼M , they are in fact necessary to prevent

the symmetron-mediated force from being unacceptably strong. Indeed, if A(φ) = 1 + φ2/2M2

were valid full-stop, from (12) the force between two test masses in vacuum would be Fφ/FN ∼
M2

Pl/M
2 ∼ 1012. Hence we must generalize A(φ) by demanding that the scalar force be at most

comparable to gravity for all field values: d lnA/dφ < 1/MPl for all φ. As a particular example,

consider

A(φ) = 1 +
φ2

2M2 +MPl |φ|
. (67)

This reduces to A(φ) ' 1 + φ2/2M2 for small φ and tends to A(φ) ' 1 + |φ|/MPl for large φ.

With this choice of V (φ) and A(φ), we numerically solved the cosmological equations (40)

and (43). Since our goal is to have the symmetron drive cosmic acceleration, we did not included a

cosmological constant in this case. To facilitate the comparison with the quartic case of Section 4.1,

we chose M = 10−4MPl and picked α so that the transition occurs at ztran ' 1.

The solution for the scalar field is shown in Figure 6. Shortly after the onset of the phase

transition, we notice that the symmetron overshoots the minimum and reaches a value of order

MPl. Consequently, the field has not yet converged to φ0 by the present time — note that the

Figure even extends to z < 0 — which is problematic for tests of gravity.

Figure 7 shows the Hubble parameter H(z) for the solution (solid line). For comparison,

the dotted line is a ΛCDM model with Ω
(0)
m = 0.25, while the dashed line is an Einstein-de Sitter
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Figure 6: The behavior of φ after the transition for the generalized potential (63) and coupling

function (67). The dashed line denotes the minimum φ0, given by (65), where we have taken

M = 10−4MPl. We have chosen parameters such that ztran = 1. Note that the plot extends

to future redshifts (z < 0). Because of the asymmetric form of the potential, in this case the

symmetron has not yet settled to the minimum by the present time.

(Ω
(0)
m = 1) universe. Aside from the small blip at z ' ztran, the solution rapidly converges to

the Einstein-de Sitter evolution, indicating that the symmetron energy density is negligible for

z < ztran. The failure to drive cosmic acceleration is due to the sharply peaked maximum, which

leads to a rapid completion of the transition and the field overshooting the minimum.

An obvious way to avoid the overshooting problem requires tuning parameters such that the

transition occurs very recently (ztran � 1). In this way, one can make the field value today of order

M , as the field evolves towards much larger values. At the same time, the potential energy at

the maximum can drive cosmic acceleration until the transition, matching the ΛCDM expansion

history until the very recent past. This solution, though consistent, is clearly not appealing as it

requires delicate tuning of parameters. To summarize, though we have focused on a particular class

of potentials, it appears difficult for the symmetron to drive cosmic acceleration while satisfying

local tests of gravity, unless one considers tuning parameters.
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Figure 7: Hubble parameter as a function of redshift for the symmetron with generalized po-

tential (63) and coupling function (67) (solid line), where H0 = 72 km s−1 Mpc−1 denotes the

measured value. For comparison, the thick dashed line is a ΛCDM cosmology with Ω
(0)
m = 0.25,

while the thin dashed line is an Einstein de Sitter (Ω
(0)
m = 1) universe. In all three cases, we have

fixed the expansion history deep in the matter-dominated era.

5 The Inflationary Phase

Having studied the symmetron evolution throughout the radiation- and matter-dominated era,

including the late-time symmetry-breaking transition, we now go back and study more closely the

issue of initial conditions deep in the radiation era. While the initial value φrad−i at the onset

of the radiation-domination phase was treated as a free parameter in Section 3, in this Section

we will see how this initial condition comes about from the field dynamics during inflation. We

will find that the field amplitude decays by an exponential amount during inflation, but can be

exponentially resurrected during reheating. In particular, the condition φrad−i � M assumed in

Section 3 will translate to a constraint on the reheating phase.

