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Abstract

We consider the effects of the quantum stress tensor fluctuations of a conformal field in generating

gravity waves in inflationary models. We find a non-scale invariant, non-Gaussian contribution

which depends upon the total expansion factor between an initial time and the end of inflation.

This spectrum of gravity wave perturbations is an illustration of a negative power spectrum, which

is possible in quantum field theory. We discuss possible choices for the initial conditions. If the

initial time is taken to be sufficiently early, the fluctuating gravity waves are potentially observable

both in the CMB radiation and in gravity wave detectors, and could offer a probe of transplanckian

physics. The fact that they have not yet been observed might be used to constrain the duration and

energy scale of inflation. However, this conclusion is contingent upon including the contribution of

modes which were transplanckian at the beginning of inflation.
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I. INTRODUCTION

Inflationary models predict a nearly scale invariant spectrum of both scalar and tensor

perturbations, both of which arise from the quantum fluctuations of nearly free fields and are

Gaussian in character. The scalar perturbations arise from the the quantum fluctuations of

an inflaton field [1–5], and have apparently been observed in the temperature fluctuations of

the cosmic microwave background [6]. The tensor perturbations arise from the fluctuations of

quantized linear perturbations of de Sitter spacetime [7–9], but have not yet been observed.

In both cases, the Gaussian nature of the fluctuations and the approximate scale invariance

arise from the properties of free quantum fields.

Coupling of the inflaton or graviton fields to other fields can modify these conclusions.

For example, the coupling of graviton modes to the expectation value of the quantum stress

tensor of a conformal field was recently treated in Ref. [10]. It was shown that graviton

modes can acquire a one-loop correction which increases their amplitude in a way which

depends upon the duration of inflation and upon the wavenumber of the mode. This effect

will tend to lead to a blue tilt to the spectrum of tensor perturbations, but will not change

their Gaussian character at the one-loop level.

However, an additional source of perturbations is quantum fluctuations of the stress ten-

sor. The effects of stress tensor fluctuations in generating density perturbations have recently

been studied in Refs. [11, 12], where a non-Gaussian, non-scale invariant contribution was

found. Furthermore, this contribution can also depend upon the duration of inflation and

potentially be used to place limits on this duration. The effect studied in Refs. [11, 12] arises

from the quantum fluctuations of the comoving energy density of a conformal field in its

vacuum state. The resulting density perturbations are a non-Gaussian, non-scale invariant

component to be added to the effect of inflaton field fluctuations [1–5].

Fluctuations of other components of the stress tensor are capable of creating tensor

perturbations. The purpose of the present paper is to address the creation of gravity wave

fluctuations by stress tensor fluctuations of a conformal field in its vacuum state. These

can be called passive fluctuations of gravity, as opposed to the active fluctuations discussed

in Refs. [7–9]. The radiation of gravity waves by stress tensor fluctuations of matter fields

in thermal states in flat spacetime was discussed in Ref. [13]. Matter fields in the vacuum

state in flat spacetime cannot radiate due to energy conservation, but in a time-dependent
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spacetime, such radiation is possible.

Unless otherwise noted, units in which G = c = ~ = 1 will be used, where G is Newton’s

constant.

II. GRAVITATIONAL RADIATION IN AN EXPANDING UNIVERSE

Here we review the formalism needed to compute gravitational radiation by a time-

dependent source. We consider a spatially flat Robertson-Walker universe, for which the

metric may be written as

ds2 = −dt2 + a2(t) (dx2 + dy2 + dz2) = a2(η) (−dη2 + dx2 + dy2 + dz2) . (1)

Here t is the comoving time, and η the conformal time. Let γµν be this background metric,

and hµν be a linear perturbation,

gµν = γµν + hµν . (2)

Here we are concerned with tensor perturbations, and impose the transverse, tracefree gauge

in which

hµν
;ν = 0, hµ

µ = h = 0, and hµνuν = 0 , (3)

where uν = δνt is the four velocity of the comoving observers, and the semicolon denotes the

covariant derivative on the background spacetime. These conditions remove all of the gauge

freedom, and leave the two degrees of freedom associated with the polarizations of a gravity

wave.

Lifshitz [14] showed that, in the absence of a source, the mixed components hν
µ satisfy

the scalar wave equation,

�h ν
µ = 0 , (4)

where

� =
1√−γ

∂µ
(√−γ γµν ∂ν

)

(5)

is the scalar wave operator for the metric of Eq. (1). A consequence of this result is that

gravitons in the spatially flat Robertson-Walker spacetime behave as a pair of massless,

minimally coupled quantum scalar fields [15].
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In the presence of a source, the metric perturbation satisfies an inhomogeneous equation

�h ν
µ = −16π S ν

µ , (6)

where S ν
µ (x) is the transverse, tracefree part of the stress tensor of the source. It satisfies the

conditions in Eq. (3), and is most conveniently defined in momentum space. The solutions

of Eq. (4) in the spatially flat Robertson-Walker spacetime may be taken to be plane waves

of the form

h ν
µ (x) = e ν

µ fk(η) e
ik·x , (7)

where fk(η) is a solution of
d

dη

(

a2
df

dη

)

+ k2a2 f = 0 , (8)

and eνµ = eνµ(k, λ) is a polarization tensor which satisfies

e µ
µ = e ν

µ uν = e ν
µ kν = 0 . (9)

If we take vector k to be in the z-direction, then the independent linear polarization tensors

can be taken to have the nonzero components

e x
x = −e y

y =
1√
2
, (10)

for the + polarization, or

e y
x = e x

y =
1√
2
, (11)

for the × polarization.

