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Accepting the fine tuned cosmological constant hypothesis, we have recently proposed

that this hypothesis can be tested if the dark matter freeze out occurs at the electroweak

scale and if one were to measure an anomalous shift in the dark matter relic abundance.

In this paper, we numerically compute this relic abundance shift in the context of explicit

singlet extensions of the Standard Model and explore the properties of the phase transition

which would lead to the observationally most favorable scenario. Through the numerical

exploration, we explicitly identify a parameter space in a singlet extension of the standard

model which gives order unity observable effects. We also clarify the notion of a temperature

dependence in the vacuum energy.

1. INTRODUCTION

The hypothesis that the cosmological constant (CC) energy density today is a result of a tuning

between UV and IR contributions [1, 2] is favored according to some versions of the string landscape

proposal (see e.g. [3]). Furthermore, this hypothesis has always been the default assumption in

particle physics model building (see e.g. [4, 5]). Unfortunately, this conjecture is notoriously difficult

to test with lab experiments, such as those at colliders.

One of the predictions of the tuning hypothesis is that there can be an electroweak scale effective

CC in the early universe if there was a phase transition (PT) at that scale. A well-known reason

to suspect that there was an electroweak scale PT in the early universe is the thermally supported

electroweak symmetry restoration phenomenon in the context of the Standard Model (SM) of

particle physics [6, 7]. Hence, if lab experiments, such as particle colliders, can eventually measure

the field content and couplings of the scalar sector at the electroweak scale with sufficient accuracy,

then one may be able to predict the CC energy density existing at around the time of the PT.

Such an energy density would interact with gravity to modify the expansion history of the universe.

Indeed, Kolb and Wolfram [8] were one of the first to state that this computable energy density

arising from the Standard Model Higgs condensate may have an observationally acceptable yet

significant effect in cosmology.

In a recent paper [9], we proposed that dark matter freeze out can be used to probe PTs, including
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the properties of such a computable CC, through its effect on the expansion rate of the universe

during freeze out. Such an idea is abstractly very similar to the well known big bang nucleosynthesis

idea, as well as generic particle probes of cosmology (see e.g. [10–14]). In particular, if a weakly

interacting massive particle (WIMP) dark matter candidate is discovered with a mass of the order of

TeV, then its freeze out dynamics would be sensitive to the value of the CC during the electroweak

scale PT at a temperature of the order of 100 GeV. Therefore accurate measurements of the dark

matter and scalar sector properties will, in principle, make possible a lab test of the tuning of

the CC. More accurately, what is being tested is the absence of self-tuning mechanisms and/or

modified gravitational theories [15–27] that would eliminate or significantly change the effects of

vacuum energy during a PT.

For non-first order PTs, it was found that the shift in the relic abundance due to the CC energy

density effects is suppressed by ∆nX/nX = O
(
g−1
E

)
where gE is the number of of relativistic

degrees of freedom contributing to the energy density. For first order PTs, it was found that this

fractional shift can be generically enhanced by supercooling such that the CC effects can be O(1)

with a 1% parameteric tuning. In all cases, the sought after CC “signal” is buried in the dominant

“background” coming from the adiabatic change in the number of degrees of freedom and possibly

the entropy release near the time of the dark matter freeze out. The adiabatic change in the number

of degrees of freedom and the vacuum energy effect tend to increase the relic density today while

the entropy production effect decreases the relic density.

The purpose of this paper is to complement the previous short paper [9] in several ways:

1. Present an explicit singlet extension of the Standard Model (SM) that gives a large super-

cooling with a first order PT at the electroweak scale.

2. Clarify the notion of how an effective vacuum energy (which is Lorentz invariant in the flat

space limit) can depend on temperature (which manifestly breaks Lorentz invariance).

3. Compare numerical results with analytic results presented in [9].

4. Provide relevant technical details that were left out in [9] to aid future research efforts in this

direction.

In addition to giving a generic singlet scalar model coupled to a Dirac fermion that gives a significant

supercooling, we analyze xSM, i.e. a real singlet coupled to the SM, and identify a parametric region

in which significant supercooling occurs. As anticipated in [9], an O(10−2) tuning is sufficient to

induce an O(1) supercooling effect on the relic abundance.
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The order of presentation is as follows. In Section 2 we review the physics of PTs and focus

on the myriad ways in which a PT may impact dark matter freeze out. We clarify the notion of

a temperature dependence of vacuum energy density in this section. In Section 3 we analytically

compute the fractional shift of the relic abundance δnX(t0) due to an electroweak scale PT in the

limit in which the PT represents a small perturbation to the usual freeze out. In Section 4 we com-

pute the relic abundance deviation in the SM and minimal singlet extensions (both supplemented

by a generic dark matter which is assumed to play a negligible role in determining the properties of

the PT). In Section 5 we conclude with a summary and suggestions for future work. An extensive

set of appendices detail technicalities useful for the material presented in the body of the paper.

Throughout the paper, we assume a flat Friedmann-Robertson-Walker (FRW) metric, ds2 =

dt2 − a2(t)|dx|2, and use the reduced Planck mass Mp ≈ 2.4× 1018 GeV.

2. A BRIEF REVIEW OF THE PHYSICS OF PHASE TRANSITIONS

In this section, we review the physical features that accompany a cosmological PT. Each of these

features modifies one of the relationships, ρ ∼ T 4, T ∼ a−1, or 〈σv〉 = 〈σv〉 (T ), which are assumed

in the usual freeze out calculation. One of the topics discussed in this section is how to understand

the thermal dependence of vacuum energy, which a priori is an oxymoron. Readers interested in

mostly the phenomenology can skip to the next section.

The standard cosmological model assumes an expanding FRW universe which leads to the tem-

perature of the relativistic species in the universe decreasing as a function of time except during

the time periods when entropy is generated. As the temperature decreases, there may exist critical

temperatures at which the thermodynamic quantities are not analytic as a function of tempera-

ture and/or the symmetries of the effective Lagrangian governing the dynamical degrees of freedom

changes. Following the typical convention in the literature, we refer to the passages through these

critical temperatures as PTs.

In order to calculate thermodynamic quantities in the system described above, we will use the

thermal effective potential (see [28] for a review). The thermal effective potential Veff(φc, T ), derived

from Legendre transforming the partition function coupled to external sources, represents the free

energy density of the plasma at temperature T dynamically interacting with a homogeneous scalar

field background φc which may affect the masses and interactions of particles in the plasma. A

local minimum φc = v(T ) is called the thermal vacuum, and PTs occur near critical temperatures
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Tc which will be defined more precisely below.1

The critical temperature Tc in the case of what is conventionally referred to as a first order PT

is defined by the existence of two or more degenerate minima φ = v(Tc) existing for the thermal

effective potential Veff(φ, Tc). In such cases, we refer to the vacuum of the universe just prior to

the PT as v(s)(T ) (where the “s” superscript denotes “symmetric” vacuum) whether or not there is

a symmetry in the thermal effective potential prior to the PT. The vacuum solution after the first

order PT is referred to as v(b)(T ) where “b” denotes “broken.” A non-first order PT (sometimes

loosely referred to as a second order PT) is characterized by a single continuous function v(T )

before and after the PT: i.e. v(b)(Tc) = v(s)(Tc). Even in such situations, it is sometimes useful to

define v(s)(T ) to be the vacuum before the PT whenever there is a restored symmetry prior to the

PT. The quantity v(s)(T ) can then be taken as an order parameter associated with spontaneous

symmetry breaking.

The thermal vacua v(s/b)(T ) can be obtained from summing up thermal tadpole corrections

obtained from expanding perturbatively about the zero temperature vacua v(s/b)(0). Despite the

suggestive notation of the thermally shifted vacuum v(s/b)(T ), the resummation of tadpoles is

nothing more than a reorganization of perturbation theory, and the vacuum energy represented

by the Lorentz-invariant part of the energy-momentum tensor, is not shifted by the manifestly

Lorentz-noninvariant thermal tadpoles. Note that symmetry restoration cannot be inferred from

the thermal tadpole resummation alone since the thermal perturbation theory breaks down when

the perturbations are expanded about the inflection points of the effective potential.

Let us now establish some more notation for the quantities introduced above. The thermal

effective potential and v(s/b)(T ) can be used to construct the thermodynamic quantities

F (s/b)(T ) = Veff(v(s/b)(T ), T ) (2.1a)

s(s/b)(T ) = − d

dT
F (s/b) (2.1b)

ρ(s/b)(T ) = F (s/b) + T s(s/b) (2.1c)

representing the free energy density F , entropy density s, and energy density ρ in the symmetric and

broken phases. A typical PT occurs as the universe cools, and the free energy of the broken phase,

in which the entropy and energy densities are high, drops below the free energy of the symmetric

phase, in which the entropy and energy densities are low. It will be useful to define the critical

1 We will leave out the adjective “thermal” in “thermal vacuum” whenever no confusion should arise.
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temperature of the PT Tc by

F (s)(Tc) = F (b)(Tc) , (2.2)

but note that the PT may not actually occur until a much lower temperature if the symmetric

phase experiences supercooling. The PT is accompanied by a number of physical features, which

we will outline in the remainder of this section and which each have an impact on dark matter

freeze out.

The first feature that we would like to discuss is the vacuum energy associated with the PT.

We assume that the energy density ρ(s/b)(T ) can be partitioned into the energy associated with the

plasma and the energy associated with the condensate (i.e. the vacuum energy with an effective

equation of state of −1), and we define the latter as

ρ(s/b)
cc (T ) ≡ Veff(v(s/b)(T ), 0) (2.3)

which has an observable consequence when coupled to gravity. This equation is artificial because the

vacuum energy cannot be rigorously separated from the particle energy with which it is associated

for most of the states populating the density matrix. Nonetheless, it is useful because it captures

the CC type of contribution (i.e. negative equation of state contribution) to the energy-momentum

tensor.

Note that flat space thermal corrections to the zero temperature effective potential cannot gen-

erate Lorentz invariant contributions to the energy-momentum tensor because temperature T de-

pendent quantities are not Lorentz invariant. Since the CC contribution to the energy-momentum

tensor in the flat space limit is Lorentz invariant, one may wonder whether Eq. (2.3) is valid since

it implies that thermal tadpoles are contributing to the vacuum energy. Furthermore, the fact that

the effective vacuum energy takes on a continuum of values while the only non-perturbatively stable

vacuum state is at v(b)(0) (which we will assume to be associated with negligible vacuum energy)

also leads one to be suspicious of Eq. (2.3).

To semi-quantitatively resolve this puzzle, one notes that near the time of the PT, there are

A ↔ B processes in equilibrium where A and B schematically correspond to states of the form

|particles + vacuum energy〉 and |particles〉, respectively. These transitions are mediated by non-

perturbative processes since they are vacuum changing processes. Classically, the plasma (when

these transitions are efficient) is approximately described by inhomogeneous solutions in Minkowski

space. This can easily be characterized by computing for example the thermal two-point function.

The equation of state for such a plasma in the classical approximation corresponds to neither

that of quantum expectation values with respect to states A nor B, but is a mixture which from the
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quantum perspective depends on the non-perturbative transition operators as well as the relative

statistical and/or coherent weighting of A and B type of states. The incoherent aspect of this

mixture is what the T dependence of Eq. (2.3) reflects.2 To corroborate this picture, one can

easily solve classical equations of motion in models with spontaneous symmetry breaking to obtain

inhomogeneous background field solutions which have an inhomogeneous equation of state. Since

the Friedmann equation (which is the only gravitational probe we will be concerned in this paper)

approximately describes the gravitational response to the spatial average of the energy-momentum

tensor, one can spatially average the energy density and the pressure. This leads to an effectively

homogeneous energy density and pressure which is approximately the same as that due to particles

plus a vacuum condensate energy density. The resulting effective vacuum condensate energy density

is somewhere between Veff(v(s)(0), 0) and Veff(v(b)(0), 0), justifying the diagnostic quantity defined

by Eq. (2.3).

To renormalize the CC, we impose the tuning condition

ρ(b)
cc (T = 0) = 0 , (2.4)

which states that the vacuum energy density today is on the order of the meV4 dark energy density

[29, 30] and negligible as compared to the PT scale. Hence, we will refer to ρ(s/b)
cc (T ) as the “effective

CC energy density.” With this normalization, the CC energy density before a PT at scale M will

typically be

ρ(s)
cc (T &M) ∼M4, (2.5)

which can be measured, in principle, by gravitational probes such as the Hubble expansion rate

and its impact on dark matter freeze out.3 Any self-tuning/modified-gravity mechanism which

decouples the vacuum energy or significantly modifies the vacuum energy effect on gravity on a

time scale shorter than that of the expansion scale will have an effective ρ(s)
cc significantly different

from Eq. (2.5). It would be interesting in future studies to compare various self-tuning/modified

gravity models which may have non-trivial time dependence in the effective vacuum energy different

from that in this paper.

2 Note also unlike in flat spacetime, there are IR cutoffs associated with the expansion rate H for a single causal
domain during the PT and H0 associated with the presently observable universe. The former scale H is also
associated with one of the scales at wich quasi-equilibrium assumption breaks down.