Of course, the inflationary analysis below must itself assume an initial value φinf−i, which

depends on the pre-inflationary history. To be conservative, however, we will set φinf−i ' M ,

corresponding to the largest field value consistent with the symmetron energy density being sub-

dominant during inflation.
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5.1 Dynamics During Inflation

For simplicity, we treat the inflationary phase as exact de Sitter expansion, a(t) ∼ eHinf t, neglecting

the backreaction of the symmetron field. By virtue of its universal coupling to all matter fields,

the symmetron couples to the inflaton, being sourced by Tinf = (−1 + 3winf)ρinf ' −4ρinf .

The assumption that the symmetron is a spectator is of course not necessary — though

its backreaction could in principle prevent inflation from starting — but is made to simplify the

analysis. In this case, as in the discussion of the radiation-dominated evolution, for consistency

the initial field value φinf−i at the onset of inflation must satisfy φinf−i∼<M , such that (44) applies.

In particular, to a good approximation A(φ) ' 1, and the inflaton contribution to the Friedmann

equation (43) is nearly φ-independent and hence constant:

3H2
infM

2
Pl ' ρinf . (68)

Meanwhile, the scalar equation of motion (40) reduces to

φ̈+ 3Hinf φ̇+ 12
M2

PlH
2
inf

M2
φ = 0 . (69)

Again, this is just the equation for a damped harmonic oscillator, with solution

φ = φinf−ie
−3Hinf t/2 cos (ωt) , (70)

where

ω = 2
√

3
MPlHinf

M

√
1− 9

48

(
M

MPl

)2

' 2
√

3
MPlHinf

M
. (71)

Clearly, ω � Hinf , and the symmetron oscillates rapidly as inflation proceeds. The choice of phase

in (70) corresponds to the symmetron starting nearly from rest from φinf−i at the onset of inflation

(t = 0).

Since the effective symmetron mass is large compared to Hubble, its energy density averaged

over many oscillations redshifts as dust:

〈ρφ〉 '
1

2
ω2φ2

inf−ie
−3Hinf t = 6H2

infM
2
Pl

(
φinf−i

M

)2

e−3Hinf t . (72)

This confirms that φinf−i � M is indeed necessary to neglect the symmetron backreaction from

the outset, an approximation which only gets better in time, as (72) implies. Over the entire
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period of inflation, therefore, the field amplitude decays by

|φinf−end|
|φinf−i|

= e−3Ninf/2 , (73)

where Ninf is the number of inflationary e-folds. For the standard value Ninf = 60, corresponding

to GUT-scale inflation, this gives a suppression factor of e−90 ' 10−39.

5.2 Reheating

We next track the evolution of the symmetron during reheating, as the inflaton decays into radi-

ation. Once again neglecting the symmetron backreaction, the scalar equation (40) becomes

φ̈+ 3Hφ̇+
ρ

M2
(1− 3w)φ = 0 , (74)

where we have also neglected the potential term V,φ. Here ρ and w respectively denote the energy

density and equation of state of the combined inflaton-radiation fluid. To simplify the analysis,

we will assume that reheating occurs rapidly compared to a Hubble time, so that H ' Hinf

remains approximately constant. Moreover, in this regime the Hubble friction term can be ignored,

and (74) reduces to

φ̈+
ω2

4
(1− 3w)φ = 0 , (75)

where we have used ρ = 3H2M2
Pl ' 3H2

infM
2
Pl, and where ω ' 2

√
3MPlHinf/M was defined in (71).

To proceed, we need to specify w(t) during reheating. For concreteness, we consider the

simplest case of the inflaton decaying perturbatively into radiation as it oscillates around the

minimum of its potential. In the process, w oscillates between −1 and +1, and approaches 1/3 as

the universe becomes dominated by radiation. To model this evolution, consider

w(t) =
1

3

[
1− e−Γinf t (1 + 3 cosminft)

]
, (76)

where t = 0 now marks the onset of the reheating phase. This form is such that the equation of

state starts out with w(0) = −1, thereby matching smoothly to the inflationary phase. At late

times, w → 1/3, as desired. Manifestly, Γinf and minf denote the inflaton decay rate and mass,

respectively.