Denote the spatial Fourier transform of any field A(η,x) by

Â(η,k) ≡ 1

(2π)3

∫

d3x eik·xA(η,x) . (12)

In momentum space, the transverse, tracefree part of a stress tensor is defined by the pro-

jection

Ŝ ν
µ (η,k) =

∑

λ

e β
µ (k, λ) e ν

α (k, λ) T̂ α
β(η,k) . (13)

Thus given a stress tensor T α
β(η,x) in coordinate space, we first take a Fourier transform

to find T̂ α
β(η,k), then find Ŝ ν

µ (η,k) using Eq. (13), and finally take an inverse Fourier

transform to find S ν
µ (η,x).

Let GR(x, x
′) be the retarded Green’s function for the scalar wave operator, which satisfies

�GR(x, x
′) = −δ(x− x′)√−γ

, (14)
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and GR(x, x
′) = 0 if t < t′. Here � is understood to act at the point x. The gravity wave

radiated by the source Sν
µ can be written as an integral over the past lightcone of the point

x as

h ν
µ (x) = 16π

∫

d4x′
√

−γ(x′)GR(x, x
′)S ν

µ (x′) . (15)

The source here could represent either classical matter or quantum fields. In the latter case,

the average effect of a quantum stress tensor can be described by the semiclassical theory, in

which the renormalized expectation value 〈Tµν〉 is used as a source in the Einstein equation.

The effects of a conformal quantum field upon graviton modes in de Sitter spacetime

has recently been treated in the context of the semiclassical theory [10]. It was found that

there is a correction to the graviton modes which grows with increasing duration of inflation,

analogous to the effects found in Refs. [11, 12] and to be discussed in this paper. However,

the effect found in Ref. [10] comes only from the the expectation value of the stress tensor,

not from stress tensor fluctuations. If h ν
µ is a classical solution of Eq. (4), then there is a

correction term h′ ν
µ . In the case that the conformal field is the electromagnetic field, the

fractional correction is

Γ =

∣

∣

∣

∣

h′ ν
µ

h ν
µ

∣

∣

∣

∣

=
1

5π
ℓ2pH S k , (16)

where ℓp is the Planck length, H is the Hubble parameter during inflation, and S is the

expansion factor during inflation. This effect grows with increasing S and k, but its total

magnitude is limited by the requirement that Γ . 1 for the one-loop approximation to hold.

III. A FLUCTUATING SOURCE

Now we consider the case where the source S ν
µ (x) is undergoing fluctuations, leading to

a fluctuating tensor perturbation, h ν
µ (x). The correlation function for the perturbation is

K ν σ
µ ρ (x, x′) = 〈h ν

µ (x) h σ
ρ (x′)〉 − 〈h ν

µ (x)〉〈h σ
ρ (x′)〉 , (17)

and that for the source is

C ν σ
µ ρ (x, x′) = 〈S ν

µ (x) S σ
ρ (x′)〉 − 〈S ν

µ (x)〉〈S σ
ρ (x′)〉 . (18)

Their relation follows from Eq. (15):

K ν σ
µ ρ (x, x′) = (16π)2

∫

d4x1

√

−γ(x1) d
4x2

√

−γ(x2)GR(x, x1)GR(x
′, x2)C

ν σ
µ ρ (x1, x2) .

(19)
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The spatial Fourier transform of this equation may be expressed as

K̂ ν σ
µ ρ (η, η′, k) = 64(2π)8

∫

dη1dη2 a
4(η1) a

4(η2) Ĝ(η, η1, k) Ĝ(η′, η2, k) Ĉ
ν σ

µ ρ (η1, η2, k) ,

(20)

where Ĉ ν σ
µ ρ (η1, η2, k) and Ĝ(η, η′, k) are the Fourier transforms of C ν σ

µ ρ (x1, x2) and of the

retarded Green’s function GR(x, x
′), respectively.