3 Although an in depth discussion of UV sensitivity of the CC is beyond the scope of this paper, one should keep
in mind that using Eq. (2.4) as a quantum renormalization condition leads to Eq. (2.5) as a prediction only if
assumptions about analyticity of the effective potential as well as Lorentz invariance structure of the UV cutoff is
assumed.
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The second PT feature is the decoupling of heavy degrees of freedom which become non-

relativistic after the PT and cause the number of relativistic species, denoted here as g, to decrease.

This has two consequences for the dark matter freeze out calculation. First, the energy density of

the plasma ρ ∼ g T 4 and Hubble expansion rate H ∼ √ρ decrease more rapidly than usual after

the PT. Second, since temperature is related to the FRW scale factor by entropy conservation,

which gives T ∼ g−1/3a−1, the temperature decreases less rapidly than usual after the PT. To

estimate the magnitude of the effect on dark matter freeze out, consider the SM electroweak PT

at T ∼ 100 GeV and suppose that freeze out occurs at the same temperature. Then during the

residual annihilation stage of freezeout, which lasts until T ∼ 10 GeV, g will decrease by approxi-

mately 20% corresponding to the decoupling of the top, Higgs, and massive gauge bosons. In the

usual freeze out calculation, changes in g are neglected, because freeze out occurs much later than

the electroweak PT when g is insensitive to T . When we arrange for the two events to occur at the

same scale, g decreases significantly and can have a large effect on the relic abundance.

The third feature is related to the coupling between the PT sector and the rest of the particle

physics model. As the phase changes at the PT, in general the masses and interactions of particles

in the plasma can change as well. In particular, it is possible for the scalar field to couple to dark

matter in such a way that the dark matter’s mass and/or annihilation cross section is different in

the symmetric and broken phases. This scenario, studied by [31, 32], may allow dark matter to

rethermalize and can have a significant effect on the relic abundance.

If the PT is of the first order, then it possesses a number of additional features (see e.g. [33]

for a more detailed discussion). A first order PT can be divided into two stages. The first stage,

known as supercooling, occurs while the universe remains in the symmetric phase after it has

become metastable at T ≈ Tc. As the temperature decreases and the CC energy density remains

approximately constant, the total energy density can deviate from the standard ρ ∼ T 4 scaling

(i.e., first feature above). Supercooling ends when it becomes energetically favorable for bubbles of

the broken phase to nucleate. Determining the temperature T−PT at which bubble nucleation begins

requires one to solve for the non-perturbative bounce solution and evaluate the decay rate of the

metastable phase [34]. During the second stage, known as reheating, the expanding bubbles release

an energy density

∆ρex = ρ(s)
cc (T−PT )− ρ(b)

cc (T+
PT ) (2.6)

which is converted into radiation and heats the gas from T−PT before the PT to T+
PT > T−PT after

the PT. We assume that reheating occurs rapidly as compared with the expansion rate of the
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universe4, which allows us to treat reheating as an abrupt process at time tPT when a = aPT .

Reheating is accompanied by a non-adiabatic entropy increase. This entropy growth modifies the

relationship between temperature and the FRW scale factor in such a way that the universe is

relatively larger for a given temperature. As a result, the dark matter number density undergoes

a longer period of dilution and the relic abundance can be significantly smaller [36]. Finally, just

as massive species can adiabatically decouple after the electroweak PT occurs, heavy particles can

undergo a non-adiabatic decoupling at the time of a first order PT if they abruptly acquire a mass

m & TPT .

3. AN ANALYTIC ESTIMATE OF THE CHANGE IN THE DARK MATTER

ABUNDANCE

In this section, we estimate the change in the dark matter relic abundance due to the presence of

a PT, and the CC energy density in particular, during freeze out. Our final result is the fractional

deviation of the relic abundance, denoted δnX(t0) and given by Eq. (3.41), in which we have

linearized in the various effects of the PT on freeze out. Although most of the results in this section

have already been presented in [9], we repeat some of the results for self-containedness as well as

serving as introduction for more complete results such as Eqs. (3.43) and (3.44). The main point

of this section is to present a formalism to understand analytically the effects outlined in Sec. 3.

Throughout the calculation, we will take a as the independent variable and rewrite functions of

temperature using T = T (a) given by Eq. (D.12). In particular, we will assume that freeze out

occurs at a temperature Tf = T (af ) before the PT at a = aPT . Since all of the thermodynamic

quantities depend on the phase of the system which changes at a = aPT , the formulas in this

section would become unnecessarily obscure if we persisted in writing all the (s/b) superscripts and

distinguishing the a < aPT and a > aPT cases. Therefore, we introduce the following shorthand.

Whenever a temperature-dependent function F (s/b)(T ) appears without the (s/b) superscript, the

4 A third stage, known as phase coexistence, can occur if a large latent heat is released by the expanding bubbles and
the plasma is reheated to the point where the pressure gradient across the bubble wall vanishes [35]. Subsequently,
the bubbles expand only insofar as the universe expands, and the PT completes on a time scale t ∼ H−1. Typically,
this stage does not occur during an electroweak-scale PT because the number of relativistic species O (100) is too
many to allow for sufficient reheating.
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intended meaning is

F (a) =


F (s)(T (a)) a < aPT

F (b)(T (a)) a > aPT

. (3.1)

In particular, one always has F (af ) = F (s)(Tf ) since af < aPT by assumption.

We calculate the thermal relic abundance of dark matter by integrating the thermally averaged

Boltzmann equation,

1

a3

d

dt

(
a3nX

)
= −〈σv〉

(
n2
X − n

eq 2
X

)
, (3.2)

over the era of residual annihilations from freeze out at a = af until today. Subject to general

assumptions (see Appendix B for more details), we obtain

nX(t0) =

(ˆ ln a0/af

0

d ln(a/af )

H
〈σv〉 a

3
0

a3

)−1

(3.3)

for the number density of dark matter today at a = a0 and t = t0. In this expression, the quantities

that will be affected by the PT are the Hubble expansion rate H(a), the thermally averaged cross

section 〈σv〉 (a), and the dilution number since the time of the freeze out to today a0/af , which is

related to T (a). As a fiducial reference value, we also calculate the “usual” relic abundance n(U)
X (t0)

by assuming that the PT does not occur, but instead that the universe remains radiation dominated

and has the standard scaling relations

H(U) ∼ a−2, 〈σv〉(U) = 〈σv〉 (T (a)), and T (U) ∼ a−1 (3.4)

throughout freeze out. We define the relic abundance fractional deviation as

δnX(t0) =
nX(t0)

n
(U)
X (t0)

− 1 (3.5)

and expect this quantity to depend on the way in which H, 〈σv〉, and a0/af deviate from the usual

freeze out scenario. We will consider each effect in turn.

Before addressing each of the factors in Eq. (3.3), let us discuss the partitioning of energy.

The Hubble expansion rate, which appears in Eq. (3.3), is related to the total energy density

ρ(s/b)(T ). However, we are particularly interested in determining the impact of the effective CC

on the calculation of dark matter freeze out. Therefore we will assume that the energy can be

partitioned as

ρ ≈ (particle degrees of freedom + exotic energy component) . (3.6)
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In general, the exotic energy component can arise from physics other than the effective CC, such as

quintessence (e.g. [13, 14, 37–41]) or late-decaying massive particles (e.g. [42–49]). To maintain a

minimal degree of generality throughout our analytic estimates (without accumulating distasteful

notational complication), we will parametrize the exotic energy component as ρex κ(a). However,

since our primary interest is in the case that the exotic energy component represents an effective

CC, we will write

ρex κ(a) = ρcc(a) (3.7)

where ρ(s/b)
cc (T ) is defined by Eq. (2.3), and we have used the shorthand Eq. (3.1). The remaining

energy density can be attributed to relativistic particles in the plasma, which we will denote by5

ρ
(s/b)
R (T ) = ρ(s/b)(T )− ρ(s/b)

cc (T ) . (3.8)

To connect with a familiar and intuitive notation, we let the functions gE and gS be defined

implicitly by

ρ
(s/b)
R (T ) =

π2

30
g

(s/b)
E (T )T 4 (3.9)

s(s/b)(T ) =
2π2

45
g

(s/b)
S (T )T 3 (3.10)

such that they represent the number of relativistic degrees of freedom at temperature T in either

the symmetric or broken phase. As shown in Appendix C, one must have gS(T ) 6= gE(T ) if entropy

and energy are to be conserved during the time when a species adiabatically decouples.

Now, we will begin our investigation of the quantities in Eq. (3.3). First, consider the effect on

the Hubble expansion rate H(a) which is obtained by solving the Friedmann equation. To do so,

we partition the energy as described above and assume that ρex � ρR(af ) such that we can treat

the CC energy density as a perturbation. With these assumptions, we obtain

H(a) =
1√

3Mp

√
ρ(a) (3.11)

≈ T 2

3Mp

√
π2

10
gE(a)

[
1 +

1

2

ρex κ(a)
π2

30 gE(a)T (a)4

]
. (3.12)

where we have used the shorthand Eq. (3.1). During the PT, we can approximate κ(a) as

κ(a) ≈ Θ(aPT − a) + Θ(a− aPT )

(
1− ∆ρex

ρex

)
κ2(a) (3.13)

5 Contributions from non-relativistic species are Boltzmann suppressed. Defined in this way, ρ(s/b)
R includes a term

proportional to dv(s/b)/dT which arises from the derivative in Eq. (2.1b). This term represents kinetic energy in
the scalar field and, strictly speaking, should not be included in ρR. Nevertheless, we do not separate out the
kinetic term, because it is typically negligible.
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where Θ(z) is a step function, ∆ρex > 0 is given by Eq. (2.6), and κ2(a) is a function which starts

from κ2(aPT ) = 1 and decreases as fast as (
a

aPT

)−nd
(3.14)

with nd & 4. If ∆ρex = 0, we have a continuous second order transition or a crossover. If ∆ρex = ρex,

then the supercooling is sufficiently strong as to end up with no CC energy just after the PT. The

step functions represent the fact that the PT occurs with negligible change in the scale factor.

With this assumption, ∆s and the corresponding change in the temperature become functions of

∆ρex according to Eq. (D.8) in Appendix D. Finally, the Θ(aPT − a) term in Eq. (3.13) should,

in general, be multiplied by another smooth function unless there is some symmetry fixing v(s)(T ),

and consequently ρ(s)
cc (T ), to a particular value in the high energy limit. However, we will neglect

this detail in favor of cleaner notation, since the final result will be approximately unchanged.

As discussed in Section 2, particle species start becoming non-relativistic after the (electroweak)

PT which causes gE/S(a) to decrease. We will parametrize this decrease by focusing on the (non-

)adiabatic decoupling of (NPT ) N fermionic dynamical degrees of freedom and write

gE/S(a) = gE/S(af )− h(a) (3.15)

h(a) =
7

8
NPT Θ(a− aPT ) +

7

8
N f(a) (3.16)

where f(a), which rises from 0 to 1, is given by Eq. (E.4). Note that in reality, h(a) is a smooth

complicated function (particularly Nf(a)), but here we are accounting for the change in the number

of degrees of freedom in a physically suggestive approximation. As we will see below, this effect will

be one of the dominant “backgrounds” to the “signal” of measuring the effects of the cosmological

constant. We treat this effect as a perturbation to linear order, and we estimate the Hubble

expansion rate to be

H(a) ≈ T (a)2

3Mp

√
π2

10
gE(af )

[
1− 1

2

h(a)

gE(af )
+

1

2

ρex κ(a)
π2

30 gE(af )T (a)4

]
. (3.17)

Writing T (a) using Eq. (D.12) and linearizing further with respect to small quantities, we have

H(a) ≈ H(U)(a)

[
1 +

ε1
2

(
a

af

)4

κ(a) +
2

3
ε2Θ(a− aPT ) +

1

6
ε31Θ(a− aPT ) +

1

6
ε32f (a)

]
(3.18)

where

H(U)(a) ≡
T 2
f

3Mp

(
a
af

)2

√
π2

10
gE(af ) (3.19)



12

and

ε1 ≡
ρex

π2

30 gE(af )T 4
f

= fractional energy of the exotic during freeze out (3.20a)

ε2 ≡
(
aPT
af

)3 ∆s
2π2

45 gS(af )T 3
f

= fractional entropy increase during PT (3.20b)

ε31 ≡
7
8NPT

gE(af )
= fractional decoupling degrees of freedom during PT (3.20c)

ε32 ≡
7
8N

gE(af )
= fractional decoupling degrees of freedom near freeze out (3.20d)

where ∆s, denoting the entropy density change at the time of the PT, is given by Eq. (D.8).

Although H(a) appears to vary discontinuously at a = aPT , its continuity is ensured by the con-

servation of energy. At the PT, the CC energy converts into radiation, which generates an entropy

but leaves the total energy density fixed (i.e., ε2 compensates for the discontinuity of the ε1 term)

because the volume remains approximately constant through the duration of the PT. The fact that

H is boosted by ε31 and ε32 is intuitive for the following reason. When a particle species becomes

non-relativistic, the effective equation of state becomes smaller, such that the energy dilutes less,

which in turn leads to a larger expansion rate for the same scale factor. The term ε31 accounts for

the non-adiabatic change in the number of degrees of freedom during the PT, while the term ε32

accounts for the adiabatic change in the number of degrees of freedom.