With this choice of w, (75) becomes

φ̈+
ω2

4
e−Γinf t (1 + 3 cosminft)φ = 0 . (77)
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(c) Γinf = 10−4minf and minf = 103ω.

Figure 8: Symmetron evolution during reheating for different parameter values. In each case,

the thick line indicates the numerical solution, whereas the thin line is the Mathieu cosine func-

tion (80). All plots have ω = 104Hinf and M = 10−4MPl. a) In this case, Γinf � minf , hence

reheating has essentially completed before the tachyonic amplification can kick in. b) In the op-

posite regime, Γinf � minf , reheating is slow. Since minf = ω lies in the unstable region of the

Mathieu cosine solution, the field is exponentially amplified. The amplification is eventually cur-

tailed once the inflaton decays and reheating takes place. The dashed line indicates the maximum

allowed amplification, corresponding to φrad−i ' M . c) This case also has Γinf � minf , as in b),

but minf = 103ω lies in the stability region of the Mathieu cosine. Note the logarithmic scale on

the time axis in this case.
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Thus the evolution is characterized by three dimensionful parameters: the inflaton decay rate Γinf ,

the inflaton mass minf , and the effective symmetron mass ω during inflation. Since reheating is

assumed to proceed rapidly on a Hubble time, all three parameters are � Hinf . Whenever the

equation of state achieves w > 1/3, the effective symmetron mass term in (77) becomes tachyonic,

which can amplify the field value. As w → 1/3, the effective mass is driven to zero, and the field

evolves freely. Eventually the field will be slowed down by Hubble friction.

The behavior of the solution can be understood by first considering the regime t � Γ−1
inf ,

where the exponential damping term is nearly constant. Defining x ≡ minft/2 and y ≡ φ/φinf−end,

this scalar equation reduces to a Mathieu equation

d2y

dx2
+ [a− 2q cos 2x] y = 0 , (78)

with

a ≡ ω2

m2
inf

; q = −3

2
a . (79)

The unique solution with y(0) = 1 and dy/dx(0) = 0 is the Mathieu cosine function, y = C(a, q, x),

which in our case is given by

φ(t) ' φinf−end C

(
a,−3

2
a,
minft

2

)
for t� Γ−1

inf . (80)

The stability of the symmetron evolution is therefore determined by the stability properties of

the Mathieu cosine function. For a∼< 10−2, corresponding to minf ∼> 10ω, we find that the solution

undergoes stable oscillations, consistent with the fact that C(a, q, x) ≈ cos(
√
ax) for |q| � 1. For

a∼> 10−2, corresponding to minf ∼< 10ω, the solution is unstable, and the symmetron amplitude

grows exponentially. The growth is eventually cut off when t ∼ Γ−1
inf , and the source becomes

exponentially suppressed, indicating that reheating has nearly completed.

Figure 8 confirms these expectations. In all cases, the thick line is the numerical solution,

while the thin line is the Mathieu cosine function (80). Figure 8a) is an example of rapid reheating,

Γinf � minf . In this case, reheating is essentially complete before the tachyonic amplification can

kick in, and the Mathieu cosine is a good approximation for less than one symmetron oscillation.

Figures 8b) and c) are examples of slow reheating, Γinf � minf , in which case the Mathieu

cosine matches the exact solution for many oscillations. Figure 8b) corresponds to minf = ω, which

lies within the unstable region of the Mathieu cosine parameter space. The field is amplified by
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many orders of magnitude, until its growth is tamed after a time t ∼ Γ−1
inf when reheating takes

place. The dashed line indicates the maximum allowed amplification so that |φrad−i| < M , as

discussed shortly. The parameters have been chosen in this case such that the amplification

barely satisfies this bound. Figure 8c) corresponds to minf = 103ω, which lies within the stable

region of the Mathieu cosine. Note that the scale on the t-axis is logarithmic in this case.

After several decay times, Γinft � 1, the driving term becomes negligible, and (77) reduces

to φ̈ ' 0. Thus the field eventually grows linearly with time, as confirmed in all examples of

Figure 8. Of course this linear growth eventually gets cut off by Hubble friction. The asymptotic

value is is identified with φrad−i, the initial value for the radiation-dominated evolution.