If k is in the z-direction, then the nonzero components of Ĉ ν σ
µ ρ (η1, η2, k) for the + po-

larization are

Ĉ+ = Ĉ x x
x x = Ĉ y y

y y = −Ĉ x y
x y = −Ĉ y x

y x . (21)

Similarly, the nonzero components for the × polarization are

Ĉ× = Ĉ y y
x x = Ĉ x x

y y = Ĉ x y
y x = Ĉ y x

x y . (22)

In fact, the stress tensor correlation functions for both polarizations are equal in our case,

so we may drop the polarization label and write

Ĉ(η1, η2, k) = Ĉ+(η1, η2, k) = Ĉ×(η1, η2, k) . (23)

Furthermore, the correlation function Ĉ(η1, η2, k) for the conformal field in Robertson-

Walker spacetime may be related to the corresponding correlation function for the conformal

field in flat spacetime by a conformal transformation. First consider a classical stress ten-

sor T ν
µ in Robertson-Walker spacetime which is conformally related to T ν

µ in Minkowski

spacetime. The spatial components of these tensors are related by T j
i = a−4T j

i . The same

conformal transformation applies to the quantum stress tensor correlation function. Al-

though the conformal anomaly in the expectation value of a quantum stress tensor operator

breaks the conformal symmetry, the conformal anomaly for free fields is a c-number which

cancels in the correlation function. Consequently, we can write

Ĉ(η1, η2, k) = a−4(η1) a
−4(η2) ĈM(η1 − η2, k) , (24)

where ĈM(η1−η2, k) is the Fourier transform of the Minkowski spacetime correlation function

for a fixed component of T j
i . As is shown in Appendix A , it may be expressed as

ĈM(η1 − η2, k) = − k5

512π5

∫ 1

0

du (1− u2)2 cos[ku(η1 − η2)] . (25)

This result applies for either polarization.
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IV. THE POWER SPECTRUM IN INFLATIONARY COSMOLOGY

The well-known Wiener-Khinchin [16, 17] theorem states that the Fourier transform of

a correlation function is a power spectrum. A corollary of this theorem is that the power

spectrum can normally be written as the expectation value of a squared quantity, and hence

must be positive. However, the latter result can fail in quantum field theory, and negative

power spectra are possible. This has recently been discussed in Ref. [18]. Let C(t− t′,x−x′)

be a flat spacetime correlation function. We define the associated power spectrum by a

spatial Fourier transform at t = t′:

P (k) =
1

(2π)3

∫

d3u eik·u C(0,u) . (26)

Given a power spectrum, we can find the correlation function in space at equal times as an

inverse Fourier transform:

C(0,u) =

∫

d3k e−ik·u P (k) . (27)

(Here we will use C to denote either a generic or a stress tensor correlation function, and K

to denote metric correlation functions.)

The power spectrum for the gravity wave fluctuations is just a spatial component of

K̂ ν σ
µ ρ (η, η′, k) in the limit that η′ = η, and is the same for both polarizations. Thus we

may combine Eqs. (20) and (24) to write the power spectrum at conformal time η = ηr as

P (k) = 64(2π)8
∫ ηr

dη1dη2 Ĝ(ηr, η1, k) Ĝ(ηr, η2, k) ĈM(η1 − η2, k) . (28)

The possible treatments of the lower limits of integration will be discussed below. We should

note that the quantity which is usually called the power spectrum in cosmology is not P (k),

but rather

P(k) = 4πk3 P (k) . (29)

It is P(k) which is approximately independent of k for the active gravity wave fluctuations.

The probability distribution for quantum stress tensor fluctuations is a skewed, hence non-

Gaussian distribution with non-zero odd moments, although the explicit form has only

been found in two-dimensional spacetime [19]. Consequently, the gravity wave fluctuations

produced by stress tensor fluctuations will also be non-Gaussian.

The Green’s function Ĝ(η, η′, k) satisfies
(

∂2
η + 2

a′

a
∂η + k2

)

Ĝ(η, η′, k) =
δ(η − η′)

(2π)3 a2(η′)
, (30)
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as may be verified by taking a spatial Fourier transform of Eq. (14). Here a′ = da/dη. Now

we wish to specialize to the case of de Sitter spacetime, for which the scale factor is

a(η) = − 1

H η
(31)

with η < 0. We may set the scale factor to be unity at the end of inflation, η = ηr, in which

case ηr = −1/H . Now Eq. (30) becomes

(

∂2
η + 2Ha∂η + k2

)

Ĝ(η, η′, k) =
δ(η − η′)

(2π)3 a2(η′)
. (32)

Comparison of this result with Eq. (71) of Ref. [11] reveals that Ĝ(η, η′, k) differs from the

Green’s function defined in the latter reference by a factor of 1/[(2π)3 a2(η′)]. Consequently,

we may use the result of Ref. [11] to write

Ĝ(η, η′, k) =
H2

(2πk)3
{

−k(η − η′) cos[k(η − η′)] + (1 + k2 ηη′) sin[k(η − η′)]
}

. (33)

Next we turn to a discussion of some the possible initial conditions which can be imposed

on solutions of Eq. (28).