Next, consider the change in the cross section due to the PT. We parametrize this effect as

〈σv〉 = 〈σv〉(U)
(

1− ε4 Θ(a− aPT )
)

(3.21)

where

ε4 ≡ −
∆σ

〈σv〉(U)
(3.22)

and ∆σ is the change in 〈σv〉 due to the PT. Since the derivation of Eq. (3.3) assumes that the

dark matter is decoupled after Tf , we will assume that ε4 & 0 in order to prevent re-thermalization

due to an increase in the cross section. Hence, we can evaluate Eq. (3.3) by linearizing in the ε’s to

obtain

nX(t0) ≈
(
af
a0

)3
(ˆ ln a0/af

0

d ln a/af

H(U)(a)

〈σv〉(U)

(a/af )3

[
1 +

∑
n

θn(a)εn

])−1

(3.23)

where ∑
n

θn(a) εn =− ε1
2

(
a

af

)4

κ(a)−Θ(a− aPT )
2

3
ε2

− 1

6
[ε31 Θ(a− aPT ) + ε32 f (a)]− ε4 Θ(a− aPT ) (3.24)
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implicitly defines the θn. Note that the integral is dominated by contributions around ln a/af = 0.

On the other hand, the (af/a0)3 prefactor should be evaluated with all the gS changes accounted

for, not just the effects around lnx = 0.

Next, let’s consider the effects on the af/a0 factor determined by the freeze out condition itself.

The freeze out temperature Tf can be solved using [8]

〈σv〉neq
X (Tf ) = C

mX

Tf
H(Tf ) (3.25)

neq
X (T ) ≡ gX

(
mXT

2π

)3/2

exp
(
−mX

T

)
(3.26)

where C is an order unity number whose optimum value to reproduce numerical integration is

cross section dependent (e.g., C ≈ 2), gX counts the real dynamical degrees of freedom of the dark

matter, and mX is the dark matter mass. Evaluating H(Tf ) with Eq. (3.18) and assuming freeze

out occurs before the PT, Eq. (3.25) becomes

〈σv〉 gX
(
mXTf

2π

)3/2

exp

(
−mX

Tf

)
≈
CmX Tf

3Mp

√
π2

10
gE(af )

[
1 +

ε1
2

]
. (3.27)

Although not solvable in closed form, one can linearize in the perturbation again to obtain

Tf ≈
mX

lnA

[
1 +

ε1
2

(
1

lnA
+O

(
(lnA)−2

))]
(3.28)

where

A ≡
gX3
√

5Mp

√
mXTf 〈σv〉

2Cπ5/2
√
gE(af )

∼ exp[20] (3.29)

for electroweak mass scales. If we assume that there is only one period of entropy production

between freeze out and today, and that it occurs at the PT temperature TPT , we can use entropy

conservation in the form of Eq. (D.10) to write

a0

af
=

(
gS(af )

gS(a0)

)1/3 Tf
T0

[
1 +

1

3
ε2

]
(3.30)

where T0 is the temperature today. Combining this with Eq. (3.28), we find

a0

af
=

(
a0

af

∣∣∣∣(U)
)[

1 +
ε1
2

1

lnA
+

1

3
ε2

]
(3.31)

where (
a0

af

∣∣∣∣(U)
)
≡
(
gS(af )

gS(a0)

)1/3 mX

T0

1

lnA
. (3.32)
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Putting Eq. (3.31) into Eq. (3.23) results in

nX(t0) ≈

(
a0

af

∣∣∣∣(U)
)−3 [

1− 3ε1
2

1

lnA
− ε2

](
E1 +

ˆ ln(a0/af |(U))

0

d ln a/af

H(U)(a)

〈σv〉(U)

(a/af )3

[
1 +

∑
n

θn(a)εn

])−1

(3.33)

where the endpoint contribution to the integral has been written as

E1 ≡
ε1
2

1
lnA + ε2

3

H(U)(a0)

〈σv〉(U)

(a0/af |(U))3
. (3.34)

The term E1 is negligible because of the volume dilution factor in its denominator. Linearizing the

small factors gives

nX(t0) ≈ n
(U)
X (t0)

[
1− 3ε1

2

1

lnA
− ε2 − F−1

u

∑
n

θ̃nεn

]
(3.35)

where

Fu ≡
ˆ ln(a0/af |(U))

0

d ln a/af

H(U)(a)

〈σv〉(U)

(a/af )3
(3.36)

n
(U)
X (t0) ≡

(
a0

af

∣∣∣∣(U)
)−3

F−1
u = usual computation of relic abundance (3.37)

θ̃n ≡
ˆ ln(a0/af |(U))

0

d ln a/af

H(U)(a)

〈σv〉(U)

(a/af )3
θn(a) . (3.38)

In particular, if we assume an s-wave cross section (i.e., constant 〈σv〉), we can express θ̃1 explicitly

as

F−1
u θ̃1 ≈ −

1

2

[
δ +

(1 + 3δ)

nd − 3

(
1− ∆ρex

ρex

)]
(3.39)

where we have expanded in δ ≡ aPT /af − 1 & 0 which represents the delay between freeze out and

the PT. The first term in square brackets comes from integrating the CC energy density from af to

aPT , and the second term comes from integrating the decreasing CC energy density after the PT.

This equation shows that if ∆ρex

ρex
≈ 1 (large supercooling) there is a suppression of the ε1 effect by

a factor of order δ. Although we have linearized in δ along with εi, terms of the form εi δ are not

higher order. The expansion in εi reflects the fact that we treat the PT as a perturbation, whereas

the expansion in δ is performed merely to simplify the expressions. With the same assumptions,

we can evaluate the other F−1
u θ̃n terms:

F−1
u θ̃2 ≈ −

2

3
(1− δ) , F−1

u θ̃31 ≈ −
1

6
(1− δ) ,

F−1
u θ̃4 ≈ − (1− δ) , F−1

u θ̃32 ≈ −
1

6

ˆ ln(a0/af |(U))

0

d ln a/af
(a/af )2

f(a) . (3.40)
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Hence, for s-wave cross sections, the change in the relic abundance due to small changes made by

the PT can be expressed as

δnX(t0) = c1 ε1 + c2 ε2 + c31 ε31 + c32 ε32 + c4 ε4 (3.41)

where

c1 ≡
1

2

(
δ +

(1 + 3δ)

n− 3

(
1− ∆ρex

ρex

))
− 3

2

1

lnA
(3.42a)

c2 ≡ −
1

3
(1 + 2δ) (3.42b)

c31 ≡
1

6
(1− δ) (3.42c)

c32 ≡
1

6

ˆ ln(a0/af |(U))

0

d ln a/af
(a/af )2

f (a) (3.42d)

c4 ≡ 1− δ . (3.42e)

The key point of Eq. (3.41) is that despite the “background” represented by εn6=1, the “signal”

contained in ε1 can be “measured” and represents a prediction of the hypothesis of a tuned CC. It is

a tuned but striking statement, nonetheless. Since this term is central to the rest of our calculation,

we have reproduced the so called “CC effect” term here as

c1 ε1 =

(
ρex

π2

30 gE(af )T 4
PT

)
1

(1 + δ)4

{
1

2

[
(1 + δ)3 − 1

3
+

(1 + δ)3

nd − 3

(
1− ∆ρex

ρex

)]
− 3

2

1

lnA

}
(3.43)

without linearizing in δ. We also write the so called “entropy effect” as

c2 ε2 = −
δ + 1

3

δ + 1

∆s
2π2

45 gS(aPT )T 3
PT

. (3.44)

Note finally that we can obtain a smooth non-first order PT by taking the limit ∆ρex = ε2 = ε31 =

ε4 = 0.

One should remember that all of the analysis has assumed that the entropy released from the

PT (in the case of a first order PT) did not reheat the system to the point that the dark matter

rethermalized after freeze out, i.e., T+
PT . Tf . This provides a lower bound on δ for a given ∆ρex,

which can be expressed as

1

4
ε31 +

1

4

∆ρex

π2

30 gE(af ) (T−PT )4
. δ (3.45)

by using Eq. (D.3) and assuming that f(aPT ) is negligible.

Note also that the range and independence of {εi, δ} that is achievable by choosing a beyond

the SM Lagrangian is not easy to compute nor to generalize. For example, suppose we want to
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increase δ while keeping ε1 fixed. To increase δ, we increase aPT more than af . Since af is mostly

determined by the mass of the dark matter mX while aPT is determined in part by the competition

between the thermal mass support and scalar field mass at the field origin, we can keep af fixed

and increase aPT by decreasing the scalar field mass competing with the thermal support. This,

however, typically changes the fractional entropy increase ε2 during the PT. Furthermore, this will

change the index nd (defined in Eq. (3.14)) which depends partly on the flatness of the non-thermal

part of the scalar potential. Indeed, we see that if this nd can be engineered to be as close to 3

as possible (i.e. a flat potential with no thermal particles decoupling), then the ε1 signal can be

enhanced. One also sees that in the case of a first order PT, the prediction for the effect of the

cosmological constant (i.e., the ε1 piece) depends on ∆ρex and δ, both of which depend on knowing

exactly when the PT occurs. As described in Sec. 2, an accurate computation of this will require a

non-perturbative numerical treatment. Hence, the first order PT situation, which can give a larger

CC dependent signal, presents an interesting computational challenge of its own.

4. ILLUSTRATIVE MODELS

In this section, we present numerical calculations of δnX(t0) for various models. This section

represents one of the key features of the paper that distinguish it from [9], as discussed in the

introduction. For each model we specify the parameters of the scalar sector, which appear in the

thermal effective potential Veff(φc, T ), and the parameters of the dark matter sector, mX , gX , and

〈σv〉. We then calculate the relic abundance shift using the methods of Section 3. Most of the

numerical results have not been reported previously, and the model dependent analysis of a real

singlet extension of the standard model is entirely new.

4.1. Standard Model with Dark Matter

We calculate here the relic abundance deviation due to the SM electroweak PT. The qualitative

results were already given in [9]. The numerical details that we discuss in this section can be

summarized as δnX(t0) = O
(
10−3 − 10−2

)
with the CC contributing c1ε1 = O

(
10−4 − 10−3

)
.

With mh = 115 GeV, the largest CC effect occurs for mX ≈ 4.2 TeV where c1ε1 ≈ 9.5 × 10−4.

Our results are summarized in Figure 2. In this section, we first discuss this figure and then extend

the analytic estimate of Section 3, now in the context of a concrete model, to obtain Eq. (4.6),

which lets us motivate extensions of the SM that achieve larger δnX(t0). Some of the qualitative
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Figure 1: The energy density at the SM PT, ρ(T ) = ρcc(T )+ρR(T ), relative to the energy density when the

entire SM is relativistic, ρr(106.75) ≡ π2

30 106.75T 4. Just before the PT at T & 150 GeV, the energy density

grows relative to ρr due to the temperature independent CC contribution, ρcc(T > TPT ) ≈ const. After the

PT, the top, bottom, Higgs, and massive gauge boson adiabatically decouple causing ρ/ρr to drop below

one. This adiabatic decoupling is the dominant feature of the SM PT that is relevant for freeze out.

discussion of [9] is reproduced for completeness.

In Appendix F we compute the SM thermal effective potential Veff(hc, T ) through one-loop

order6, where h(x) =
√

2
∣∣H†H∣∣1/2 is the radial component of the Higgs field and hc = 〈h(x)〉. It

is important to point out that the renormalization conditions, given by Eq. (F.5), are chosen such

that Veff(hc, 0) has a minimum at v = 246 GeV where the curvature is m2
h and, most importantly

the CC is tuned by requiring Veff(v, 0) = 0.

Before discussing the numerical results, it is useful to recall from Section 3 that for a non-

first order PT, freeze out is only affected by modifications to the relations H(T ) ∝
√
ρ(T ) ∝ T 2

and T 3 ∝ g−1
S a−3 ∼ a−3. These modifications arise when the energy partitioning deviates from

radiation domination and the number of relativistic degrees of freedom deviates from a con-

stant value. These deviations can be visualized in Figure 1, where we plot ρ(T ) normalized by

ρr(106.75) ≡ (π2/30)(106.75)T 4, the energy density of the SM as if all particles were relativistic.

We have taken mh = 115 GeV which gives a PT at TPT ≈ 148 GeV. As the temperature decreases

toward TPT from above, ρ/ρr grows to approximately 1.006 due to the presence of the additional

6 It is well known that the one-loop approximation breaks down at the temperature of the SM electroweak PT
[50], and that accurate results require lattice calculations [51–53]. However, since the CC contribution already
represents perturbative correction to dark matter freeze out, we will neglect higher-order corrections to the PT
physics and simply apply the mean field approximation described in Section 2.
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Figure 2: Fractional deviation of the relic abundance and due to the SM electroweak PT plotted against

mh (left) and mX (right). The numerical calculation is represented by the solid curve, the analytic estimate

Eq. (3.41) by the dashed curve, the CC effect (c1ε1 term) by the dot-dashed curve, and the adiabatic

decoupling effect (c32ε32 term) by the dotted curve. The right axis shows the values of the c1ε1 curve only,

and the left axis shows the values of the three other curves.

CC energy density (i.e., λv4/(106.75T 4
PT ) ≈ 10−3). Below TPT the massive species decouple, the

plasma loses about twenty relativistic degrees of freedom, and ρ/ρr decreases to approximately 0.8.

This figure illustrates that the adiabatic decoupling has an effect on ρ which is two orders of mag-

nitude larger than that from the CC. Therefore, we expect that the Standard Model electroweak

effective CC will have a subdominant effect on the relic abundance as well.