We can derive a constraint on the reheating parameters by demanding that φrad−i < M ,

for consistency of neglecting the symmetron backreaction, as assumed throughout Section 3.2.

For simplicity, we estimate φrad−i as the field value at t ∼ Γ−1
inf , and ignore the relatively small

subsequent growth. To be most conservative, we take φinf−i = M at the onset of inflation.

Assuming Ninf = 60 e-folds of inflation, (73) implies φinf−end ' 10−39M . The condition φrad−i < M

therefore corresponds to ∣∣∣∣∣φ
(
t = Γ−1

inf

)
φinf−end

∣∣∣∣∣ ∼< 1039 . (81)

As discussed above, there is minimal growth if Γinf � minf (in which case reheating happens

quickly) and/or minf ∼> 10ω (in which case the Mathieu cosine is stable). In the regime Γinf � minf

and minf ∼< 10ω, however, we have found numerically that (81) is satisfied for

Γinf ∼> 0.025minf

(
ω

minf

)0.7

. (82)

To summarize, due to possible parametric resonance during reheating, the symmetron amplitude

can increase exponentially. Demanding that this amplification remains within bounds imposes

constraints on the parameters, which we have derived in the limit that all time scales involved are

short relative to a Hubble time.

6 Conclusions

Despite the overwhelming evidence for the existence of dark energy and dark matter, little is known

about their underlying fundamental physics. Over the last few years there has been considerable
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activity exploring the possibility that the dark sector includes new light degrees of freedom (gen-

erally scalar fields) that couple not only to dark matter but also to ordinary (baryonic) matter.

Much of the research efforts have focused on the development of screening mechanisms to explain

why such scalars, if light, have escaped detection from laboratory/solar system tests of gravity.

The manifestation of these scalar fields therefore depends sensitively on their environment, which

in turn leads to striking experimental signatures.

One such screening mechanism is the symmetron mechanism, which relies on a scalar field

having a VEV that depends on the ambient matter density. The VEV is small in regions of high

density, and large in regions of low density. In addition, the coupling of the scalar to matter is

proportional to this VEV, hence the scalar couples with gravitational strength in regions of low

density, but couples much more weakly in regions of high density.

In this paper we have derived the cosmological expansion history in the presence of a sym-

metron field, tracking the evolution of the scalar through the inflationary epoch, the phase of re-

heating, the standard radiation- and matter-dominated eras, and through the late-time symmetry-

breaking phase transition. For a wide range of initial field values at the onset of inflation, we have

shown that the symmetron ends up in the symmetry-breaking vacuum by the present time, as

assumed in the derivation of static, spherically-symmetric solutions and analysis of tests of gravity.

For the fiducial quartic potential, the scales involved are too small to drive late-time cosmic

acceleration, hence we included a cosmological constant. The symmetron backreaction is consis-

tently small throughout the evolution, hence the expansion history is consistent with observations.

We also introduced a general class of potentials, engineered so that the potential energy difference

is of order the present critical density, and the mass around the minimum is of order Hubble today.

In the simplest examples considered here, however, the symmetron was unsuccessful in driving

cosmic acceleration.

Our results form the foundation of future investigations of the cosmological implications

of symmetrons. The natural next step is to study the evolution of density perturbations in

the presence of a symmetron, both in terms of the linear growth history and in the non-linear

regime using N-body simulations. As in the chameleon and Vainshtein screening mechanisms,

the additional scalar force should enhance structure growth at late times. It would be interesting

to contrast the impact on structure formation among different screening mechanisms and seek

distinguishing signatures.
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Another cosmological probe of symmetron physics is the production of topological domain

walls. In this paper we have circumvented this fascinating issue by implicitly focusing on initial

conditions where the scalar field ends up in the vicinity of φ = 0 at late times, but sufficiently

displaced such that the phase transition can proceed homogeneously. More generally, we expect

the symmetron to result in late-forming domain wall networks. It will be interesting to study their

formation and contrast the phenomenology of symmetron defects with standard topological defect

networks by comparing their observational impact, e.g., on CMB anisotropy, structure growth and

gravitational lensing.
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