A. Sudden Switching

Here we impose the initial condition that the metric fluctuations vanish at η = η0. The

power spectrum of tensor fluctuations at the end of inflation, η = ηr = −1/H , is then given

by

P (k) = Ps(k) = 64(2π)8
∫ −1/H

η0

dη1

∫ −1/H

η0

dη2 Ĝ(η, η1, k) Ĝ(η, η2, k) ĈM(η1 − η2, k) . (34)

The integrals in Eq. (34) may be evaluated, using for example the algebraic computer pro-

gram Mathematica. In the limit that k|η0| ≫ 1, the result is approximately

Ps(k) ≈ −H4 η20
3π3 k

(1 + k2H−2) . (35)

There are several remarkable features of this result: its negative sign, its blue tilt, and

the fact that it grows with increasing |η0|. The possibility of negative power spectra was

discussed in Ref. [18], where it was shown that such spectra arise naturally in quantum field

theory for the fluctuations of quadratic operators, such as quantum stress tensors. Indeed,
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the power spectrum associated with the fluctuations of the transverse, tracefree part of the

electromagnetic stress tensor is given by the η1 = η2 limit of Eq. (25),

ĈM(0, k) = − k5

960π5
, (36)

which is negative. Negative power spectra are always associated with coordinate space corre-

lation functions which are singular in the coincidence limit. This is the case for stress tensor

correlation functions. They are also associated with the opposite correlation versus anti-

correlation behavior as compared with a positive power spectrum with the same functional

form. This means that C(r) changes sign of the sign of P (k) changes, so events that were

correlated become anticorrelated and vice versa. The spectrum is also not scale invariant,

and tilted toward the blue end of the spectrum because |Ps(k)| grows with increasing k.

Another feature of Eq. (35) is that the power spectrum for the gravity waves grows as

η20, which means that it is proportional to the square of the scale factor change between the

initial time and the end of inflation. This is analogous to the results found in Refs. [11, 12] for

the power spectrum of density fluctuations produced by quantum stress tensor fluctuations.

In both cases, the growth of fluctuations can potentially be used to place upper limits on

the duration of inflation, as will be discussed in Sec. V. The net expansion factor during

inflation is

S = H |η0| , (37)

so we may write Eq. (35) as

Ps(k) = −H2 S2

3π3 k
(1 + k2H−2) . (38)

The coordinate space correlation function associated with this power spectrum is given by

Eq. (27) to be

Ks(r) = −4H2 S2

3π2 r2

(

1− 2

H2 r2

)

. (39)

This gives the correlation of points at spatial separation r at equal times. Note that it may

be either positive or negative.

Although the power spectrum and the associated correlation function grow with increas-

ing S or energy scale k, the perturbative approach used here require that |K(r)| ≪ 1, which

places a limit on the magnitude of the effect.
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It is informative to compare the results of this subsection with the flat spacetime limit.

If we set a = 1 in Eq. (30) and solve for the flat space Green’s function, the result is

ĜM(η − η′, k) =
1

(2π)3 k
sin[k(η − η′)] . (40)

If we use this Green’s function in Eq. (28), the resulting power spectrum becomes

PM(k) = − 5k

6π3
, (41)

where a rapidly oscillating term which depends upon the integration interval has been

dropped. The associated coordinate space metric correlation function at equal times is

KM(r) =
20ℓ4p
3π2 r4

. (42)

This function simply describes Planck-scale fluctuations, which are presumably unobserv-

able. The main point is that the fluctuations do not accumulate in flat spacetime due to

anticorrelations. In a curved spacetime, such a de Sitter space, this is no longer the case, and

the anticorrelated fluctuations need not cancel. In the calculations, the crucial difference is

between the flat spce Green’s function, Eq. (40), and that in de Sitter space, Eq. (33).

B. Exponential Switching

In the previous subsection, the interaction between the quantum stress tensor and the

gravitational field was taken to be switched on suddenly at η = η0. One might be concerned

that either the sign of P (k), or its growth with increasing |η0| are artifacts of this sudden

switching. Here we investigate a model in which the interaction is switched on gradually.

We replace the step function θ(η − η0) by an exponential function, epη, with p > 0. This

function vanishes as η → −∞, and in the limit of small p, is close to unity by the end of

inflation. The effect of this switching function is effectively to switch on the interaction on

a conformal time scale of order |η0|, where η0 = −1/p. Equation (34) is replaced by

Pe(k) = 64(2π)8
∫ −1/H

−∞

dη1 se(η1)

∫ −1/H

−∞

dη2 se(η2) Ĝ(η, η1, k) Ĝ(η, η2, k) Ĉflat(η1 − η2, k) ,

(43)

where the switching function is

se(η) = epη . (44)
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In the limit of small p, Eq. (43) leads to

Pe(k) ≈ −H4(1 + k2/H2)

8π2 k2 p
+O(ln p) = −H3(1 + k2/H2)S

8π2 k2
, (45)

where S, given by Eq. (37), is the expansion between η = η0 = −1/p and the end of inflation.

Again the power spectrum is negative, blue tilted, and grows with increasing S although

now linearly. In this case, the equal time spatial correlation function is an inverse Fourier

transform of Pe(k) given by

Ke(r) = −H3 S

4r
. (46)

Here we have dropped a delta-function term proportional to δ(x), which will not contribute

to measurements made at distinct spatial locations. Note that because a(η) = 1/(H|η|), if
the switching time ∆η is of order |η0|, then the scale factor approximately doubles during

the switch-on. For example, a(η/2) = 2a(η). In terms of comoving time t, where a(t) = eHt,

this corresponding to a time interval of ∆t ≈ 1/H , or one horizon crossing time. Thus the

switch-on time in this model is of order of the horizon crossing time.