The fractional shift δnX(t0) is calculated using the perturbative, analytic expressions in Section

3 as well as by solving the Boltzmann equation numerically. In the left panel of Figure 2 we have

plotted δnX(t0) by varying mh and fixing mX = 6 TeV, gX = 2, and 〈σv〉 = 2.33× 10−39 cm2. As

seen in the figure, the PT causes an O
(
10−3 − 10−2

)
fractional increase in the relic abundance. We

have chosen the DM mass to be 6 TeV such that freeze out and the PT coincide at T ≈ 303 GeV

for mh = 300 GeV. For smaller mh, the PT is delayed with respect to freezeout. The analytic

estimate, given by Eq. (3.41), only receives contributions from the CC effect (c1ε1 term) and the

adiabatic decoupling effect (c32ε32 term), because the PT is not first order. As we anticipated

in the discussion of the preceeding paragraph, the ε32 term dominates. The analytic formula

consistently underestimates the numerical calculation by 2 − 3%, and moreover, in the large mh

limit where δ ≈ 0, the deviation grows to approximately 4.5%. Both of these features can be

traced back to approximations we have made in the analytic estimate. The first is associated with

the approximation Eq. (B.5), which assumes the number density per comoving volume decreases

significantly due to residual annihilations and introduces an O (Tf/mX) . 5% error at all mh. The
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second is associated with neglecting the equlilibrium term neq
X in Eq. (3.2), which is not negligible

at the start of the residual annihilation era. The scaling with mh also has a simple, intuitive

explanation. One can understand why δnX(t0) is small at small mh, because in this limit the

PT occurs too late and becomes decoupled from freeze out. Considering the opposite limit, one

may wonder if δnX(t0) continues to increase for mh & 300 GeV where δ < 0. For δ < 0 the PT

occurs before freeze out, as in the usual cosmology, and one would naively expect δnX(t0) = 0.

Nevertheless, δnX(t0) does continue to grow because of the way we have defined n(U)
X . To calculate

the usual relic abundance n(U)
X we assume that there are 106.75 relativistic species at freeze out.

If the PT occurs much earlier, the number of relativistic species at freeze out will be significantly

less than 106.75 and δnX(t0) will be non-zero. The CC contribution grows monotonically with

decreasing mh, since in this limit the PT temperature decreases and c1ε1 ∼ ρex/T
4
PT .

On the right panel of Figure 2 we plot the relic abundance shift by fixing mh = 115 GeV and

varying mX . At large mX , freeze out occurs well before the PT, the two events decouple, and the

relic abundance shift is small. At small mX . 2.8 TeV, freeze out occurs after the PT, and the

analytic estimate fails. The CC effect c1ε1 has a maximum of approximately 10−3 at δmax ≈ 0.5.

For δ > δmax the factor ε1, given by Eq. (3.20a), is small because Tf in the denominator is large.

For δ < δmax the factor c1, given by Eq. (3.42a), is small because the CC is only present over a

short time during WIMP residual annihilations. The presence of this maximum suggests that c1ε1

will typically be more sensitive to variations in the parameters of the scalar sector (e.g., mh) than

in variations of the DM sector (e.g., mX). With this in mind, we will focus the remainder of our

discussion on determining the conditions that a scalar potential must satisfy to maximize c1ε1.

We will now extend the estimates of Section 3 in order to understand Figure 2 through a simple

analytic approximation. We focus on the CC contribution to δnX(t0), given by Eq. (3.43), which is

δnX(t0) 3 c1ε1 ∼
1

10

ρex

gE T 4
PT

(4.1)

up to multiplication by an O (1) function of δ. The factor of gE ≈ 106.75 represents the SM

relativistic degrees of freedom before the PT. If we assume that before the PT, the SM particles

are light with respect to the temperature, then we can approximate Veff using the so-called high-

temperature approximation

Veff(hc, T ) ≈
λeff

4

(
h2
c − v2

)2
+ c T 2h2

c . (4.2)

Here we have defined λeff ≡ 4
v4 [Veff(0, 0)− Veff(v, 0)] to be the one-loop effective self-coupling and

2 c T 2 is the thermal mass acquired by Higgs particles passing through the plasma. In the SM and
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subject to our renormalization scheme, these dimensionless numbers are λeff ≈ λSM and c ≈ cSM

where

cSM =
1

24v2

(
6m2

t + 6m2
b + 6m2

w + 3m2
z +

3

2
m2
h

)
≈ 0.18 (4.3a)

λSM =
m2
h

2v2
+

1

128π2v4

(
48m4

t + 48m4
b − 24m4

w − 12m4
z − (15 + log 4)m4

h

)
≈ 0.12 (4.3b)

for mh ≈ 115 GeV. The PT occurs at a temperature TPT where ∂2
hc
Veff(0, TPT ) = 0. Solving for

this temperature one obtains

c T 2
PT =

λeff
2

v2 . (4.4)

Before the PT, the CC energy density is

ρex = Veff(0, 0) =
λeff

4
v4 (4.5)

and we can estimate the deviation in the relic abundance using Eq. (4.1) to be

c1ε1 ∼
1

10

1

gE

c2

λeff
. (4.6)

For natural couplings one expects c2/λeff ∼ O (1) (e.g., c2
SM/λSM ≈ 0.28) and finds c1ε1 ∼

1/(10gE) ∼ 10−3. Recalling also that λeff ∼ m2
h, one sees that this estimate agrees well with both

the magnitude and scaling shown in Figure 2. Note that in the λeff → 0 limit, we find that both ρex

and TPT approach zero, but the ratio ρex/T
4
PT becomes large. This simple approximation suggests

that the region of parameter space that maximizes the CC contribution to δnX(t0) will have low

temperature PTs. This is evident in Figure 2 because the CC effect grows at low mh where the PT

temperature is low. Hence we will next consider a model in which a scalar singlet coupled to the

Higgs is introduced to lower the PT temperature.

4.2. SM Singet Extension with Z2

In this section, we briefly discuss an extension of the Standard Model in which the presence of

an additional scalar field modifies the electroweak PT dynamics. However, we show that the dark

matter relic abundance is not significantly enhanced, and we argue that we should consider models

with first order PTs. Consider an extension of the SM in which a real, singlet, scalar field s(x)

is coupled to the Higgs h(x) through interactions which respect the Z2 symmetry s → −s. The

renormalized potential for this theory can be written as

U({h, s}) =
m2
h

8v2

(
h2 − v2

)2
+
b4
4
s4 +

1

2
m2
ss

2 +
a2

2
s2
(
h2 − v2

)
(4.7)
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such that ∂hU({v, 0}) = 0, ∂2
hU({v, 0}) = m2

h and ∂2
sU({v, 0}) = m2

s. We require

m2
s − a2 v

2 > 0 and 2a2 + b4 +
m2
h

2v2
> 0 (4.8)

to ensure 〈s〉 = 0. This model, known as the Z2xSM, has been previously studied in order to

determine the viability of s as a dark matter candidate [54–60]. We will not restrict ourselves to

this scenario, but instead treat the dark matter as a separate sector. The role of s is simply to

modify the PT dynamics [61–65]7.

Since this model possesses a greater parametric freedom than the SM, we can attempt to verify

the relationship Eq. (4.6), derived in the previous section, which relates c1ε1 ∼ c2/λeff . This is

accomplished by first mapping the parameters of the Z2xSM to c and λeff , and second by performing

a parameter scan while calculating c1ε1. We obtain c and λeff by calculating the thermal effective

potential as described in the previous section (see also Appendix F). If we assume that the quanta

of s(x) are light with respect to the temperature, we can then extract c and λeff by matching the

effective potential to Eq. (4.2). Doing so yields the expressions

c = cSM +
a2

24
(4.9)

λeff = λSM −
a2

2

32π2
ψ

(
a2v

2

m2
S

)
(4.10)

ψ(x) ≡ 3− 2

x
− 2

(
1− 2

x
+

1

x2

)
log [1− x] (4.11)

where the terms containing a2 arise from 1-loop diagrams with an s-particle in the loop, and the

function ψ varies from ψ(0) = 0 to ψ(1) = 1. As a result of the minus sign in Eq. (4.10), there

is an upper bound a2 . 5 given by the constraint λeff > 0. Now we can see the impact of the

singlet field on the PT. For a2 > 0, the parameter c is slightly larger and λeff is slightly smaller

than in the SM. Recall that the PT temperature, given by Eq. (4.4), scales like T 2
PT ∼ λeff/c.

Hence, the singlet field lowers the PT temperature and makes the CC energy density relatively

more significant, which causes the relic abundance shift to be greater.

To verify these analytic arguments, we calculate the PT temperature and c1ε1 numerically over a

region of the theory space. We allowm2
h and a2 to vary in the rangesm2

h ∈
[
(50 GeV)2, (300 GeV)2

]
and a2 ∈ [−0.1, 4.0], and we fix b4 = 0.25 and m2

s = (500 GeV)2. The range for mh is chosen to

prevent the Higgs from becoming unacceptably light8, while the range for a2 is chosen to satisfy

7 See also [66–69] for PT studies of the similar singlet Majoron model and [70–72] for the complex singlet.
8 Mixing with the singlet does not significantly reduce the LEP Higgs search bound [55]. Moreover, for small mh the
electroweak breaking minimum may become metastable [54, 64], and the PT becomes first order [73]. Nevertheless,
we have allowed mh to be as small as 50 GeV to illustrate the parametric dependence of the CC effect.
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Figure 3: The CC contribution to δnX(t0), given by the c1ε1 term of Eq. (3.41), plotted over the c2/λeff–mh

plane for three values of mX . The black line represents the SM (a2 = 0).

Eq. (4.8) and to avoid the unitarity bound. We map m2
h and a2 to c and λeff using Eqs. (4.9)

and (4.10). In Figure 3, we have plotted the contribution to δnX(t0) from the CC effect (c1ε1)

over the c2/λeff–mh plane. This figure shows that the CC effect grows with increasing c2/λeff and

decreasing mh, as we anticipated in Eq. (4.6). The largest value of c1ε1 is approximately 1.3×10−3,

which is only about 40% larger than in the SM. The insignificant enhancement can be understood

by observing that although a2 > 0 tends to decrease c, given by Eq. (4.9), its contribution is

suppressed by a factor of 24. Since cSM ≈ 0.18 we run into the unitarity bound on a2 before it

contributes significantly to c. If we were to add N light singlet fields instead of one, the contribution

to c would be Na2/24, which can be order one even for small a2. We have not take this approach

here because the N additional relativistic degrees of freedom would have a larger effect on the

relic abundance by increasing the energy density of radiation than through the CC. We have also

plotted c1ε1 for three different values of the WIMP mass from 4 to 8 TeV. This narrow range of

viable parameters illustrates the tuning that is required to ensure that the PT and freeze out occur

at the same time. If the WIMP mass is too large, freeze out occurs too long before the PT when

the CC energy density was subdominant to the energy density of the plasma. As the WIMP mass

is lowered, the delay between freeze out and the PT decreases and c1ε1 grows. If the WIMP mass

is too small, freeze out occurs after the PT when the CC energy density has been converted into

radiation. This is the case in the mh & 200 region of the mX = 4 TeV plot.

The examples of the SM and the Z2xSM demonstrate that it is challenging to obtain c1ε1 larger

than O
(
10−3

)
. Our discussion at the end of Section 4.1 and simple dimensional analysis illustrate

why this is the case. In that calculation we obtained Eq. (4.6) which can be written schematically

as c1ε1 ∼ ρex/T
4
PT ∼ c2/λeff . Note that the mass scale v, which controls both ρex and TPT , cancels
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out in the ratio ρex/T
4
PT . In light of Eq. (4.6) we propose that the CC effect can be enhanced by

working in a model that has multiple mass scales if there exists a hierarchy between them. We will

explore different applications in the remainder of this section.

4.3. Generic Single Scalar Model

In this section we calculate the CC contribution to the relic abundance shift in a generic single

scalar model. Although extensions of the Standard Model typically contain multiple scalar degrees

of freedom related by symmetries, the thermal dynamics (supercooling and reheating) of a symmetry

breaking PT can often be modeled by a single scalar degree of freedom which does not display the

symmetries of the full theory [9, 74]. With this motivation in mind, we consider the theory of a

real scalar field ϕ(x) coupled to N Dirac fields ψi(x). The scalar field will experience a first order

PT during which dark matter freezes out, and the light fermions will compose the hot thermal

bath. Using this construction, we will be able to calculate the CC effect, which is related to the

non-thermal energy density and the amount of supercooling, but we cannot estimate the entropy

and decoupling effects since these depends on how ϕ is coupled to the full theory. Therefore, in this

section we assume no decoupling occurs near the time of the PT and that the number of relativistic

species is fixed to gE/S ≈ 106.75, the relativistic SM background. Let the action be given by

S[ϕ] =

ˆ
d4x

{
1

2
(∂ϕ)2 − U(ϕ)−

N∑
i=1

ψ̄i
(
i/∂ −mi − hiϕ

)
ψi + Lct

}
(4.12)

where

U(ϕ) = ρex +
1

2
M2ϕ2 − Eϕ3 +

λ

4
ϕ4 (4.13)

is the renormalized potential and Lct is the counterterm Lagrangian. Note that we have eliminated

the tadpole term in U(ϕ) by defining the origin in field space appropriately, but there is still a

counterterm for the tadpole in Lct. As discussed in Section 4.2, we expect that there will be a

greater impact on the dark matter relic abundance if freeze out occurs during a first order PT with

large supercooling. Hence, we would like to understand what region of parameter space yields a

PT of this kind. In particular, we expect that large supercooling can be obtained if the theory S[ϕ]

possesses two vacua, which will correspond to the low- and high-temperature phases, and that the

vacua are separated by a barrier [65, 85, 86].