C. Adjustable Width Switching

The switching function se(η) used in the previous subsection contains only one parameter,

p, which regulates both the effective duration of inflation and the period over which the

switching occurs. It is instructive to consider a more general function with two parameters:

saw(η) =
1

1 + e(η0−η)/α
. (47)

This function, analogous to the Fermi-Dirac distribution function, changes from zero to

unity when η ≈ η0 over a time scale of ∆η ≈ α. The resulting power spectrum, Paw(k), is

given by Eq. (43), with se(η) replaced by saw(η), and may be expressed as

Paw(k) = − H4

2π3 k3

∫ 1

0

du (1− u2)2 (I2C + I2S) . (48)

Here

IC =

∫ ∞

xr

dx g(x, xr) s(x) cos(ux) , (49)

and

IS =

∫ ∞

xr

dx g(x, xr) s(x) sin(ux) , (50)

11



with

g(x, xr) = (x− xr) cos(x− xr)− (1 + xxr) sin(x− xr) . (51)

We use the notation, x = −kη, xr = −kηr, and s(x) = saw(η). The dominant contributions

to the integrals in IC and IS come from values of x of order x0 = −kη0 ≫ xr, so we may

write

g(x, xr) ≈ x(cosx− xr sin x) . (52)

The resulting integrals may be evaluated using Eqs. (B8) and (B9), which are derived in

Appendix B. The final result, when α & 1/k, is

Paw(k) ≈ − H4 η20
2π k2 α

(1 + k2H−2) . (53)

Apart from numerical factors, this result contains both Eqs. (35) and (45) as special cases.

If α ≈ 1/k, then we return to the sudden switching case of Eq. (35). On the other hand,

if α ≈ |η0|, we find Eq. (45), up to numerical constants. The fact that the constants do

not match exactly may be due to the approximation used in deriving Eqs. (B8) and (B9)

(q ≪ 1) not being very good near u = 0. In summary, if ∆η . 1/k, we obtain the sudden

result, Eq. (38), proportional to S2, and if ∆η ≈ |η0|, we obtain Eq. (45), proportional to

S. Intermediate switching times lead to Eq. (53).

Note that in this section, we have been discussing the effects of different rates at which

the coupling between the conformal field and gravity is switched on. This issue is distinct

from the choice of the initial quantum state for either the conformal field or the gravitons.

If the conformal field is not in its vacuum state, then its particle content should rapidly

redshift. Soon, it will be indistinguishable from the vacuum, and we may regard our anal-

ysis as beginning at that time. Variation of the state of the gravitons essentially adds an

additional term to the power spectrum of the tensor perturbations. Here we are concerned

with the tensor perturbations generated by the quantum stress tensor fluctuations, and do

not explicitly treat other sources of tensor perturbations.
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V. IMPLICATIONS OF THE POWER SPECTRUM

A. Initial Conditions and the Transplanckian Issue

Although the results in the previous section depend somewhat on the rate at which

the coupling between the quantum stress tensor fluctuations and the gravitational field is

switched on, in all cases the power spectrum grows as a power of S, the expansion from

the initial time to the end of inflation. Thus we need an interpretation which suggests a

reasonable value for this time, |η0|. One possibility is to take this time to be the onset

of inflation. This imposes the initial condition that the gravity wave perturbations vanish

at the beginning of inflation. In this case, S becomes the total expansion factor during

inflation. A possible objection to this interpretation is that it can lead to contributions from

transplanckian modes. This raises the question of whether our perturbative treatment can be

trusted, as relations such as Eq. (15) are lowest order approximations in the dimensionless

coupling constant (ℓpk)
2. The transplanckian issue has been extensively discussed in the

contexts of the Hawking effect and of cosmology. Hawking’s original derivation [20] of black

hole radiance relies upon modes which begin far above the Planck energy. The fact that the

Hawking effect gives a beautiful unification of gravity, thermodynamics, and quantum theory

can be considered to be a powerful argument to take transplanckian modes seriously. It is

true that it is possible to derive the Hawking effect without transplanckian modes [21, 22],

but only at the price of introducing modified dispersion relations which break local Lorentz

symmetry and hence postulate new physics. There has been an extensive discussion of

the possible role of transplanckian modes in inflationary cosmology. (See Ref. [12] for a

lengthy list of references.) The effect discussed in this paper has the potential to serve as

an observational probe of transplanckian physics.

There is an alternative possibility [12], which is to take the initial time at which the

perturbation vanishes to depend upon the mode, and to be the time at which a given mode

redshifts below the Planck scale in the comoving frame. This avoids the transplanckian

issue, but at the price of introducing a non-local and frame dependent prescription, which

is analogous to introducing non-Lorentz invariant modified dispersion relations. In the

remainder of this paper, we will explore the consequences of adopting the former prescription

whereby S is the total expansion factor during inflation. However, all of our conclusions
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depend upon this assumption.

The dependence of the gravity wave spectrum upon a positive power of S might seems to

contradict a theorem due to Weinberg [23], which was generalized by Chaicherdsukal [24].

This theorem states that radiative corrections during inflation should not grow faster than a

logarithm of the scale factor. However, as was discussed in more detail in Ref. [12], density

perturbations which are proportional to a power of S are really due to high frequency

modes at the initial time, and are hence always large rather than growing. This comment

also applies to the effects found in Ref. [10] and in the present paper.

The fact that the effect which we calculate come from high frequency modes does not

mean that it can be removed by a renormalization. Our key coordinate space result, Eq. (19),

involves an integral of the full stress tensor correlation function, with no renormalizations.

Our view is that the finiteness of this integral implies that no renormalization is needed.

B. Numerical Estimates

We may use the coordinate space correlation functions, Ks(r) and Ke(r) , to estimate the

physical effects of the gravity wave fluctuations on various scales. However, these functions

describe the primordial fluctuations at the end of inflation. After the end of inflation, modes

which are outside the horizon remain approximately constant until they re-enter the horizon.

(For a more detailed discussion, see, for example, Ref. [25].) After that point, they redshift

with their amplitude proportional to 1/a. Let aHc be the value of the scale factor at which

a mode associated with coordinate length r re-enters the horizon, and anow be the present

value of the scale factor. The present value of the correlation function is then

Know(r) = K(r)

(

aHc

anow

)2

. (54)

For the sudden switch model, this becomes

Know−S(r) = −
4H2 S2 ℓ4p
3π2 r2

(

1− 2

H2r2

) (

aHc

anow

)2

, (55)

and for the exponential switch model it is

Know−E(r) = −
H3 S ℓ4p

4r

(

aHc

anow

)2

. (56)

Here the factors of the Planck length ℓp are written explicitly.

14



Let ER be the reheating energy at the end of inflation. This energy has since been

redshifted to that of the cosmic microwave background. We set a = 1 at the end of inflation,

so that

anow ≈ ER

2.5× 10−4eV
. (57)

The proper length scale today associated with coordinate distance r is

ℓ = anow r . (58)

We assume that reheating is efficient, so the vacuum energy at the end of inflation is of order

E4
R, and

H2 =
8π

3
ℓ2pE

4
R . (59)

We also assume that the scale of interest was outside the horizon at the end of inflation, so

that Hr > 1. We may combine all of these results to write

|Know−S| = 1045
(

ℓp
ℓ

)2 (

ER

1016GeV

)6 (

aHc

anow

)2

S2 , (60)

and

|Know−E| = 1011
(

ℓp
ℓ

) (

ER

1016GeV

)7 (

aHc

anow

)2

S . (61)

Let us first consider the case of perturbations of the order of the present horizon size,

ℓ ≈ 1061 ℓp. In this case, aHc ≈ anow. Data from the WMAP satellite [6] constrain these

perturbations to satisfy h . 10−5, so that |Know| . 10−10. Consequently, the sudden switch

model leads to

S . 1034
(

1016GeV

ER

)3

, (62)

and the exponential switch model to

S . 1040
(

1016GeV

ER

)7

. (63)

These constraints on the total expansion during inflation are compatible with adequate

inflation to solve the horizon and flatness problems, S & 1023. Because K < 0, quantum

stress tensor fluctuations during inflation will tend to produce anti-correlated gravity wave

fluctuations. Note that in this example, |Know| ≈ K(r) . 10−10, so the criterion for the

validity of the perturbative calculation, |K(r)| ≪ 1, is satisfied.

Now we wish to consider perturbations which are well within the present horizon. For

this purpose, we need an approximate model for the current matter content of the Universe.
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Although the dominant component today is the dark energy, this is likely to be a recent

phenomenon. If the dark energy is due to a cosmological constant term, it does not redshift

and hence does not grow as we go backwards in time. Here we assume that the Universe

was radiation dominated, a ∝ t1/2, for t . teq and subsequently matter dominated, a ∝ t2/3.

Furthermore, we assume
aeq
anow

≈ 10−4 , (64)

so that teq/tnow ≈ 10−6. A perturbation with proper length ℓ enters the horizon at t = tHc =

ℓ. If we assume that ℓ < teq, then we may write
(

aHc

anow

)2

≈ 10−63 ℓ

ℓp
. (65)

If we insert this relation into Eq. (60), the result is

|Know−S| = 10−58

(

100 km

ℓ

) (

ER

1016GeV

)6

S2 . (66)

In the case of the exponential switch model, the factors of ℓ cancel,

|Know−E| = 10−52

(

ER

1016GeV

)7

S , (67)

leading to a scale independent correlation function on scales ℓ . 1023 cm.