We can determine the vacuum structure by identifying the minima of the effective potential,

which is calculated in Appendix F. Provided that the non-thermal radiative corrections are negli-

gible, the effective potential can be approximated as Veff(ϕc, T = 0) ≈ U(ϕc). It is convenient to
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Figure 4: An illustration of the α0 dependance of the potential given by Eq. (4.13). The curves represent

α0 = −2 (solid), α0 = 0 (dashed), α0 = 0.5 (dotted), α0 = 1 (dot-dashed), and α0 = 9/8 (long dashed).

eliminate M2 for the dimensionless quantity α0 ≡ λM2/2E2 while assuming λE 6= 0. We now see

that the parameter α0 controls the shape of the potential U(ϕ): for α0 = 1, the potential has two

degenerate minima at ϕc = 0 and ϕc = v|α0=1 where

v =
3E
2λ

(
1 +

√
1− 8

9
α0

)
; (4.14)

for α0 > 1, ϕc = 0 is the global minimum; for 0 < α0 < 1, ϕc = v is the global minimum; and

for α0 < 0, ϕc = 0 becomes a maximum (see also Figure 4). Therefore, provided that we take

0 . α0 . 1, the theory possesses a metastable vacuum in which ϕc ≈ 0 and a stable vacuum in

which ϕc ≈ v. In the stable vacuum, we impose the tuning condition Veff(v, 0) = 0 to solve for

ρex ≈
E4

8λ3

[
27− 36α0 + 8α2

0 + 27

(
1− 8

9
α0

)3/2
]

+O (~) , (4.15)

which represents the CC energy density prior to the PT. Finally, the barrier separating the two

vacua has a “height”

Vbarrier = U(barrier)− U(0) ≈ 4E4α3
0

27λ3

[
1 +O (α0)

]
(4.16)

relative to the metastable vacuum. Due to the factor of α3
0, the barrier vanishes rapidly as α0

approaches zero. This is illustrated by the α0 = 0.5 curve of Figure 4 in which the barrier is already

almost imperceptible to the eye.

Having established that this theory admits two vacua, we will study the PT using the thermal

effective potential. Although the numerical calculations use the full effective potential, we can gain
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some intuition by making the high temperature approximation. We assume that the ψi-particles

are light with respect to the temperature of the thermal bath, m2
i � T 2, and that the ϕ-particles

are heavy. In this limit, then the one-loop thermal effective potential may be approximated by the

high temperature expansion

Veff(ϕc, T ) ≈ U(ϕc) + c T 2ϕ2
c +O

(
m2
i /T

2
)

+O (~) (4.17)

where c ≈
∑N

i=1 h
2
i /12 is related to the couplings between ϕ and ψi. Just as we introduced α0 to

reparametrize Veff(ϕc, 0), we can now introduce

α(T ) = α0

(
1 +

λc

E2α0
T 2

)
≥ α0 (4.18)

to parameterize Veff(ϕc, T ). This definition is particularly convenient, because now Figure 4 also

illustrates the temperature dependence of Veff(ϕc, T ) (up to ϕc-independent terms) if one replaces α0

with α(T ). We obtain the expectation values of ϕ in the “symmetric” and “broken” phases, v(s)(T )

and v(b)(T ), by solving (∂/∂ϕc)Veff(ϕc, T ) = 0 subject to the boundary conditions v(b)(0) = v

and v(s)(0) = 0. We use the terms “symmetric” and “broken,” eventhough S[ϕ] does not display a

symmetry in order to connect with the notation of Section 2.

Provided that this model experiences a first order PT, the CC’s effect on the relic abundance will

depend sensitively on the amount of supercooling at the PT [63]. This is seen by the factor of (Tf )4 ≈

(T−PT )4 in Eq. (3.20a). Therefore, we will begin by investigating the parametric dependence of the

amount of supercooling, and we will see that it has an interesting dependance on the parameter α0.

The supercooling stage begins when the temperature drops below

Tc ≈ E
√

1− α0

λ c
, (4.19)

defined by Eq. (2.2), or equivalently when α(Tc) = 1. During supercooling, the universe remains

in the metastable, symmetric phase until bubbles of the broken phase begin to nucleate. Bubble

nucleation is a non-perturbative process [75], and it occurs at a rate per unit volume which carries

the standard exponential suppression Γ ∼ T 4exp
[
−S(3)/T

]
, where S(3)(T ) is the action of the O(3)

symmetric bounce [76–78]. Provided that Veff(ϕc, T ) can be expressed in the form of Eq. (4.17),

then S(3) is well approximated by the empirical formula [79]

S(3)

T
≈ 13.7

E
T

(α
λ

)3/2
f(α) (4.20)

f(α) ≡ 1 +
α

4

(
1 +

2.4

1− α
+

0.26

(1− α)2

)
(4.21)
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with α = α(T ). Bubbles form rapidly once the bubble nucleation rate averaged over a Hubble

volume ΓH−3 is comparable to the Hubble expansion rate H ∼ T 2/Mp. For an electroweak scale

PT, this equality occurs when S(3)/T drops below approximately 140 [80, 81]. Therefore, we can

determine the amount of supercooling by solving S(3)/T ≈ 140 for T = T−PT and comparing this

temperature with Tc.

Considerations of the equation S(3)/T ≈ 140 demonstrate that the nature of the PT is strongly

dependent upon the vacuum structure of the theory, as parametrized by α0. We will discuss the

two cases α0 > 0 and α0 < 0 separately. For α0 > 0, the vacuum with ϕc = 0 remains metastable

as T → 0. This implies that T−PT can be arbitrarily low, and in this limit of large supercooling

the CC effect may be arbitrarily large. However, in this case the barrier in Veff(ϕc, T ) persists as

T → 0, and it is possible that the PT does not occur at any temperature, but instead that the

universe becomes trapped in the metastable vacuum. This follows from the observation that for

α0 > 0, S(3)/T has a minimum at finite T : at low temperatures S(3)/T grows due to the explicit

factor of T in the denominator, and at high temperatures f(α) diverges as T approaches Tc and

α → 1. For α0 . 1 the inequality S(3)/T . 140 is not satisfied at any temperature, and the PT

does not occur9. Therefore, if we require that the PT must occur via thermal bubble nucleation,

we obtain an upper bound on α0. On the other hand, for the case α0 < 0, the PT necessarily

occurs at a temperature T−PT > 0, since the symmetric phase becomes perturbatively unstable at

low temperatures. This latter case has the drawback that supercooling cannot last an arbitrarily

long time.

Assuming that the PT does occur, we can quantify the amount of supercooling using

δSC = 1−
T−PT
Tc

, (4.22)

which takes values between 0 and 1. Parametrizing the temperature dependance with δSC , we can

rewrite Eq. (4.20) as

S(3)

T

∣∣∣∣∣
T−
PT

≈ 13.7

(
λ√
c

)−1 α3/2

√
1− α0

f(α)

1− δSC
(4.23)

α = α0 + (1− α0)(1− δSC)2 , (4.24)

which is now only a function of α0, λ/
√
c, and δSC . Of course, this expression is approximate, since

we assumed Veff took the form of Eq. (4.17), but it suggests that the amount of supercooling will

9 At least, the PT does not occur as a thermal process, although it may still occur as a quantum tunneling process
[77]. However, since quantum tunneling typically proceeds on a longer time scale, the universe could enter an
inflationary phase, which leads to a cosmological history that deviates significantly from the perturbations we
consider in Section 3.
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Figure 5: The amount by which the PT temperature drops below the critical temperature, quantified

by δSC , is plotted against the parameter α0 which controls the height of the barrier. The curves represent

λ/
√
c = 0.04 (solid), 0.20 (dotted), 1.00 (dashed), and 5.00 (dot-dashed). The square indicates the especially

tuned parameter set given in the text.

depend most sensitively on α0 and λ/
√
c. Now using the full thermal effective potential, we impose

S(3)/T
∣∣
T−
PT

= 140 and solve for δSC , which we have plotted in Figure 5 for various parameter sets:

E = 5 GeV λ = {0.004, 0.02, 0.10, 0.50}

N = 1 m = 10 GeV h = 0.346 c ≈ 0.01 . (4.25)

The supercooling grows with increasing α0 and decreasing λ/
√
c as the barrier height and bounce

action are made larger. The amount of supercooling is typically δSC = O (0.5) which implies T−PT =

O (Tc/2). Above a finite value of α0 (indicated by a dot) the barrier becomes insurmountably large,

and the universe becomes trapped in the metastable vaccum. The largest amount of supercooling is

achieved for λ/
√
c� 1 and 0 < α0 � 1. In this parameter regime the CC is large (see Eq. (4.15)),

and the metastable vacuum is separated from the true vacuum by small barrier (see Eq. (4.16)).

Having come to understand the parametric dependance of the amount of supercooling as ϕ

experiences a first order PT, we turn our attention back to calculating the impact of such a PT on

dark matter freeze out. Using Eq. (3.43) we calculate the effect of the CC on the relic abundance

shift and present the results in Figure 6. We have chosen the same parameters as indicated in

Eq. (4.25) and have taken

mX = {0.3, 6.0, 17} TeV gX = 2 〈σv〉 = 2.33× 10−39cm−2 (4.26)
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Figure 6: The CC effect on the relic abundance c1ε1 plotted against α0 for mX = 17 TeV (solid), 6 TeV

(dashed), and 0.3 TeV (dotted), and for four values of λ/
√
c as indicated by the shape used to denote the

endpoint. For the contours which are absent, freeze out occurs after the PT when the CC is not EW-scale.

as well. The figure illustrates that is possible to achieve c1ε1 = O (0.01) in the tuned parametric

regime where λ/
√
c is small and α0 approaches its maximally allowed value. Some of the curves

are absent for the smaller WIMP masses. This occurs because as mX is lowered, the temperature

of freeze out decreases as well. In the case that λ/
√
c is small and the PT temperature is high (see

Eq. (4.19)), freeze out will occur after the PT for small mX . This statement about the relative

times of freeze out and the PT also explains why c1ε1 is insensitive to α0 for certain parameter sets

(e.g., λ/
√
c = 1, mX = 17 TeV) and very sensitive for others (e.g., λ/

√
c = 5, mX = 0.3 TeV). In

the first case, freeze out occurs long before the PT while in the latter case, freeze out occurs just

before and during the PT and there is a large impact on the relic abundance.

To conclude this section, we present a particular tuned parameter set which yields c1ε1 =

O (1). Suppose that we have only one fermion ψ and the parameters of S[ϕ] are given

by
{
λ, h, E/ GeV,M2/ GeV2,m/ GeV

}
=

{
5.4× 10−4, 0.1, 0.27, (1.89)2, 10

}
which leads to

{v/ GeV, α0, c, λ/
√
c} =

{
1497, 0.007, 8.3× 10−4, 0.018

}
and PT temperatures

{
Tc, T

−
PT , δSC

}
=

{374 GeV, 16 GeV, 0.96} This parameter set is represented on Figure 5 by a square marker. In

the dark matter sector we take {mX , gX , 〈σv〉} =
{

600 GeV, 2, 2.33× 10−39cm−2
}

such that

Tf ≈ 34 GeV and δ ≈ 1.12. Using these values we can estimate the CC effect as c1ε1 ≈ 6.1.

Note that the potential obtained with these parameters has a very shallow metastable vacuum at

ϕc ≈ 0, separated from the global vacuum at ϕc ≈ v by a very small barrier.
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4.4. Singlet Extension with First Order PT

In this section, we consider a generalization of the SM extension studied in Section 4.2, in which

we do not impose a Z2 symmetry on the singlet field s(x). This leads to model known as the xSM

[54, 55]. The xSM admits a first order electroweak PT [62, 65, 74, 82–87], and we seek to compute

the effect on the relic abundance due to the effective CC at the PT. As discussed in Section 4.3, the

CC effect grows with the duration of supercooling. With this in mind, we will focus on a region of

parameter space in which we expect to have first order PTs with large supercooling. Supercooling

is an example of the hierarchy of mass scales which we argued in Section 4.2 helps to obtain a larger

CC effect.

We generalize the Z2xSM potential Eq. (4.7) by relaxing the Z2 symmetry. This allows us

to write down the three additional operators sh2, s3, and s, but we eliminate the tadpole by an

appropriate shift in the field space. We are left with the xSM renormalized potential

U({h, s}) =
m2
h

8v2

(
h2 − v2

)2
+
b4
4
s4 +

1

2
m2
ss

2 +
b3
3
s3 +

1

2
s
(
h2 − v2

)
(a1 + a2s) . (4.27)

The thermal effective potential Veff is calculated in Appendix F. With this parametrization,

Veff({hc, sc} , T = 0) has a minimum at {hc, sc} = {v, 0} where Veff({v, 0} , T = 0) = 0 and the

curvatures in the h and s directions are m2
h and m2

s respectively. The Higgs vacuum expectation

value is fixed by electroweak constraints, but the six real numbers
{
m2
h,m

2
s, b4, b3, a1, a2

}
are free

parameters.