If the magnitude of these fluctuations is sufficiently large, they should produce background

noise in gravitational wave detectors, which has not been observed. LIGO has placed lim-

its [26] of h . 10−24 on scales of the order of 102 km, corresponding to |Know| < 10−48, and

leading to the constraints

S < 1023
(

1010GeV

ER

)3

. (68)

for the sudden switch model, and

S < 1025
(

1013GeV

ER

)7

, (69)

for the exponential switch model. However, these results are compatible with adequate

inflation to solve the horizon and flatness problems only if

ER . 1010GeV (70)

for the sudden switch model, and

ER . 1013GeV (71)

for the exponential switch model. In this example, |K(r)| ≈ 1023Know . 10−25, so again the

requirement that |K| be small is fulfilled.
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VI. SUMMARY AND DISCUSSION

We have seen that quantum stress tensor fluctuations are capable of creating gravity waves

during inflation. The resulting spectrum has several properties, including negative power

and an amplitude which grows with increasing duration of the inflationary period. Negative

power spectra, although forbidden by the Wiener-Khinchin theorem [16, 17], can arise in

quantum field theory [18], especially in quantum stress tensor fluctuations. A negative power

spectrum can be viewed as interchanging correlations and anti-correlations, as compared to

a positive power spectrum of the same functional form.

We find that the amplitude of the gravity wave spectrum is proportional to a positive

power of S, the change in scale factor during inflation. A similar dependence was also found

in Refs. [11, 12], for the effects of stress tensor fluctuations on density perturbation and

in Ref. [10] for the correction to gravity wave modes from expectation value of the stress

tensor of a conformal field. The gravity wave power depends somewhat upon the details of

the initial conditions, being S2 if one integrates the equations directly from a state of zero

fluctuations, and being S if the interaction between the fluctuating matter stress tensor is

supposed to be switched on over a finite interval of the order of the horizon size in comoving

time. In all cases, the primordial power spectrum of gravity wave fluctuations is negative

and greater in magnitude at shorter wavelengths. This non-scale invariant spectrum of

fluctuations will be highly non-Gaussian, due to the non-Gaussian character of quantum

stress tensor fluctuations.

Our conclusions are contingent upon the assumptions which we have made, especially

concerning the transplanckian modes. We have chosen to include all modes in the conformal

field theory, including those which are above the Planck scale at the beginning of inflation.

Because our results depend crucially on this assumption, one can regard the predicted power

spectra as probes of transplanckian physics.

The gravity wave fluctuations are potentially observable. Longer wavelengths could alter

the polarization of the CMB, and be detected in the same way as the active fluctuations.

Shorter wavelengths could potentially be detected by Earth or space based gravity wave

detectors. The fact that they have not yet been detected might be used to infer constraints

on the duration and energy scale of inflation.
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Appendix A: Flat Space Stress Tensor Correlation Functions

In this appendix, we derive the explicit expressions for the flat space correlation functions

utilized in Sect. III, especially Eq. (25). All of the expressions in this appendix refer to flat

spacetime, so here we drop the subscript “M”. We may use the results of Ref. [27], where

the electromagnetic field stress tensor correlation function was shown to be

Cµνσλ(x, x′) = 4 (∂µ∂νD) (∂σ∂λD) + 2 gµν (∂σ∂αD) (∂λ∂
αD) + 2 gσλ (∂µ∂αD) (∂ν∂

αD)

− 2 gµσ (∂ν∂αD) (∂λ∂
αD) − 2 gνσ (∂µ∂αD) (∂λ∂

αD)

− 2 gνλ (∂µ∂αD) (∂σ∂
αD) − 2 gµλ (∂ν∂αD) (∂σ∂

αD)

+ (gµσgνλ + gνσgµλ − gµνgσλ) (∂ρ∂αD) (∂ρ∂αD) . (A1)

Here

D = D(x− x′) =
1

4π2(x− x′)2
(A2)

is the Hadamard (symmetric two-point) function for the massless scalar field. For our

purposes, it is sufficient to compute a single component, such as Cxyxy. The result is

Cxyxy(τ, r) =
3

π2[(t− t′)2 − r2]4
, (A3)

where r = |x− x′| and τ = t− t′. The spatial Fourier transform of this expression is

Ĉxyxy(τ, k) = − 1

512π5

(

d4

dτ 4
+ 2k2 d2

dτ 2
+ k4

) (

sin kτ

τ

)

, (A4)

or equivalently,

Ĉxyxy(τ, k) = − k5

512π5

∫ 1

0

du (1− u2)2 cos(kuτ) , (A5)

which is Eq. (25). This expression may be verified by checking that

Cxyxy(τ, r) =

∫

d3k e−ik·(x−x′) Ĉxyxy(τ, k) . (A6)
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Appendix B: Evaluation of Sampling Function Integrals

In this appendix, we will evaluate some of the integrals needed in Sect. IVC, which

involve the function saw, defined in Eq. (47). We begin with expression 3.411.23 in Ref. [28],

which states that
∫ ∞

−∞

x eµx

1 + ex
dx = −π2 csc(πµ) cot(πµ) , (B1)

for 0 < Re(µ) < 1. This implies that
∫ ∞

−∞

eµx

1 + ex
dx = π csc(πµ) . (B2)

This may be verified by taking a derivative of Eq. (B2) with respect to µ, and by noting

that when µ = 1/2, this relation becomes

∫ ∞

−∞

ex/2

1 + ex
dx = 2

∫ ∞

0

1

1 + y2
dy = π . (B3)

This confirms that there is no additional constant in Eq. (B2) . Next we may take the limit

in which µ → iq to write
∫ ∞

−∞

eiqx

1 + ex
dx = − 2πi

eπq − e−πq
. (B4)

However, we need integrals over a semi-infinite range of the form

∫ ∞

xr

eiqx

1 + e(x−x0)/b
dx = b eiqx0

[

∫ ∞

−∞

eiqbz

1 + ez
dz −

∫
xr−x0

b

−∞

eiqbz

1 + ez
dz

]

. (B5)

The second integral on the right-hand side of the above equation may be approximated by

setting the denominator of the integrand to unity:

∫

xr−x0

b

−∞

eiqbz

1 + ez
dz ≈ i

q b
eiq(xr−x0) +O(e−x0/b) . (B6)

Thus,
∫ ∞

xr

eiqx

1 + e(x−x0)/b
dx ≈ − 2πi eiqx0

eπq − e−πq
+

i

q
eiqxr . (B7)

If we take a derivative with respect to q, then the real and imaginary parts of the resulting

expression become, for q b ≫ 1,
∫ ∞

xr

x sin qx

1 + e(x−x0)/b
dx ≈ −2πx0 b cos(qx0) e

−qb (B8)

and
∫ ∞

xr

x cos qx

1 + e(x−x0)/b
dx ≈ 2πx0 b sin(qx0) e

−qb . (B9)

19



[1] V. Mukhanov and G. Chibisov, JETP Lett. 33, 532 (1981).

[2] A.H. Guth and S.-Y. Pi, Phys. Rev. Lett. 49, 1110 (1982).

[3] S.W. Hawking, Phys. Lett. B 115, 295 (1982).

[4] A.A. Starobinsky, Phys. Lett. B 117, 175 (1982).

[5] J.M. Bardeen, P.J. Steinhardt, and M.S. Turner, Phys. Rev. D 28, 679 (1983).

[6] E. Komatsu et al., Astrophys. J. Suppl. 192, 18 (2011), arXiv:1001.4538.

[7] A.A. Starobinsky, JETP Lett. 30, 682 (1979).

[8] L.F. Abbott and M.B. Wise, Nucl. Phys. B 244, 541 (1984).

[9] B. Allen, Phys. Rev. D 37, 2078 (1988).

[10] J.-T. Hsiang, L.H. Ford, D.-S. Lee, and H.-L. Yu, Phys. Rev. D, 83, 084027 (2011),

arXiv:1012.1582.

[11] C.-H. Wu, K.-W. Ng, and L.H. Ford, Phys. Rev. D 75, 103502 (2007), arXiv:gr-qc/0608002.

[12] L.H. Ford, S.-P. Miao, K.-W. Ng, R.P. Woodard, and C.-H. Wu, Phys. Rev. D 82, 043501

(2010), arXiv:1005.4530.

[13] S. del Campo and L.H. Ford, Phys. Rev. D 38, 3657 (1988).

[14] E. M. Lifshitz, Zh. Eksp. Teor. Phys. 16 587 (1946).

[15] L.H. Ford and L. Parker, Phys. Rev. D 16, 1601 (1977).

[16] N. Wiener, Acta. Math, Stockholm 55, 117 (1930).

[17] A. Khinchin, Math. Ann. 109, 604 (1934).

[18] J.-T. Hsiang, C.-H. Wu, and L. H. Ford, Phys. Lett. A 375, 2296 (2011), arXiv:1012.3226.

[19] C.J. Fewster, L.H. Ford, and T.A. Roman, Phys. Rev. D 81, 121901(R) (2010),

arXiv:1004.0179.

[20] S.W. Hawking, Commun. Math. Phys. 43, 199 (1975).

[21] W.G. Unruh, Phys. Rev. D 51, 2827 (1995), gr-qc/9409008.

[22] S. Corley and T. Jacobson, Phys. Rev. D 54, 1568 (1996), hep-th/9601073.

[23] S. Weinberg, Phys. Rev. D 72, 043514 (2005); 74, 023508 (2006).

[24] K. Chaicherdsakul, Phys. Rev. D 75, 063522 (2007).

[25] K.-W. Ng, Int. J. Mod. Phys. A 11, 3175 (1996).

[26] P.J. Sutton, J. Phys. Conf. Ser. 110, 062024 (2008).

20



[27] L.H. Ford and C.-H. Wu, Int. J. Theor. Phys. 42, 15 (2003), gr-qc/0102063.

[28] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series, and Products, 6th Ed. (Academic

Press, New York, 2000).

21