As in the previous section, we compute the bounce action S(3) in order to estimate the PT

temperature T−PT by solving S(3)/T ≈ 140. This calculation is made more challenging by the

presence of the additional field direction. To obtain S(3) we make the approximation that the PT

occurs along the trajectory s̄(hc) satisfying

dU({hc, sc} , 0)

ds

∣∣∣∣
s̄c

= 0 and s̄c(v) = 0 , (4.28)

which reduces the problem back to solving for the bounce in one dimension. In the region of

parameter space on which we are focused, this approximation gives T−PT to within a few percent

(see Appendix G for details). Note that the empirical formula Eq. (4.20) cannot be applied here,

because the effective potential is not well approximated by the form Eq. (4.17).

We have performed a parameter space scan and searched for a region with large corrections

to the relic abundance from the CC. In the scan we fix the parameters b3 = −20 GeV, b4 =

0.2, a1 = −25 GeV, and a2 = 0.2, and we vary m2
h ∈

[
(65 GeV)2, (170 GeV)2

]
and m2

S ∈
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Figure 7: The fractional deviation in the relic abundance of a 2 TeV WIMP due to the CC at the xSM

electroweak PT. The parameter M2 controls the curvature of the zero temperature effective potential along

the PT trajectory. For M2 . 0 large supercooling enhances the CC’s effect. For M2 & 0 the PT does

not occur, and for M2 . −2500 GeV2 the PT occurs before freeze out leading to a suppression of the relic

abundance shift.

[
(40 GeV)2, (140 GeV)2

]
. In order to connect with the intuition garnered from the single field

model of Section 4.3, we have mapped the xSM parameter space to a single parameter M2. This is

accomplished by restricting to the trajectory given by Eq. (4.28) and defining

M2 ≡ d

dx2
Veff ({hc(x), s̄c(hc(x))} , T = 0)

∣∣∣∣
x=0

(4.29)

where x parametrizes the position along the curve s̄c(h). The parameterM2 controls the stability of

the electroweak preserving vacuum: if M2 > 0 the symmetric phase remains metastable as T → 0,

whereas ifM2 < 0 the symmetric phase becomes perturbatively unstable at some finite temperature

T0 > 0. In this way, the potential depends on the parameter M2 in the same way as the parameter

α0 from Section 4.3. We cannot map the xSM parameter space to α0 directly because the effective

potential along the trajectory Eq. (4.28) cannot be expressed in the form of Eq. (4.17).

In Figure 7, we have plotted c1ε1, given by Eq. (3.43), by projecting onto the M2 axis and

choosing mX = 2 TeV. For M2 . 0 the CC has an O (1) impact on the relic abundance. In this

region, the supercooling is maximal10 and T−PT & T0 = O (few GeV). For smaller values of M2, the

CC effect rapidly decreases and drops below 1% for M2 . 500 GeV2. Therefore, in order for the

10 A recent phase transition analysis of this model [65] also concluded that the order parameter is enhanced in the
limit in which the potential possesses a flat direction.
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Figure 8: This figure shows a subset of Figure 7 as well as the CC effect for a 500 GeV WIMP represented

by squares. As the WIMP mass is reduced, freeze out occurs at a lower temperature. This increases c1ε1 for

M2 . 0 where the PT temperature is low, but excludes points M2 . −100 GeV2 where freeze out occurs

after the PT.

CC to have a significant impact on the relic abundance, the parameters of the scalar sector must

be tuned into a narrow band where supercooling is large. In Figure 8, we have allowed the WIMP

mass to decrease to 500 GeV. This change lowers the freeze out temperature, reduces the delay δ

between freeze out and the PT, and therefore increases the CC effect. However, this increase is

small compared with the amount by which c1ε1 varies with M2 in the M2 . 0 region. For smaller

values of M2, the PT temperature is higher and for the 500 GeV WIMP, freeze out occurs after

the PT causing the CC effect to be suppressed. These calculations lead us to the conclusion that

the optimal region of parameter space is one in which the symmetric phase becomes perturbatively

unstable at a low temperature and the effective potential is concave at zero temperature. We were

unable to find any points with M2 > 0 in which the PT completes.

The following is a benchmark parameter point:

{a1, b3,mh,ms,mX} = {−25,−20, 128, 91.1, 2000}GeV, {a2, b4} = {0.2, 0.2} ,

M2 = −47.7 GeV2
{
Tf , Tc, T

+
PT , T

−
PT , T0

}
= {107, 70.7, 30.0, 13.7, 12.7} GeV,

c1ε1 = 0.390, ρex = (69.7 GeV)4 . (4.30)

The scalar masses are given by the eigenvalues of Eq. (F.16) which are

MH = 141 GeV , {0.78, 0.22} and MS = 70.7 GeV , {0.22, 0.78} (4.31)

with the respective squared eigenvectors indicated to the right.
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5. CONCLUSION

We have considered a way to probe the hypothesis that the present-day, minute CC energy

density is the result of a tuning between UV contributions of unspecified origin and IR contributions

that arise from cosmological PTs. Prior to the electroweak scale PT, the UV contribution would

have been partially uncancelled leaving an O
(
M4
W

)
energy density. It is possible to probe this

energy density with the physics of dark matter freeze out provided that the dark matter mass is

greater than a few hundred GeV. The dark matter relic abundance is increased due to the effective

CC’s contribution to the Hubble expansion rate during freeze out.

The notion of how an effective vacuum energy (which is Lorentz invariant in the flat space limit)

can depend on temperature (which manifestly breaks Lorentz invariance) has been clarified. The

temperature is an approximation to the mixed vacua, inhomogeneous states whose occupation is

very probable near the time of the PT. This leads to a spatially averaged equation of state that

is expressed in terms of an effective vacuum energy density that is somewhere between the false

and true vacuum energy densities. The true inhomogeneous field configurations may also lead to

additional dark matter freeze out effects that have not been investigated in this paper. This would

be an interesting avenue for future investigations.

To provide a generic prediction associated with the established physics and to provide the com-

putational details missing in [9], we have analyzed the Standard Model with a 115 GeV Higgs and

a single WIMP dark matter degree of freedom, assuming that the WIMP interaction effects on the

dynamics of the PT is negligible. We have found that the CC causes an O
(
10−3

)
fractional increase

in the relic abundance of a 4 TeV WIMPs. This is typical of non-first order PTs.

We have also investigated minimal singlet extensions of the SM and searched for parametric

regimes in which the CC effect on the relic abundance is enhanced. We find that a low temperature,

first order PT with large supercooling is the optimal scenario for maximizing the CC effect. In this

limit, the effective CC energy density’s contribution to the Hubble expansion rate can be comparable

to the radiation energy density, and the CC effect can become order one. In the context of a generic

single field model, we find that reaching this limit requires a tuning of the scalar sector parameters

and the WIMP mass. Without appropriate tuning, either 1) the PT will not occur at all by thermal

bubble nucleation, 2) the PT will occur before freeze out (when the dark matter is still in equilibrium

and the CC effect is suppressed), or 3) the CC effect will not be large.

As a specific example, we have considered the xSM, an extension of the SM that adds a real

scalar singlet. In that model, we find that the CC may increase the relic abundance by as much as a
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factor of order few. To maximize the CC effect, the scalar parameters must be tuned into a narrow

band where fluctuations around the symmetric “vacuum” are slightly tachyonic, which allow for a

long period of supercooling. The magnitude of the CC effect is relatively insensitive to the WIMP

mass provided that the latter is sufficiently large such that freeze out begins before the PT occurs.

The tests of CC fine tuning hypothesis are notoriously rare. In the context of a dark mat-

ter probe, it is encouraging that parametric possibilities do exist within simple extensions of the

SM. It would be interesting to further advance this exploration by computing the dark matter

implications of modified gravity/self-tuning models and comparing the results with those of this

paper. Furthermore, it would be interesting to cross correlate other astrophysical tests of those

modified gravity/self-tuning models with the dark matter predictions made within those models.

Note also that there are other probes of the cosmological constant during a PT such as gravity wave

probes [88] that will need more development as the gravity wave spectrum calculational technology

improves [89–91].

Appendix A: Renormalization Scale

Any measurable quantity is independent of the renormalization scale. Hence, one should not ex-

pect that the running of the cosmological constant parameter should affect any physical observable.

Indeed, the running of the other parameters in the Lagrangian will compensate the running of the

CC parameter to yield the same T00 governing the expansion rate H which can be measured for

example by a test photon redshift. The renormalization scheme and scale does however determine

the manner in which radiative corrections play a role. Furthermore, in any practical computations

involving finite order truncation in ~ expansion, there is a renormalization scale dependence to

next order in the perturbation power unless one is able to explicitly keep exactly the terms of the

relevant order in ~.

Given that we are computing homogeneous quantities, one might also naively worry that there

is a coarse graining requirement down to length scales of H−1. To see why this is not the case and

to see what renormalization scales would minimize the radiative correction dependence, consider

the effective action generating the gravitational equation of motion for the metric g:

eiSeff [g] = eiSEH [g]

ˆ
DΛφ e

iSM [g,φ] (A.1)

where SEH is the Einstein-Hilbert action, the matter field schematically written as φ satisfies the

appropriate boundary conditions relevant for the matter distribution, and we assume a renormal-
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ization scale at Λ. Since we are going to resolve the one-particle thermal states with masses of

order the freeze out temperature Tf , we should have Λ & Tf . Semiclassically expanding about the

classical path φ0 on the right hand side of Eq. (A.1), we have

eiSeff [g] = ei(SEH [g]+SM [g,φ0])N
ˆ
DΛ δφ e

i
´
d4x

δφ2(x)
2

δ2SM [g,φ]

δφ2(x)
|φ=φ0

+... (A.2)

where the path integral will have the usual perturbative renormalization. Hence, one can consider

the physical observables to be defined through

Tµν(y) =
2√
g(y)

δ

δgµν(y)

(
SM [g, φ0]− i ln

{
N
ˆ
DΛ δφ exp

[
i

ˆ
d4x

δφ2(x)

2

δ2SM [g, φ]

δφ2(x)
|φ=φ0 + . . .

]})
.

(A.3)

Note that in practice, we are expanding gµν perturbatively about a homogeneous and isotropic

FRW background before doing the path integral. Hence, the inhomogeneities can be computed

using classical perturbation theory and the renormalization scale need not be at Λ = HPT even

though it is at length scales longer than H−1
PT for which homogeneity and isotropy are typically a

good assumptions.

Appendix B: Derivation of Eq. (3.3)

Start with the thermally averaged Boltzmann equation for nX(t)

1

a3

d

dt

(
nXa

3
)

= −〈σv〉
(
n2
X − n

eq 2
X

)
(B.1)

which says that nX tracks the equilibrium number density neq
X until freeze out occurs at t = tf .

Long after freeze out, the equilibrium term can be neglected, and the equation asymptotically

approaches

d

dt

(
nXa

3
)

= −〈σv〉
(
nXa

3
)2 1

a3
. (B.2)

One can solve for nX(t0) by integrating

nX(t0) =
nX(tf )

(
af
a0

)3

1 + nX(tf )
(
af
a0

)3 ´ t0
tf
dt 〈σv〉 a

3
0
a3

. (B.3)

The integral in the denominator accounts for residual annihilations of dark matter particles after

freeze out. The freeze out time tf is not fundamental but instead an artifact of defining when

the solution deviates “significantly” from the equilibrium distribution. For temperatures away from

resonances and thresholds, one can typically parameterize 〈σv〉 as

〈σv〉 = ã+ b̃
T

mX
, (B.4)



35

where T is the temperature and mX is the mass of the dark matter. To further reduce Eq. (B.3)

we apply Eq. (3.25), which implicitly defines tf , and approximate nX(tf ) ≈ neq
X (tf ). Then, the

denominator of Eq. (B.3) satisfies

nX(tf )

(
af
a0

)3 ˆ t0

tf

dt 〈σv〉 a
3
0

a3
≈ mX

Tf

 ã+ b̃
2
Tf
mX

ã+ b̃ T
mX

� 1 (B.5)

for Tf ≈ mX/20 the freeze out temperature. Using this approximation we can express the relic

abundance as

nX(t0) =

(ˆ ln a0/af

0

d ln(a/af )

H
〈σv〉a

3
0

a3

)−1

(B.6)

after also applying dt = H−1 d ln a.

Appendix C: Difference Between Entropy and Energy Degrees of Freedom

In this appendix, we show that as the universe expands adiabatically during radiation domina-

tion, the relationship gE(T ) = gS(T ) hold iff

d ln gE
d lnT

=
d ln gS
d lnT

= 0 (C.1)

where gE is the effective number of degrees of freedom for the thermal energy density and gS is the

effective number of degrees of freedom for the entropy density. We also justify an ansatz that can

be used to relate gE and gS .

Assume that the CC energy density is negligible so that ρ ≈ ρR, which is the case sufficiently far

before or after the PT. The entropy and energy densities of a gas are related by Eq. (2.1c), which

can be written as

ρ+ P − T s = 0 (C.2)

where the pressure P of the gas is given by P (T ) = −F(T ). The functions gE and gS representing

the number of relativistic degrees of freedom were defined by Eq. (3.9) and Eq. (3.10) and are

reproduced here for convenience:

ρ =
π2

30
gE(T )T 4 and s =

2π2

45
gS(T )T 3 . (C.3)

As the universe expands, energy conservation is enforced by

d
(
ρa3
)

+ P da3 = 0 . (C.4)
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Using Eq. (C.2) and Eq. (C.3) this becomes

d ln gE(T )

d ln a
+ 4

d lnT

d ln a
+ 4

gS
gE

= 0 , (C.5)

which can be resolved as

d lnT

d ln a
= − gS

gE

[
1 +

1

4

d ln gE(T )

d lnT

]−1

. (C.6)

Next, impose adiabaticity d(sa3)/da = 0 by first using Eq. (C.3) to write

d ln(s a3)

d ln a
= −

[
d ln gS
d lnT

+ 3

]
gS
gE

[
1 +

1

4

d ln gE(T )

d lnT

]−1

+ 3 , (C.7)

and then setting this to zero and solving to find

gS
gE

= 1 +
1

4

d ln gE
d lnT

− 1

3

d ln gS
d lnT

. (C.8)

This equation implies gE = gS iff

d ln gE
d lnT

=
d ln gS
d lnT

= 0 (C.9)

as claimed.

To obtain some intuition for this theorem consider the SM electroweak PT. Before the PT,

the entire spectrum is massless and Eq. (C.9) is satisfied exactly so gE(T ) = gS(T ) = const for

T > TPT . After the PT, we can estimate how much difference between gS and gE is required for

self-consistency and to justify an intuitive parameterization, by considering a hypothetical situation

in which one can approximate

gE/S(T ) = gE/S(Ti) [T/Ti]
−12K (C.10)

where K is a constant and Ti is an initial condition temperature. Then, one can solve Eq. (C.8) as

gS(T )

gE(T )
=

1− 3K

1− 4K
. (C.11)

Hence, if 0 < K � 1, we have a situation in which gE(T ) decreases slowly as a function of time

while satisfying both entropy conservation and gS(T ) ≈ gE(T ). Presumably, K can be viewed as a

leading term in a Taylor expansion regarding gS/gE . Hence, we will approximate

gS(T ) ≈ (1 +K) gE(T ) (C.12)

even though we are not necessarily making the assumption of Eq. (C.10) throughout the paper.
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Appendix D: Derivation of T+
PT , ∆s, and T (a)

To find T (a), we start with the temperature before the PT T−PT and impose energy conservation

to solve for the temperature after the PT T+
PT . This allows us to calculate ∆s and ε2 in terms of

∆ρex. Then, we require the entropy per comoving volume S = s a3 to be conserved before and after

the PT to find T (a).

Assuming that there is a negligible change in a during reheating, we can impose energy conser-

vation at aPT . Using Eqs. (2.6), (3.8), and (3.9), energy conservation can be written as

π2

30
g

(s)
E

(
T−PT

) (
T−PT

)4
+ ∆ρex =

π2

30
g

(b)
E

(
T+
PT

) (
T+
PT

)4
, (D.1)

which implicitly defines T+
PT . This equation can be solved analytically by expanding T+

PT =

T−PT (1 + ∆τ) and linearizing in ∆τ along with other small quantities. Using Eq. (3.15) to ex-

pand g(s)
E (T ) around g(s)

E (Tf ), Eq. (D.1) becomes

π2

30

[
lim
ε→0

h(aPT + ε)− h(aPT − ε)
] (
T−PT

)4
+ ∆ρex ≈ 4

π2

30
g

(s)
E (Tf )

(
T−PT

)4
∆τ . (D.2)

where we have dropped higher order terms. Using Eq. (3.16), the term in brackets is (7/8)NPT .

Finally, the equation can be solved for ∆τ = T+
PT /T

−
PT − 1 to obtain

T+
PT ≈ T

−
PT

[
1 +

1

4
ε31 +

1

4

∆ρex

π2

30 g
(s)
E (Tf ) (T−PT )4

]
(D.3)

where ε31 is given by Eq. (3.20c). As expected, the energy released ∆ρex > 0 controls the reheating

from T−PT to T+
PT . Additionally, the reheating is larger when more particles non-adiabatically

decouple (larger ε31), because the latent heat is distributed over fewer degrees of freedom after the

PT.

Next we can calculate the entropy density increase at the PT given by

∆s ≡ s(b)(T+
PT )− s(s)(T−PT ) (D.4)

=
2π2

45

{
g

(b)
S (T+

PT )(T+
PT )3 − g(s)

S (T−PT )(T−PT )3
}
. (D.5)

Once again we will linearize in the perturbation by expanding gS using Eq. (3.15) and writing T+
PT

using Eq. (D.3). This gives

∆s ≈ 2π2

45

{
− 1

g
(s)
S (Tf )

[
lim
ε→0

h(aPT + ε)− h(aPT − ε)
]

+ 3∆τ

}
g

(s)
S (Tf )

(
T−PT

)3 (D.6)

≈ 2π2

45

{
−
g

(s)
E (Tf )

g
(s)
S (Tf )

ε31 + 3

[
1

4
ε31 +

1

4

∆ρex

π2

30 g
(s)
E (Tf )(T−PT )4

]}
g

(s)
S (Tf )

(
T−PT

)3 (D.7)
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As discussed in Section C, we can approximate g(s)
S (Tf ) ≈ g(s)

E (Tf ). Then finally ∆s becomes

∆s ≈ 2π2

45
g

(s)
S (Tf )

(
T−PT

)3 [−1

4
ε31 +

1

4

∆ρex

π2

30 g
(s)
E (Tf )(T−PT )4

]
. (D.8)

Using Eq. (3.20b) and noting T−PT aPT = Tf af up to higher order terms, we also obtain

ε2 ≈ −
1

4
ε31 +

1

4

∆ρex

π2

30 g
(s)
E (Tf )(T−PT )4

. (D.9)

Both of these equations illustrate that the entropy increase at the PT is controlled by the amount

of latent heat released and the number of particles that non-adiabatically decouple.

Finally we will solve the equation of entropy conservation for T (a). The entropy per comoving

volume S = s a3 is conserved excepting the entropy injection at reheating which is assumed to occur

rapidly at aPT . Entropy conservation may be expressed as

gS(a)T (a)3a3 = g
(s)
S (Tf )T 3

f a
3
f + Θ(a− aPT ) a3

PT

(
2π2

45

)−1

∆s , (D.10)

which implicitly defines T (a). To solve for T we use Eq. (3.15) to expand gS(a) then linearize in h

and ∆s to obtain

T (a) ≈ Tf
af
a

1 +
1

3

h(a)

g
(s)
S (Tf )

+ Θ (a− aPT )
1

3

(
aPT
af

)3 ∆s
2π2

45 g
(s)
S (Tf )T 3

f

 (D.11)

Further expanding h using Eq. (3.16), approximating gS(Tf ) ≈ gE(Tf ), and applying Eq. (3.20b)

we obtain the final expression,

T (a) ≈ Tf
af
a

[
1 +

1

3
ε32 f(a) + Θ (a− aPT )

1

3
(ε31 + ε2)

]
(D.12)

After the PT, the exotic energy component behaves approximately adiabatically.

Appendix E: Derivation of PT induced change in the degree of freedom

We begin with the well-known formula for the energy density of a gas of fermions at temperature

T with N dynamical degrees of freedom:

ρ(T ) = N

ˆ
d3p

(2π)3

Ep

1 + eEp/T
. (E.1)

The gas has an effective number of degrees of freedom gE given implicitly by ρ(T ) = π2

30 gE(T )T 4.

We can parameterize the decrease in gE due to the decoupling of the fermionic gas by writing

gE(T ) = gE(Tf )− 7

8
Nf (a/af ) (E.2)
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where

f (a) =

(
7

8

π2

30

)−1 ˆ
d3p

(2π)3
Ep

 1

T 4
f

1

e
Ep
Tf + 1

− 1

T 4(a)

1

e
Ep
T (a) + 1

 . (E.3)

The temperature T = T (a) is given by Eq. (D.12) to leading order in the perturbations εi. Since

f already multiplies a small term in Eq. (3.16), we need only keep the leading factor in Eq. (D.12)

which is T = Tf af/a. This lets us write Eq. (E.3) as

f (a) =
8

7

(
30

π2

)ˆ
d3p

(2π)3

Ep
T 4
f

 1

e
Ep
Tf + 1

−
(a/af )4

e
aEp
afTf + 1

 . (E.4)

Note that f(a) increases from f(af ) = 0 to f(∞) ≈ 1. Due to the exponential temperature

dependence, the transition to f ≈ 1 occurs at T ≈ mN and is smoothly steplike over a time scale

∆t ≈ 1/H. In this discussion we have assumed Ep =
√
p2 +m2

N with mN constant, that is, we

neglect any change in the mass of the particle as a function of time. This assumption is valid

sufficiently far after the PT such that the scalar field expectation value and field-dependent masses

have approximately stopped varying.

Appendix F: Thermal Effective Potential Details

We have calculated the thermal effective potential through one-loop order for each of the models

in Section 4. Our calculation employs the standard techniques [92–94], and the case of the Standard

Model is particularly well documented [50, 95, 96]. As such, we do not feel the need to reproduce

the entire calculation here. However, we have chosen to use renormalization schemes which are

convenient for our calculation, but not standardly employed. Hence, we will use this appendix to

write down the thermal effective potentials for each of the models in Section 4 and to spell out our

renormalization conditions.

In calculating thermal corrections to the scalar effective potential, we do not include contribu-

tions from the dark matter sector. This is an excellent approximation provided that freeze out

occurs prior to the phase transition (as we have assumed), such that the dark matter is decoupled

from the plasma during the phase transition.

1. Thermal Effective Potential: Standard Model

Let h(x) =
√

2
∣∣H†H∣∣1/2 be the radial component of the SM Higgs field and let hc = 〈h〉. In

calculating the radiative corrections, we need not include the contributions from every field in the
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Standard Model. With regards to the non-thermal corrections, light particles which couple weakly

to the Higgs can be neglected, and with regards to the thermal corrections, particles which are light

and do not decouple during freeze out can be treated as massless. Since we expect that freeze out

will coincide with the PT at a mass scale of about 100 GeV and that residual annihilations will

occur down to a mass scale of about 10 GeV, we can neglect particles with a mass below that of the

bottom quark (i.e., 4.2 GeV). We retain the top quark, bottom quark, physical Higgs, and massive

gauge bosons11 which have field dependent masses

M2
t/b/Z/W (hc) =

(mt/b/Z/W

v

)2

h2
c (F.1a)

M2
h(hc) =

m2
h

2v2

(
3h2

c − v2
)

(F.1b)

wheremt = 172.6 GeV,mb = 4.2 GeV,mZ = 91.2 GeV, andmW = 80.4 GeV [97]. The non-thermal

corrections can be expressed as functions of the Coleman-Weinberg potential [92]. Regulating in

(d = 4− 2ε) spacetime dimensions, the unrenormalized potential is given by

Vcw(M2) =
M4

64π2

(
log

M2

µ2
− 3

2
− Cuv

)
(F.2)

where Cuv = ε−1− γE + ln 4π and µ is the t’Hooft scale. The thermal corrections can be expressed

in terms of the bosonic and fermionic thermal functions [93, 98]

JB (y) ≡
ˆ ∞

0
dxx2 log

(
1− e−

√
x2+y

)
= −

∞∑
n=1

1

n2
y K2 (n

√
y) (F.3a)

JF (y) ≡
ˆ ∞

0
dxx2 log

(
1 + e−

√
x2+y

)
= −

∞∑
n=1

(−1)n

n2
y K2 (n

√
y) (F.3b)

where K2(z) is the modified Bessel function of the second kind. Putting the pieces together, the

Standard Model thermal effective potential (through one-loop order and before renormalization) is

given by

V
(SM)

eff (hc, T ) ≈
m2
h

8v2

(
h2
c − v2

)2
+

{
δΩ +

1

2
δm2 h2

c +
δλ

4
h4
c

− 12Vcw

(
M2
t (hc)

)
− 12Vcw

(
M2
b (hc)

)
+ 3Vcw

(
M2
Z(hc)

)
+ 6Vcw

(
M2
W (hc)

)
+ Vcw

(
M2
h(hc)

)}

+

{
−π

2

90
75.75T 4 +

T 4

2π2

[
−12 JF

(
M2
t (hc)T

−2
)
− 12 JF

(
M2
b (hc)T

−2
)

+ 3 JB
(
M2
Z(hc)T

−2
)

+ 6 JB
(
M2
W (hc)T

−2
)

+ JB
(
M2
h(hc)T

−2
)]}

+O
(
~2
)

(F.4)

11 We work in the Landau gauge (ξ = 0) for which the scalar polarization mode and ghost propagators are independent
of hc [92].
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where δΩ, δm2, and δλ are counterterms. We have also included the term (−π2

90 75.75T 4), which

represents the thermal radiative contribution from light quarks, leptons, and massless gauge bosons

which are relativistic at temperatures T & 10 GeV. The renormalization conditions,

∂

∂hc
V

(SM)
eff (hc, 0)

∣∣∣∣
hc=v

= 0 (F.5a)

∂2

∂h2
c

V
(SM)

eff (hc, 0)

∣∣∣∣
hc=v

= m2
h (F.5b)

V
(SM)

eff (v, 0) = 0 , (F.5c)

are chosen such that tadpole graphs vanish and V (SM)
eff (hc, 0) has a minimum at hc = v, self-energy

graphs vanish and the Higgs mass12 is mh, and the CC is tuned against the vacuum energy density

to zero.

2. Thermal Effective Potential: Z2xSM

The Z2xSM potential was specified by Eq. (4.7). Since we focus on the case 〈s〉 = 0, we need

only calculate the effective potential as a function of hc and not sc = 〈s〉. That is, the presence of

the singlet in this model simply add an additional degree of freedom, with field dependent mass

M2
s (hc) =

(
m2
s − a2v

2
)

+ a2h
2
c , (F.6)

to the radiative corrections. We can construct the effective potential from the SM effective potential

Eq. (F.4) as

V
(Z2xSM)

eff (hc, T ) =V
(SM)

eff (hc, T ) + Vcw

(
M2
s (hc)

)
+
T 4

2π2
JB
(
M2
s (hc)T

−2
)
. (F.7)

An additional UV divergence arises from the term Vcw(M2
s ), and is cancelled by solving the renor-

malization conditions Eq. (F.5) once again for the counterterms.

3. Thermal Effective Potential: Generic Singlet

For the theory specified by the action Eq. (4.12), we have the field dependent masses

M2
ϕ(ϕc) = M2 − 6Eϕc + 3λϕc (F.8)

M2
ψi

(ϕc) = (mi + hiϕc)
2 . (F.9)

12 Since the effective potential is computed from diagrams with zero external momentum, the mass ∂2
hc
Veff(hc =

v, 0) = m2
h differs from the Higgs pole mass by logarithmic corrections [99], which we verify are O (few %). As

such, we will neglect this distinction and continue to refer to mh as the “Higgs mass.”



42

We construct the thermal effective potential as

V
(GS)

eff (ϕc, T ) =ρex +
1

2
M2ϕ2

c − Eϕ3
c +

λ

4
ϕ4
c +

T 4

2π2

[
JB
(
M2
ϕ(ϕc)

)
− 4

N∑
i=1

JF
(
M2
ψi

(ϕc)
)]

(F.10)

+

{
δΩ + δt ϕc +

1

2
δM2ϕ2

c − δE ϕ3
c +

δλ

4
ϕ4
c + Vcw

(
M2
ϕ(ϕc)

)
− 4

N∑
i=1

Vcw

(
M2
ψi

(ϕc)
)}

where δΩ, δt, δM2, δE , and δλ are counterterms. We do not renormalize using the same renormal-

ization conditions as we did for the SM. To simply the discussions of Section 4, we have attempted to

choose the renormalization conditions such that the effective potential preserves certain features of

the renormalized tree-level potential. For example, the renormalization conditions that we applied

to the SM, Eq. (F.5), ensured that the effective potential and the tree-level potential agreed to order

h2
c as an expansion around hc = v. In our analysis of Section 4.3, we found it convenient to define

the parameter α0 which controls the shape of the effective potential. This parameter is defined

using the tree-level potential U(ϕ), but we claim that it also describes the shape of the one-loop

effective potential provided that the radiative corrections do not significantly distort the shape of

the potential. For the tuned limit 0 . α0 � 1, this parameter is particularly sensitive to the shape

of the potential near the origin ϕc = 0 since the barrier is very small. The radiative corrections

grow as ϕc → 0, because the fermions ψi become light, but these logarithmic corrections remain

subdominant. However, with a renormalization scheme of the form of Eq. (F.5), the counterterms

pick up a finite piece, which depends on derivatives of logarithms at the renormalization point

ϕc ≈ v, and which contributes non-negligibly near ϕc ≈ 0. If we were to use such a renormalization

scheme in the limit where U(ϕc) has a small barrier so 0 . α0 � 1, then the radiative corrections

may lift the minimum at ϕc ≈ 0 and eliminate the barrier. Of course, there is nothing incorrect

with using such a renormalization scheme except that it is inconvenient since we would not be able

to characterize the shape of the potential using α0 derived from U(ϕc).

In light of this discussion, we will use a renormalization scheme which preserves the location

of the minimum at ϕc = v and also preserves the shape of the potential near ϕc = 0. This is

accomplished by first writing Eq. (F.10) for T = 0 as

V
(GS)

eff (ϕc, 0) = Ω̄(ϕc) + t̄(ϕc)ϕc +
1

2
M̄2(ϕc)ϕ

2
c − Ē(ϕc)ϕ

3
c +

λ̄(ϕc)

4
ϕ4
c (F.11)
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where

Ω̄(ϕc) = ρex + δΩ +
~

4π2

[ 1

16
M4fϕ(ϕc)−

1

4

N∑
i=1

m4
i fψi(ϕc)

]
(F.12a)

t̄(ϕc) = δt+
~

4π2

[
−3

4
EM2fϕ(ϕc)−

N∑
i=1

m3
ihifψi(ϕc)

]
(F.12b)

M̄2(ϕc) = M2 + δM2 +
~

4π2

[3

4
M2λfϕ(ϕc) +

9

2
E2fϕ(ϕc)− 3

N∑
i=1

m2
ih

2
i fψi(ϕc)

]
(F.12c)

Ē(ϕc) = E + δE +
~

4π2

[9

4
Eλfϕ(ϕc) +

N∑
i=1

mih
3
i fψi(ϕc)

]
(F.12d)

λ̄(ϕc) = λ+ δλ+
~

4π2

[9

4
λ2fϕ(ϕc)−

N∑
i=1

h4
i fψi(ϕc)

]
(F.12e)

and

fϕ(ϕc) =

(
ln
M2
ϕ(ϕc)

µ2
− 3

2
− Cuv

)
(F.13)

fψi(ϕc) =

(
ln
M2
ψi

(ϕc)

µ2
− 3

2
− Cuv

)
. (F.14)

Then the renormalization conditions can be expressed as

Ω̄(v) = ρex (F.15a)

t̄(v) = 0 (F.15b)

M̄2(v) = M2 (F.15c)

Ē(v) = E (F.15d)

λ̄(v) = λ . (F.15e)

Near ϕc ≈ 0, the radiative corrections are at most logarithmic.

4. Thermal Effective Potential: xSM

In Section 4.4 we wrote down the xSM renormalized potential in Eq. (4.27). For general hc

and sc, the Higgs and singlet fields mix. In order to calculate the radiative corrections, we must

generalize the field-dependent Higgs massM2
h , given by Eq. (F.1b), to the Higgs-singlet mass matrix

M2
hs, which has components[

M2
hs({hc, sc})

]
11

= m2
h/(2v

2)
(
3h2

c − v2
)

+ sc (a1 + a2 sc) (F.16a)[
M2
hs({hc, sc})

]
12

=
[
M2
hs({hc, sc})

]
21

= hc (a1 + 2 a2 sc) (F.16b)[
M2
hs({hc, sc})

]
22

= m2
s + a2

(
h2
c − v2

)
+ 2b3 sc + 3b4 s

2
c . (F.16c)
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Now we can write down the thermal effective potential in terms of V (SM)
eff by subtracting the con-

tribution from the SM Higgs and adding the contribution from the mixed Higgs and singlet. Doing

so we obtain

V
(xSM)

eff ({hc, sc} , T ) =V
(SM)

eff (hc, T ) +
b4
4
s4
c +

1

2
m2
ss

2
c +

b3
3
s3
c +

1

2
sc
(
h2
c − v2

)
(a1 + a2sc)

+

{
δb4
4
s4
c +

δb3
3
s3
c +

1

2
δb2s

2
c + δb1sc +

1

2
δa2s

2
ch

2
c +

1

2
δa1sch

2
c + δΩ

− Vcw

(
M2
h(hc)

)
+ TrVcw

(
M2
hs({hc, sc})

)}

+
T 4

2π2

[
−JB

(
M2
h(hc)T

−2
)

+ Tr JB
(
M2
hs({hc, sc})T−2

)]
(F.17)

where δΩ, δbi, and δai are counterterms. The trace is interpreted to mean evaluating Vcw or JB with

the eigenvalues of M2
hs. We generalize the SM renormalization conditions Eq. (F.5) to incorporate

the additional fields,(
∂

∂hc

)nh ( ∂

∂sc

)ns
V

(xSM)
eff ({hc, sc})

∣∣∣
{v,0}

=

(
∂

∂hc

)nh ( ∂

∂sc

)ns
U({hc, sc})|{v,0}

{nh, ns} = {1, 0} , {2, 0} , {0, 1} , {0, 2} , {1, 1} , {1, 2} , {0, 3} , {0, 4} , {0, 0} (F.18)

where U({hc, sc}) is given by Eq. (4.27). Once again, we require V (xSM)
eff ({v, 0} , 0) = 0 which tunes

the CC.

Appendix G: xSM Bounce Calculation

As discussed in Section 4.4, the xSM electroweak PT is first order in the parametric regime

of interest and proceeds through thermal bubble nucleation. In order to determine the bubble

nucleation temperature T−PT we estimate the action of the three dimensional bounce S(3)(T ) and

require S(3)/T
∣∣
T−
PT
∼ 140. The bounce field configuration φB(r) is a saddle point solution of the

Euclidean equation of motion with an O(3) symmetry. Let ~φ = {h, s} be the field space coordinate

and let ~φsym = v(s)(T ) and ~φbrk = v(b)(T ) be the location of the symmetric and broken phases at

temperature T . In this notation, the field equation and boundary conditions can be written as

d2~φ

dr2
+

2

r

d~φ

dr
− ~∇~φVeff(~φ, T ) = 0 (G.1)

d~φ

dr

∣∣∣∣∣
r=0

= 0 , lim
r→∞

~φ(r) = ~φsym (G.2)

where r is the radial coordinate and Veff is the thermal effective potential. The bounce solution

is a curve ~φB(r) which starts nearby to ~φbrk at r = 0 and approaches ~φsym as r → ∞. Once the
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solution ~φB(r) is obtained, the bounce action is calculated as

S(3)(T ) = 4π

ˆ ∞
0

r2dr

1

2

(
d~φB
dr

)2

+ Veff(~φB(r), T )

 . (G.3)

It is difficult to solve Eq. (G.1) by brute force numerics, because the solution is unstable to per-

turbations about the initial point ~φB(0), and the over shoot / under shoot method is non-trivial to

apply in two dimensions.

Profumo et. al. [64] have outlined a numerical procedure which reduces the calculation to itera-

tively solving the one-dimensional analog of Eq. (G.1). They suggest that one should decompose the

field equation into a basis with unit vectors parallel and perpendicular to the solution curve ~φ(r).

Suppose that there exists a curve ~φ(x) that interpolates between ~φ(0) = ~φsym and ~φ(L) = ~φbrk.

Let

x =

ˆ ~φ(x)

~φsym

∣∣∣d~φ∣∣∣ (G.4)

be the distance along the curve such that L is the total length and

ê‖ =
d~φ

dx
and ê⊥ =

 0 1

−1 0

 d~φ

dx
(G.5)

are the unit vectors parallel and perpendicular to the curve at x. In this basis, Eq. (G.1) becomes{
d2x

dr2
+

2

r

dx

dr
− dV (~φ(x))

dx

}
ê‖ = 0 (G.6){∣∣∣∣∣d2~φ

dx2

∣∣∣∣∣
(
dx

dr

)2

−
(
~∇~φV

)
⊥

}
ê⊥ = 0 . (G.7)

The authors of [64] solve these equations numerically using an iterative procedure.

Since we compute T−PT by calculating the bounce at various temperatures in order to solve

S(3)/T ≈ 140, the iterative procedure is too computationally intensive for our purposes. Fortu-

nately, in the parametric regime of interest the bounce solution ~φB(r) can be approximated by

~φapp(x) = {h(x), s̄(h(x))} where s̄(h) satisfies13

dU({h, s} , 0)

ds

∣∣∣∣
s̄

= 0 and s̄(v) = 0 , (G.8)

13 In the parametric region described in Section 4.4, the solution of dU/ds = 0 is not generally a single-valued function
of h. However, the boundary condition s̄(v) = 0 selects out a unique trajectory which tends to stay in the “valley”
connecting the two minima and passes through the saddle point.
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Figure 9: Comparisons of bounce calculations for the xSM benchmark point Eq. (4.30). On the left, the

bounce action computed at various temperatures between T0 = 12.7 GeV and Tc = 70.7 GeV using the

method of [64] (squares) and our approximation (circles). On the right, the xSM thermal effective potential

at T−
PT = 13.7 GeV. The solid curve shows the trajectory ~φB(x) obtained using the method of [64], and

the dashed curve shows the approximation ~φapp(x) given by Eq. (G.8). The curves do not coincide at small

h because the minimum along the h = 0 axis shifts as the temperature is raised. Nevertheless, the action

along the two paths still agrees remarkably well.

U is the classical potential, and ~φapp(x) is parametrized by its length x given by Eq. (G.4). Using

~φapp(x), we solve Eq. (G.6) for x(r) and calculate S(3) using Eq. (G.3).

To check our approximation, we also compute the PT temperature using the method of [64] for

a few parameter sets. In Figure 9 we contrast our approximation with the procedure of [64] for the

xSM benchmark point Eq. (4.30). We find that our approximation tends to overestimate S(3) by a

few percent generically. However, S(3) is a rapidly increasing function of temperature, and even an

O (5%) deviation in S(3) does not causes T−PT to deviate appreciably.
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